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An Asymptotic Expansion Approach in Finance *

Akihiko Takahashi

Graduate School of Economics, the University of Tokyo

August, 2007

Abstract

This paper reviews an asymptotic expansion approach to numerical problems
for pricing financial assets and securities.

1 Introduction

Let (2, F,{Ft}iejo,r), P) denote a probability space with filtration, on which
a m~dimensional standard Wiener process w is defined where P is the equiva-
lent martingale measure (the risk neutral measure) in finance, and T" denotes
some positive constant. Now, let F'(w) be a Wiener functional, and then V,
the value of a portfolio or a security can be expressed as V = E[F(w)]
under certain conditions. Evaluating this expectation is one of the main
problems in finance. Moreover, if F' depends on the parameter 6, evaluation
of % = %E[F(w; 6)], the change of a security value caused by a minimal
change of this parameter is also an important task in practice. As an exam-
ple, consider a d-dimensional diffusion process X (9 which is obtained as a
strong solution to the stochastic differential equation;

dX9 = V(X9 e)dt + V(X' e)dwy, t € [0,T); X9 = m,

where € € [0, 1] is a known parameter. Here, the coefficients are assumed to
be smooth and to satisfy some regularity conditions. In finance, the prob-
lems of evaluating the present value of derivatives or the portfolio value
in investment theory are mostly reduced to the problems of computing

*The main part of this paper is translation of [35].



E[f(Xéf))], the expectation of f(Xéf)), a function of Xj(f). In financial ap-
plications, it is important to deal with the case not only the function f(z)
is smooth but also the case it is not. For example, when various options
are evaluated, it is expressed as f = T o g, where T'(z) = max{z,0} and g
denotes a smooth function of R% — R. In general, it is difficult to represent
this expectation explicitly except for special cases. Therefore, methods such
as Monte Carlo simulation or numerical solutions of partial differential equa-
tions are applied and various speeding up techniques are developed, since
fast computation is required as well as accuracy for practical purposes. As
another approach, an approximation of the expectation by an asymptotic
expansion of the stochastic differential equation around € = 0 can be consid-
ered. Further, because aiIOE[f(Xéf))] and %E[f(X}E))], the changes of the
security value caused by the minimal changes of the initial value zy and the
parameter €, are important indicators for practical purposes, obtaining the
approximations with high accuracy are very useful. Moreover, some meth-
ods which combines Monte Carlo simulation and an asymptotic expansion
with low orders are developed since the asymptotic expansion up to the
first or second order can be easily evaluated. By this way, the efficiency of
Monte Carlo simulation or the accuracy of approximation obtained by the
asymptotic expansion can be improved.

The application of the asymptotic expansion to finance is closely related
to the study in mathematical statistics, which is on asymptotic expansions
of statistics for stochastic differential equations, though it seems not to be
so relevant to finance. In particular, it is based on the asymptotic expan-
sions of estimators for unknown parameters in small diffusions developed by
Yoshida [51], [52], [53], which applies Watanabe theory(Watanabe [50]) in
Malliavin calculus. For further readings on asymptotic expansions of small
diffusions in mathematical statistics, see Dermoune-Kutoyants [3], Kutoy-
ants [18], [19], Masuda- Yoshida [22], Sakamoto- Yoshida [30], [31], Sakamoto-
Takada-Yoshida [29], Taniguchi-Kakizawa [45], Uchida-Yoshida [46], [47],
and Yoshida [54], [55], [56].

To my knowledge, the asymptotic expansion is first applied to finance
for evaluation of an average option that is a popular derivative in commod-
ity markets. [12] and [33] derive the approximation formulas for an average
option by an asymptotic method based on log normal approximations of
an average price distribution when the underlying asset price follows a ge-
ometric Brownian motion. [52] applies a formula derived more generally
by the asymptotic expansion of small diffusion processes. Thereafter, the
asymptotic expansion is applied to a broad class of problems in finance. For
basic theory in finance, see for instance Bjork [1] and Karatzas-Shreve [6],
and for the general relationship between finance and the asymptotic expan-
sion, see [15]. In what follows, more concrete applications of the asymptotic
expansion to numerical problems in finance are introduced.



2 Foundation of an Asymptotic Expansion

This section provides basic methodology to approximate the values of finan-
cial assets or securities after a summary of the framework of the asymptotic
expansion approach based on [51], [52] and [14] in Section 2.1. As for de-
tails on Watanabe theory([50]) in Malliavin calculus that is a core theory
of this method, as well as the asymptotic expansion, see Takanobu [43],
Takanobu-Watanabe [44] and Uemura [48] for instance besides the litera-
tures on mathematical statistics mentioned above. Kusuoka-Strook [17] also
derives an asymptotic expansion of a certain Wiener functional by Malliavin
calculus. Further, see lecture notes or textbooks such as Ikeda-Watanabe [5],
Malliavin [21], Nualart [26], Shigekawa [32] and Watanabe [49] for general
references for Malliavin calculusO

2.1 The Framework of an Asymptotic Expansion

First, T consider a d-dimensional diffusion process X (¢), which is the strong
solution to the following stochastic differential equation:

dX(9 = Vy(X\Ndt + eV (X)dwy; X9 =z, t €[0,7T), (1)

where w denotes a m-dimensional standard Wiener process and € € [0,1] is
a known parameter. Suppose that coefficients V5 : R — R¢, V : R
R? ® R™ are smooth and satisfies regularity conditions. Let V; denote the
i-th column of the V and a R? ® R%valued stochastic process Y denote the
solution to the stochastic differential equation;

m
dY,\) = avo(X{)Y Vdt + €3 avi(X{) YV dwy; YO = 1,
i=1

where 0 = aixk, and 0V;(i = 0,1,---,m) denotes the d x d matrix whose
(4, k)-element is 05 Vj;. I denotes the d x d identity matrix. Moreover, define
Y;as Y; = )Q(O).

Next, suppose that a function ¢ : R¢ — R to be smooth and all deriva-
tives have polynomial growth orders. Then, for € | 0, g(XZEﬂE )) has its asymp-
totic expansion;

Q(Xéf)) ~ gor + €qiT + 6292T + 6393T -o-in Deo, (2)

where gor, 917,927,937 - - € Doo. For any k € N, g € (1,00) and s > 0,
this expansion means that

k_lgk—l,T)Hq,s < oo (as €l 0),

1

Flo(XF) — (gor +eqir + -+
where ||G||4,s represents the sum of the L9 -norms of Malliavin derivatives
of a Wiener functional G up to the s-th order. Further, a Banach space
D, = D, s(R) can be regarded as the totality of random variables bounded
with respect to (g, s)-norm || - ||4,s, and Dog = Ng>0 Nicgeoo Dy,s-



The coefficients in the expansion, gor, 917,927 - - - can be obtained by
Taylor’s formula and represented as multiple Wiener-Ito integrals. In par-

(e) (e) (e)
ticular, let D; = 19)(;'6 le=0, Ft = 32;; le=o and F} = 88)5(3 le=o then
gor, 917, gor and gzr can be written as
0 0
gor = Q(Xé)), aiT = Zaig(X;(p))Dz’T,
gor = 5 Z 0:0;9(Xy" ) Dir Dy + 3 Zazg biel ))EiTa
,7=1 i=1
and,
1< (0) x(
gsr = 6 Z (9z(9]3kg(XT )DzTD]TDkT+ Z 88]9 )EZTD]T+ Zag
1,5,k=1 i,j=1 1=1

Here, D;;, E;; and Fy, 1 = 1,---,d, which are the elements of D;, E; and F;
respectively are represented by

t .
0

t . d d
Ey = / YS90 Vo(X D) Dju Dyudu + 23" 0,V (X)) Djduw,),
0 k=1 j=1
t . d d
F, = / YOS 0;000V0(X ) Dju Dy Dy +3 S 90, Vo(X(9) Ejy Dy
0 k=1 jok=1
d d
+3 3" 9,0,V (X)) Djy Dyydw, +33 0,V (X,
J k=1 j=1

where Yt(i") denote the i-th row of Y;.
(6))

Next, normalize g(X}’) as

9(X5) — gor

for € € (0,1]. Then, for h € H(where H denotes the Cameron-Martin
subspace of the m-dimensional Wiener space), the H-derivative of G is
expressed as

T .
D, G zazg DhXT—Zag X /0 V) W) (X)) dt.

=1

(€)

With a notation a;,

o) = (9g(X5)))

the Malliavin (co)variance of G(¢) is given by

’

Y (v N v (x (),

T ’
7o = [ al?(@l?) . (3

))Fz'T-

1(10) )Ejudwu]a



where z' denotes the transpose of x. Moreover, let
0 0)\y/ . 0
ar = o = (0g(X7)) [vr¥, V(X))

and make the following assumption:

T ’
(Assumption 1) Xp = /0 ara,dt > 0. (4)

Since Y7 is the variance of the random variable g7, which follows a normal
distribution, Assumption 1 means the condition that the distribution of g;1
does not degenerate. In application, it is easy to check this condition in
most cases, hence it plays an important role for practical purposes. In what
follows, I derive asymptotic expansions useful for finance under Assumption
1. For detailed arguments such as the proofs omitted here because of the
space limitation, see [51], [52] and [14].

Under Assumption 1, () is uniformly non-degenerate for {|n£5)| <1}
that is, it can be shown that there exists a positive real number ¢y > 0 such
that for any ¢ > ¢y and p > 1,

—-p
623)]?1}E[l{\née)\§1}(|0(;(e)|) ] < o0, 5)

where nge) = chT |a§€) — ay|?dt. Then, for T : R — R, T € S (R) where
s’ (R) denotes the totality of Schwartz tempered distribution on R, a com-
posite function ¢(n£f))T oGO = w(nge))T(G(E)) is well-defined as an ele-
ment of D_ o, = Us<o M<p<oo Dps; ¥(x), © € R denotes a smooth func-
tion 0 < ¢(x) < 1, defined as 9(x) = 1 for |z|] < 1/2 and 9(z) = 0
for |z| > 1. Here, a Banach space D,,, s < 0 is the dual space of
D, s(R)(¢g = p/(p — 1)). Moreover, the coupling with the function 1 is
well-defined, which is called as generalized expectation and is written as
E[w(nge))T o G9]. Further, ¢(n£5))T o G(©) can be expanded in D_,. Since
a function T" such as T'(z) = max{z,0} that is measurable but not smooth
appears frequently in finance, the framework mentioned above is necessary
for the asymptotic expansion.
It also can be shown that {nge) (w);e € (0,1]} C Dy,

and ngf)(w) is O(1) in Dy, as € | 0. Moreover, for any £k =1,2,---,

This means that the probability of the events truncated by 1,b(n£€)) is smaller
than any polynomial orders of e. Then, in the expansion of ¢(n£5))T o G,
the coefficients expressed as generalized Wiener functionals belonging to
D_. can be written by applying Taylor’s formula to T'(gor + €g11 + €2gor +
---). Therefore, the asymptotic expansion of the expectation E[T(G(¢))] can
be obtained relatively easily.

Now let us consider a more specific case. For a smooth function ¢(© :

[0,1] x R — R, of which all derivatives with respect to z have polynomial



growth orders uniformly in €, the following holds uniformly in B € B for a
positive large number ¢ > 0:

P ) (GNIE(GO)) ~ By + eBy + €Dy--- in D_o (as el 0), (6)

where B = B(R) denotes a Borel set in R. Here, the coefficients ®q, &1, Py, - - -
are generalized Wiener functionals and they are obtained by applying formal
Taylor’s formula to ¢¢(G(9))I(G(9)); in particular, ®y and ®; are expressed
as

oy = ¢Oqr)Isloir)
o = {9.09(qir) + ¢ (917) 920 B (917) + 9O (917) 92001 B (917),
¢y = [3s¢( (g1i7) + 33 ( T)92 ] 01g(g17)g2T

O (x)

1
§3§¢(0) (ng) + { 8 Je |I:ng}92T + 8¢(0) (91T)93T

1 1
+§32¢(0) (91T)9§T] In(gir) + ¢ (gi7) {53213(91T)9§T + 0Ip (91T)93T} :

where 9F¢(0) = | | —1,2,
Therefore, the expectation E[¢(G(€))I B(G9)] has its asymptotic expan-
sion uniformly in B as

E[¢(9(G)I5(G))] ~ E[®o] + E[®1] + €E[®o] + -+ (as €, 0), (7)

where each term of the expansion can be expressed as the expectation of a
multiple Wiener-Ito integral conditional on a normal random variable. For
example, E[®¢], E[®{] and E[®5] are written as

E[®, — /¢ nfz; 0, Sylde,
E[®|] = /B (0:¢"") (z)n[z; 0, %7 — ¢ (2)0{Elgor|gr7 = @]n[z;0, Sr]})da,
E[®,] = /B (—8E¢<°>(m>a{E[gg|gl:x]n[m|0,zT1}+§6§¢<°>(x)n[x|o,zﬂ

4580 @) (Blgdlgvr = alnlz o, 911}
¢ (2)0{Elgs|grr = #n[z|0, 5r]}) d,

where n[z;0,37] denotes the density function of the normal distribution
with mean 0 and variance Y. Moreover, Elgor|gir = 7|, Elg%r|gim = 7]
and E[gsr|giT = x] are polynomial functions of z and hence the computa-
tions of the expectations become easier. It is known that precise approxima-
tions are obtained by applying asymptotic expansions up to such low orders
in financial examples.

2.2 Valuation of Option Values by an Asymptotic Expansion

Now approximations for values of various derivatives can be provided by the
framework explained above. First, note that X (9 in the previous subsection



represents the key variable such as the underlying asset’s price, which is
an important factor to determine values of derivatives. Next, I show the
application of the asymptotic expansion to finance, specifically by using an
example of a standard European vanilla option which is examined in [34].
Let w be a one-dimensional Wiener process, « be a constant, € € [0, 1], and
o(x,t) be a smooth function of z satisfying appropriate regularity conditions.
Suppose that under the equivalent martingale measure, the underlying asset
price of the option S(© follows a stochastic process;

dS,gE) = aS,gf)dt + ea(S,EE),t)dwt; S(()E) =s(>0). (8)

Let a strike price K be some positive constant, then the values of vanilla
call and put options at the expiration date T are respectively written as

Vo(T) = max {85 — K,0} and V,(T) = max {K - 87, 0}.  (9)

Moreover, the values at the contract date(t = 0) are respectively expressed
as
Ve(0) = e E[Ve(T)] and V;,(0) = ™" E[V,(T)], (10)

where 7, a nonnegative constant denotes the (instantaneous) short-term in-
terest rate. In what follows, I explain the case of call options, which can be
also applied to the case of a put option. First, in the setting of Section 2.1,
let d =2, m=1,and X = (X}, X!9Y with X{? = ¢, and X = 8.
Next, with 2 = (29, z;) and g(z) = z; — K, G is given by
0
G — X\ - xi
€ )

where € € (0, 1] and ng? = Sg)) = ¢T's. Then, the value at expiration can
be written as

Vo(T) = max {8} - K,0} = max {6 + X{) - K,0}
= max {e(G(E) + y(e)), 0} ,

XK .
where y(© = —I—. Note also that X7 is expressed as

lu u

T T
Xr :/ 620‘(T_“)02(X(0) Xég))du :/ T =152(80) wydu.  (11)
0 0

Although ¢(9(z) and B can be set as ¢(9)(z) = ex + (X{?p) — K) and B =
{X{ET) > K} = {G© > —4(9} respectively, I consider this problem under
the following assumption for more practical purposes:

(Assumption 2)

For arbitrary y € R the strike price K is given by K = Sg) ) €Y.

Then, y(¢) = y. Note also that in Assumption 2, 5’59) is equivalent to the

forward price with the same expiration date as the option’s one.



Now I set
3 (x) = e(z + ),
and B = {G(9 > —y}. Then, by the equation (7), an approximation formula

up to the e?-order for the call option’s value at the contract date is derived
as

Ve(0) = e_rT{e/ (z + y)n[z; 0, Xr]|dz (12)
Y
+ 62/ (cz® + f)n[z;0, Br]dz} + o(e?),
-y
where the constants ¢ and f are given by

T U
. — ZLQ / T (50) 1) (SO, ) / e20(T ) 62(30) ) dvdu,,
T /0 0
f = —CET. (13)

Moreover, a more concrete approximation formula can be obtained by inte-
gration by parts.

Theorem 1 Suppose that the underlying asset price follows the stochastic
process (8) under the equivalent martingale measure. Then, under Assump-
tions 1 and 2, the asymptotic expansion up to the e2-order of V,(0), the price
of a vanilla call option at the contract date with the maturity date T and the
strike price K, is given by

V) = e Te{2rmpyo.2r]+ o ()| (14)

+e e {ZTN (\/%) —yXpnly;0,X7] + fN (\/LE_T> } + o(e?),

where X and ¢, f are respectively defined as (11) and (13), and N(x) de-
notes the distribution function of a standard normal distribution.

Values of various option contracts can be evaluated by using the similar
method. In particular, with redefinition of Y7, ¢ and f in (14), almost the
same approximation formula can be applied to various options. In what
follows, some examples for call options are presented. For more details, see
[34] and [40].

1. A Basket Option

Suppose that Sl(t6 ), 1 =1,---,n, the underlying asset prices of a basket

option follow the stochastic processes;

n
dSY) = ;S dt + €S 043(SY)  t)dwjs; 8 = si(> 0),
=1
where «;, i = 1,---,n are constants, and w = (wy,---,w,) is a n-
dimensional Wiener process. Then, the value of the basket option at
the maturity date T is given by

Vo(T) = maX{ZBiSi(?—K,O},

=1



where the strike price K is a positive constant and §;, 1 = 1,---,n are
constants. Further, let r be a nonnegative constant. Then, the price at

the contract date(t = 0) is expressed as V,(0) = e "TE[V,.(T)]. In this
case, it is specified that d = n+1, m = n, Xt(e) = ( é?,XS), e X(e))'

» “3nt

with Xé? = t, x9 = Z(te)(z =1,---,n), and g(z) = X", Biz;i — K,

(3
x = (x9, 21, ,Ty) in the setting of Section 2.1.

In the following examples, a and r are set to be a constant and a
nonnegative constant respectively as well as in this example, unless
otherwise stated.

. An Average Option

The stochastic processes which describe the dynamics of the underly-
ing variables of an average option are expressed as

dst? = a89dt + ea(S\, t)dwy; S = s(> 0)
dz\9 = 89at; 7\ =,

where w denotes a one-dimensional Wiener process. Then, the matu-
rity value of an average option is expressed as

Vo(T) = max {%Z:Sf) - K,O} .

Thus the price at the contract date is given by

Ve(0) = e TE[V,(T)), where d = 3, m = 1, X7 = (X{7), x{{), X{7)
with Xé? = t, XS) = St(e), Xé? = t(e), and g(z) = %xg - K,z =
(o, %1, x2) in the setting of Section 2.10

. A Vanilla Option with the Stochastic Volatility

Assume that the underlying variables of a vanilla option with the
stochastic volatility follow the stochastic processes below;

2
dS\) = aSPdt +¢Y 01;(8\, 2, t)dwjs; S = s(> 0)
j=1

2
Az = (S, 7\ tydt + €3 09j(S\), 21, t)dwye; 75 = 2(> 0),
7=1
where w = (wy,w2) denotes a two-dimensional Wiener process.

The payoff at maturity is expressed as V,.(T') = max{SrE,f ) _K ,0}, and
the price at the contract date is evaluated by V,(0) = e "TE[V,.(T)].
In this case, it is specified that d = 3, m = 2, Xt(e) = (Xé?,XS),Xé?)'
with X(g? = t, X{? = t(e), Xé? = t(f), and g(z) = 71 — K, z =
(20,21, %2) in the setting of Section 2.1.



4. A Vanilla Option under the Stochastic Interest Rate

Assume that the stochastic processes determining the value of the
option under the stochastic interest rate follow

2
dSIEe) = (7"§€) — a)SIEe)dt +e Z alj(St(E), ’I'EE), t)dwjy; S[()E) =s(>0)
j=1

a7\ = 9794 79 =1

2
dri? = (S {9 )t + €3 00y (S, ) t)dwji; S = r(>0),
7j=1

where w = (wy,w2) denotes a two-dimensional Wiener process.

The value at maturity is expressed as V.(T) = maJx{SéE ) _K ,0}.

Then the value at the contract date is evaluated by

T ()
V.(0) = Ele o m )|,

where d = 4, m = 2, X\ = (x\?, -, X{) with X, = ¢, X&) =
819, x5 = 219, X5 = v(), and g(w) = wa(21~K), 5 = (w0, 31,52, 73)
in the setting of Section 2.1.

2.3 Approximations of the Values of Financial Assets and
Securities under Diffusion Processes

The framework of the asymptotic expansion can be applied not only to the
simple cases mentioned above, but also to evaluation of much broader range
of assets’ and securities’ values. In particular, there are many cases where
the asymptotic expansion can be applied to approximate that values when
the underlying asset prices of financial assets or securities, cash flows and
discount rates such as interest rates are expressed as a function of a random
vector X (9 that follows a diffusion process. The method is almost the same
as the one illustrated above and hence it is omitted. In this subsection,
only the method to represent values of financial assets or securities will be
reviewed.

First, just as in the previous subsections, I consider a d-dimensional
diffusion process X(© defined as the strong solution to the stochastic dif-
ferential equation (1). In general, the contract value V' of a financial asset
which generates a cash flow at the maturity date T' is represented as

T (€)
V=E|e Jo OO (x[0))| (15)
where f denotes the underlying asset price and F' is the cash flow which
characterizes the asset or security to be evaluated. Note that the dynamics

of the underlying asset price f is expressed by a diffusion process, whose
drift term (the coefficient of the dt term) is R; (Xt(e))f - D(Xt(e)) under the

10



equivalent martingale measure. Moreover, R; at time ¢ € [0,T] is repre-
sented as

where r is the risk-free interest rate and s15, j = 1,-- -, J; are various spreads
(the differences from the risk-free rate) such as credit spreads or liquidity
spreads. Suppose that all of them are expressed as functions of the variable
X (. Further, D(Xt(e)) denotes a payoff generated by the underlying asset
such as a dividend or an interest rate and is also represented as a function
of the variable X(9), Meanwhile, Ry, the discount rate of the objective asset
or security to be evaluated at time ¢ is also expressed as

Jo
RQ(Xt(e)) = T(Xt(e)) + Z 32j(Xt(E)),
7=1

where so;, j = 1,---,.J5 are various spreads related to the objective asset or
security. Suppose also that all of them are expressed as some functions of
the variable X (9.

As an example, let F' =1 in (15) for a zero-coupon bond with the face
value 1 and the maturity date T'. Next, let V; denote the price of the zero-
coupon bond with the maturity 7;. Then, V, the value of a coupon bond
with the maturity T and coupon payments ¢; at T;(i = 1,--+ N, T} < -+ <
Ty) is represented by the equation V= SN, ¢;V;. Moreover, the present
value of a call option on the coupon bond with the option maturity 7'(< T})

can be evaluated if I set F(z) = (r — K)' and f(X:Sf)) =N cifi(Xéf)) in
the equation (15), where fi(X:Sf)), i=1,---,N are given by

T; ()
fZ(ngf)) - E eifT Ri(Xy, )dU|X§f) )

3 Asymptotic Expansions in an Instantaneous For-
ward Rates Model and a Jump-Diffusion Model

Among main stochastic models in finance, there exist models where the
stochastic processes of the underlying variables do not belong to the class
of diffusion processes. This section illustrates two typical examples.

3.1 An Instantaneous Forward Rates Model

Among stochastic models for evaluating the interest rate derivatives, there
exists a model developed by Heath-Jarrow-Morton [4] which is formulated
based on the forward rates with infinitesimal terms of the interest rates, that
is the instantaneous forward rates {f(s,t) : 0 < s <t < T}. Here, s is the
time when the forward rate is determined and ¢ denotes the time when the
forward rate starts to be applied.

The stochastic processes for the instantaneous forward rates are consid-
ered in the framework of the asymptotic expansion by introducing a param-
eter € € [0,1]. For example, let w be a m-dimensional standard Wiener

11



process and let f(0,t), t € [0,T] be a given Lipschitz continuous function of
t. Then, under the equivalent martingale measure, the stochastic processes
of {f(e)(s,t) :0 < s <t<T} are written as

f(E)(s,t) = f(0,t) + 62/ Z {01 (v,t ,U,t)/Utai(f(e)(v,y),v,y)dy dv
62/ ai(f9 v, t), v, t)dw;(v) ;e € 0,1], (16)

where the volatility functions {o;(f(9)(s,),s,t);i = 1,---,m} are smooth
and satisfy the regularity conditions which guarantee that the equation (16)
has its solution. It is to be noted that the drift term (the coefficient of the dv
term ) of f(9)(s,t) depends on {f((v,y);0 < v < 5,0 <y < t}. Moreover,
the stochastic process of the instantaneous short-term interest rate r(¢)(¢) is
determined by the relationship, (9 (t) = (9 (¢, ).

Even for this model, the approximations of the values for interest rate
derivatives can be still considered in a unified framework with derivation
of asymptotic expansions of the instantaneous forward rates when e | 0
and with use of the relation between the instantaneous forward rates and a
zero-coupon bond price;

T
PO (t,T) :exp{— / f(e)(t,u)du}. (17)
t

As an example, I consider a call option on a coupon bond, which is a standard
interest rate derivative. The payoff at maturity of the option is given by

Ve(T) = maX{ZcZ - K, 0},

where 0 < T <T} < --- < Ty, ¢,i =1,---,n are positive constants and
K (> 0) is a strike price. Then, the contract value is evaluated by

Vo) = Blel ).

When € | 0, the forward rate f(€)(s,t) is expanded as
FO(s,t) ~ f(0,) + efi(s,t) + € fals,t) + -+ in D™, (18)

where fi(t,u), fo(t,u)--- € D*®. Asaresult, P()(¢,T) and exp {— fOT r(©) (t)dt}
are expanded as

PO®&T) ~ PO.7) ll - e/T f1(t,u)du — € ng(t,u)du
t t

12



T (. T T
e Jo W po, ) [1 - e/ fi(t, t)dt — 52/ fo(t, t)dt
0 0

2
62% {/OT fl(t,t)dt}

where f;(s,t), 1 = 1,2 are given by
flst) = 2580 = [757 0l 0 Hdus(w)
0 =1

32()
fas,t) = L1ELH)

- 2/1) Utdv—l—/ Zaa (v,) f1(v, t)dw;(v).

- in D*°,

Here, O'Z(O) (v,t) = 0:(fO (v, t),v,t), and b (v, t) and 801(0) (v,t) are defined
as
t

b(O)(th) = Xn:ai(f(())(vat)avat)/ Ui(f(O)(Uay)avay)dya
=1

v

doi(x,v,t
00 (v,1) = %Hﬂo,t)-

()

Therefore, in the framework of the previous section with definition of X,
and XZ-(;),i =1,---,n as

exp {— /Otr(e) (u)du}

T;
Xz(te) = P(E)(t,TZ):eXp{—/ f(E)(t’U)du}, Z:]-,,'n/,
t

X7

the payoff at maturity of the call option on a coupon bond is written as

V.(T) = max {Z ciXi(te) - K,O} .
=1

Moreover, let z = (zg,z1,---,2,) and define g(x) as

n
=z (Zczwl — K) .
=1

Then, a similar method can be applied as in the case of diffusion processes.
Consequently, with redefinition of X7, ¢ and f, the approximation of this
option can be obtained based on almost the same asymptotic expansion as
for the approximation (14) given in Theorem 1. For more details, see [13],
[14] and [36].

For evaluation of other various interest rate derivatives, approximations
based on the asymptotic expansion can also be derived. Moreover, the ap-
proximate formula for the value of a derivative dependent on instantaneous
forward rates and other variables following diffusion processes is given by
[33].
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3.2 Evaluation of the Values of Securities under Jump-Diffusion
Processes

So far, stochastic models where uncertainty is generated by Wiener pro-
cesses have been used. However, I can also apply the asymptotic expansion
to stochastic processes including jumps in their sample paths. Suppose that
(2, F,{Fi}iepo,r), P) is a filtered probability space with an equivalent mar-
tingale measure P and is equipped with a m-dimensional Wiener process w
and a stationary Poisson random measure p on [0,7] x E, which are mutu-
ally independent. Let also (E, &) be a measurable space. Moreover, suppose
that the intensity measure of the Poisson random measure p is

A(dt,dz) = dt x v(dx),

where v is a positive o-finite measure on (E, £) and the compensated Poisson
measure is represented as

fi(dt, dz) = p(dt, dz) — \(dt, dz).

In this setting, examples for evaluation of the values of a bond and an option
are provided.

Evaluation of a Bond Price

Let X(9 denote the R%valued stochastic process defined as the solution to
the following stochastic differential equation:

dXO(t) = AXO(t), €)dt + eo (X O (t))dw(t) + € /E C(X ) (t=), z)fi(dt, dz),

(19)
where € € [0,1] and assume that the coefficients A : R% x [0,1] — R? |
c:RY -5 RIE@R™ | and C : R? x RY — R? are smooth and satisfy
regularity conditions. Define also R%valued random vectors D and E as

B ax(© (t)
- Oe

92X (1)

D(t) o leo.

le=o and E(t) =
In this case, D(t) satisfies the following stochastic differential equation:

dD(t) = 0AXO(t),0)dt + dAX O (t),0)D(t)dt + o(X O (t))dw(t)
+ [ C(XO(t=), z)ji(dt, dz); D(0) = 0.

Therefore, the random vector D(t) can be expressed as

D) =Y, /0 t Y, O AX @ (5),0)ds+o (X D) dw(s)+ /E C(XO) (=), z)a(ds, dz)],

where Y is a R¢ ® R%valued function and is the solution to the following
ordinary differential equation:

dY; = 0A(X O (1),0)Y,dt; Yy = I,.

14



Similarly, E satisfies the stochastic differential equation;

dE(t) = 0AX ", 0)E(t)dt +20.0A(X",0)D(t)dt + 02AX"), 0)dt
+00A(X",0)D(#)D(t)dt + 200(X V) D (t)dw(t)
+2 [, 0C (X", &) Dy fu(dt, dz); E(0) =0,

where 8(9A(Xt(0),0)D(t)D(t) is a d-dimensional vector and is given by

99A(X{",0)D(#)D(t)

!

= [D{0:0;A(X”, 0}y D, -, D'{0,0;A0( X", 00}y D]  (irj =1,2, -

Here, 8i8-Ak(X(0),0) ~_denotes a d x d matrix defined for each k =
R (i.7)

-,d. Further, 80’(Xt(0))Dt denotes a d X m matrix and is represented by

9o(X\D(t) = {zd:akaij(xf’))Dk(t)} (i=1,--+,d,j=1,---,m).
k=1 i

(0)

Moreover, a notation 0C(X,_’, z)D;_ denotes a d-dimensional vector whose
i-th element is Y2¢_, 8kCi(Xt(g),m)Dk(t—). Therefore, E(t) is given by

B(t) =Y, [y ¥, 1 [20.0A4(X,0)D(s)ds + 924XV, 0)ds

+ 90AxY,0)D(s)D ()ds+280( XD (s)dw(s)
+ 2fEaC(X(0)( _)v ) s—/f'(dsadx)]'

On the other hand, it is known that the price of a zero-coupon bond is
generally expressed as

(e
P(0,T) = [ Jy o } .
Here, g denotes the sum of the risk-free rate and the spreads determined by
risk factors such as the credit risk and the liquidity risk, and is supposed to

be represented by a function of X (©) (t). Then, an asymptotic expansion up
to the e2-order of P(0,T), the zero-coupon bond price is given by

P0,T) = ¢ Jo 975 (1 _ e/OTE (99 D(s)] ds

T n T
+ € {—%/0 iJZI 8i8jgg0)E[Di(s)Dj(s)]ds - %/0 (9gg0)E E(s)]ds
4L E[(/Ta (°>D(s)ds)2]}> +o(e?) (20)
2 0 s .

With definition of 9, A(7) and C(t) as 9. A(1) = 9. A(X)(7),0) and C(t) =
C(XO(t-),z), E[D;(s)D;(u)] is represented as the following:

E[D;(s)D;(u)] (21)

15

d).



[Y(i")(s) /0 "y 1(r)0, A(r)d ] [ / y- )dT}
+Y()(s) ( /0 Y1 )e(r)e(r) (v='(n) dT) (YU")(U))'

) ( /0 myl(f){ /E C(T)C(T)’y(dm)} (YI(T))'dT> (YOI w) -

A more specific expression of (20) can be obtained based on the equations
such as (21).

Evaluation of an Option Value

Here, I consider a more specific example for evaluating the value of an option.
Let m=d =1, e € [0,1] and « be a constant. Further, under an equivalent
martingale measure, suppose that the underlying asset price of an option
follows a stochastic process;

dSt(e) _ aS§€)dt+ea(St(E),t)dwt+/ St(i)(eem—l)ﬂ,(dtdm), SS = 3(> O)a (22)
R

where o(z,t) is a function satisfying appropriate regularity conditions. Here,
w([0,t] x A) is given by

wu([0,t] x A) = ZIA

where A € B(R), and N; denotes a Poisson process with a constant intensity

A(> 0). Define random variables (53(-6)) j>1 determining jump sizes as

€9 = e —1, j>1,
where (7;);>1 denotes a sequence of random variables which follow indepen-

dent identical distributions (i.i.d.) and its probability law is v. Suppose

also that v = E[n;] < co and E[ﬁj(-e)] < 0o. Note that f'](-e) is defined so that
the underlying asset price does not become negative by its jumps. In this
case, the compensated Poisson measure fi(dt, dzx) is given by

a(dt,dx) = p(dt, dx) — Adt x v(dz).

Note that this model is an extension of Merton[24].
Here, if I assume r to be a nonnegative constant, V', the contract price
of a vanilla call option with the maturity 7" and the strike price K (> 0) is

represented as V = e*’"TE[(Séf) — K).]; (z)+ denotes max{z,0}. Here, in
order to apply an asymptotic expansion, I define X(¢) as

. S(e)_S(O)
Xt(): t : t :

where St(o) is given by St(o) = Spe®* and X (©) follows the stochastic differential
equation;

dX? = ax{9dt+ (X + 8)dw,
+ fr(eX() + 80 (£22L) ju(dt, do); X7 = 0.
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With this X(9, the option value V is expressed as
V = e TeR[(X) + k9],

(0)
Sy’ —

where k() = K. Asin the Assumption 2 in Section 2.2, assume that &(¢)
is represented as k(9 = k + O(¢) by a real number k. Then, the asymptotic
expansion up to the e order of the call option value V' is expressed as

V= efrTeE[(Xj(?) + k)4] + o(e).

X©) in this equation follows the stochastic differential equation:

dX” = axOdt + o(S, t)dw, + / S\ zi(dt, dz); XV =o.
R

Moreover, by further calculation, E[(X:(,,O) + k) 4] is expressed as

00 J
E(XY +k).] = Y E|Srn (k2 + Spe®” Zm)
§=0 i=1
J k SpeT ()
T . 2 0 AT
+ (k2+50€a ;nZ)N (\/— \/— Z ]| )
where 0 n; = 0. ko, n(z) and Xy are given by
ky = k—o(AT)Spe?T, n(z) = ! ex —a”
2 = 0 ) - /—27I'ET p 22T )
T
Xr = / 2= 52(80 )ds. (23)
0

Suppose also that 7 > 0. Moreover, with an assumption that the random
variables (1;);>1 which determine the distributions of the jump sizes follow
a normal one, a more concrete expression can be obtained.

Theorem 2 Suppose that the underlying asset price follows the stochastic
process in (22) and (n;)i>1 follow a nmormal distribution, 1; ~ N(v,0?).
Then, under the assumption that X > 0, an asymptotic erpansion up to
the e-order of V, the contract price of a vanilla call option with the maturity
date T and the strike price K, is given by

0 2
_ Xr —C3; c3j
V = e e l ———— [ exp <7J> +ciN | —=2—
{jzo v e ) TN g

iCAi —02- .
i 2:§ZE;J+ 1) o (2(ch ii 1)) o )} +o(e), (24)

4!
where ko and Yp are defined as (23), and the constant coefficients c1;0 e 0
c3;j and cyj are defined as

cly = ko + SgeaT(Uj) ,C25 = SgeaT(U\/j)
C1j _ Cj

C3j = \/TT ,C4j = \/TT

For the details such as numerical examples, see [15] and [16].
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4 Conclusion

Finally, I briefly review other applications of the asymptotic expansion tech-
nique to numerical problems in finance, which can not be introduced in the
paper because of the space limitation.

[41] applies an asymptotic expansion to a dynamic investment problem
with utility maximization for the asset at the end of the investment period,
and derives an approximation formula for evaluating the optimal portfolio.
Although the optimal portfolio has been numerically evaluated as a function
of derivatives of the solution to some Bellman equation except for special
cases, it is a hard task to compute it when the number of assets is large.
[41] provides its approximation based on the representation which Ocone-
Karatzas [27] derives by using the Clark-Ocone formula. Moreover, [10]
applies this method to a dynamic bond portfolio problem.

In evaluation of the expectation of a Wiener functional by Monte Carlo
simulation, [42] proposes a new estimator using a random variable that has
its expectation explicitly obtained by an asymptotic expansion and has a
high correlation with the objective Wiener functional. The convergence of
the simulation based on this estimator becomes faster and the approximation
error due to the asymptotic expansion up to a low order is decreased. As
for the extension of this method, see [16], [36] and [40].

[37] extends the decomposition formula for an American option value by
Carr-Jarrow-Myneni [2] and proposes an approximation of the value using
the fact that the density function of the underlying asset can be approxi-
mated by the asymptotic expansion.

[23] provides approximations for the risk indicators of options by asymp-
totic expansions of the derivatives of a stochastic differential equation with
respect to parameters as well as by extending the variance reduction method
of Monte Carlo simulation in [42]. [47] studies the bias correction when un-
known parameters in the representation of an option value are substituted
by their estimators.

Moreover, because of its generality, the asymptotic expansion technique
has been applied to broad class of valuation models which have become
popular recently in practice. The following works are examples: Kawai [8]
for the market models of interest rates. Muroi [25] for default risk models.
Osajima [28], Kawai and Jackel [9], and [38], [39] for cross-currency models
with stochastic interest rates.

This paper illustrates the cases where the diffusion terms of the stochas-
tic processes for the asset prices are 0 when ¢ = 0. However, expansions
for the cases where the diffusion processes are not 0 when ¢ = 0, but be-
come the processes that are relatively easy to be computed are also consid-
ered. For more details, see Kashiwakura-Yoshida [7], Kunitomo-Kim [11],
Liitkebohmert [20], and [39], [41] for instance.

As introduced above, various applications of the asymptotic expansion
method are developed for numerical problems in finance.
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