
 

 

 

 

 

 

C A R F  W o r k i n g  P a p e r 
 

 

 

 
CARF-F-104 

 
Block Sampler and Posterior Mode Estimation for 
A Nonlinear and Non-Gaussian State-Space Model 

with Correlated Errors 
 

Yasuhiro Omori 
University of Tokyo 
Toshiaki Watanabe 

Hitotsubashi University 
 

August 2007 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CARF is presently supported by Bank of Tokyo-Mitsubishi UFJ, Ltd., Dai-ichi Mutual Life 
Insurance Company, Meiji Yasuda Life Insurance Company, Mizuho Financial Group, Inc., 
Nippon Life Insurance Company, Nomura Holdings, Inc. and Sumitomo Mitsui Banking 
Corporation (in alphabetical order). This financial support enables us to issue CARF Working 
Papers. 

 
 

 

 

 

 

 

 

 

CARF Working Papers can be downloaded without charge from: 
http://www.carf.e.u-tokyo.ac.jp/workingpaper/index.cgi 

 

 

 

 

Working Papers are a series of manuscripts in their draft form.  They are not intended for 
circulation or distribution except as indicated by the author.  For that reason Working Papers may 
not be reproduced or distributed without the written consent of the author. 



Block sampler and posterior mode estimation for a

nonlinear and non-Gaussian state-space model with

correlated errors

May 2003: Revised in August 2007

Yasuhiro Omori

Faculty of Economics, University of Tokyo

omori@e.u-tokyo.ac.jp

Toshiaki Watanabe

Institute of Economic Research, Hitotsubashi University

Watanabe@ier.hit-u.ac.jp

Abstract

This article introduces a new efficient simulation smoother and disturbance
smoother for general state-space models where there exists a correlation between
error terms of the measurement and state equations. The state vector is divided
into several blocks where each block consists of many state variables. For each
block, corresponding disturbances are sampled simultaneously from their condi-
tional posterior distribution. The algorithm is based on the multivariate normal
approximation of the conditional posterior density and exploits a conventional
simulation smoother for a linear and Gaussian state space model. The perfor-
mance of our method is illustrated using two examples (1) stochastic volatility
models with leverage effects and (2) stochastic volatility models with leverage
effects and state-dependent variances. The popular single move sampler which
samples a state variable at a time is also conducted for comparison in the first
example. It is shown that our proposed sampler produces considerable improve-
ment in the mixing property of the Markov chain Monte Carlo chain.

Key words: Bayesian analysis; Disturbance smoother; Kalman filter; Leverage
effects; Markov chain Monte Carlo; Metropolis-Hastings algorithm; Simulation
smoother; State space model; Stochastic volatility.

1 Introduction

A state-space approach for time series provides various dynamic models for a wide
range of applications such as in financial time series. Using the flexible structure
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of latent variables, the state-space model can express a variety of statistical models.
Recently, for example, stochastic volatility models with leverage effects (Jacquier et al.
(2004), Yu (2005), Omori et al. (2006)) and nonlinear state-space models with state-
dependent variances (Stroud et al. (2003)) and a Cox-Ingersoll-Ross model with a
nonlinear state equation (Frühwirth-Schnatter and Geyer (1998), Sanford and Martin
(2003), Watanabe et al. (2006)) have come to receive widespread attention. However,
because of many latent state variables, it has been difficult to obtain estimates of
parameters for these models until recent development of Markov chain Monte Carlo
(MCMC) method using Bayesian approach.

For a linear and Gaussian state-space model, the Kalman smoother is a well-known
recursive procedure for computing smoothed estimates of states (see e.g. Anderson
and Moore (1979)), and several efficient smoothers have been proposed for states (de
Jong (1988)(1989), Kohn and Ansley (1989)) and disturbances (Koopman (1993)).
To perform Bayesian analysis of unknown parameters, we need to sample from a
highly multivariate posterior distribution of state variables. Simulation smoothers
have been considered to sample state variables in a single block using a forward-
filtering-backward sampling algorithm (Carter and Kohn (1994), Frühwirth-Schnatter
(1994)). Further, more efficient simulation smoothers have been recently developed
by sampling disturbances and subsequently sampling states (de Jong and Shephard
(1995), Durbin and Koopman (2002)).

For nonlinear or non-Gaussian state-space models, several smoothing procedures
have been introduced. Examples are Sage and Melsa (1971), Anderson and Moore
(1979) for a nonlinear and Gaussian model and Fahrmeir (1992), Fahrmeir and Wa-
genpfeil (1997) for a dynamic generalized linear model or an exponential family state-
space model. Monte Carlo filters and smoothers are also developed to approximate
posterior distributions of states given system parameters using a few discrete points or
particles where an observation vector and a state vector are assumed to be condition-
ally independent (Kitagawa (1996), Kitagawa (1998), Hürzeler and Künsch (1998),
Tanizaki and Mariano (1998), Tanizaki (2001)). For such a smoother, an appropriate
proposal density needs to be taken carefully to have a good Monte Carlo approx-
imation by particles. The predictive density of the state variable at time t given
past observations would usually be a candidate for such a proposal density, but its
approximation becomes poor when its posterior density becomes quite different from
the predictive density.

On the other hand, Carlin et al. (1992) used Gibbs sampler with rejection sam-
pling to sample states for nonlinear and Gaussian models. Their method is a single
move sampler that generates a single state at a time given the rest of the states and
other parameters. It is usually easy to construct such a sampler, but the obtained
samples are known to be highly autocorrelated. This implies we need to generate a
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huge number of samples to conduct a statistical inference and hence the sampler is
inefficient.

To reduce sample autocorrelations effectively, block samplers (also called multi-
move samplers) which generate a block of state variables have been recently proposed
(Shephard and Pitt (1997), Gamerman (1998), Durbin and Koopman (2000), Watan-
abe and Omori (2004)). However, these samplers assume that a state equation is
linear and that an observation vector and a state vector are conditionally indepen-
dent. Thus they cannot be applied to an important class of models with a correlation
between errors of measurement and state equations, a variance of state variable de-
pending on the past state variable, and a nonlinear state equation. The exception
is a mixture sampler by Omori et al. (2006) for a stochastic volatility with leverage
effects, which extended Kim et al. (1998). It approximates a non-Gaussian model
using a mixture of bivariate normal distributions given the sign of observed dependent
variables. The mixture sampler is fast and highly efficient, but its use is limited to a
certain class of the stochastic volatility model they considered. Stroud et al. (2003)
considered a block sampler for models with state-dependent variances (but without
leverage effects) using an auxiliary mixture model to generate a state proposal for
Metropolis-Hastings algorithms.

In this article, we propose a new efficient smoother for a general classes of state-
space models. First, we derive a recursive algorithm to find a posterior mode of
the state vector for a non-Gaussian measurement model with a linear state equation
using Taylor expansion of the logarithm of the conditional posterior density for the
disturbances. Second we define an approximating linear and Gaussian measurement
equation based on the obtained posterior mode. For a model with a nonlinear state
equation, we construct an auxiliary linear state equation to derive an approximating
linear and Gaussian state space model. Then we generate a candidate for a state vari-
able in Metropolis-Hastings algorithm using this approximating linear and Gaussian
state space model.

The organization of the paper is as follows. In Section 2, we introduce a general
state-space model with examples. Section 3 describes a simulation smoother and a
disturbance smoother for these models. In Section 4, we illustrate our method using
simulated data and stock returns data. Section 5 concludes the paper.

2 General state-space model

We consider a general state-space model

yt = ht(αt, εt), εt ∼ pε|η(εt), t = 1, . . . , n, (1)

αt+1 = gt(αt, ηt), ηt ∼ pη(ηt), t = 0, 1, . . . , n, (2)
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where we assume that α0 = 0. The dependent variable at time t is yt and a measure-
ment equation is (1). The state variable at time t + 1 is αt+1 and a state equation is
given by (2). The error terms of the measurement and state equations are εt and ηt

respectively, and may be correlated. The functions gt, ht, pη, pε|η are assumed to be
twice continuously differentiable. When αt+1 is a linear function of (αt, ηt), the state
equation (2) reduces to

αt+1 = Ttαt + Rtηt, ηt ∼ pη(ηt),

where Tt, Rt are constant matrices.
In this paper, we consider two examples (1) stochastic volatility models with

leverage effects and (2) stochastic volatility models with leverage effects and state-
dependent variances, to illustrate and investigate the performance of our method.
Example 1. Stochastic volatility model with leverage effects. We first consider a model
given by

yt = εtσε exp(αt/2), t = 1, . . . , n,

αt+1 = φαt + ηtση, t = 1, . . . , n− 1, (3)

α1 = η0σ0 ∼ N(0, σ2
η/(1− φ2)),

where |φ| < 1 and

(
εt

ηt

)
∼ N

((
0
0

)
,

(
1 ρ

ρ 1

))
.

The σε exp(αt/2) stands for the volatility of the response, yt, and ρ, σε, ση, φ are pa-
rameters. The state equation is linear and Gaussian, while the measurement equation
is nonlinear. A correlation between errors is considered to explain leverage effects.
The stochastic volatility model without leverage effects (ρ = 0) has been widely used
to explain time varying variances of the response in the analysis of financial time
series data such as stock returns and foreign exchange rate data. However, it is well
known that the fall of the stock return is followed by the high volatility and this is
called a “leverage effect” (Black (1976), Nelson (1991)). Thus we expect a negative
correlation, ρ < 0, between εt and ηt rather than ρ = 0. Jacquier et al. (2004) pro-
posed a single move sampler for a stochastic volatility model with leverage effects
using MCMC method. Since the single move sampler samples one αt at a time given
other state variables, the MCMC samples are highly autocorrelated, and we need to
iterate MCMC runs a huge number of times to obtain a stable and reliable estimation
results. Omori et al. (2006) proposed a fast and highly efficient mixture sampler
to estimate such models and showed its high performance in estimation efficiency
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compared with a single move sampler. But their method is only applicable to the
class of models (3). In this article, we give an efficient block sampler for more general
state-space models which includes this stochastic volatility model .

Example 2. Stochastic volatility model with leverage effects and state-dependent vari-
ances. Stroud et al. (2003) considered state-dependent variance models (but without
leverage effects) to explain such fat-tailed errors using a square-root stochastic volatil-
ity model with jumps in the analysis of Hong Kong interest rates. We may instead
consider a simple extension of (3) such as

yt = εtσε exp(αt/2), t = 1, . . . , n,

αt+1 = φαt + ηtση

{
1 +

1
1 + exp(−αt)

}
, t = 1, . . . , n− 1, (4)

α1 = σ0η0 ∼ N(0, σ2
0), (σ2

0: known),

where |φ| < 1. The variance of the error in the state equation depends on the level
of the state variable. Thus the conditional variance tends to be larger for the large
positive value of the state variable, αt, while it becomes small for the negative value.
We use this model to illustrate a state equation which is a nonlinear function of αt

and ηt.
We focus on above two examples to illustrate our method in this article, but there

are still other important examples such as the Cox-Ingersoll -Ross (CIR) model. The
CIR model is widely used to describe a term structure models of interest rates and in
its state space formulation, it has a nonlinear and non-Gaussian state equation. The
single move samplers are proposed to estimate of econometric multi-factor CIR model
(Frühwirth-Schnatter and Geyer (1998)) and Affine term structure model (Sanford
and Martin (2003)). Our proposed method would provide a block sampler for such
models (Watanabe et al. (2006)).

3 Block sampler and posterior mode estimation

This section proposes a new efficient block sampler and a posterior mode estima-
tion method for a conditional posterior density of state variables. Assuming a non-
Gaussian measurement equation, we first consider a linear Gaussian state equation
model and then discuss a nonlinear Gaussian state equation model. Finally, we de-
scribe a procedure for a model with a nonlinear and non-Gaussian state equation.
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3.1 Linear and Gaussian state equation

Consider the following state space model with linear Gaussian state equation given
by

yt = ht(αt, εt), εt ∼ pε|η(εt), t = 1, . . . , n, (5)

αt+1 = Ttαt + Rtηt, ηt ∼ N(0, I), t = 0, 1, . . . , n, (6)

where α0 = 0 and Wt ≡ RtR
′
t is assumed to be nonsingular for simplicity, but we

may drop this assumption as we discuss at the end of this subsection. Suppose that
we sample from the conditional posterior distribution of α = (αs+1, . . . , αs+m) given
αs, αs+m+1, ys, . . . , ys+m where m ≥ 2. We construct a proposal density based on
disturbance terms η = (η′s, . . . , η′s+m−1)

′.

Normal approximation of the posterior density of η. We first expand the logarithm
of the conditional posterior density of η around the mode η̂ to obtain a normal ap-
proximation (given αs, αs+m+1). Let ls denote the logarithm of conditional likelihood
of ys given α and

L =





s+m∑
t=s

lt − 1
2
(αs+m+1 − Ts+mαs+m)′W−1

s+m(αs+m+1 − Ts+mαs+m),

if s + m < n,
n∑

t=s

lt, if s + m = n.

(7)

Further define

d = (d′s+1, . . . , d
′
s+m)′, dt =

∂L

∂αt
, t = s + 1, . . . , s + m, (8)

Q = −E

[
∂2L

∂α∂α′

]
=




As+1 B′
s+2 O . . . O

Bs+2 As+2 B′
s+3 . . . O

O Bs+3 As+3
. . .

...
...

. . . . . . . . . B′
s+m

O . . . O Bs+m As+m




,

At = −E

[
∂2L

∂αt∂α′t

]
, t = s + 1, . . . , s + m, (9)

Bt = −E

[
∂2L

∂αt∂α′t−1

]
, t = s + 2, . . . , s + m, Bs+1 = O. (10)
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Then the approximating normal density f∗ is as follows (see Appendix A1).

log f(ηs, . . . , ηs+m−1|αs, αs+m+1, ys, . . . , ys+m)

≈ const− 1
2

s+m−1∑
t=s

η′tηt + L̂ +
∂L

∂η′

∣∣∣∣
η=η̂

(η − η̂) +
1
2
(η − η̂)′ E

(
∂L2

∂η∂η′

)∣∣∣∣
η=η̂

(η − η̂)

= const− 1
2

s+m−1∑
t=s

η′tηt + L̂ + d̂′(α− α̂)− 1
2
(α− α̂)′Q̂(α− α̂) (11)

= const + log f∗(ηs, . . . , ηs+m−1|αs, αs+m+1, ys, . . . , ys+m) (12)

where d̂, L̂, Q̂ denote d, L, Q evaluated at α = α̂ (or, equivalently, at η = η̂). The
expectations are taken with respect to yt’s conditional on αt’s We use an informa-
tion matrix for Q because we require that Q is everywhere strictly positive definite.
However, other matrices such as a numerical negative Hessian matrix may be used to
construct a positive definite matrix Q.

Posterior mode estimation. Next we describe how to find a mode, η̂, of the
conditional posterior density of η (see Appendix A2 for a derivation of Algorithm
1.1). We repeat the following algorithm until η̂ converges to to the posterior mode.

Algorithm 1.1 (Disturbance smoother):

1. Initialize η̂ and compute α̂ at η = η̂ using (6) recursively.

2. Evaluate d̂t’s, Ât’s, and B̂t’s using (8)–(10) at α = α̂.

3. Compute the following Dt, Jt and bt for t = s + 2, . . . , s + m recursively.

Dt = Ât − B̂tD
−1
t−1B̂

′
t, Ds+1 = Âs+1,

Jt = K−1′
t−1B̂t, Js+1 = O, Js+m+1 = O,

bt = d̂t − JtK
−1
t−1bt−1, bs+1 = d̂s+1,

where Kt denotes a Choleski decomposition of Dt such that Dt = KtK
′
t.

4. Define auxiliary variables ŷt = γ̂t + D−1
t bt where

γ̂t = α̂t + K
′−1
t J ′t+1α̂t+1, t = s + 1, . . . , s + m,

5. Consider the linear Gaussian state-space model given by

ŷt = Ztαt + Gtξt, t = s + 1, . . . , s + m, (13)

αt+1 = Ttαt + Htξt, t = s, s + 1, . . . , s + m, (14)

ξt = (ε′t, η
′
t)
′ ∼ N(0, I),
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where

Zt = I + K
′−1
t J ′t+1Tt, Gt = K

′−1
t [I, J ′t+1Rt], Ht = [O,Rt].

Apply the Kalman filter and the disturbance smoother (e.g. de Jong and Shep-
hard (1995)) to the linear Gaussian system (13) and (14) and obtain the poste-
rior mode η̂ and α̂.

6. Goto 2.

In the MCMC implementation, the current sample of η may be taken as an initial
value of the η̂. It can be shown that the posterior density of η∗t ’s obtained from
(13) and (14) is the same as f∗ in (12). Thus, applying the Kalman filter and the
disturbance smoother to the linear Gaussian system (13) and (14), we first obtain a
smoothed estimate of ηt and then substitute it recursively to the linear state equation
(6) to obtain a smoothed estimate of αt. Then we replace η̂t, α̂t by obtained smoothed
estimates. By repeating the procedure until the smoothed estimates converge, we
obtain the posterior mode of ηt, αt. This is equivalent to the method of scoring to
maximise the logarithm of the conditional posterior density.

Sampling from the posterior density of η. To sample η from the conditional pos-
terior density, we propose a candidate sample from the density q(η) which is propor-
tional to min(f(ηy), cf∗(ηy)) and conduct the Metropolis-Hastings algorithm (see e.g.
Tierney (1994), Chib and Greenberg (1995)).

Algorithm 1.2 (Simulation smoother):

1. Given the current value ηx, find the mode η̂ using Algorithm 1.1. Since it is
enough to find an approximate value of the mode for a purpose of generating a
candidate, we usually need to repeat Algorithm 1.1 only several times.

2. Proceed Step 2–4 of Algorithm 1.1 to obtain the approximate linear Gaussian
system (13)–(14).

3. Propose a candidate ηy by sampling from q(ηy) ∝ min(f(ηy), cf∗(ηy)) using the
Acceptance-Rejection algorithm where the logarithm of c can be constructed
from a constant term and L̂ in (11).

(i) Generate ηy ∼ f∗ using we may use a simulation smoother (e.g. de Jong
and Shephard (1995), Durbin and Koopman (2002)) for the approximating
linear Gaussian state-space model (13)–(14).
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(ii) Accept ηy with probability

min(f(ηy), cf∗(ηy))
cf∗(ηy)

.

If it is rejected, go back to (i).

4. Conduct the MH algorithm using the candidate ηy. Given the current value ηx,

we accept ηy with probability

min
{

1,
f(ηy)min(f(ηx), cf∗(ηx))
f(ηx)min(f(ηy), cf∗(ηy))

}
.

where a proposal density proportional to min(f(ηy), cf∗(ηy)). If it is rejected,
accept ηx as a sample.

Note that the independence between εt and ηt implies Bt = O for all t, and equations
(13) (14) reduce to

ŷt = αt + K
′−1
t εt, εt ∼ N(0, I), t = s + 1, . . . , s + m,

αt+1 = Ttαt + Rtηt, ηt ∼ N(0, I). t = s, s + 1, . . . , s + m,

where ŷt = α̂t + Â−1
t d̂t for t = s + 1, . . . , s + m− 1 and ŷs+m = α̂s+m.

We have derived an approximate linear Gaussian system and made use of a simu-
lation smoother to generate error terms of the state equation to generate a sample of
η. However, we could generate η directly without using such smoothers (see Appendix
A3 for details).

Example. Stochastic volatility model with leverage effects. The state equation is
linear and error term ηt follows normal distribution such that

αt+1 = φαt + σηηt, ηt ∼ N(0, 1), t = 1, . . . , n− 1,

α1 ∼ N

(
0,

σ2
η

1− φ2

)
.

This implies

Tt =
∂αt+1

∂αt
= φ, Rt =

∂αt+1

∂ηt
= ση, t = 1, . . . , n− 1,

R0 =
∂α1

∂η0
=

ση√
1− φ2

.
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The measurement equation, on the other hand, is nonlinear and the conditional dis-
tribution of yt given α1, . . . , αn is normal with mean µt and variance σ2

t where

µt =

{
ρσεσ

−1
η (αt+1 − φαt) exp(αt/2), t = 1, . . . , n− 1,

0, t = n,
(15)

σ2
t =

{
(1− ρ2)σ2

ε exp(αt), t = 1, . . . , n− 1,

σ2
ε exp(αn), t = n.

(16)

The logarithm of conditional likelihood of yt (excluding constant term) is given by

lt = −αt

2
− (yt − µt)2

2σ2
t

. (17)

Suppose that ki−1 = s and ki = s + m for the i-th block. Then the log conditional
posterior for ηt (t = s, s+1, . . . , s+m−1) is −∑s+m−1

t=s η2
t /2+L (excluding a constant

term) where

L =

{ ∑s+m
t=s ls − (αs+m+1−φαs+m)2

2σ2
η

, s + m < n,
∑s+m

t=s ls, s + m = n.

The first derivative of the logarithm of the conditional likelihood with respect to αt

is given by

dt =
∂L

∂αt
=





−1
2

+
(yt − µt)2

2σ2
t

+
(yt − µt)

σ2
t

∂µt

∂αt
+

(yt−1 − µt−1)
σ2

t−1

∂µt−1

∂αt
,

t = s + 1, . . . , s + m− 1, or t = s + m = n,

−1
2

+
(yt − µt)2

2σ2
t

+
(yt − µt)

σ2
t

∂µt

∂αt
+

(yt−1 − µt−1)
σ2

t−1

∂µt−1

∂αt
+

φ(αt+1 − φαt)
σ2

η

,

t = s + m < n,

(18)

where

∂µt

∂αt
=





ρσε

ση

{
−φ +

(αt+1 − φαt)
2

}
exp

(αt

2

)
, t = 1, . . . , n− 1,

0, t = n,

(19)

∂µt−1

∂αt
=





0, t = 1,
ρσε

ση
exp

(αt−1

2

)
, t = 2, . . . , n.

(20)
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Taking expectations of second derivatives multiplied by −1 with respect to yt’s, we
obtain the At’s and Bt’s as follows.

At = −E

(
∂2L

∂α2
t

)
=





1
2

+ σ−2
t

(
∂µt

∂αt

)2

+ σ−2
t−1

(
∂µt−1

∂αt

)2

,

t = s + 1, . . . , s + m− 1, or t = s + m = n,

1
2

+ σ−2
t

(
∂µt

∂αt

)2

+ σ−2
t−1

(
∂µt−1

∂αt

)2

+ φ2σ−2
η ,

t = s + m < n,

Bt = −E

(
∂2L

∂αt∂αt−1

)
= σ−2

t−1

∂µt−1

∂αt−1

∂µt−1

∂αt
, t = 2, . . . , n.

Thus, using Algorithm 1.1 and 1.2, we can generate (αs+1, . . . , αs+m) given αs, αs+m+1

(αs when s + m = n) and other parameters.

In this subsection, we assumed that Wt is non-singular. When it is singular,
we can still conduct a disturbance smoother and simulation smoother with a slight
modification. We first express ηs+m using αs+m and αs+m+1 such that ηs+m =
Ms+m+1(αs+m+1 − Ts+mαs+m) for s + m < n. Then noting that

η′s+mηs+m = {Ms+m+1(αs+m+1 − Ttαs+m)}′{Ms+m+1(αs+m+1 − Ttαs+m)}
≡ (ŷ∗s+m −Ms+m+1Ts+mαs+m)′(ŷ∗s+m −Ms+m+1Ts+mαs+m)

where ŷ∗s+m = Ms+m+1αs+m+1 (s + m < n), we construct an approximating linear
and Gaussian state space model as follows. We replace (7) by L =

∑s+m
t=s lt and

compute d̂t, Ât, B̂t. Further, to include the term −η′s+mηs+m/2 in the logarithm of
the likelihood function, we modify the measurement equation (13) for t = s + m such
that

(
ŷs+m

ŷ∗s+m

)
=

(
I

Ms+m+1Ts+m

)
αt + [K−1

s+m, I, O]




εs+m

ε∗s+m

ηs+m


 (21)

where ε∗s+m follows N(0, I) and is independent of εs+m and ηs+m. Using this linear
and Gaussian state space model, we can apply Algorithm 1.1 and Algorithm 1.2 when
Wt is singular.

11



3.2 Nonlinear state equation

We extend Algorithm 1.1 and 1.2 to the model with a nonlinear and Gaussian state
equation given by

yt = ht(αt, εt), εt ∼ pε|η(εt), t = 1, . . . , n, (22)

αt+1 = gt(αt, ηt), ηt ∼ N(0, I), t = 1, . . . , n− 1, (23)

where α0 = 0.

Normal approximation of the conditional posterior density. To construct a pro-
posal density, we expand the logarithm of the conditional posterior density of η around
η̂ given αs, αs+m+1, as in the previous section, but further introduce the following
auxiliary linear state equation

βt+1 = T̂tβt + R̂tηt, ηt ∼ N(0, I), (24)

T̂t =
∂αt+1

∂α′t

∣∣∣∣
η=η̂

, R̂t =
∂αt+1

∂η′t

∣∣∣∣
η=η̂

, (25)

for t = s, . . . , s + m − 1 with an initial condition βs = β̂s. When the state equation
is linear and Gaussian, we have βt = αt for t = s + 1, . . . , s + m and βs = αs.

Otherwise, we shall take βs = β̂s = 0 for convenience sake. Let L =
∑s+m

t=s lt and
η = (η′s, . . . , η′s+m−1)

′. Then

log f(η|αs, αs+m+1, ys, . . . , ys+m)

= const− 1
2

s+m−1∑
t=s

η′tηt + L + log p(αs+m+1|αs+m)

≈ const− 1
2

s+m−1∑
t=s

η′tηt + L̂ + d̂′(β − β̂)− 1
2
(β − β̂)′Q̂(β − β̂) + log p(αs+m+1|α̂s+m)

= const + log f∗(η|αs, αs+m+1, ys, . . . , ys+m) + log p(αs+m+1|α̂s+m), (26)

We separate the term log p(αs+m+1|αs+m) to construct the approximating normal
proposal density since its Hessian matrix ∂2 log p(αs+m+1|αs+m)/∂αs+m∂α′s+m may
not be negative definite. However, when it is negative definite, we would include this
term in L as in Algorithm 1.1.

Mode estimation. Algorithm 2.1 describes how to find a mode, η̂, of L−1/2
∑s+m−1

t=s η′tηt

by repeating it until η̂ converges (see Appendix A2 for the derivation).

Algorithm 2.1:

1. Initialize η̂.
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2. Evaluate T̂t’s, R̂t’s in (25) at η = η̂ and compute α̂t’s and β̂t’s recursively.

α̂t+1 = gt(α̂t, η̂t),

β̂t+1 = T̂tβ̂t + R̂tη̂t,

for t = s, s + 1, . . . , s + m− 1.

3. Evaluate d̂t’s, Ât’s, and B̂t’s using (8)–(10) at α = α̂.

4. Compute the following Dt, Jt and bt for t = s + 2, . . . , s + m recursively.

Dt = Ât − B̂tD
−1
t−1B̂

′
t, Ds+1 = Âs+1,

Jt = K−1′
t−1B̂t, Js+1 = O, Js+m+1 = O,

bt = d̂t − JtK
−1
t−1bt−1, bs+1 = d̂s+1,

where Kt denotes a Choleski decomposition of Dt such that Dt = KtK
′
t.

5. Define auxiliary variables ŷt = γ̂t + D−1
t bt, where

γ̂t = β̂t + K
′−1
t J ′t+1β̂t+1, t = s + 1, . . . , s + m,

6. Consider the linear Gaussian state-space model with the auxiliary state equation
given by

ŷt = Ztβt + Gtξt, t = s + 1, . . . , s + m, (27)

βt+1 = T̂tβt + Htξt, t = s, s + 1, . . . , s + m− 1, (28)

ξt = (ε′t, η
′
t)
′ ∼ N(0, I),

where

Zt = I + K
′−1
t J ′t+1T̂t, Gt = K

′−1
t [I, J ′t+1R̂t], Ht = [O, R̂t].

Apply the Kalman filter and the disturbance smoother to the linear Gaussian
system (27) and (28) and obtain the posterior mode η̂.

7. Goto 2.

Note that the above algorithm produces the posterior mode of η when we include the
term log p(αs+m+1|αs+m) in L. If εt and ηt are independent, the approximating linear
Gaussian state-space model reduces to

ŷt = βt + K
′−1
t εt, εt ∼ N(0, I),

βt+1 = T̂tβt + R̂tηt, ηt ∼ N(0, I).

13



To generate η from the conditional posterior density, we conduct the Metropolis-
Hastings algorithm using a proposal density f∗(ηy).

Algorithm 2.2 (Simulation smoother):

1. Given the current value ηx, find the approximate value of mode, η̂, using Algo-
rithm 2.1.

2. Proceed Step 2–5 of Algorithm 2.1 to obtain the approximate linear Gaussian
system (27)–(28).

3. Generate a candidate ηy from f∗(ηy) using a simulation smoother for the ap-
proximating linear Gaussian state-space model (27)–(28). Given the current
value ηx, we accept ηy with probability

min
{

1,
f(ηy)f∗(ηx)
f(ηx)f∗(ηy)

}
.

If it is rejected, accept ηx as a sample.

Example. Stochastic volatility model with leverage effects and state-dependent vari-
ances. In the model (4), the state equation in nonlinear such that

αt+1 = φαt + ηtση

{
1 +

1
1 + exp(−αt)

}
.

Then, T̂t and R̂t in the auxiliary state equation (24) are

T̂t = φ + ηtση
exp(−α̂t)

{1 + exp(−α̂t)}2
,

R̂t = ση

{
1 +

1
1 + exp(−α̂t)

}
,

t = 1, . . . , n− 1, R0 = σ0,

respectively. Given αt’s, yt follows normal distribution with mean µt and variance σ2
t

(yt|α ∼ N(µt, σ
2
t )) where

µt = ρσεσ
−1
η (αt+1 − φαt)

{
1 +

1
1 + exp(−αt)

}−1

exp(αt/2), (29)

and σ2
t given by (16). The logarithm of conditional likelihood of yt (excluding constant

term) is the same as in (17).
To sample a block (αs+1, . . . , αs+m) given αs, αs+m+1 and other parameters, we

consider the log conditional posterior for ηt (t = s, s + 1, . . . , s + m − 1) given by

14



−∑s+m−1
t=s η2

t /2 + L (excluding a constant term) where

L =





∑s+m
t=s ls − log

{
1 + 1

1+exp(−αs+m)

}
− (αs+m+1−φαs+m)2

2σ2
η

n
1+ 1

1+exp(−αs+m)

o2 , if s + m < n,

∑s+m
t=s ls if s + m = n,

The dt, first derivative of the L, is the same as in (18) but replacing (19) (20) by

∂µt

∂αt
=





∂µt

∂αt+1

[
−φ + (αt+1 − φαt)

{
1
2
− 1

3 + 2 exp(αt) + exp(−αt)

}]
,

t = 1, . . . , n− 1,

0, t = n,

(30)

∂µt−1

∂αt
=





0, t = 1,

ρσε

ση

{
1 +

1
1 + exp(−αt−1)

}−1

exp
(αt

2

)
, t = 2, . . . , n,

(31)

and the At’s and Bt’s are given by

At =
1
2

+ σ−2
t

(
∂µt

∂αt

)2

+ σ−2
t−1

(
∂µt−1

∂αt

)2

, t = 1, . . . , n,

Bt = σ−2
t−1

∂µt−1

∂αt−1

∂µt−1

∂αt
, t = 2, . . . , n.

Using Algorithm 2.1 and 2.2, we generate (αs+1, . . . , αs+m) given αs, αs+m+1 (αs

when s + m = n) and other parameters.

3.3 Nonlinear and non-Gaussian state equation

When the ηt’s are not normally distributed, we may try to transform ηt to follow
normal distribution so that we can apply the previous results. If an appropriate
transformation cannot be found, we use Taylor expansion around the mode η̂t to
obtain the approximate normality as follows. Let r(ηt) denote the logarithm of the
density for η. By Taylor expansion,

r(ηt) ≈ const + r(η̂t) +
∂r

∂η′t

∣∣∣∣
ηt=η̂t

(ηt − η̂t)− 1
2
(ηt − η̂t)′Ωt(ηt − η̂t)

≡ s(ηt),

where Ωt = − ∂2r/∂ηt∂η′t
∣∣
ηt=η̂t

. Assuming that Ωt is positive definite, we approximate
it by the normal distribution

N(µ̂t, Ω−1
t ), µ̂t = η̂t + Ω−1

t

∂r

∂ηt

∣∣∣∣
ηt=η̂t

.
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Define
η̃t ≡ Ω1/2

t (ηt − µ̂t) ∼ N(0, I),

for t = s + 1, . . . , s + m. Then we substitute ηt = µ + Ω−1/2η̃t into (27) and (28)
to obtain approximating equations (32) and (33) with the auxiliary state equation.
Thus we approximate the logarithm of the posterior density log f(η) (where we may
exclude the term log p(αs+m+1|αs+m) for the approximation) by log f∗(η) where

log f(η) = constant +
s+m∑

t=s+1

r(ηt) + L + log p(αs+m+1|αs+m),

log f∗(η) = constant +
s+m∑

t=s+1

s(ηt) + L̂ + d′(β − β̂)− 1
2
(β − β̂)′Q(β − β̂).

Algorithm 3.1:

1. Proceed Step 1–5 of Algorithm 2.1.

2. Consider the linear Gaussian state-space model with the auxiliary state equation
given by

ŷt = Ftµ̂t + Ztβt + G̃tξ̃t, (32)

βt+1 = R̂tµ̂t + T̂tβt + H̃tξ̃t, (33)

ξ̃t = (ε′t, η̃
′
t) ∼ N(0, I),

where

Zt = I + K
′−1
t J ′t+1T̂t, Ft = K

′−1
t J ′t+1R̂t,

G̃t = K
′−1
t [I, J ′t+1R̂tΩ

−1/2
t ], H̃t = [O, R̂tΩ

−1/2
t ].

Using the Kalman filter and the disturbance smoother, we obtain a smoothed
estimate η̃∗t of η̃t and calculate η̂t = µ̂t + Ω−1/2

t η̃∗t .

3. Goto 1.

When εt and ηt are independent, we have Jt = O for all t and equations (32) and (33)
reduce to

ŷt = Ztβt + K
′−1
t εt, εt ∼ N(0, I),

βt+1 = R̂tµ̂t + T̂tβt + R̂tΩ
−1/2
t η̃t, η̃t ∼ N(0, I).

To sample αt’s and ηt’s using a block sampler, we implement MCMC draws as follows.
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Algorithm 3.2:(Simulation smoother)

1. Proceed Step 1–2 of Algorithm 4.1 to obtain an approximate mode η̂ of the
logarithm of f(η) (where we may exclude the term log p(αs+m+1|αs+m) for the
approximation).

2. Propose a candidate of η̃t (and compute ηt = µ̂t + Ω−1/2
t η̃t) by simulation

smoother for the auxiliary linear Gaussian state-space model given by (32) and
(33). Given the current value ηx, we accept ηy with probability

min
{

1,
f(ηy)f∗(ηx)
f(ηx)f∗(ηy)

}
.

If it is rejected, accept ηx as a sample.

4 Illustrative examples

We illustrate how to implement our block sampler of state variables αt’s using simu-
lated data and stock returns data. We show that our method attains a considerable
improvement in the estimation efficiency compared with results from using a single
move sampler (which samples one αt at a time given α−t = (α1, . . . , αt−1, αt+1, . . . , αn)).

4.1 Stochastic volatility model with leverage effects

4.1.1 MCMC algorithm

Let y, Σ denote y = (y1, . . . , yn)′ and

Σ =

(
σ2

ε ρσεση

ρσεση σ2
η

)
,

respectively. We first initialize {αt}n
t=1, φ, Σ and proceed an MCMC implementation

in 3 steps.

1. Sample {αt}n
t=1|φ,Σ, y.

(a) Generate K stochastic knots (k1, . . . , kK) and set k0 = 0, kK+1 = n.

(b) Sample {αt}ki
t=ki−1+1|{αt|t ≤ ki−1, t > ki}, φ, Σ, y for i = 1, . . . , K + 1.

2. Sample φ|{αt}n
t=1, Σ, y.

3. Sample Σ|{αt}n
t=1, φ, y.

Step 1. We construct blocks by dividing (α1, . . . , αn) into K+1 blocks, (αki−1+1, . . . , αki)
′

using (k1, . . . , kK) with k0 = 0, kK+1 = n, ki − ki−1 ≥ 2 for i = 1, . . . , K + 1. The K
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knots, (k1, . . . , kK), are generated randomly using

ki = int[n× (i + Ui)/(K + 2)], i = 1, . . . , K,

where Ui’s are independent uniform random variables on (0, 1) (see e.g. Shephard
and Pitt (1997), Watanabe and Omori (2004)) . For each block, use Algorithm 1.1
and 2.1 to generate state variables (αki−1+1, . . . , αki) i = 1, . . . , K + 1.

Step 2. Let π(φ) denote a prior probability density for φ. The logarithm of the
conditional posterior density for φ (excluding a constant term) is given by

log π(φ) +
1
2

log(1− φ2)− α2
1(1− φ2)

2σ2
η

−

n−1∑

t=1

{
αt+1 − φαt − ρσησ

−1
ε exp(−αt/2)yt

}2

2(1− ρ2)σ2
η

.

We propose a candidate for the MH algorithm using a truncated normal distribution
on (−1, 1), with mean µφ and variance σ2

φ (which we denote by φ ∼ TN(−1,1)(µφ, σ2
φ))

where

µφ =
∑n−1

t=1 αt

(
αt+1 − ρσησ

−1
ε e−αt/2yt

)

ρ2α2
1 +

∑n−1
t=2 α2

t

, σ2
φ =

(1− ρ2)σ2
η

ρ2α2
1 +

∑n−1
t=2 α2

t

.

Given the current sample φx, generate φy ∼ TN(−1,1)(µφ, σ2
φ) and accept it with

probability

min





π(φy)
√

1− φ2
y

π(φx)
√

1− φ2
x

, 1



 .

Step 3. We assume that a prior distribution of Σ−1 follows Wishart distribution
(which we denote by Σ−1 ∼ W (ν0, Σ0)). Then the logarithm of the conditional
posterior density of Σ (excluding a constant term) is

− log ση − α2
1(1− φ2)

2σ2
η

− ν1

2
log |Σ| − 1

2
tr

(
Σ−1

1 Σ−1
)
,

where

ν1 = ν0 + n− 1, Σ−1
1 = Σ−1

0 +
n−1∑

t=1

xtx
′
t, xt = (yt exp(−αt/2), αt+1 − φαt).
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We sample Σ using MH algorithm with a proposal Σ−1 ∼ W (ν1,Σ1). Given the
current value Σ−1

x , generate Σ−1
y ∼ W (ν1, Σ1) and accept it with probability

min





σ−1
η,y exp−α2

1(1− φ2)
2σ2

η,y

σ−1
η,x exp−α2

1(1− φ2)
2σ2

η,x

, 1





.

4.1.2 Illustration using simulated data

To simulate the daily financial data, we set φ = 0.97, σε = 1, ση = 0.1, ρ = −0.5 and
generate n = 1, 000 observations. We take a beta distribution with parameters 20 and
1.5 for the (1 + φ)/2 and hence the prior mean and standard deviation of φ are 0.86
and 0.11 respectively. For a prior distribution of Σ−1, we assume a less informative
distribution and take a Wishart distribution with ν0 = 0.01 and Σ−1

0 equal to the
true value of 0.01 × Σ. The computational results were generated using Ox version
4.04 (Doornik (2002)) throughout.

Summary statistics

Number of blocks = 40
Parameter True Mean Stdev 95% interval Inefficiency CD
φ 0.97 0.984 0.011 [0.957, 0.997] 260.1 0.94
σε 1.0 0.930 0.084 [0.756, 1.105] 279.0 0.13
ση 0.1 0.080 0.026 [0.040, 0.140] 432.7 0.83
ρ −0.5 −0.387 0.206 [−0.729, 0.058] 68.7 0.42

Table 1: Summary statistics. The number of MCMC iterations is 50,000, and sample
size is 1,000. The bandwidth 5,000 is used to compute the inefficiency factors and
CD (p value of convergence diagnostic test).

Estimation results. We set K = 40 so that each block contains 25 αt’s on the
average. The initial 5,000 iterations are discarded as burn-in period and the following
50, 000 iterations are recorded. Table 1 summarises the posterior means, standard
deviations, 95% credible intervals, inefficiency factors and p values of convergence
diagnostic tests by Geweke (1992) for the parameters φ, σε, ση and ρ. The posterior
means are close to true values and true values of all parameters are covered in 95%
credible intervals. All p values of convergence diagnostic (CD) tests are greater than
0.05, suggesting that there is no significant evidence against the convergence of the
distribution of MCMC samples to the posterior distribution.

The inefficiency factor is defined as 1 + 2
∑∞

s=1 ρs where ρs is the sample auto-
correlation at lag s, and are computed to measure how well the MCMC chain mixes
(see e.g. Chib (2001)). It is the ratio of the numerical variance of the posterior sam-
ple mean to the variance of the sample mean from uncorrelated draws. The inverse
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of inefficiency factor is also known as relative numerical efficiency (Geweke (1992)).
When the inefficiency factor is equal to m, we need to draw MCMC samples m times
as many as uncorrelated samples.

Summary statistics

Single move sampler
Parameter True Mean Stdev 95% interval Inefficiency CD
φ 0.97 0.973 0.015 [0.937, 0.994] 2199.2 0.30
σε 1.0 0.918 0.078 [0.763, 1.058] 103.1 0.39
ση 0.1 0.099 0.025 [0.060, 0.420] 3506.6 0.09
ρ −0.5 −0.324 0.172 [−0.595, 0.064] 1038.0 0.47

Table 2: Summary statistics for the single move sampler. The number of MCMC
iteration is 250,000 and sample size is 1,000. The bandwidth 25,000 is used to compute
the inefficiency factors and CD (p value of convergence diagnostic test).
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Figure 1: Sample autocorrelation functions of MCMC samples.

Comparison with a single move sampler. To show the efficiency of our proposed
block sampler using inefficiency factors, we also conducted a single move sampler
which samples one αt at a time. We employ the algorithm of the single move sampler
proposed by Jacquier et al. (2004) with a slight modification since they modeled the
leverage effects in a different manner (where they considered the correlation between
εt and ηt−1). The initial 25,000 iterations are discarded as burn-in period and the
following 250, 000 iterations are recorded since obtained MCMC samples are highly
autocorrelated and a large number of draws need to be taken to obtain stable and
reliable estimation results. Table 2 shows summary statistics of the experiment using
a single move sampler. The inefficiency factors of the sampler are between 100 and
3510, while those of the block sampler are between 60 and 440. This implies that our
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Figure 2: Sample path of φ’s using first 50,000 MCMC samples.

proposed sampler reduces sample autocorrelations considerably and that it produces
more accurate estimation results than the single move sampler. In Figure 1, we can
see clear reductions in the sample autocorrelation functions for the block sampler in
all parameters. Figure 2 shows sample paths of φ’s using first 50,000 MCMC draws.
The sample path of the single move sampler does not move as fast as the block
sampler in the state space. These results clearly show that our method produces
great improvement in the mixing property of MCMC chains.
Selection of a number of blocks. To investigate the effect of block sizes on the speed of

Inefficiency factors

Parameter Number of blocks

5 10 20 30 40 50 100 200
φ 314.1 329.0 220.8 254.4 260.1 185.6 347.0 599.4
σε 526.7 153.8 312.3 449.4 279.0 680.9 684.4 1897.7
ση 465.3 538.9 394.6 452.6 432.7 322.5 524.7 687.4
ρ 172.8 178.7 266.6 251.5 68.7 301.7 235.3 193.4
α500 264.2 134.4 142.5 237.3 138.7 305.3 394.4 1183.3

Table 3: Inefficiency factors of MCMC samples using various number of blocks.

convergence to the posterior distribution, we repeated our experiments using different
number of blocks varying from 5 blocks to 200 blocks. The inefficiency factors of
MCMC samples are shown in Table 3. They tend to be larger as the number of
blocks increases from 40 to 200, while the small number of blocks such as 5 blocks
would also lead to high inefficiency factors. The latter is a result of low acceptance
rates in MH algorithm for the αt’s in the block sampler as shown in Table 4.
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Acceptance rates in MH algorithm

Parameter Number of blocks

5 10 20 30 40 50 100 200
α (AR) 0.820 0.878 0.926 0.946 0.954 0.964 0.981 0.990
α 0.817 0.886 0.935 0.955 0.962 0.972 0.986 0.993
φ 0.793 0.798 0.792 0.793 0.813 0.797 0.800 0.794
Σ 0.984 0.983 0.985 0.985 0.985 0.984 0.984 0.985

Table 4: Acceptance rates in MH algorithm. α(AR) corresponds to the acceptance
rate in acceptance-rejection algorithm.

When the number of blocks is equal to 5, the acceptance rate of αt’s is 81.7%.
This is relatively smaller than those obtained with larger number of blocks since high
dimensional probability density of αt would be more difficult to be approximated by
multivariate normal density. In this example, the optimal number of blocks with
small inefficiency factors would be between 20 and 40 where average block sizes are
between 25 and 50.

4.1.3 Stock returns data

We next apply our method to the daily Japanese stock returns. Using TOPIX (Tokyo
Stock Price Index) from 1 August 1997 to 31 July 2002, the stock returns are computed
as 100 times the difference of the logarithm of the series. The times series plot is shown
in Figure 3 where the number of observations is 1,230.
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Figure 3: TOPIX return data. 1997/8/1 – 2002/7/31.
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Summary statistics

Number of blocks = 40
Parameter Mean Stdev 95% interval Inefficiency CD
φ 0.945 0.019 [0.902, 0.974] 118.2 0.24
σε 1.259 0.070 [1.121, 1.398] 20.8 0.06
ση 0.193 0.033 [0.138, 0.267] 206.7 0.32
ρ −0.442 0.103 [−0.630,−0.231] 92.7 0.89

Table 5: Summary statistics. The number of MCMC iteration is 50,000. The band-
width 5,000 is used to compute the inefficiency factors and CD.

The prior distribution of parameters, the number of blocks, the number of iter-
ations and the burn-in period are taken as in the simulated data example. Table 5
shows summary statistics of MCMC samples. The results are similar to those obtained
in the previous subsection. Since 95% credible interval for ρ is (−0.630,−0.231) with
the posterior mean −0.442, the posterior probability that ρ is negative is greater than
0.95. It shows the importance of leverage effects in the stochastic volatility model as
we expected. Although the acceptance rates of αt’s in Metropolis-Hastings algorithm
are relatively small as shown in Table 6, inefficiency factors of obtained samples are
found to be small. This is because the sample size is larger than that of previous
examples and the average block size becomes larger accordingly.

Acceptance rates in MH algorithm

Parameter Acceptance rates
α (AR) 0.852
α 0.856
φ 0.955
Σ 0.990

Table 6: TOPIX data. Acceptance rates in MH algorithm. α(AR) corresponds to the
acceptance rate in acceptance-rejection algorithm.
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Figure 4: Sample autocorrelation functions of MCMC samples.

Figure 4 shows sample autocorrelation functions, sample paths and the posterior
densities. The sample autocorrelations decay quickly and MCMC samples move fast
over the state space.

4.2 Stochastic volatility model with state-dependent variances

This subsection illustrates our method using simulated data generated by the stochas-
tic volatility model in (4). The MCMC algorithm proceed in 3 steps as in Section
4.1. We use Algorithm 2.1 and 2.2 to generate (αs+1, . . . , αs+m) given αs, αs+m+1 (αs

when s+m = n) and other parameters. Then, given αt’s, we sample from conditional
posterior distribution of φ and Σ as in previous subsection.

We set φ = 0.95, σε = 1, ση = 0.1, ρ = −0.5 and generate n = 1, 000 observa-
tions. The distribution of the initial state α1 is assumed to be N(0, 0.1). The prior
distribution of other parameters are taken as in the previous example.
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Summary statistics

Number of blocks = 30
Parameter True Mean Stdev 95% interval Inefficiency CD
φ 0.95 0.944 0.019 [0.900, 0.975] 192.9 0.55
σε 1.0 0.994 0.056 [0.887, 1.111] 86.2 0.32
ση 0.1 0.129 0.025 [0.088, 0.184] 332.4 0.53
ρ −0.5 −0.415 0.117 [−0.624,−0.172] 116.3 0.15

Table 7: Summary statistics. The number of MCMC iterations is 50,000 and sample
size is 1,000. The bandwidth 5,000 is used to compute the inefficiency factors and
CD.

We set K = 30 and the initial 20,000 iterations are discarded as burn-in period
and the following 50, 000 iterations are recorded. Table 7 summarises the posterior
means, standard deviations, 95% credible intervals, inefficiency factors and p values of
convergence diagnostic tests for the parameters φ, σε, ση and ρ. The posterior means
are close to true values and true values of all parameters are covered in 95% credible
intervals. All p values of convergence diagnostic tests are greater than 0.05, suggesting
that there is no significant evidence against the convergence of the distribution of
MCMC samples to the posterior distributions.

Inefficiency factors

Parameter Number of blocks

5 10 20 30 40 50 100 200
φ 207.1 396.4 199.2 192.9 252.4 273.0 243.6 191.5
σε 94.6 47.0 80.3 86.2 60.2 132.3 71.5 267.8
ση 372.4 618.4 347.1 332.4 427.0 433.2 434.8 403.3
ρ 224.9 93.4 171.1 116.3 91.1 96.1 145.8 126.4
α500 15.1 10.0 15.0 12.1 14.2 20.5 8.7 36.0

Table 8: Inefficiency factors of MCMC samples using various number of blocks.

Table 8 shows the the effect of block sizes on the mixing property of chains. As
shown in Section 4.1, the larger the number of blocks becomes (from 40 to 200), the
larger the inefficiency factors become. On the other hand, very small number of blocks
such as 5 blocks resulted in high inefficiency factors. In Table 9, acceptance rates of the
Metropolis-Hastings algorithm are shown. The acceptance rates of α are much smaller
than those in the previous section due to dropping the terms log p(αs+m+1|α̂s+m) in
(26). The appropriate number of blocks for this particular example would be from 20
to 40.
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Acceptance rates in MH algorithm

Parameter Number of blocks

5 10 20 30 40 50 100 200
α 0.307 0.383 0.428 0.450 0.460 0.470 0.501 0.534
φ 0.986 0.985 0.987 0.987 0.986 0.985 0.985 0.987
Σ 0.993 0.993 0.993 0.992 0.993 0.993 0.992 0.993

Table 9: Acceptance rates in MH algorithm. α(AR) corresponds to the acceptance
rate in acceptance-rejection algorithm.

5 Conclusion

In this article, we described a disturbance smoother and a simulation smoother for a
general state-space model with a non-Gaussian measurement equation and a nonlinear
and non-Gaussian state equation. The dependent variable and the state variable are
allowed to be correlated. The high performance of our proposed method is shown
in estimation efficiencies using illustrative numerical examples in comparison with a
single move sampler.
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Appendix A1

Suppose that a state equation is nonlinear such that

αt+1 = gt(αt, ηt), ηt ∼ N(0, I), t = s, . . . , s + m− 1,

(αs : given). Consider an auxiliary state equation given by

βt+1 = T̂tβt + R̂tηt, t = s, . . . , s + m− 1,

with βs = β̂s, where

T̂t =
∂αt+1

∂α′t

∣∣∣∣
η=η̂

, R̂t =
∂αt+1

∂η′t

∣∣∣∣
η=η̂

.
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For a linear Gaussian state equation, we replace βt by αt and set αt+1 = Ttαt + Rtηt.

Using

∂L

∂η′j
=

s+m∑

t=j+1

∂L

∂α′t

∂αt

∂η′j
,

∂αt

∂η′j
=

{
∂αt

∂α′t−1
· · · ∂αj+2

∂α′j+1

∂αj+1

∂η′j
, t ≥ j + 1,

0 t ≤ j,

and

βt = T̂t−1βt−1 + R̂t−1ηt−1

=
t−1∑

j=s

T̂t−1 · · · T̂j+1R̂jηj + T̂t−1 · · · T̂sβs

=
t−1∑

j=s

∂αt

∂η′j

∣∣∣∣∣
η=η̂

ηj + T̂t−1 · · · T̂sβs,

we obtain

∂L

∂η

∣∣∣∣
′

η=η̂

(η − η̂) =
s+m−1∑

j=s

∂L

∂ηj

∣∣∣∣
′

η=η̂

(ηj − η̂j)

=
s+m−1∑

j=s

s+m∑

t=j+1

∂L

∂α′t

∣∣∣∣
α=α̂

∂αt

∂η′j

∣∣∣∣∣
η=η̂

(ηj − η̂j)

=
s+m∑

t=s+1

d̂′t
t−1∑

j=s

∂αt

∂η′j

∣∣∣∣∣
η=η̂

(ηj − η̂j)

=
s+m∑

t=s+1

d̂′t(βt − β̂t) = d̂′(β − β̂). (34)

where α = (α′s+1, . . . , α
′
s+m)′, β = (β′s+1, . . . , β

′
s+m)′, On the other hand, the second

derivative of log likelihood is given by

∂L2

∂ηil∂ηjm
=

∂

∂ηil

s+m∑

t2=j+1

p∑

k2=1

∂L

∂αt2k2

∂αt2k2

∂ηjm

=
s+m∑

t2=j+1

p∑

k2=1

∂2L

∂ηil∂αt2k2

∂αt2k2

∂ηjm
+

∂L

∂αt2k2

∂2αt2k2

∂ηil∂ηjm

=
s+m∑

t2=j+1

p∑

k2=1




s+m∑

t1=i+1

p∑

k1=1

∂L2

∂αt1k1∂αt2k2

∂αt1k1

∂ηil

∂αt2k2

∂ηjm


 +

∂L

∂αt2k2

∂2αt2k2

∂ηil∂ηjm
.

Its expected value is

E

(
∂L2

∂ηil∂ηjm

)
=

s+m∑

t1=i+1

s+m∑

t2=j+1

p∑

k1=1

p∑

k2=1

E

(
∂L2

∂αt1k1∂αt2k2

)
∂αt1k1

∂ηil

∂αt2k2

∂ηjm
.
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Thus the (i, j) block of the information matrix is

E

(
∂L2

∂ηi∂η′j

)
=

s+m∑

t1=i+1

s+m∑

t2=j+1

∂αt1

∂ηi
E

(
∂L2

∂αt1∂α′t2

)
∂αt2

∂η′j
.

Therefore, we obtain

(η − η̂)′ E
(

∂L2

∂η∂η′

)∣∣∣∣
η=η̂

(η − η̂)

=
s+m−1∑

i=s

s+m−1∑

j=s

(ηi − η̂i)′ E

(
∂L2

∂ηi∂η′j

)∣∣∣∣∣
η=η̂

(ηj − η̂j)

=
s+m−1∑

i=s

s+m−1∑

j=s

s+m∑

t1=i+1

s+m∑

t2=j+1

(ηi − η̂i)′
∂αt1

∂ηi

∣∣∣∣
η=η̂

E

(
∂L2

∂αt1∂α′t2

)∣∣∣∣
η=η̂

∂αt2

∂η′j

∣∣∣∣∣
η=η̂

(ηj − η̂j)

=
s+m∑

t1=s+1

s+m∑

t2=s+1

t1−1∑

i=s

t2−1∑

j=s

(ηi − η̂i)′
∂αt1

∂ηi

∣∣∣∣
η=η̂

E

(
∂L2

∂αt1∂α′t2

)∣∣∣∣
η=η̂

∂αt2

∂η′j

∣∣∣∣∣
η=η̂

(ηj − η̂j)

=
s+m∑

t1=s+1

s+m∑

t2=s+1

(βt1 − β̂t1)
′ E

(
∂L2

∂αt1∂α′t2

)∣∣∣∣
η=η̂

(βt2 − β̂t2)

= (β − β̂)′ E
(

∂L2

∂α∂α′

)∣∣∣∣
η=η̂

(β − β̂) = −(β − β̂)′Q̂(β − β̂). (35)

The results are obtained from equations (34) and (35).

Appendix A2

Since Q̂ is assumed to be a positive definite matrix, there exists a lower triangular
matrix U such that Q̂ = UU ′ using a Choleski decomposition where

U =




Ks+1 O O . . . O

Js+2 Ks+2 O . . . O

O Js+3 Ks+3
. . .

...
...

. . . . . . . . . O

O . . . O Js+m Ks+m




,

so that

Ât = JtJ
′
t + KtK

′
t, t = s + 1, . . . , s + m,

B̂t = JtK
′
t−1, t = s + 2, . . . , s + m,

Bs+1 = Js+1 = O.
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Denote Ct = JtJ
′
t, Dt = KtK

′
t and we obtain

Ct = B̂t(Kt−1K
′
t−1)

−1B̂′
t = B̂tD

−1
t−1B̂

′
t,

Dt = Ât − Ct = Ât − B̂tD
−1
t−1B̂

′
t,

for t = s+2, . . . , s+m, and Ds+1 = Âs+1. The matrix Kt is a Choleski decomposition
of Dt and Jt = K−1′

t−1B̂t. Let K = diag(Ks+1, . . . , Ks+m), D = diag(Ds+1, . . . , Ds+m),
b = KU−1d̂, γ = K

′−1U ′β, and γ̂ = K
′−1U ′β̂. Then

d̂′(β − β̂)− 1
2
(β − β̂)′Q̂(β − β̂)

= b′K
′−1U ′(β − β̂)− 1

2
(β − β̂)′UK−1DK

′−1U ′(β − β̂)

= b′(γ − γ̂)− 1
2
(γ − γ̂)′D(γ − γ̂)

= −1
2
(ŷ − γ)′D(ŷ − γ) (36)

where ŷ = γ̂ + D−1b, ŷt = γ̂t + D−1
t bt. On the other hand, since d̂ = UK−1b, and

γ = K
′−1U ′β,

γt = βt + K
′−1
t J ′t+1βt+1, t = s + 1, . . . , s + m, Js+m+1 = O,

bt = d̂t − JtK
−1
t−1bt−1, t = s + 2, . . . , s + m, bs+1 = ds+1.

Thus, given βt (t = s, s + 1, . . . , s + m), the equation (36) is a likelihood function for

ŷt = βt + K
′−1
t J ′t+1βt+1 + K

′−1
t εt

= βt + K
′−1
t J ′t+1(T̂tβt + R̂tηt) + K

′−1
t εt

= Ztβt + Gtξt, (37)

ξt = (ε′t, η
′
t)
′ ∼ N(0, I).

where Zt = I + K
′−1
t J ′t+1T̂t and Gt = K

′−1
t [I, J ′t+1R̂t].
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Appendix A3

Consider the log conditional posterior density of the approximating model given in
(11). Equation (11) is equal to (excluding constant term),

−1
2

s+m−1∑
t=s

(αt+1 − Ttαt)′Vt(αt+1 − Ttαt) + L̂ + d̂′(α− α̂)− 1
2
(α− α̂)′Q̂(α− α̂)

= −1
2
α′T ′V Tα + L̂ + d̂′(α− α̂)− 1

2
(α− α̂)′Q̂(α− α̂)

= const + d̃′(α− α̂)− 1
2
(α− α̂)′Q̃(α− α̂)

where Vt = W−1
t , V = diag(Vs, . . . , Vs+m−1), d̃ = d̂− T ′V T α̂, Q̃ = Q̂ + T ′V T and

T =




I O O . . . O

−Ts+1 I O . . . O

O −Ts+2 I
. . .

...
...

. . . . . . . . . O

O . . . O −Ts+m−1 I




.

The d̃t, the element of d̃ = (d̃′s+1, . . . , d̃
′
s+m)′, and corresponding block matrices Ãt,

B̃t of Q̃ are

d̃t = d̂t − Vtη̂t + T ′t+1Vt+1η̂t+1, (38)

Ãt = Ât + Vt + T ′tVt+1Tt, (39)

B̃t = B̂t − VtTt. (40)

We replace d̂, Q̂ by d̃, Q̃ in Appendix A2, and we obtain

d̃′(α− α̂)− 1
2
(α− α̂)′Q̃(α− α̂) = const− 1

2

∑
t

(ŷt − γt)′Dt(ŷt − γt).

To find a mode of η, we set γ̂t = ŷt and solve in terms of (α̂t and) η̂t recursively.
Similarly, to sample η, generate γt ∼ N(ŷ, D−1

t ) and obtain ηt recursively.

Algorithm 4.1:

1. Initialize η̂ and compute α̂ at η = η̂ using (6) recursively.

2. Evaluate d̃t’s, Ãt’s, and B̃t’s in (38)–(40) at α = α̂.
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3. Compute the following Dt, Jt and bt for t = s + 2, . . . , s + m recursively.

Dt = Ãt − B̃tD
−1
t−1B̃

′
t, Ds+1 = Ãs+1,

Jt = K−1′
t−1B̃t, Js+1 = O, Js+m+1 = O,

bt = d̃t − JtK
−1
t−1bt−1, bs+1 = d̃s+1,

where Kt denotes a Choleski decomposition of Dt such that Dt = KtK
′
t.

4. Define auxiliary variables ŷt = γ̂t + D−1
t bt where

γ̂t = α̂t + K
′−1
t J ′t+1α̂t+1, t = s + 1, . . . , s + m− 1,

5. Update the posterior mode recursively

α̂t = ŷt −K ′−1
t Jt+1α̂t+1, t = s + m, s + m− 1, . . . , 1,

6. Goto 2.

Algorithm 4.2: (Simulation smoother):

1. Given the current value ηx, find the mode α̂ using Algorithm 4.1.

2. Proceed Step 2–4 of Algorithm 4.1.

3. Propose a candidate ηy by sampling from q(ηy) ∝ min(f(ηy), cf∗(ηy)) using the
Acceptance-Rejection algorithm where the logarithm of c can be constructed
from a constant term and L̂ in (11).

(i) Generate ηy ∼ f∗ by sampling γt ∼ N(ŷt, D
−1
t ) and compute

αt = γt −K ′−1
t Jt+1αt+1, t = s + m, s + m− 1, . . . , 1,

recursively and obtain αy, ηy.

(ii) Accept ηy with probability

min(f(ηy), cf∗(ηy))
cf∗(ηy)

.

If it is rejected, go back to (i).

4. Conduct the MH algorithm using the candidate ηy. Given the current value ηx,

we accept ηy with probability

min
{

1,
f(ηy)min(f(ηx), cf∗(ηx))
f(ηx)min(f(ηy), cf∗(ηy))

}
.
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where a proposal density proportional to min(f(ηy), cf∗(ηy)). If it is rejected,
accept ηx as a sample.
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