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Abstract

Realized volatility, which is the sum of squared intraday returns over a certain
interval such as a day, has recently attracted the attention of financial economists
and econometricians as an accurate measure of the true volatility. In the real market,
however, the presence of non-trading hours and market microstructure noise in
transaction prices may cause the bias in the realized volatility. On the other hand,
daily returns are less subject to the noise and therefore may provide additional
information on the true volatility. From this point of view, we propose modeling
realized volatility and daily returns simultaneously based on well-known stochastic
volatility model. Using intraday data of Tokyo stock price index, we show that this
model can estimate realized volatility biases and parameters simultaneously. We take
a Bayesian approach and propose an efficient sampling algorithm to implement the
Markov chain Monte Carlo method for our simultaneous model. The result of the
model comparison between the simultaneous models using both naive and scaled
realized volatilities indicates that the effect of non-trading hours is more essential
than that of microstructure noise but still the latter has to be considered for better
fitting. Our Bayesian approach has an advantage over the conventional two-step
correction procedure in that we are able to take the uncertainty in estimation of
both biases and parameters into account for the prediction and the evaluation of
Value-at-Risk.

Key words: Bias correction; Markov chain Monte Carlo; Multi-move sampler;
Realized volatility; Stochastic volatility
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1 Introduction

The financial return volatility, defined as the variance or the standard devia-
tion of returns, plays a central role in the modern finance such as the option
pricing and the evaluation of the Value-at-Risk (VaR). Realized volatility,
which is the sum of squared intraday returns over a certain interval such as a
day, has recently attracted the attention of financial economists and econome-
tricians as an accurate measure of the true volatility. The realized volatility
proposed by Andersen and Bollerslev (1998) and Barndorff-Nielsen and Shep-
hard (2001) independently would provide a consistent estimator of the latent
volatility in the ideal market assumption.

In the real market, however, there are two problems in measuring daily realized
volatility from high frequency return data. One problem is the presence of
non-trading hours and the other is the presence of the market microstructure
noise in transaction prices. Stock markets are open only for a part of a day.
For example, Tokyo Stock Exchange (TSE) is open only for 4.5 hours a day.
The realized volatility may underestimate the latent one-day volatility if we
define the latent one-day volatility for day t as the volatility from the market
closing time for day t− 1 to that for day t as usual and calculate the realized
volatility as the sum of squared intraday returns only when the market is
open. To avoid this underestimation, Hansen and Lunde (2005) scale realized
volatility using daily returns so that the mean of the realized volatility equals
to the variance of the daily return.

On the other hand, the market microstructure noise has various sources, in-
cluding discrete trading and bid-ask spread (see e.g., O’Hara (1995) and Has-
brouck (2007) for details). Due to the noise, the realized volatility can be
a biased estimator of the latent volatility (see, e.g., McAleer and Medeiros
(2006) for a review of the realized volatility and effects of the microstructure
noise). As the time interval approaches to zero, the variance of the true price
process independent of the market microstructure noise decreases and then
the effect of the microstructure noise becomes more significant. This means
that there is a trade-off between the variance and bias of the realized volatility.
Considering this trade-off, Bandi and Russell (2005) derive a simple formula
to produce the optimal time interval of intraday returns used for calculating
the realized volatility. Zhang, Mykland, and Aı̈t-Sahalia (2005) also propose
the way to correct the bias by combining two realized volatilities calculated
from returns with different frequencies.

While the intraday returns are heavily contaminated by the microstructure
noise, the daily returns are less subject to the noise. Thus the daily returns
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may provide an additional information on the latent volatility. From this per-
spective, this article models the daily returns and realized volatility simulta-
neously by extending stochastic volatility models.

We assume that the realized volatility includes the microstructure noise but
still contains much information on the latent volatility. On the other hand,
daily returns have less such noises but do not include the sufficient information
on the latent volatility. Therefore, the model can estimate the biases due to
both the microstructure noise and non-trading hours simultaneously without
an additional calculation for determining the optimal time interval of Bandi
and Russell (2005), subsampling of Zhang et al. (2005), or scaling of Hansen
and Lunde (2005). Further, modeling returns and realized volatility simul-
taneously has a certain advantage over the two-step procedure by Giot and
Laurent (2004) because the former enables us to estimate the distribution of
returns, which is important in the prediction and the evaluation of the VaR,
jointly with the biases and parameters in the volatility equation.

However, it is difficult to evaluate the likelihood of our model analytically and
hence to estimate the parameters in the model by the maximum likelihood
method. Thus we develop a Bayesian method for estimating the parameters
in our model using the Markov chain Monte Carlo (MCMC) technique. To
make the estimation method efficient, we extend the multi-move sampler pro-
posed by Shephard and Pitt (1997) and Watanabe and Omori (2004). The
MCMC method also enables us to take account of the parameter uncertainty
in predicting the future volatility and the VaR.

We illustrate our model and estimation method by applying them to the daily
data on returns and realized volatility of the Tokyo stock price index (TOPIX).
We show that this model can estimate realized volatility biases and parameters
simultaneously. Bayesian comparison between the simultaneous models using
both two (naive and scaled) realized volatilities shows that the effect of non-
trading hours is more essential than that of microstructure noise but still the
latter has to be considered for better model fitting.

The paper is organized as follows. In Section 2, we first describe how to com-
pute the realized volatility and discuss two practical problems in such com-
putations. Then we propose a simultaneous model and explain its estimation
method using the MCMC technique. Section 3 applies our proposed model to
the TOPIX data. Finally, Section 4 concludes.
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2 Simultaneous Modeling of Stochastic Volatility and Realized Volatil-
ity

2.1 Integrated Volatility, Realized Volatility, and Microstructure Noise

We first consider a simple continuous time process,

dp(s) = σ(s)dw(s), (1)

where p(s) denotes the log-price of a financial asset at time s, and σ2(s) is the
instantaneous or spot volatility which is assumed to have locally square inte-
grable sample paths and stochastically independent of the standard Brownian
motion w(s). Then, the volatility for day t is defined as the integral of σ2(s)
over the interval (t, t + 1) where a full twenty-four-hour day is represented by
the time interval 1, i.e.,

IVt =
∫ t+1

t
σ2(s)ds,

which is called an integrated volatility.

Although the integrated volatility cannot be observed, we can estimate it using
observable high frequency asset returns. Suppose that we have n intraday
returns during each day t, {rt,i}n−1

i=0 , then the precise volatility measure, called
a realized volatility, is defined as the squared sum of them over day t, i.e.,

RVt =
n−1∑

i=0

r2
t,i. (2)

In the ideal world, that is, if there were no market microstructure noise and
the asset were always and continuously traded, the realized volatility would
provide a consistent estimator of the integrated volatility, that is,

RVt → IVt, n →∞.

Equivalently, the discretization noise due to dw(s) in the realized volatility
disappears as the time interval goes to zero.

In the real market, however, there are two problems in measuring the realized
volatility. One problem is the presence of non-trading hours and the other is
the existence of the market microstructure noise.

Stock markets are open only during a part of a day. For example, Tokyo Stock
Exchange (TSE) is open only for four and half hours a day. The realized
volatility may underestimate the integrated volatility if we calculate the real-
ized volatility as the sum of squared intraday returns only when the market
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is open. To avoid this underestimation, one may include returns on the non-
trading hours (overnight and/or lunch time interval) but this can make the
realized volatility noisy because such returns have much discretization noise.
Thus, Hansen and Lunde (2005) propose scaling realized volatility for the
market open period as

SRVt = cRVt, c =

∑T
t=1(Rt − R̄)2

∑T
t=1 RVt

,

where Rt is the daily return, T is the daily sample size, and R̄ = T−1 ∑T
t=1 Rt.

This ensures that the mean of the scaled realized volatility (SRV ) is equal to
the variance of daily returns.

On the other hand, to deal with the market microstructure noise, we denote
the observed intraday log price as pt,i and suppose that the observed log price
can be written as

pt,i = p∗t,i + εt,i,

where p∗t,i is the true intraday log price and εt,i is the microstructure noise.
Then we can write the observed intraday return as the true intraday return
r∗t,i plus the disturbance νt,i = εt,i − εt,i−1, i.e.,

rt,i = pt,i − pt,i−1 = r∗t,i + νt,i. (3)

Therefore, the realized volatility is given by

RVt =
n∑

i=1

(r∗t,i)
2 + 2

n∑

i=1

r∗t,iνt,i +
n∑

i=1

ν2
t,i.

From this expression, we observe that the realized volatility can be a biased
estimator of the integrated volatility. If the true price p∗t,i follows the equation
(1), the mean of

∑n
i=1(r

∗
t,i)

2 converges in probability to the integrated volatility
as the time interval approaches to zero (equivalently, n goes to infinity). On the
other hand, the expected value of

∑n
i=1 ν2

t,i increases. For example, if εt,i has a
constant variance σ2

ε independent of the time interval and no autocorrelation,
the expected value of

∑n
i=1 ν2

t,i is equal to 2nσ2
ε . This means that the bias

caused by the microstructure noise increases as the time interval approaches
to zero. Considering this trade-off between the variance and the bias of the
realized volatility, Bandi and Russell (2005) derive a simple formula to produce
the optimal time interval.

Bandi and Russell (2005) also show that RVt → ∞ in the case that εt,i has
zero mean and is a covariance stationary stochastic process; the variance of νt,i

is O(1). Additionally, when the noise εt,i is an independent and identically dis-
tributed random variable and is independent of the price process, Zhang et al.
(2005) show that RVt has a bias and a larger variance due to the noise. Zhang
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et al. (2005) also propose a way to correct the bias by combining two realized
volatilities calculated from returns with different frequencies. Furthermore, in
the case of the dependent noise structure, Zhang (2006) and Aı̈t-Sahalia, Myk-
land, and Zhang (2006) show that the similar result holds. See, e.g., McAleer
and Medeiros (2006) for a review of the effects of the microstructure noise.

Suppose that r∗t,i and νt,i in the equation (3) are uncorrelated. Then, taking
the variance of the both sides of the equation (3), we have

var(rt,i) = var(r∗t,i) + var(νt,i)

If the true price p∗t,i follows the equation (1), var(r∗t,i) increases as the time in-
terval increases. On the other hand, var(νt,i) remains the same (2σ2

ε if εt,i has a
constant variance σ2

ε independent of the time interval and no autocorrelation).
This means that the effect of the microstructure noise decreases as the time
interval increases. Hence, daily returns are less subject to the microstructure
noise than intraday returns. But daily returns suffer from another source of
noise due to the discretization while the realized volatility is less subject to the
discretization noise, which shows that daily returns and realized volatility can
complement each other. This motivates us to model daily returns and realized
volatility simultaneously as in the next subsection, which allows us to avoid
additional calculations for adjusting the realized volatility.

2.2 Model

In this subsection, we propose a new model which utilizes daily returns and the
realized volatility simultaneously. The model is an extension of the well-known
stochastic volatility (SV) model (see for example Taylor (1986), Shephard
(1996), and Ghysels, Harvey, and Renault (1996)). A simple SV model is
written as,

Rt = exp(ht/2)εt, εt ∼ N(0, 1), t = 1, . . . , T,

ht+1 = µ + φ(ht − µ) + ηt, ηt ∼ N(0, τ 2), t = 1, . . . , T − 1, (4)

h1 = µ + η0, η0 ∼ N

(
0,

τ 2

1− φ2

)
,

where ht is the latent log volatility (log integrated volatility) at time t.

For notational convenience, let y1,t and y2,t denote a daily return and a loga-
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rithm of a realized volatility respectively. We extend the SV model as

y1,t = exp(ht/2)ε1,t, ε1,t ∼ N(0, 1),

y2,t = ht + ε2,t, ε2,t ∼ N(0, σ2), (5)

ht+1 = µ + φ(ht − µ) + ηt, ηt ∼ N(0, τ 2),

h1 = µ + η0, η0 ∼ N

(
0,

τ 2

1− φ2

)
,

which we call the SV-RV model. Moreover, since the realized volatility can be
biased due to the non-trading hours and microstructure noise, we modify the
SV-RV model by adding the bias-correction term ξ in the second observation
equation of (5), i.e.,

y1,t = exp(ht/2)ε1,t, ε1,t ∼ N(0, 1),

y2,t = ξ + ht + ε2,t, ε2,t ∼ N(0, σ2), (6)

ht+1 = µ + φ(ht − µ) + ηt, ηt ∼ N(0, τ 2),

h1 = µ + η0, η0 ∼ N

(
0,

τ 2

1− φ2

)
.

If ξ is positive, realized volatility has an upward bias that may be due to the
market microstructure noise and if ξ is negative, it has a downward bias due to
the non-trading hours. Therefore, we may observe that the strength of effects
of the microstructure noise and non-trading hours from the sign of ξ. We also
call this model SV-RVC (SV-RV Corrected with respect to the bias due to the
microstructure noise and non-trading hours) model.

The SV-RVC model can estimate the biases due to both the microstructure
noise and non-trading hours simultaneously without the prior or two-step cal-
culation for determining optimal time-interval of Bandi and Russell (2005),
subsampling of Zhang et al. (2005), or scaling of Hansen and Lunde (2005).
Further, SV-RV and SV-RVC models have a certain advantage over two-step
procedures because the former enables us to estimate the distribution of re-
turns, which is important in the evaluation of the VaR, jointly with the pa-
rameters in the volatility equation.

2.3 Markov Chain Monte Carlo Simulation

Because of the nonlinear relation between the daily return and the log latent
volatility in equations (4), (5), and (6), we cannot compute the likelihood of
these models by Kalman filter. But given h = (h1, . . . , hT ), we can compute
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the conditional likelihood of the SV-RVC model as

f(y1,1, y2,1, . . . , y1,T , y2,T |θ, h)

=
T∏

t=1

1√
2π exp(ht/2)

exp

{
− y2

1,t

2 exp(ht)

}
× 1√

2πσ2
exp

{
−(y2,t − ξ − ht)

2

2σ2

}
,

where θ denotes the parameters. Hence, we take a Bayesian approach and
estimate the posterior distribution of parameters in the SV, SV-RV, and SV-
RVC models by considering h as additional latent variables. In this setup,
efficient sampling h is the key to estimate the models. Therefore, we first
describe the sampling algorithm for h.

2.3.1 Efficient Sampler for the latent volatilities

There are various sampling methods for h such as the single-move sampler pro-
posed by Jacquier, Polson, and Rossi (1994) or the mixture sampler by Kim,
Shephard, and Chib (1998). But the single-move sampler is extremely ineffi-
cient and the mixture sampler may not be able to be extended to more general
models with risk premiums. Therefore, in this article, we use the multi-move
sampler proposed by Shephard and Pitt (1997) and Watanabe and Omori
(2004).

To illustrate the multi-move sampler, we consider the SV-RVC model. The
observation equations of the model are

y1,t = exp(ht/2)ε1,t, ε1,t ∼ N(0, 1),

y2,t = ξ + ht + ε2,t, ε2,t ∼ N(0, σ2), (7)

while state equations are written as

ht+1 = (1− φ)µ + φht + ηt, ηt ∼ N(0, τ 2), (8)

h1 = µ + η0, η0 ∼ N

(
0,

τ 2

1− φ2

)
.

To sample h from the posterior distribution, we divide (h1, . . . , hT ) into K +1
blocks, (hki−1+1, . . . , hki+1)

′, for i = 0, . . . , K + 1, with k0 = 0 and kK+1 = T .
The selection of K knots, (k1, . . . , kK), is implemented randomly and inde-
pendently as

ki = int{n× (i + Ui)/(K + 2)}, i = 1, . . . , K,

where Ui’s are independent uniforms in [0, 1] and “int” denotes integer part.
Since we sample each block given parameters θ ≡ (ξ, σ2, µ, φ, τ 2), other blocks,
and observations Y ≡ (y1, . . . , yT ) where yt ≡ (y1,t, y2,t), this sampling method

8



is called a block sampler or multi-move sampler (e.g. Shephard and Pitt
(1997)).

Suppose that ki−1 = t−1 and ki = t+k. Then we sample h(i) ≡ (ht, ht+1, . . . , ht+k)
given (h1, . . . , ht−1, ht+k+1, . . . , hT ), θ, and Y . Since h(i) only depends on ht−1,
ht+k+1, (yt, . . . , yt+k) and θ, it is enough to consider sampling from the poste-
rior distribution,

f(h(i)|ht−1, ht+k+1, yt, . . . , yt+k, θ).

Given ht−1, ht+k+1, (yt, . . . , yt+k) and θ, we can compute h(i) from η(i) ≡
(ηt−1, . . . , ηt+k+1) using equation (8). Thus, we consider sampling η(i) from
the posterior distribution,

f(η(i)|ht−1, ht+k+1, yt, . . . , yt+k, θ). (9)

To construct a proposal distribution for the Metropolis-Hastings (MH) algo-
rithm, we approximate this posterior density by the corresponding density of
the linear Gaussian state space model (see Appendix A for details) given by

ŷ1,s = hs + ε̂1,s, ε̂1,s ∼N(0, vs),

y2,s = ξ + hs + ε2,s, ε2,s ∼N(0, σ2), (10)

hs+1 = µ + φ(hs − µ) + ηs, ηs ∼N(0, τ 2),

where ŷ1,s and vs are defined as,

(i) if s = t, t + 1, . . . , t + k − 1 or s = t + k = T ,

ŷ1,s = ĥs + vsl
′(ĥs), vs = − 1

l′′(ĥs)
,

(ii) if s = t + k < T ,

ŷs = ĥs + vs

[
l′(ĥs) +

φ

τ 2

{
ht+k+1 − µ− φ(ĥs − µ)

}]
,

vs =
τ 2

φ2 − τ 2l′′(ĥs)
,

for some ĥs. We denote the posterior density of the η(i) from this linear Gaus-
sian state space model by g(η(i)).

We sample η(i) from the posterior density g using the simulation smoother of
de Jong and Shephard (1995) and Durbin and Koopman (2002). But since g
is the approximate density for the posterior density f , we use the acceptance-
rejection Metropolis-Hasting (ARMH) algorithm proposed by Tierney (1994)
(see also Chib and Greenberg (1995)) for sampling from f . We choose ĥs as
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the posterior mode, which is calculated from the mode of η(i). In order to
calculate the mode, η̂(i), we first apply the disturbance smoother of Koopman
(1993) with a starting value of η̂(i). Then we apply the smoother for obtained
η̂(i) again. After some iterations, we can obtain the approximate mode of η(i)

(see e.g. Shephard and Pitt (1997)).

2.3.2 Sampling Parameters

For the SV-RVC model in (6), we set priors as

ξ ∼ N(mξ, s
2
ξ), σ2 ∼ IG

(
nσ

2
,
dσ

2

)
,

µ ∼ N(mµ, s
2
µ),

1 + φ

2
∼ Beta(a, b), τ 2 ∼ IG

(
nτ

2
,
dτ

2

)
.

Then, denoting Y1 = (y1,1, . . . , y1,T ) and Y2 ≡ (y2,1, . . . , y2,T ), the posterior
density for θ ≡ (ξ, σ2, µ, φ, τ 2) and h becomes

f(θ, h|Y1, Y2)

∝ exp

[
−1

2

T∑

t=1

{
ht − y2

1,t exp(−ht)
}]

× (σ2)−T/2 exp

{
− 1

2σ2

T∑

t=1

(y2,t − ξ − ht)
2

}

×
√

1− φ2(τ 2)−T/2

× exp

{
− 1

2τ 2
(1− φ2)(h1 − µ)2 −

T−1∑

t=1

(ht+1 − (1− φ)µ− φht)
2

}

× exp

{
−(ξ −mξ)

2

2s2
ξ

}
× (σ2)−(nσ/2+1) exp

(
− dσ

2σ2

)

× exp

{
−(µ−mµ)2

2s2
µ

}
×

(
1 + φ

2

)a−1 (
1− φ

2

)b−1

× (τ 2)−(nτ /2+1) exp

(
− dτ

2τ 2

)
.

To implement the Markov chain Monte Carlo simulation, we sample from the
posterior distribution as follows:

Step 1. Simulate h from f(h|µ, φ, τ 2, Y1, Y2).
Step 2. Simulate ξ from f(ξ|σ2, h, Y2).
Step 3. Simulate σ2 from f(σ2|ξ, h, Y2).
Step 4. Simulate µ from f(µ|φ, τ 2, h).
Step 5. Simulate τ 2 from f(τ 2|µ, φ, h).
Step 6. Simulate φ from f(φ|µ, τ 2, h).
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We note that ξ and σ2 only depend on the observation equation (7) given h
while µ, φ, and τ 2 only depend on the volatility equation (8) given h.

In the first step, we conduct the multi-move sampler described in the previous
subsection. In the second and third steps, we sample from the conditional
posterior distributions of ξ and τ 2,

ξ|σ2, Y2, h ∼ N(m̃ξ, s̃
2
ξ), σ2|ξ, Y2, h ∼ IG

(
ñσ

2
,
d̃σ

2

)
,

where

m̃ξ =
s2

ξ(y2,t − ht) + σ2mξ

Ts2
ξ + σ2

, s̃2
ξ =

s2
ξσ

2

Ts2
ξ + σ2

,

ñσ = T + nσ, d̃σ = dσ +
T∑

t=1

(y2,t − ξ − ht)
2.

In the fourth and fifth steps, we generate samples from the conditional poste-
rior distributions of µ and τ 2

µ|φ, τ 2, h ∼ N(m̃µ, s̃
2
µ), τ 2|µ, φ, h ∼ IG

(
ñτ

2
,
d̃τ

2

)
,

where

m̃µ = s̃2
µ

{
(1− φ2)

τ 2
h1 +

(1− φ)

τ 2

T−1∑

t=1

(ht+1 − φht) +
mµ

s2
µ

}
,

s̃2
µ =

s2
µτ

2

s2
µ{(T − 1)(1− φ)2 + 1− φ2}+ τ 2

,

ñτ = T + nτ ,

d̃τ = dτ + (h1 − µ)2(1− φ2) +
T−1∑

t=1

{ht+1 − µ− φ(ht − µ)}2.

In the final step, the logarithm of the posterior density is

log f(φ|µ, τ 2, h1, . . . , hT )

= const. + log{ϕ(φ)} − 1

2τ 2

T−1∑

t=1

{ht+1 − µ− φ(ht − µ)}2,

where |φ| < 1 and

log ϕ(φ) = (a− 1) log(1 + φ) + (b− 1) log(1− φ)

− (h1 − µ)2(1− φ2)

2τ 2
+

1

2
log(1− φ2).
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In order to sample from this density, we employ Metropolis-Hastings (MH)
algorithm (Chib and Greenberg (1995)). We construct the proposal density
h(φ) as an approximation to the conditional posterior density by omitting the
term log ϕ(φ), i.e.,

log f(φ|µ, τ 2, h1, . . . , hT ) ≈ const.− 1

2τ 2

T−1∑

t=1

{ht+1 − µ− φ(ht − µ)}2

= const.− (φ−mφ)
2

2s2
φ

= const. + log h(φ),

where

mφ =

∑T−1
t=1 (ht+1 − µ)(ht − µ)

∑T−1
t=1 (ht − µ)2

, s2
φ =

τ 2

∑T−1
t=1 (ht − µ)2

.

If φj−1 is a current sample of φ, we propose a candidate φp for φj by sampling
from N(mφ, s

2
φ) truncated on (−1, 1) and accepting it with probability

q = min

{
f(φp)h(φj−1)

f(φj−1)h(φp)
, 1

}
= min

{
ϕ(φp)

ϕ(φj−1)
, 1

}
.

3 Application to Stock Return Data

3.1 Data and Realized Volatility

We use the high frequency data of Tokyo stock price index (TOPIX) obtained
from the Nikkei NEEDS MT tick data. The price is preserved in one minute
frequency during the period from April 1, 1996 to March 31, 2005 (2216 trading
days). TSE is open for 9:00-11:00 (morning session) and 12:30-15:00 (afternoon
session) in usual trading days and only for 9:00-11:00 in the first and last
trading days in every year. Excluding the overnight and lunch time intervals,
we obtain 119 intraday returns in the morning session and 149 returns in the
afternoon session.

To confirm that SV-RVC model can correct the bias due to market microstruc-
ture noise and non-trading hours, we use the realized volatilities calculated
from 1-, 5-, and 10-minute intraday returns when the market is open. We
compute RV m

t by omitting the overnight and lunch time interval return (we
also compute RV m

t in the first and last trading days in every year using only
morning session returns), where m = 1, 5, 10 denote the time interval used for
calculating realized volatilities. Following Hansen and Lunde (2005), we also

12



calculate scaled realized volatility as,

SRV m
t = cRV m

t , c =

∑T
t=1(Rt − R̄)2

∑T
t=1 RV m

t

.

Values of c are 3.6711, 2.9645, and 2.7881 for SRV 1
t , SRV 5

t , and SRV 10
t re-

spectively. Since all these values are smaller than 24/4.5 = 5.3333, we confirm
that non-trading hours contribute to the increase in volatility less than trading
hours, which is consistent with previous findings (Fama (1965), French and
Roll (1986), and Nelson (1991)).

Figures 1 - 3 are the realized volatility calculated using intraday returns only
when the market is open (RV m), scaled one (SRV m), and their logarithms
(log(RV m), log(SRV m)) at the time interval m = 1, 5, 10 (minute). Figure
4 plots daily return (R), its absolute value (|R|), squared return (R2), and
its logarithm (log R2). They show that the variation of realized volatilities is
smaller than that of squared daily return, which is due to the discretization
noise in daily returns.

Table 1 shows descriptive statistics. We observe four interesting results from
this table. First, the mean of RV m (m = 1, 5, 10) is smaller than that of the
squared daily return, which implies there is a negative bias in the realized
volatility due to non-trading hours. The standard deviation of the realized
volatilities is much smaller than the squared return as we expected from Fig-
ures 1 - 4. Second, the standard deviation of RV m becomes larger as the time
interval m increases, which confirms the intraday return becomes noisy due
to the discretization effect as the interval increases. These results suggest that
the more precise estimate of the true volatility may be obtained by correcting
the bias due to non-trading hours and microstructure noise in RV 1.

Third, the skewness and kurtosis indicate that the realized volatilities are not
Gaussian but their logarithms are nearly Gaussian, which motivates us to
model the logarithm of realized volatilities instead of the realized volatilities.
Finally, LB(10), the heteroskedasticity-corrected Ljung-Box statistic includ-
ing 10 lags calculated following Diebold (1988), shows that daily return is
not autocorrelated while volatilities, especially the log realized volatilities, are
autocorrelated significantly at the one percent level. This result is consistent
with the well-known phenomenon of volatility clustering.

These findings are in accordance with previous studies: Andersen, Bollerslev,
Diebold, and Labys (2001b) for exchange rates; Andersen, Bollerslev, Diebold,
and Ebens (2001a) for stocks; Martens (2002) for stock index futures; and
Watanabe and Yamaguchi (2007) for Japanese stock index (Nikkei 225).
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3.2 Estimation Results

Tables 3 - 6 summarize MCMC estimation results of SV, SV-RV, and SV-RVC
models obtained by 5000 samples recorded after discarding 1000 samples from
MCMC iterations (all calculations in this paper are done by using Ox (Doornik
(2002))). We apply the latter two models to both realized volatilities for the
market open period (RV m) and scaled one (SRV m) at each time interval
(m = 1, 5, 10) and denote models using scaled realized volatilities as SV-
SRV and SV-SRVC models. CD is the p-value of the convergence diagnostic
(CD) test by Geweke (1992). The inefficiency factor is defined as 1+2

∑∞
s=1 ρs

where ρs is the sample autocorrelation at lag s, and are computed to measure
how well the MCMC chain mixes (see e.g. Chib (2001)). It is the ratio of
the numerical variance of the posterior sample mean to the variance of the
posterior sample mean from uncorrelated draws. The inverse of inefficiency
factor is also known as relative numerical efficiency (Geweke (1992)). When
the inefficiency factor is equal to m, we need to draw MCMC samples m times
as many as uncorrelated samples.

Table 3 shows that φ is estimated relatively lower in the SV-RV models using
RV m although φ is expected to be close to one as a result of the strong
autocorrelations of log realized volatilities. Since φ is close to one in the SV-
RVC, SV-SRV, and SV-SRVC models in Tables 4, 5, and 6, this is probably
because the bias is not corrected appropriately for the non-trading hours.

In Table 4, the posterior means of ξ in the SV-RVC models are all negative.
This implies that the effect of non-trading hours is stronger than that of
microstructure noise. We note that the posterior mean of ξ = −1.2344 in
the SV-RVC model using RV 1 is larger than the scaling factor, − log(c) =
−1.3005, and, further, the posterior probability that ξ is positive is greater
than 0.95 in the SV-SRVC model using SRV 1 in Table 6. From these results,
we observe that the bias due to the microstructure noise still exists even after
scaling, which means that correcting the bias due to non-trading hours is not
sufficient for adjusting the total bias in the realized volatility. We also note
that the difference between −1.2344 and −1.3005 is 0.0661 which is almost
equal to the posterior mean of ξ = 0.0655 in SV-SRVC model in Table 6.

Table 6 shows that 95% credible intervals of ξ contain zeros for the SV-SRVC
models using SRV 5 and SRV 10. This result shows that the bias due to the mi-
crostructure noise disappears as the time interval m increases. On the contrary,
the variances of realized volatility (σ2) and latent log volatility (τ 2) increase
as m increases. This bias-variance trade-off is consistent with previous studies
such as Bandi and Russell (2005) and Hansen and Lunde (2006). While these
research suggest taking the optimal time interval for dealing with this trade-
off, our SV-RVC model can correct the bias without considering a selection of

14



such a time interval. Therefore, the model provides volatility estimator with
the least variation by using the realized volatility calculated from intraday
returns with the shortest interval (one minute). Moreover, the model allows
us to skip the two-step procedure determining the optimal sampling frequency
for calculating the realized volatility and bias-correcting procedures, both of
which need complicated calculations.

To investigate the effect of lunch time non-trading hours, we also estimate
the models using realized volatilities and scaled ones calculated from intraday
returns including the lunch time interval. The results are the same as those
when we used RV m (m = 1, 5, 10) and hence are omitted.

3.3 Model Comparisons Using Marginal Likelihoods

For model comparisons, we calculate marginal likelihoods of these models.
We follow Chib (1995) and Chib and Jeliazkov (2001) to calculate the pos-
terior ordinate and its numerical standard error. The likelihood ordinate is
computed by using the auxiliary particle filter of Pitt and Shephard (1999).
We calculate the estimate of the likelihood ordinate and its standard error as
the sample mean and standard deviation of the likelihoods from 20 iterations.
Table 7 shows the logarithm of marginal likelihoods (standard errors are in
the parentheses).

From this table, we can confirm that the bias-correction is essential for model
fitting. Especially, correcting the bias due to non-trading hours gives more sig-
nificant improvement (see SV-RV and SV-RVC models) than adjusting it due
to the microstructure noise (see SV-SRV and SV-SRVC models). Comparing
the log marginal likelihoods of SV-SRV and SV-SRVC models using SRV 1,
however, we observe that the bias due to microstructure noise still exists and
the SV-SRVC model can adequately correct the bias. But the log marginal
likelihoods of both models using SRV 5 and SRV 10 show the benefit for cor-
recting the bias due to microstructure noise disappears as the time interval
m increases. This result is consistent with the previous studies suggesting the
use of intraday returns with longer intervals such as 5 or 10 minutes to calcu-
late the realized volatility with less microstructure noise (see e.g. Bandi and
Russell (2005) and Hansen and Lunde (2006)).

4 Concluding Remarks

In this paper, we proposed modeling daily returns and realized volatility simul-
taneously extending the well-known stochastic volatility model and described
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the efficient sampling algorithm for our model to implement Markov chain
Monte Carlo simulation. We show that this model can jointly estimate the
parameters and the realized volatility bias due to both non-trading hours and
the market microstructure noise. Especially, this model allows us to skip deter-
mining the optimal sampling frequency for calculating the realized volatility
and bias-correcting procedures, both of which need complicated calculations.
Comparison of marginal likelihood between the simultaneous models using
both naive and scaled realized volatilities shows that the effect of non-trading
hours is more essential than that of microstructure noise but still the latter
has to be considered for better model fitting.

Using Bayesian approach, our model can consider the uncertainty in the esti-
mation of the biases and parameters when we derive the predictive distribution
of daily returns, which is important for the evaluation of the VaR estimation.
The comparison of the forecasting performances using the VaR for various
models such as the ARFIMA model would be our future work. Further, al-
though we use only the standard normal distribution for daily returns in this
paper, our model can be applied to other distributions for daily returns such
as Student’s t, skewed-t, and normal inverse Gaussian (NIG) distributions. Es-
pecially, the NIG distribution has recently attracted the attention of financial
economists and econometricians since conditional distribution of the returns
is distributed as NIG if the realized volatility is conditionally inverse Gaus-
sian and daily return standardized by the realized volatility is approximately
Gaussian (see e.g., Forsberg (2002) and Forsberg and Bollerslev (2002)).
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Appendix

A Approximation of the conditional posterior density of η(i)

In the case of t + k < T , the log of posterior density (9) is written as

log f(η(i)|ht−1, ht+k+1, yt, . . . , yt+k, θ)

= const. + log f(y1,t, . . . , y1,t+k|ht, . . . , ht+k)

+ log f(y2,t, . . . , y2,t+k|ξ, σ2, ht, . . . , ht+k)

+ log f(ht+k+1|µ, φ, τ 2, ht+k) + log f(ηt−1, . . . , ηt+k−1|τ 2)

= const.−
t+k∑

s=t

{
hs

2
+

y2
1,s

2
exp(−hs)

}
− 1

2σ2

t+k∑

s=t

(y2,s − ξ − hs)
2

− 1

2τ 2
{ht+k+1 − µ− φ(ht+k − µ)}2 − 1

2τ 2

t+k−1∑

s=t−1

η2
s . (A.1)

Following Shephard and Pitt (1997), we approximate this log-posterior density
by Taylor expansion of

l(hs) ≡ −hs

2
− y2

1,s

2
exp(−hs)

around hs = ĥs as follows;

log f(η(i)|ht−1, ht+k+1, yt, . . . , yt+k, θ)

≈ const. +
t+k∑

s=t

{
l(ĥs) + (hs − ĥs)l

′(ĥs) +
1

2
(hs − ĥs)

2l′′(ĥs)
}

− 1

2σ2

t+k∑

s=t

(y2,s − ξ − hs)
2

− 1

2τ 2
{ht+k+1 − µ− φ(ht+k − µ)}2 − 1

2τ 2

t+k−1∑

s=t−1

η2
s

≡ log cg(ηt−1, . . . , ηt+k−1),

where

l′(ĥs) ≡ ∂l(ĥs)

∂hs

=
1

2

{
y2

s exp(−ĥs − 1
}

,

l′′(ĥs) ≡ ∂2l(ĥs)

∂hs
2 = −y2

s

2
exp(−ĥs).

On the other hand, when sampling the last block, i.e. t + k = T , the log of
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posterior density is written as, excluding ht+k+1 in the condition,

log f(η(i)|ht−1, yt, . . . , yt+k, θ)

= const.−
t+k∑

s=t

{
hs

2
+

y2
1,s

2
exp(−hs)

}
− 1

2σ2

t+k∑

s=t

(y2,s − ξ − hs)
2

− 1

2τ 2

t+k−1∑

s=t−1

η2
s .

Similar to the case of t + k < T , we approximate this log-density as

log f(η(i)|ht−1, yt, . . . , yt+k, θ)

≈ const. +
t+k∑

s=t

{
l(ĥs) + (hs − ĥs)l

′(ĥs) +
1

2
(hs − ĥs)

2l′′(ĥs)
}

− 1

2σ2

t+k∑

s=t

(y2,s − ξ − hs)
2 − 1

2τ 2

t+k−1∑

s=t−1

η2
s

≡ log cg(ηt−1, . . . , ηt+k−1).

Then we can consider g(ηt−1, . . . , ηt+k−1) as the conditional density of linear
Gaussian state space model,

ŷ1,s = hs + ε̂1,s, ε̂1,s ∼N(0, vs),

y2,s = ξ + hs + ε2,s, ε2,s ∼N(0, σ2),

hs+1 = µ + φ(hs − µ) + ηs, ηs ∼N(0, τ 2),

where ŷ1,s and vs are defined as,

(i) if s = t, t + 1, . . . , t + k − 1 or s = t + k = T ,

ŷ1,s = ĥs + vsl
′(ĥs), vs = − 1

l′′(ĥs)
,

(ii) if s = t + k < T ,

ŷs = ĥs + vs

[
l′(ĥs) +

φ

τ 2

{
ht+k+1 − µ− φ(ĥs − µ)

}]
,

vs =
τ 2

φ2 − τ 2l′′(ĥs)
.

The correction in (ii) is necessary except the last block (s = t + k = T )
because of the existence of the fourth term in equation (A.1) (see Watanabe
and Omori (2004)).
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Table 1
Descriptive statistics for realized volatilities for the market open period (RV m),
scaled realized volatility (SRV m), log of them at frequency m = 1, 5, 10 (minute),
daily return (R), its absolute value (|R|), squared return (R2), and log of them
(log |R|, log R2) during the period from 1 April 1996 to 31 March 2005 (2216 trading
days). LB(10) is the heteroskedasticity-corrected Ljung-Box statistics of Diebold
(1988) with 10 lags. The critical values for LB10 are: 15.99 (10%), 18.31 (5%), and
23.21 (1%).

RV 1 RV 5 RV 10 SRV 1 SRV 5 SRV 10

Level

Mean 0.4424 0.5478 0.5825 1.6240 1.6240 1.6240

Stdev 0.3089 0.4923 0.5722 1.1340 1.4595 1.5955

Skewness 4.6566 4.3165 4.7976 4.6566 4.3165 4.7976

Kurtosis 64.2218 38.3029 42.8742 64.2218 38.3029 42.8742

Max 6.2472 6.7510 7.7187 22.9340 20.0133 21.5208

Min 0.0665 0.0367 0.0332 0.2440 0.1087 0.0927

LB(10) 1294.09 1095.32 751.79 1294.09 1095.32 751.79

Logarithm

Mean −0.9940 −0.8739 −0.8395 0.3065 0.2128 0.1859

Stdev 0.5937 0.7350 0.7643 0.5937 0.7350 0.7643

Skewness 0.0157 −0.0256 0.0250 0.0157 −0.0256 0.0250

Kurtosis 3.1601 3.2047 3.2493 3.1601 3.2047 3.2493

Max 1.8321 1.9097 2.0436 3.1326 2.9964 3.0690

Min −2.7111 −3.3061 −3.4043 −1.4106 −2.2194 −2.3789

LB(10) 4875.28 4044.76 3359.10 4875.28 4044.76 3359.10

R |R| R2 log |R| log R2

Mean −0.0147 0.9573 1.6242 −0.5046 −1.0091

Stdev 1.2744 0.8413 3.2096 1.1353 2.2707

Skewness −0.1084 1.7813 6.0007 −1.2009 −1.2009

Kurtosis 4.9005 8.2747 57.9221 5.6049 5.6049

Max 6.5993 6.5993 43.5513 1.8870 3.7739

Min −6.5736 0.0006 0.0000 −7.3682 −14.7364

LB(10) 20.42 189.96 100.81 73.45 73.45
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Table 2
Estimation results of SV model. The last two columns are p-value of Geweke’s
convergence diagnostic (CD) test and inefficiency factor, respectively.

Mean Stdev 95% interval CD Inef.

SV µ 0.2308 0.1387 [−0.0469, 0.4906] 0.77 1.1

φ 0.9749 0.0074 [0.9588, 0.9879] 0.78 64.9

τ2 0.0220 0.0053 [0.0132, 0.0338] 0.78 135.7

Table 3
Estimation results of SV-RV model using realized volatilities. The last two columns
are p-value of Geweke’s convergence diagnostic (CD) test and inefficiency factor,
respectively.

Mean Stdev 95% interval CD Inef.

SV-RV σ2 0.0777 0.0054 [0.0675, 0.0886] 0.80 28.2

(RV 1) µ −0.9179 0.0495 [−1.0157, −0.8247] 0.41 1.4

φ 0.8812 0.0148 [0.8515, 0.9093] 0.71 20.7

τ2 0.0713 0.0070 [0.0580, 0.0858] 0.84 39.8

SV-RV σ2 0.1335 0.0091 [0.1154, 0.1514] 0.28 19.5

(RV 5) µ −0.7770 0.00561 [−0.8862, −0.6663] 0.98 1.3

φ 0.8727 0.0154 [0.8413, 0.9018] 0.05 14.5

τ2 0.1092 0.0110 [0.0895, 0.1322] 0.02 29.2

SV-RV σ2 0.1930 0.0107 [0.1723, 0.2143] 0.17 12.6

(RV 10) µ −0.7130 0.0577 [−0.8268, −0.6000] 0.18 1.5

φ 0.8800 0.0155 [0.8481, 0.9093] 0.16 15.6

τ2 0.1032 0.0110 [0.0835, 0.1261] 0.11 26.0
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Table 4
Estimation results of SV-RVC model using realized volatilities. The last two columns
are p-value of Geweke’s convergence diagnostic (CD) test and inefficiency factor,
respectively.

Mean Stdev 95% interval CD Inef.

SV-RVC ξ −1.2344 0.0299 [−1.2905, −1.1780] 0.34 36.7

(RV 1) σ2 0.0940 0.0047 [0.0851, 0.1036] 0.24 27.8

µ 0.2283 0.0802 [0.0666, 0.3875] 0.45 4.6

φ 0.9534 0.0093 [0.9341, 0.9709] 0.05 31.0

τ2 0.0250 0.0038 [0.0179, 0.0327] 0.06 58.7

SV-RVC ξ −1.0707 0.0324 [−1.1341, −1.0057] 0.25 33.4

(RV 5) σ2 0.1467 0.0080 [0.1317, 0.1627] 0.27 20.5

µ 0.1899 0.0785 [0.0375, 0.3478] 0.11 6.7

φ 0.9294 0.0118 [0.9053, 0.9509] 0.22 20.7

τ2 0.0560 0.0078 [0.0418, 0.0717] 0.17 33.6

SV-RVC ξ −1.0437 0.0312 [−1.1062, −0.9816] 0.77 23.5

(RV 10) σ2 0.1877 0.0105 [0.1668, 0.2081] 0.06 46.0

µ 0.1957 0.0753 [0.0441, 0.3469] 0.55 4.7

φ 0.9208 0.0139 [0.8920, 0.9460] 0.03 51.3

τ2 0.0631 0.0100 [0.0460, 0.0858] 0.02 76.6
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Table 5
Estimation results of SV-SRV model using scaled realized volatilities. The last two
columns are p-value of Geweke’s convergence diagnostic (CD) test and inefficiency
factor, respectively.

Mean Stdev 95% interval CD Inef.

SV-SRV σ2 0.0948 0.0046 [0.0854, 0.1037] 0.31 20.0

(SRV 1) µ 0.2912 0.0741 [0.1425, 0.4337] 0.42 1.1

φ 0.9544 0.0093 [0.9347, 0.9713] 0.27 20.3

τ2 0.0243 0.0038 [0.0181, 0.0329] 0.24 40.5

SV-SRV σ2 0.1480 0.0076 [0.1336, 0.1633] 0.53 16.4

(SRV 5) µ 0.2048 0.0726 [0.0639, 0.3476] 0.81 1.9

φ 0.9312 0.0113 [0.9082, 0.9519] 0.36 16.9

τ2 0.0542 0.0070 [0.0403, 0.0686] 0.68 27.7

SV-SRV σ2 0.1869 0.0108 [0.1656, 0.2076] 0.24 34.6

(SRV 10) µ 0.1807 0.0693 [0.0408, 0.3186] 0.18 1.6

φ 0.9202 0.0139 [0.8908, 0.9447] 0.16 36.9

τ2 0.0636 0.0102 [0.0468, 0.0844] 0.20 56.2
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Table 6
Estimation results of SV-SRVC model using scaled realized volatilities. The last two
columns are p-value of Geweke’s convergence diagnostic (CD) test and inefficiency
factor, respectively.

Mean Stdev 95% interval CD Inef.

SV-SRVC ξ 0.0655 0.0296 [0.0076, 0.1226] 0.90 38.0

(SRV 1) σ2 0.0941 0.0045 [0.0851, 0.1029] 0.68 15.3

µ 0.2279 0.0799 [0.0682, 0.3843] 0.87 7.2

φ 0.9535 0.0090 [0.9344, 0.9703] 1.00 14.9

τ2 0.0249 0.0036 [0.0187, 0.0327] 0.65 34.1

SV-SRVC ξ 0.0156 0.0321 [−0.0472, 0.0793] 0.11 40.6

(SRV 5) σ2 0.1468 0.0080 [0.1319, 0.1628] 0.27 18.3

µ 0.1902 0.0787 [0.0359, 0.3468] 0.03 7.8

φ 0.9294 0.0118 [0.9055, 0.9510] 0.07 18.0

τ2 0.0560 0.0078 [0.0416, 0.0718] 0.08 29.0

SV-SRVC ξ −0.0214 0.0306 [−0.0811, 0.0395] 0.37 25.8

(SRV 10) σ2 0.1882 0.0105 [0.1672, 0.2089] 0.14 42.3

µ 0.1998 0.0761 [0.0504, 0.3506] 0.27 5.1

φ 0.9216 0.0140 [0.8931, 0.9482] 0.02 44.9

τ2 0.0622 0.0101 [0.0438, 0.0850] 0.03 70.0

25



Table 7
Log marginal likelihoods for SV-RV and SV-RVC models with different data set.
Standard errors are in parentheses.

Data Model Likelihood Prior Posterior Marginal

R + RV 1 SV-RV −5596.52 −6.21 14.31 −5617.04

(0.59) (0.03) (0.59)

SV-RVC −4478.83 3.06 15.08 −4490.85

(0.12) (0.03) (0.12)

R + RV 5 SV-RV −5784.59 −10.86 13.17 −5808.62

(0.52) (0.02) (0.52)

SV-RVC −5026.83 −4.66 13.57 −5045.07

(0.18) (0.02) (0.18)

R + RV 10 SV-RV −5953.46 −10.06 12.91 −5976.43

(0.41) (0.01) (0.41)

SV-RVC −5264.50 −6.00 13.20 −5283.70

(0.11) (0.04) (0.11)

R + SRV 1 SV-SRV −4481.40 5.43 15.21 −4491.19

(0.13) (0.01) (0.13)

SV-SRVC −4478.62 3.17 15.08 −4490.54

(0.12) (0.03) (0.12)

R + SRV 5 SV-SRV −5026.92 −2.18 13.73 −5042.83

(0.16) (0.03) (0.16)

SV-SRVC −5026.70 −4.60 13.55 −5044.86

(0.15) (0.02) (0.16)

R + SRV 10 SV-SRV −5264.80 −3.98 13.37 −5283.16

(0.14) (0.03) (0.14)

SV-SRVC −5264.44 −5.80 13.29 −5283.53

(0.16) (0.05) (0.17)

26



Fig. 1. Realized volatility calculated from 1-minute intraday returns (RV 1, top left),
scaled one (SRV 1, top right), and their logarithms (log RV 1, bottom left; log SRV 1,
bottom right) during the period from April 1, 1996 to March 31, 2005 (2216 trading
days).
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Fig. 2. Realized volatility calculated from 5-minute intraday returns (RV 5, top left),
scaled one (SRV 5, top right), and their logarithms (log RV 5, bottom left; log SRV 5,
bottom right) during the period from April 1, 1996 to March 31, 2005 (2216 trading
days).
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Fig. 3. Realized volatility calculated from 10-minute intraday returns (RV 10, top
left), scaled one (SRV 10, top right), and their logarithms (log RV 10, bottom left;
log SRV 10, bottom right) during the period from April 1, 1996 to March 31, 2005
(2216 trading days).
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Fig. 4. daily return (R, top left), its absolute value (|R|, top right), squared return
(R2, bottom left), and its logarithm (log R2, bottom right) during the period from
April 1, 1996 to March 31, 2005 (2216 trading days).
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