
 

 

 

 

 

 

C A R F  W o r k i n g  P a p e r 
 

 

 

 
CARF-F-110 

 
 

Detail-Free Mechanism Design 
in Twice Iterative Dominance: Large Economies 

 
 

Hitoshi Matsushima 
University of Tokyo 

 
 

September 2007 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CARF is presently supported by Bank of Tokyo-Mitsubishi UFJ, Ltd., Dai-ichi Mutual Life 
Insurance Company, Meiji Yasuda Life Insurance Company, Mizuho Financial Group, Inc., 
Nippon Life Insurance Company, Nomura Holdings, Inc. and Sumitomo Mitsui Banking 
Corporation (in alphabetical order). This financial support enables us to issue CARF Working 
Papers. 

 
 

 

 

 

 

 

 

 

CARF Working Papers can be downloaded without charge from: 
http://www.carf.e.u-tokyo.ac.jp/workingpaper/index.cgi 

 

 

 

 

Working Papers are a series of manuscripts in their draft form.  They are not intended for 
circulation or distribution except as indicated by the author.  For that reason Working Papers may 
not be reproduced or distributed without the written consent of the author. 



 1

 

Detail-Free Mechanism Design 

in Twice Iterative Dominance: Large Economies+ 

 

Hitoshi Matsushima* 

Faculty of Economics, University of Tokyo 

 

May 20, 2007 

(First Version: June 14, 2004) 

                                                 
+ The title of the first version was “Large Auction Design in Dominance” (CIRJE-F-282, University 

of Tokyo: http://www.e.u-tokyo.ac.jp/cirje/research/dp/2004/2004cf282.pdf). This research was 

supported by a Grant-in-Aid for Scientific Research (KAKENHI 15330036, 18330035) from the 

Japan society for the promotion of science (JSPS) and MEXT of the Japanese Government and a 

grant from the Center for Advanced Research in Finance (CARF) at the University of Tokyo. I am 

grateful to the anonymous referees for their helpful comments. All errors are mine. 

* Faculty of Economics, University of Tokyo, Hongo, Bunkyo-Ku, Tokyo 113, Japan. Fax: 

+81-3-5841-5521. E-mail: hitoshi@e.u-tokyo.ac.jp 



 2

Abstract 

 

This paper investigates unique implementation in large economies with incomplete 

information and interdependent values; we degenerate the common knowledge assumptions 

and assume that a central planner is unaware of the specifications of an environment. With 

a minor restriction on the class of environments, we demonstrate that there exists a 

detail-free mechanism that virtually implements competitive allocations with complete 

information in twice iterative dominance, irrespective of how the environment is specified. 

 

Keywords: Large Economies, Interdependent Values, Unique Implementation, Detail-Free 

Mechanisms, Twice Iterative Dominance. 

Journal of Economic Literature Classification Numbers: C70, D60, D78, D82 
 

 

1. Introduction 

 

 This paper investigates the unique implementation problem in economic environments 

with incomplete information and interdependent values, wherein a sufficiently large 

number of players exist with single-unit supplies and demands. Each player receives her 

respective private signals that are correlated with each other through some unobservable 

macro shock. Each player’s value for the commodity depends not only on her private signal 

but also on this macro shock, which implies interdependent values. The central planner 
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attempts to design a well-behaved mechanism in that, irrespective of the macro shock that 

occurs, every strategy profile that satisfies a defined equilibrium concept can induce a 

competitive allocation with complete information at least approximately and almost 

certainly. 

 The standard approach in the implementation literature with incomplete information 

has assumed that the central planner has complete knowledge of the specifications of the 

environments, such as the payoff and signal structures, and tailors a mechanism for the 

finer details of these specifications. See Jackson (1991), Palfrey (1992), Matsushima (1990, 

1993), Abreu and Matsushima (1992, 1994), and Maskin and Sjöström (2002). Equilibrium 

concepts such as the Nash equilibrium and iterative dominance have generally been used; 

these concepts rely on the strong rationality assumption that it is not only mutual 

knowledge but also common knowledge for the players to avoid playing dominated 

strategies. These assumptions are regarded as the drawbacks of the standard 

implementation problem and have been criticized from the practical and experimental 

viewpoints. In fact, many authors studying auction design from the practical standpoint 

have confined their attention to auction protocols that are detail-free, i.e., independent of 

the finer details of the specifications. See Krishna (2002), Milgrom (2004), and Klemperer 

(2004). Several experimental studies have reported that subjects in laboratory experiments 

like guessing games made a maximum of two or three iterative removals of dominated 

strategies. For instance, see Camerer (2003, Chapter 5). 

Based on the above viewpoints, this paper considers the situation in which the central 

planner is unaware of the specifications of the environment. From the practical viewpoint, 
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we consider the central planner who, instead of tailoring a mechanism based on the 

specifications, attempts to design a detail-free mechanism that implements the desired 

allocations irrespective of how the environment is specified.1 Further, based on the 

experimental viewpoint, we use the equilibrium concept of twice iterative dominance, 

which requires players to eliminate dominated strategies only two times iteratively. Twice 

iterative dominance is based solely on the weak rationality assumption that it is not 

common but mutual knowledge among the players that they do not play dominated 

strategies. The main theorem of this paper is permissive, which reveals that with a minor 

restriction on the class of possible environments, there exists a detail-free mechanism that 

can virtually implement competitive allocations with complete information in twice 

iterative dominance, irrespective of how the environment is specified. 

The constructed mechanism describes the following three-stage procedure. The central 

planner divides the players into a sufficient number of distinct groups, each of which 

includes an adequate number of sellers and buyers. The central planner then requires each 

player to announce three price bids as follows. In stage 1, each player announces the first 

bid. After the first bid announcement, she observes the first bid announcements in the 

preceding group. In stage 2, she announces the second bid. After the second bid 

announcement, she observes the first bid announcements in all groups other than her own. 

                                                 
1 The detail-free concept in this paper implies that the mechanisms are independent of the fine 

details of value functions, signal spaces, and probability functions. The mechanisms, however, 

depend on several model settings, such as the finiteness of the signal spaces, single unit demands 

and supplies, and the numbers of sellers and buyers. 
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Finally, in stage 3, she announces the third bid. 

In order to determine the allocation, the central planner randomly uses two rules: the 

random fixed price rule and the price-taking rule. With a positive but very low probability, 

the central planner uses the random fixed price rule, according to which she selects a 

trading price randomly and independent of the players’ announcements. The random fixed 

price rule incentivizes the players to announce their expected values honestly. In particular, 

their first bids completely reveal their private signals. Further, on account of the law of 

large numbers, their second and third bids can approximate their true values associated with 

the private signals and the unobservable macro shock. 

With a very high probability, the central planner uses the price-taking rule instead of 

the random fixed price rule. The central planner balances the transfers within each group. 

For each group, she calculates the market-clearing price that equalizes the supplies and 

demands associated with the second bids within that group. In order to conduct the transfers 

within each group, the central planner sets the trading price for this group such that it is 

equal to the market-clearing price for its preceding group and accords the priority to players 

whose third bids are greater than this price. Since the trading price for each group is 

determined independent of the announcements in this group, and the signals possessed by 

the other players in this group are relatively uninformative with respect to all the signals 

possessed by the players in the other groups, it follows that all players in this group are 

willing to adopt price-taking behaviors in the virtual sense for their third bid 

announcements. Hence, they have the incentive to almost honestly announce their 

conditional expected values that approximate their true values. 
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The standard analysis of competitive markets with interdependent values has assumed 

the form of a non-strategic price taker and investigated a rational expectation equilibrium; 

for instance, see Mas-Colell, Whinston, and Green (1995, Chapter 19). Each trader updates 

her belief based on the market price and the forecast function that maps private signal 

profiles to trading prices, and then maximizes the updated expected utility as a 

non-strategic price taker. In order to demonstrate a strategic foundation for a rational 

expectation equilibrium, Reny and Perry (2006) investigated the standard model of a large 

double auction and established the existence of a Bayesian Nash equilibrium that resembles 

the rational expectation equilibrium. Also, see McLean, Peck, and Postlewaite (2005). 

These studies have not considered the issue of uniqueness, which is the central theme of the 

implementation theory. Moreover, since the trading price for each player is determined 

independent of her price bids, we do not require any price grid device to restrict the 

players’ price manipulations as employed by Reny and Perry (2006). 

In the implementation literature, Matsushima (2006a) investigated the possibility that 

a detail-free mechanism implements social choice functions in general environments. 

Matsushima (2006a) assumed that each player has an intrinsic preference for honest 

reporting. This paper focuses on players who are motivated only by their material interests. 

Another paper by Matsushima (2006b) investigated implementation possibilities of 

efficient allocations on the assumption that players can conduct a maximum of three 

iterative removals of dominated strategies. Matsushima (2006b) used mechanisms that are 

not detail-free and therefore depend on the finer details of the specifications. 

Bergemann and Morris (2005a, 2005b) studied the robustness of mechanism design on 
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the assumption that the environment is not common knowledge among the players and the 

central planner. In contrast, the present paper permits the common knowledge assumption 

among the players with respect to the environment and focuses on the case in which the 

central planner is unaware of the environment specifications. 

The remainder of this paper is organized as follows. Section 2 presents definitions and 

notations. Section 3 demonstrates the main theorem. Section 4 presents a brief sketch of the 

proof of the main theorem. Section 5 presents the full proof. 

 

2. The Model 

 

Let n  and r  denote two positive integers. Let {1,..., } { 1,..., 2 }N nr nr nr= +∪  

denote the set of players, where the first nr  players are regarded as the sellers and the last 

nr  players are regarded as the buyers. We assume that both n  and r  are sufficiently 

large. Each seller possesses one unit of the commodity, and therefore, the total amount of 

the commodity equals nr . Let 2{0,1} nrA⊂  denote the set of alternatives, where 

2( ) {0,1} nr
i i Na a ∈≡ ∈  is included in A  if and only if i

i N
a nr

∈

=∑ , and 1ia =  ( 0ia = ) 

implies that player i  consumes one (zero) unit of the commodity. Let ( )A∆  denote the 

set of lotteries over alternatives. A mechanism is defined by ( , , , , )G n r M g x= , where 

i
i N

M M
∈

=∏ , iM  is the set of messages for player i N∈ , i im M∈ , ( )i i Nm m M∈= ∈ , 

)(: AMg ∆→ , ( )i i Nx x ∈= , :ix M R→ , and ( )ix m  implies the monetary transfer to 
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player i . We focus on mechanisms that are budget-balancing in ( ) 0i
i N

x m
∈

=∑  for all 

m M∈ . The central planner chooses any alternative a A∈  with probability 

( )( ) [0,1]g m a ∈ . 

Each player observes a private signal, iω . Let iΩ  denote the finite set of player 'i s  

private signals, where we assume that 1Ω=Ω i  for all i N∈ . Let ( )i i Nω ω ∈=  denote a 

private signal profile, and let ii N∈
Ω = × Ω  denote a set of private signal profiles. Let 

\{ }( )i j j N iω ω− ∈=  and 
\{ }i jj N i− ∈

Ω = × Ω . We assume that there exists a macro shock 0ω  that 

is unobservable to the players. Let 0Ω  denote the finite set of macro shocks. A 

combination of the private signal profile and the macro shock 0( , )ω ω  is randomly 

determined according to the probability function 0: (0,1]f Ω ×Ω→ . We assume 

conditional independence in that there exist 0 0: (0,1]f Ω →  and 1 0 1( | ) : (0,1]f ω⋅ Ω →  for 

each 00 Ω∈ω  such that 

0 0 0 1 0( , ) ( ) ( | )i
i N

f f fω ω ω ω ω
∈

= ∏ .2 

                                                 
2 Reny and Perry (2006) assumed the conditional independence in the same manner as in this paper, 

where each player’s private signal is determined according to the identical conditional distribution 

function. However, we can relax this assumption by permitting the sellers’ private signals and the 

buyers’ private signals to be determined according to the different conditional distribution functions. 

The paper by Fudenberg, Mobius, and Szeidl (2007) investigated large double auctions on this 
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The value function is defined by 0 1: (0,1]v Ω ×Ω → .3 Each player 'i s  value for one 

unit of the commodity depends on the macro shock 0 0ω ∈Ω  as well as her private signal 

i iω ∈Ω , and is given by 0( , ) (0,1]iv ω ω ∈ . We assume quasi-linearity and risk neutrality in 

that the player 'i s  utility is given by 0( , )i i ia v tω ω + , where it R∈  is the monetary 

transfer to player i . 

A combination 0 1 0 1( , , , , )e f f v≡ Ω Ω  defines an environment. We use E  to denote a 

set of environments that satisfies the following three assumptions, which are generically 

very weak restrictions. 

 

Assumption 1: For every 00 Ω∈ω  and every }{\ 000 ωω Ω∈′ , 

1 0 1 0( | ) ( | )f fω ω′⋅ ≠ ⋅ . 

 

 Assumption 1 implies that the different macro shocks correspond to the different 

probability distributions of the private signal. 

 

Assumption 2: For every 0 0ω ∈Ω  and every (0,1]v∈ , 

    
1 1 0 1

1 1 0
: ( , )

1( | )
2v v

f
ω ω ω

ω ω
∈Ω ≥

≠∑ . 

                                                                                                                                                     
relaxed conditional independence assumption; however, this paper focused only on the private value 

cases. 

3 The mapping into the interval [0,1]  simply implies that the payoffs are uniformly bounded. 
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 Since 0Ω  and 1Ω  are finite sets, it holds generically in the class of conditional 

distribution functions 1f  that for every 0 0ω ∈Ω , there exists no subset 1Γ ⊂ Ω  such that 

1

1 1 0
1( | )
2

f
ω

ω ω
∈Γ

=∑ , which automatically implies Assumption 2. 

Let 

0 0

0 0( ) ( , ) ( | )i i iv v f
ω

ω ω ω ω ω
∈Ω

≡ ∑ �  

denote the expected value conditional on the private signal i iω ∈Ω , where 

0 0

1 0 0 0
0

1 0 0 0

( | ) ( )( | )
( | ) ( )
i

i
i

f ff
f f

ω

ω ω ωω ω
ω ω ω

′∈Ω

≡
′ ′∑

�  

is the probability of the macro shock 0ω  occurring conditional on the private signal 

i iω ∈Ω . 

 

Assumption 3: For every 11 Ω∈ω  and every }{\ 111 ωω Ω∈′ , 

    1 1( ) ( )v vω ω′≠ . 

 

Since 1Ω  is a finite set, it holds generically in the class of environments that the 

different private signals correspond to the different expected values, which is exactly the 

same as what Assumption 3 implies. 

A strategy for player i N∈  is denoted by :i i is MΩ → . Let iS  denote the set of 
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strategies for player i . Let ii N
S S

∈
≡ × , ( )i i Ns s S∈= ∈ , and ( ) ( ( ))i i i Ns s Mω ω ∈= ∈ . The 

expected utility for player i  when the players play a strategy profile s S∈  is denoted by 

   
0 0

0 0
( , )

( ) { ( , ) ( ( ))( ) ( ( ))} ( , )i i i i
a A

u s a v g s a x s f
ω ω

ω ω ω ω ω ω
∈Ω ×Ω ∈

≡ +∑ ∑ . 

A strategy i is S∈  for player i  is said to be undominated in ( , )G e  if there exists no 

i is S′∈  such that 

    ( , ) ( )i i i iu s s u s−′ >  for all i is S− −∈ . 

Let 1
i iS S⊂  denote the set of undominated strategies for player i  in ( , )G e . A strategy 

i is S∈  for player i  is said to be twice iteratively undominated in ( , )G e  if 1
i is S∈  and 

there exists no 1
i is S′∈  such that 

    ( , ) ( )i i i iu s s u s−′ >  for all 1
i is S− −∈ . 

 For every environment e E∈  and every macro shock 0 0ω ∈Ω , we define 

*
0( , ) [0,1]p eω ∈  by 

    
*

1 1 0 1 0

1 1 0
: ( , ) ( , )

1( | )
2v p e

f
ω ω ω ω

ω ω
∈Ω <

<∑  and 
*

1 1 0 1 0

1 1 0
: ( , ) ( , )

1( | )
2v p e

f
ω ω ω ω

ω ω
∈Ω >

<∑ , 

where we used Assumption 2 to guarantee its existence.4 Since the total amount of the 

                                                 
4  Note from Assumption 2 that for each 0 0ω ∈Ω , there exists 1 1ω ∈Ω  such that 

*
0 1 0( , ) ( , )v p eω ω ω= . This ensures that with sufficient players, it is almost certain that the trading 

price is set equal to *
0( , )p eω  in the mechanisms constructed in this paper. With the exception of 

this point, Assumption 2 is not considerably relevant to the main theorem of this paper. 
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commodity nr  is merely half the number of the players 2nr , we can regard *
0( , )p eω  as 

the competitive price at the macro shock 0 0ω ∈Ω  in the environment e E∈  when the 

number of players is sufficiently large. Note that the proportion of the players who observe 

the private signal 1ω  is approximated by 1 1 0( | )f ω ω . Hence, the first inequality implies 

that less than a half of the players are willing to sell the commodity for the price *
0( , )p eω . 

The second inequality implies that less than a half of the players are willing to buy the 

commodity for *
0( , )p eω . The rest of the players are indifferent to buying the commodity 

for *
0( , )p eω . This implies that *

0( , )p eω  equalizes the demand and supply. 

 

3. The Theorem 

 

Fix an infinite sequence ( ) ( )
1( , )l l

ln r ∞
=  arbitrarily, where ( )ln  and ( )lr  are increasing 

with respect to l , and ( ) ( )lim( , ) ( , )l l

l
n r

→∞
= ∞ ∞ . An infinite sequence of mechanisms is 

denoted by ( )
1( )l

lG ∞
= , where ( ) ( , , , , )lG n r M g x=  and ( ) ( )( , ) ( , )l ln r n r=  for all 1l ≥ . 

 

The Theorem: There exists an infinite sequence of mechanisms ( )
1( )l

lG ∞
=  such that for 

every e E∈ , every 0ε > , and every sufficiently large 1l ≥ , any twice iteratively 

undominated strategy profile s S∈  in ( )( , )lG e  satisfies the following properties. Fix 

i N∈  and 0 0( , )i iω ω ∈Ω ×Ω  arbitrarily. 
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(i) Suppose *
0 0( , ) ( , )iv p eω ω ω> ; then, 

(1)    0( ( ))( ) ( | ) 1
i i

i i i
a A

a g s a f
ω

ω ω ω ε
− −

− −
∈Ω ∈

≥ −∑ ∑ , 

(2)    0
: ( ( ))

( | ) 1
i i i

i i
x s

f
ω ω ε

ω ω ε
− −

− −
∈Ω ≤

≥ −∑    if {1,..., }i nr∈ , 

and 

(3)    
*

0

0
: ( ( )) ( , )

( | ) 1
i i i

i i
x s p e

f
ω ω ω ε

ω ω ε
− −

− −
∈Ω + ≤

≥ −∑   if { 1,..., 2 }i nr nr∈ + . 

(ii) Suppose *
0 0( , ) ( , )iv p eω ω ω< ; then, 

(4)    0( ( ))( ) ( | )
i i

i i i
a A

a g s a f
ω

ω ω ω ε
− −

− −
∈Ω ∈

≤∑ ∑ , 

(5)    
*

0

0
: ( ( )) ( , )

( | ) 1
i i i

i i
x s p e

f
ω ω ω ε

ω ω ε
− −

− −
∈Ω − ≤

≥ −∑   if {1,..., }i nr∈ , 

and 

(6)    0
: ( ( ))

( | ) 1
i i i

i i
x s

f
ω ω ε

ω ω ε
− −

− −
∈Ω ≤

≥ −∑    if { 1,..., 2 }i nr nr∈ + , 

where 0 1 0
\{ }

( | ) ( | )i i j
j N i

f fω ω ω ω− −
∈

≡ ∏  denotes the probability of i iω− −∈Ω  occurring 

conditional on 0 0ω ∈Ω . 

  

The left-hand side of inequalities (1) and (4) represents the probability of player i  

consuming one unit of the commodity at the macro shock 0ω . Inequality (1) implies that 

any player i N∈  almost certainly consumes the commodity if *
0 0( , ) ( , )iv p eω ω ω> . 

Inequality (4) implies that any player i N∈  rarely consumes the commodity if 
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*
0 0( , ) ( , )iv p eω ω ω< . 

The left-hand side of inequalities (2) and (6) represents the probability that the 

monetary transfer to player i  is close to zero. Inequality (2) implies that it is almost 

certain that the monetary transfer to any seller {1,..., }i nr∈  is close to zero if 

*
0 0( , ) ( , )iv p eω ω ω> . Inequality (6) implies that it is almost certain that the monetary 

transfer to any buyer { 1,..., 2 }i nr nr∈ +  is close to zero if *
0 0( , ) ( , )iv p eω ω ω< . 

The left-hand side of inequality (3) represents the probability that the monetary 

transfer to player i  is close to *
0( , )p eω− . Inequality (3) implies that it is almost certain 

that the monetary transfer to any buyer { 1,..., 2 }i nr nr∈ +  is close to *
0( , )p eω−  if 

*
0 0( , ) ( , )iv p eω ω ω> . The left-hand side of inequality (5) represents the probability that the 

monetary transfer to player i  is close to *
0( , )p eω . Inequality (5) implies that it is almost 

certain that the monetary transfer to any seller {1,..., }i nr∈  is close to *
0( , )p eω  if 

*
0 0( , ) ( , )iv p eω ω ω< . 

Based on the above observations, the theorem states that when the number of players 

is sufficiently large, competitive allocations with complete information are virtually 

implementable in twice iterative dominance. Moreover, the theorem requires the used 

mechanisms to be detail-free, i.e., to be designed independent of the specifications of the 

environments. 

The proof of this theorem is constructive; an outline of the proof is provided in the 

following section. 
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4. Outline of the Proof 

  

The central planner divides the players into r  distinct groups. Each group 

},...,1{ r∈β  is defined as 

    ( ) {( 1) 1,..., } {( 1) 1,..., ( ) }N n n r n r n Nβ β β β β≡ − + + − + + ⊂∪ , 

which includes n  sellers and n  buyers.5 Let ( ) {1,..., }i rβ ∈  denote the index of the 

group that includes player i , i.e., ( )i iβ∈ . We consider the following three-stage 

procedure, according to which the central planner requires each player to announce price 

bids thrice. 

 

Stage 1: Each player i  announces the first bid ,1 [0,1]im ∈  and observes the first bid 

announcements ( ( ) 1),1 ,1 ( ( ) 1)( ) [0,1]n
N i j j N im mβ β− ∈ −≡ ∈  in the preceding group ( ) 1iβ − . 

 

Stage 2: Each player i  announces the second bid ,2 ( ( ) 1),1( ) [0,1]i N im m β − ∈ . After this 

                                                 
5 This paper assumes that the numbers of buyers and sellers are the same. The theorem, however, 

does not depend on this assumption. Suppose that the number of buyers is bn r  and that of sellers 

is sn r  and b sn n≠ . In this case, we can show the results of the theorem without any substantial 

change by defining r  distinct groups, each of which consists of bn  buyers and sn  sellers and 

replicates the whole market. 
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announcement, each player i  observes the first bid announcements 

( 1)
\ ( ( )),1 ,1 \ ( ( ))( ) [0,1]n r

N N i j j N N im mβ β
−

∈≡ ∈  in all groups other than group ( )iβ . 

 

Stage 3: Each player i  announces the third bid ,3 \ ( ( )),1( ) [0,1]i N N im m β ∈ . 

 

During this procedure, each player i N∈  cannot observe the first bid announcements 

of the other players in the same group ( )iβ  and the second bid announcements of all the 

other players. The central planner determines an allocation and monetary transfers 

according to the random fixed price rule and the price-taking rule as follows. The central 

planner generally employs the price-taking rule. The random fixed price rule is used only 

with a positive but very low probability. As shown later in this paper, the first bid 

announcements reveal the private signals truthfully; the second bid announcements are 

utilized to calculate the competitive price with complete information; and the third bid 

announcements are generally the basis for determining the allocation. 

 

Random Fixed Price Rule: The central planner randomly selects a trading price [0,1]p∈ . 

Consider the following six cases: 

,1im p< , ,1nr im p+ > , 

,2 ( ( ) 1),1( )i N im m pβ − < , ,2 ( ( ) 1),1( )nr i N im m pβ+ − > ,  

,3 \ ( ( )),1( )i N N im m pβ < , and ,3 \ ( ( )),1( )nr i N N im m pβ+ > . 

For each {0,...,6}k ∈ , each seller i  sells the commodity to buyer i nr+  for p  with a 
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probability of 6
k  if and only if any k  cases among these six cases occur at once. 

 

Price-Taking Rule: The central planner calculates the market-clearing price ( ) [0,1]p β ∈  

for each group {1,..., }rβ ∈ , which is defined as the nth  highest bid among the second 

bids announced in group β . Within each group β , the central planner sets the trading 

price for the group equal to the market-clearing price ( 1)p β −  of its preceding group 

1β − . Every seller in each group β  is compelled to sell the commodity to the central 

planner for ( 1)p β − . The central planner then sells these n  units back to the players in 

the same group β  whose third bids are greater than ( 1)p β − . If less than n  players in 

group β  make their third bids greater than ( 1)p β − , the central planner randomly selects 

and compels players to buy the unsold commodities. If more than n  players make their 

third bids greater than ( 1)p β − , the central planner randomly selects and sells the 

commodities to n  players among them. 

 

Note that the above procedure is detail-free, i.e., it does not depend on the finer details 

of the specifications. Fix an environment e E∈  arbitrarily. We show that each player’s 

first bid reveals her private signal truthfully. Note that each player’s first bid influences her 

payoff only through the random fixed price rule. Since the trading price p  is randomly 

determined, each player i  is willing to make the first bid ,1im  equal to the expected value 

( )i iv ω  conditional on her private signal iω  as being undominated. This, along with 
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Assumption 3, implies that each player’s first bid reveals her private signal truthfully. 

Next, we show that, almost certainly, each player 'i s  second bid approximates the 

true value 0( , )iv ω ω , and the market-clearing price ( )p β  for each group β  

approximates the competitive price *
0( , )p eω . Note that each player’s second bid 

influences her payoff only through the random fixed price rule. Before announcing the 

second bid, each player i  has complete knowledge of the private signals 

( ( ) 1) ( ( ) 1) 1( ) n
N i j j N iβ βω ω− ∈ −≡ ∈Ω  for the players in the preceding group ( ) 1iβ − . Since the 

trading price p  is randomly determined, it follows that each player i  is willing to make 

the second bid ,2 ( ( ) 1),1( )i N im m β −  equal to the expected value conditional on the private 

signals ( ( ) 1)N iβω −  for the members of the preceding group ( ) 1iβ −  and her private signal 

iω , i.e., 

    
0 0

( ( ) 1) 0 0 ( ( ) 1)( , ) ( , ) ( | , )i N i i i N iv v fβ β
ω

ω ω ω ω ω ω ω− −
∈Ω

≡ ∑ �  

as being twice iteratively undominated, where 

0 0

1 0 0 0
{ } ( ( ) 1)

0 ( ( ) 1)
1 0 0 0

{ } ( ( ) 1)

( | ) ( )
( | , )

( | ) ( )

j
j i N i

i N i
j

j i N i

f f
f

f f
β

β

ω β

ω ω ω
ω ω ω

ω ω ω
∈ −

−

′∈Ω ∈ −

≡
′ ′

∏

∑ ∏
∪

∪

�  

denotes the probability of 0ω  occurring conditional on ( ( ) 1)( , )i N iβω ω − . Since the size of 

each group 2n  is sufficiently large, it is almost certain from Assumption 1 that each 

player can almost correctly infer the true macro shock 0ω  from ( ( ) 1)N iβω − , and therefore, 

( ( ) 1)( , )i N iv βω ω −  can approximate 0( , )iv ω ω . Since the size 2n  of each group is 
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sufficiently large, it is almost certain that each group β  approximately replicates the 

whole, which, along with Assumption 2, implies that ( )p β  approximates *
0( , )p eω . 

 Finally, we show that each player 'i s  third bid almost certainly approximates the 

true value 0( , )iv ω ω , and the competitive allocations are approximately achieved. Before 

announcing the third bid, each player i  has full knowledge of the private signals 

( 1)
\ ( ( )) 1

n r
N N iβω −∈Ω  for all players out of group ( )iβ . Similarly, the random fixed price rule 

incentivizes each player i  to make the third bid ,3 \ ( ( )),1( )i N N im m β  equal to the expected 

value conditional on \ ( ( ))N N iβω , i.e., 

    
0 0

\ ( ( )) 0 0 \ ( ( ))( , ) ( , ) ( | , )i N N i i i N N iv v fβ β
ω

ω ω ω ω ω ω ω
∈Ω

≡ ∑ �  

as being twice iteratively undominated, where 

0 0

1 0 0 0
{ } \ ( ( ))

0 \ ( ( ))
1 0 0 0

{ } \ ( ( ))

( | ) ( )
( | , )

( | ) ( )

j
j i N N i

i N N i
j

j i N N i

f f
f

f f
β

β

ω β

ω ω ω
ω ω ω

ω ω ω
∈

′∈Ω ∈

≡
′ ′

∏

∑ ∏
∪

∪

�  

denotes the probability of 0ω  occurring conditional on \ ( ( ))( , )i N N iβω ω . Since the size of 

each group 2n  is sufficiently large, it follows from Assumption 1 that \ ( ( ))( , )i N N iv βω ω  

almost certainly approximates 0( , )iv ω ω . 

Since the price-taking rule as well as the random fixed price rule is relevant to the 

third bid announcement, the above argument is not sufficient for the incentive to reveal any 

approximate value of 0( , )iv ω ω  as the third bid announcement. However, we can 

demonstrate that the price-taking rule does not provide each player with the incentive to 
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deviate from revealing any approximate value of the true value 0( , )iv ω ω  as follows. Let 

0 0

\{ } 0 0( , ) ( , ) ( | )i N i iv v f
ω

ω ω ω ω ω ω
∈Ω

≡ ∑ �  

denote the expected value conditional on the private signals for all players, where 

0 0

1 0 0 0

0 \{ }
1 0 0 0

( | ) ( )
( | , )

( | ) ( )

j
j N

i N i
j

j N

f f
f

f f
ω

ω ω ω
ω ω ω

ω ω ω
∈

′∈Ω ∈

≡
′ ′

∏

∑ ∏
�  is the probability of 0ω  occurring conditional 

on \{ }( , )i N iω ω . Note that the trading price for each group β  is set such that it is equal to 

the market-clearing price ( 1)p β −  for its preceding group 1β − , which does not depend 

on the price bid announcements in group β . Hence, each player i  has the incentive to 

announce any value between 
( ( ))\{ }

\{ }min ( , )
N i i

i i N iv
βω

ω ω  and 
( ( ))\{ }

\{ }max ( , )
N i i

i i N iv
βω

ω ω  as the third bid. 

Since the number of distinct groups r  is sufficiently large, it follows that both 

( ( ))\{ }
\{ }min ( , )

N i i
i i N iv

βω
ω ω  and 

( ( ))\{ }
\{ }max ( , )

N i i
i i N iv

βω
ω ω  are close to \{ }( , )i N iv ω ω . In other words, 

\{ }( , )i N iv ω ω  does not depend to a large extent on ( ( ))\{ }N i iβω , and therefore, 

\ ( ( ))( , )i N N iv βω ω  certainly approximates \{ }( , )i N iv ω ω . This, along with the fact that the 

trading price for each group is independent of the price bid announcements in this group, 

implies that the price-taking rule does not provide player i  with the incentive to deviate 

from announcing any approximate value of 0( , )iv ω ω  as her third bid. Note that the third 

bid is not necessarily equal to \ ( ( ))( , )i N N iv βω ω ; however, it can be approximated by 

\ ( ( ))( , )i N N iv βω ω . Since the trading prices almost certainly approximate the competitive price 

*
0( , )p eω , we have shown that the competitive allocations with complete information are 
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almost certainly implemented in twice iterative dominance. We now present the full proof 

of the theorem in the following section. 

 

5. Full Proof of the Theorem 

 

We model the three-stage procedure in Section 4 as a mechanism 

( , , ) ( , , , , )n rG G n r M g xε= =  as follows. Let (0,1)ε ∈ , 

,1 ,2 ,3i i i iM M M M= × × , ,1 [0,1]iM = , 

,2iM  denote the set of continuous functions ,2 :[0,1] [0,1]n
im → , 

,3iM  denote the set of continuous functions ( 1)
,3 :[0,1] [0,1]r n

im − → , 

   ,1 ,1 ,2 ,2 ,3 ,3 3( ) (1 )
6

S B S B S Bg g g g g g g gε ε= + + + + + + − , and 

    ,1 ,1 ,2 ,2 ,3 ,3( )
6

S B S B S B
i i i i i i ix x x x x x xε
= + + + + + 3(1 ) ixε+ − . 

Here, 

    , : ( )D lg M A→∆  for all ( , ) { , } {1,2,3}D l S B∈ × , and 

3 : ( )g M A→∆ . 

    , :D l
ix M R→  for all ( , ) { , } {1,2,3}D l S B∈ × , and 

3 :ix M R→ . 

Each player i  simultaneously chooses a message ,1 ,2 ,3( , , )i i i im m m m= , where ,1 [0,1]im ∈  

corresponds to the first bid, the value ,2 ( ( ) 1),1( ) [0,1]i N im m β − ∈  of the function ,2im  
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corresponds to the second bid, and the value ,3 \ ( ( )),1( ) [0,1]i N N im m β ∈  of the function ,3im  

corresponds to the third bid. In the following two subsections, we specify 

, ,
( , ) { , } {1,2,3}( , ( ) )D l D l

i i N D l S Bg x ∈ ∈ ×  and 3 3( , ( ) )i i Ng x ∈ , which define the random fixed price rule 

and the price-taking rule, respectively. The central planner uses the random fixed price rule 

with probability ε  and the price-taking rule with probability 1 ε− . Hence, the central 

planner chooses any alternative a A∈  with the following probability: 

, 3

( , ) { , } {1,2,3}

( )( ) ( )( ) (1 ) ( )( )
6

D l

D l S B

g m a g m a g m aε ε
∈ ×

= + −∑ . 

The monetary transfers conducted by the central planner are set such that they are equal to 

the expected values of the monetary transfers induced by the three-stage procedure.6 

 

5.1. Random Fixed Price Rule 

 

For every ( , )m a M A∈ × , let 

,1 ,1

1

( )( ) ( )( , )
nr

S S
i i nr i

i

g m a g m a a +
=

=∏ , 

where 

                                                 
6 Here, we assume quasi-linearity and risk neutrality. Without these assumptions, we need to 

modify the construction of mechanisms by using lotteries over combinations of an alternative and 

transfers. It might be important to verify the robustness of our results in terms of a non-expected 

utility, which is beyond the purpose of the present paper. 
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    ,1
,1( )(1,0)S

i ig m m= , ,1
,1( )(0,1) 1S

i ig m m= − , 

,1( )(0,0) 0S
ig m = , and ,1( )(1,1) 0S

ig m = . 

With probability ,11 im− , seller 'i s  commodity is transferred to buyer nr i+ . Let 

,1

21
,1 ,11 ( )
( )

2
i

S i
i

m

m
x m pdp

−
≡ =∫  and ,1 ,1( ) ( )S S

nr i ix m x m+ ≡ − . 

The central planner randomly selects a price p  from the interval [0,1] , for which the 

commodity is transferred from seller i  to buyer nr i+  if and only if ,1im p< . Note that 

,1( )S
ix m  corresponds to the expected monetary transfer from buyer nr i+  to seller i . For 

every ( , )m a M A∈ × , let 

,1 ,1

1

( )( ) ( )( , )
nr

B B
i i nr i

i

g m a g m a a +
=

=∏ , 

where 

    ,1
,1( )(1,0) 1B

i nr ig m m += − , ,1
,1( )(0,1)B

i nr ig m m += , 

,1( )(0,0) 0B
ig m = , and ,1( )(1,1) 0B

ig m = . 

With probability ,1nr im + , seller 'i s  commodity is transferred to buyer nr i+ . Let 

,1 2
,1,1

0

( )
( )

2

nr im
nr iB

i

m
x m pdp

+

+≡ =∫  and ,1 ,1( ) ( )B B
nr i ix m x m+ ≡ − . 

The central planner randomly selects p  from [0,1] , for which the commodity is 

transferred from seller i  to buyer nr i+  if and only if ,1nr im p+ > . Note that ,1( )B
ix m  

corresponds to the expected monetary transfer from buyer nr i+  to seller i . 
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For every ( , )m a M A∈ × , let 

,2 ,2

1

( )( ) ( )( , )
nr

S S
i i nr i

i

g m a g m a a +
=

=∏ , 

where 

    ,2
,2 ( ( ) 1),1( )(1,0) ( )S

i i N ig m m m β −= , ,2
,2 ( ( ) 1),1( )(0,1) 1 ( )S

i i N ig m m m β −= − , 

    ,2 ( )(0,0) 0S
ig m = , and ,2 ( )(1,1) 0S

ig m = . 

With probability ,2 ( ( ) 1),11 ( )i N im m β −− , seller 'i s  commodity is transferred to buyer nr i+ . 

Let 

,2 ( ( ) 1),1

21
,2 ( ( ) 1),1,2

( )

1 ( )
( )

2
i N i

i N iS
i

m m

m m
x m pdp

β

β

−

−−
≡ =∫ , and 

,2 ,2( ) ( )S S
nr i ix m x m+ ≡ − . 

The central planner randomly selects p  from [0,1] , for which the commodity is 

transferred from seller i  to buyer nr i+  if and only if ,2 ( ( ) 1),1( )i N im m pβ − < . Note that 

,2 ( )S
ix m  corresponds to the expected monetary transfer from buyer nr i+  to seller i . For 

every ( , )m a M A∈ × , let 

,2 ,2

1

( )( ) ( )( , )
nr

B B
i i nr i

i

g m a g m a a +
=

=∏ , 

where 

    ,2
,2 ( ( ) 1),1( )(1,0) 1 ( )B

i nr i N ig m m m β+ −= − , ,2
,2 ( ( ) 1),1( )(0,1) ( )B

i nr i N ig m m m β+ −= , 

    ,2 ( )(0,0) 0B
ig m = , and ,2 ( )(1,1) 0B

ig m = . 

With probability ,2 ( ( ) 1),1( )nr i N im m β+ − , seller 'i s  commodity is transferred to buyer nr i+ . 
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Let 

,2 ( ( ) 1),1( ) 2
1,2 ( ( ) 1),1,2

0

( )
( )

2

nr i N im m
nr N iB

i

m m
x m pdp

β
β

+ −

+ −≡ =∫ , and 

,2 ,2( ) ( )B B
nr i ix m x m+ ≡ − . 

The central planner randomly selects p  from [0,1] , for which the commodity is 

transferred from seller i  to buyer nr i+  if and only if ,2 ( ( ) 1),1( )nr i N im m pβ+ − > . Note that 

,2 ( )B
ix m  corresponds to the expected monetary transfer from buyer nr i+  to seller i . 

For every ( , )m a M A∈ × , let 

,3 ,3

1

( )( ) ( )( , )
nr

S S
i i nr i

i

g m a g m a a +
=

=∏ , 

where 

    ,3
,3 \ ( ( )),1( )(1,0) ( )S

i i N N ig m m m β= , ,3
,3 \ ( ( )),1( )(0,1) 1 ( )S

i i N N ig m m m β= − , 

    ,3( )(0,0) 0S
ig m = , and ,3( )(1,1) 0S

ig m = . 

With probability ,3 \ ( ( )),11 ( )i N N im m β− , seller 'i s  commodity is transferred to buyer nr i+ . 

Let 

,3 \ ( ( )),1

21
,3 \ ( ( )),1,3

( )

1 ( )
( )

2
i N N i

i N N iS
i

m m

m m
x m pdp

β

β−
≡ =∫ , and 

,3 ,3( ) ( )S S
nr i ix m x m+ ≡ − . 

The central planner randomly selects p  from [0,1] , for which the commodity is 

transferred from seller i  to buyer nr i+  if and only if ,3 \ ( ( )),1( )i N N im m pβ < . Note that 
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,3( )S
ix m  is the expected payment from buyer nr i+  to seller i . For every ( , )m a M A∈ × , 

let 

,3 ,3

1

( )( ) ( )( , )
nr

B B
i i nr i

i

g m a g m a a +
=

=∏ , 

where 

    ,3
,3 \ ( ( )),1( )(1,0) 1 ( )B

i nr i N N ig m m m β+= − , ,3
,3 \ ( ( )),1( )(0,1) ( )B

i nr i N N ig m m m β+= , 

    ,3( )(0,0) 0B
ig m = , and ,3( )(1,1) 0B

ig m = . 

With probability ,3 \ ( ( )),1( )nr i N N im m β+ , seller 'i s  commodity is transferred to buyer nr i+ . 

Let 

,3 \ ( ( )),1( ) 2
1,3 \ ( ( )),1,3

0

( )
( )

2

nr i N N im m
nr N N iB

i

m m
x m pdp

β
β

+

+≡ =∫ , and 

,3 ,3( ) ( )B B
nr i ix m x m+ ≡ − . 

The central planner randomly selects p  from [0,1] , for which the commodity is 

transferred from seller i  to buyer nr i+  if and only if ,3 \ ( ( )),1( )nr i N N im m pβ+ > . Note that 

,3( )B
ix m  corresponds to the expected monetary transfer from buyer nr i+  to seller i . 

 

5.2. Price-Taking Rule 

 

Let ( ) ( )N ii N
A Aβ β∈

≡ ×  and ( ) ( ) ( )( )N i i N Na a Aβ β β∈= ∈ . For every ( , )m a M A∈ × , let 

3 3
( )

1

( )( ) ( )( )
r

Ng m a g m aβ β
β =

=∏ , 
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where 3
( ): ( )Ng M Aβ β→ ∆  will be specified later. For every ( , ) {1,..., }m r Mβ ∈ × , let 

( , ) :{1,...,2 } ( )m n Nµ β β→  denote the one-to-one mapping defined by 

( , )(1),2 ( 1),1 ( , )(2),2 ( 1),1 ( , )(2 ),2 ( 1),1( ) ( ) ( )m N m N m n Nm m m m m mµ β β µ β β µ β β− − −≥ ≥" , where for every 

{1,...,2 1}l n∈ − , if ( , )( ),2 ( 1),1 ( , )( 1),2 ( 1),1( ) ( )m l N m l Nm m m mµ β β µ β β− + −= , then 

( , )( ) ( , )( 1)m l m lµ β µ β< + . For every ( , ) {1,..., }m r Mβ ∈ × , let 

( , )( ),2 ( 1),1( ) ( , ) ( )m n Np p m m mµ β ββ β −= ≡  

denote the market-clearing price for group β  that is calculated on the basis of the second 

bids ,2 ( ( ) 1),1 ( )( ( ))i N i i Nm m β β− ∈ . Let ( , ) {1,...,2 }n p nβ ∈  denote the integer such that 

    ( , )( ( , )),3 \ ( ),1 ( , )( ( , ) 1),3 \ ( ),1( ) ( )m n p N N m n p N Nm m p m mµ β β β µ β β β+> ≥ , 

which represents the number of players in group β  whose third bids are greater than p . 

Let ( , ) {1,...,2 }n p nβ ∈�  denote the integer such that 

    ( , )( ( , )),3 \ ( ),1 ( , )( ( , ) 1),3 \ ( ),1( ) ( )m n p N N m n p N Nm m p m mµ β β β µ β β β+≥ > , 

which is the number of players in group β  whose third bids are greater than or equal to 

p . Clearly, ( , ) ( , )n p n pβ β≥ � . For each ( , ) {1,..., }m r Mβ ∈ × , we specify 3 ( )g mβ  as 

follows. Let ( 1, )p p mβ= − . 

 

Case 1: Suppose ( , )n p nβ ≥ . In this case, for every ( ) ( )N Na Aβ β∈ , 

3
( )( )( )Ng m aβ β =

!{ ( , ) }!
( , )!

n n p n
n p
β
β

−  

if ,3 \ ( ),1[ 1] [ ( ) ]i i N Na m m pβ= ⇒ >  for all ( )i N β∈ , 
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whereas 3
( )( )( ) 0Ng m aβ β =  otherwise. 

 

Case 2: Suppose ( , ) ( , )n p n n pβ β≥ >� . Then, for every ( ) ( )N Na Aβ β∈ , 

    3
( )( )( )Ng m aβ β =

( ( , ) )!{ ( , )}!
{ ( , ) ( , )}!

n p n n n p
n p n p

β β
β β
− −

−
�

�
 

if ,3 \ ( ),1[ 1] [ ( ) ( , )]i i N Na m m p mβ β= ⇒ ≥  and 

,3 \ ( ),1[ ( ) ] [ 1]i N N im m p aβ > ⇒ =  for all ( )i N β∈ , 

whereas 3
( )( )( ) 0Ng m aβ β =  otherwise. 

 

Case 3: Suppose ( , )n n pβ≥ � . Then, for every ( ) ( )N Na Aβ β∈ , 

    3
( )( )( )Ng m aβ β =

!{ ( , )}!
{2 ( , )}!
n n n p

n n p
β
β

−
−
�
�

 

if ,3 \ ( ),1[ ( ) ] [ 1]i N N im m p aβ ≥ ⇒ =  for all ( )i N β∈ , 

whereas 3
( )( )( ) 0Ng m aβ β =  otherwise. 

 

The central planner sets the trading price for each group β  such that it is equal to the 

market-clearing price ( 1)p β −  for its preceding group 1β − . Those players in each 

group β  whose bids are greater than ( 1)p β −  have a higher priority to consume the 

commodity than do the others. Players whose bids are equal to ( 1, )p mβ −  have a higher 

priority than those whose bids are less than ( 1)p β − . 
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One interpretation is as follows. Every seller in each group β  is compelled to sell the 

commodity to the central planner for ( 1)p β − . The central planner then sells these n  

units back to the players in the same group β  whose third bids are greater than ( 1)p β − . 

If the third bids of more than n  players are bids greater than ( 1)p β − , the central planner 

randomly selects from among these players and sells the commodities to them. This 

corresponds to Case 1. If less than n  players in group β  make their third bids greater 

than or equal to ( 1)p β − , the central planner randomly selects from among the rest of the 

players and compels the selected players to buy the unsold commodities. This corresponds 

to Case 3. If less than n  players make their third bids greater than ( 1)p β −  and more 

than n  players in group β  make their third bids greater than or equal to ( 1)p β − , the 

central planner sells the commodities to the players who make their third bids greater than 

( 1)p β − , and then randomly selects from among the players who equal their third bids to 

( 1)p β −  and compels them to buy the unsold commodities. This corresponds to Case 2. 

For every ( ) {1,..., }i N nrβ∈ ∩ , let 

( ) ( )

3 3
( )( ) {1 ( )( )} ( 1, )

N N

i i N
a A

x m a g m a p m
β β

β β β
∈

= − −∑ . 

For every ( ) { 1,...,2 }i N nr nrβ∈ +∩ , let 

( ) ( )

3 3
( )( ) ( )( ) ( 1, )

N N

i i N
a A

x m a g m a p m
β β

β β β
∈

= − −∑ . 

Any buyer ( )i N β∈  who consumes the commodity must pay ( 1)p β − . Any seller 

( )i N β∈  who does not consume the commodity can receive ( 1)p β − . Hence, we have 



 30

completed the construction of the mechanism ( , , ) ( , , , , )n rG G n r M g xε= = . 

Let ( )
1( )l

lε ∞
=  denote an infinite sequence in which ( ) 1(0, )6

lε ∈ , ( )lε  decreases with 

respect to l , and ( )lim 0l

l
ε

→∞
= . For each 1,2,...,l =  let 

( ) ( ) ( )( ) ( , , )l l ll n rG G ε≡ . In the following 

subsections, we will demonstrate that ( )
1( )l

lG ∞
=  satisfies the properties of the theorem. 

 

5.3. Twice Iterative Dominance 

 

All the functions relevant to player 'i s  utility are ,D l
ig  and ,D l

ix  for all 

( , ) { , } {1,2}D l S B∈ × , 3
( )igβ , and 3

( )ixβ . Suppose that player i  is a seller, i.e., {1,..., }i nr∈ . 

Then, among these functions, only ,1S
ig  and ,1S

ix  depend on player 'i s  first bid ,1im  

and only on this bid. According to the specifications of ,1S
ig  and ,1S

ix , player i  will 

choose ,1im  to maximize 
2
,1

,1

1
( )

2
i

i i

m
m v ω

−
+ , i.e., ,1 ( )i im v ω= . Suppose that player i  is a 

buyer, i.e., { 1,..., 2 }i nr nr∈ + . Then, among these functions, only ,1B
ig  and ,1B

ix  depend 

on player 'i s  first bid ,1im  and only on this bid. According to the specifications of ,1B
ig  

and ,1B
ix , player i  will choose ,1im  to maximize 

2
,1

,1 ( )
2
i

i i

m
m v ω − , i.e., ,1 ( )i im v ω= . 

Hence, we have proved that for every i N∈ , if is  is undominated, then it must hold that 

,1( ) ( )i i is vω ω=  for all i iω ∈Ω . From Assumption 3, if all players play undominated 

strategies, then each player’s first bid truthfully reveals her private signal. Assuming that all 
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players play undominated strategies, their first bids truthfully reveal their private signals. 

Suppose that player i  is a seller. Then, among the functions ,D l
ig  and ,D l

ix  for all 

( , ) { , } {1, 2}D l S B∈ × , 3
( )igβ , and 3

( )ixβ , only ,2S
ig  and ,2S

ix  depend on player 'i s  second 

bid ,2 ( ( ) 1),1( )i N im m β −  and only on this bid. The specifications of ,2S
ig  and ,2S

ix , along with 

the truthful revelation via ( ( ) 1),1N im β − , imply that player i  will choose ,2 ( ( ) 1),1( )i N im m β −  to 

maximize 
2

( ( ) 1),1
,2 ( ( ) 1),1 ( ( ) 1)

1
( ) ( , )

2
N i

i N i i N i

m
m m v β

β βω ω −
− −

−
+ , i.e., 

,2 ( ( ) 1),1 ( ( ) 1)( ) ( , )i N i i N im m vβ βω ω− −= . Suppose that player i  is a buyer. Then, among these 

functions, only ,2B
ig  and ,2B

ix  depend on player 'i s  second bid ,2 ( ( ) 1),1( )i N im m β −  and 

only on this bid. The specifications of ,2B
ig  and ,2B

ix , along with the truthful revelation 

via ( ( ) 1),1N im β − , imply that player i  will choose ,2 ( ( ) 1),1( )i N im m β −  to maximize 

2
( ( ) 1),1

,2 ( ( ) 1),1 ( ( ) 1)( ) ( , )
2

N i
i N i i N i

m
m m v β

β βω ω −
− − − , i.e., ,2 ( ( ) 1),1 ( ( ) 1)( ) ( , )i N i i N im m vβ βω ω− −= . Hence, 

for every i N∈ , if is  is twice iteratively undominated, then 

    ,2 ( ( ) 1),1 ( ( ) 1)( )( ) ( , )i i N i i N is m vβ βω ω ω− −=  for all i iω ∈Ω  

if ,1 ( )j jm v ω=  for all ( ( ) 1)j N iβ∈ − . 

Suppose that player i  is a seller. Then, among the functions ,D l
ig  and ,D l

ix  for all 

( , ) { , } {1, 2}D l S B∈ × , 3
( )igβ , and 3

( )ixβ , only ,3S
ig , 3g , ,3S

ix , and 3
ix  depend on player 

'i s  third bid ,3 \ ( ( )),1( )i N N im m β . Moreover, ,3S
ig  and ,3S

ix  depend only on this bid. The 

specifications of ,3S
ig  and ,3S

ix , along with the truthful revelation via \ ( ( )),1N N im β , imply 
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that the expected utility for player i  induced by ,3S
ig  and ,3S

ix  is 

2
\ ( ( )),1

,3 \ ( ( )),1 \ ( ( ))

1
( ) ( , )

2
N N i

i N N i i N N i

m
m m v β

β βω ω
−

+ , 

which is concave with respect to ,3 \ ( ( )),1( )i N N im m β  and is maximized by 

,3 \ ( ( )),1 \ ( ( ))( ) ( , )i N N i i N N im m vβ βω ω= . 

Suppose that player i  is a buyer. Then, among these functions, only ,3B
ig , 3g , ,3B

ix , 

and 3
ix  depend on ,3 \ ( ( )),1( )i N N im m β . Moreover, ,3B

ig  and ,3B
ix  depend only on 

,3 \ ( ( )),1( )i N N im m β . According to the specifications of ,3B
ig  and ,3B

ix , along with the truthful 

revelation via the first bids \ ( ( )),1N N im β  by all the other groups, it follows that the expected 

utility for player i  induced by ,3B
ig  and ,3B

ix  is 

    
2

\ ( ( )),1
,3 \ ( ( )),1 \ ( ( ))( ) ( , )

2
N N i

i N N i i N N i

m
m m v β

β βω ω − , 

which is concave with respect to ,3 \ ( ( )),1( )i N N im m β  and is maximized by 

,3 \ ( ( )),1 \ ( ( ))( ) ( , )i N N i i N N im m vβ βω ω= . 

Fix i N∈  arbitrarily, and consider the expected utility for player i  induced by 3g  

and 3
ix . Let ( ( ) 1, )p p i mβ= − . From the specifications of 3g  and 3

ix , for each ω∈Ω , 

there exist v  and v�  such that  

   3 3( ) ( ) ( )i ig m v x m vω − =  for all ,3 \ ( ( ) 1),1( )i N N im m pβ − > , 

   3 3( ) ( ) ( )i ig m v x m vω − = �  for all ,3 \ ( ( ) 1),1( )i N N im m pβ − < , 

   3 3min[ , ] ( ) ( ) ( ) max[ , ]i iv v g m v x m v vω≤ − ≤� �  for ,3 \ ( ( ) 1),1( )i N N im m pβ − = , 
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    v v> �    if ( )iv pω > , 

and 

    v v< �    if ( )iv pω < . 

From the above observations, it is clear that if all players play undominated strategies, then 

    
( ( ))\{ } ( ( ))\{ }

\{ } ,3 \ ( ( )),1 \{ }min ( , ) ( ) max ( , )
N i i N i i

i i N i i N N i i i N iv m m v
β β

βω ω
ω ω ω ω≤ ≤  

       whenever ,1 ( )j jm v ω=  for all \ ( ( ))j N N iβ∈ . 

Hence, we have proved that if all players play any twice iteratively undominated strategy 

profile s S∈ , then, for every i N∈ , 

,1( ) ( )i i is vω ω=  for all i iω ∈Ω , 

,2 ( ( ) 1),1 ( ( ) 1)( )( ) ( , )i i N i i N is m vβ βω ω ω− −=  for all i iω ∈Ω  

if ,1 ( )j jm v ω=  for all ( ( ) 1)j N iβ∈ − , 

and 

( ( ))\{ } ( ( ))\{ }
\{ } ,3 \ ( ( )),1 \{ }min ( , ) ( ) max ( , )

N i i N i i
i i N i i N N i i i N iv m m v

β β
βω ω

ω ω ω ω≤ ≤  

if ,1 ( )j jm v ω=  for all \ ( ( ))j N N iβ∈ . 

 

5.4. Competitive Allocations 

 

Since the size 2n  of each group is sufficiently large, it is almost certain from the law 

of large numbers and Assumptions 1 and 3 that ,2 ( ( ) 1),1 ( ( ) 1)( ) ( , )i N i i N im m vβ βω ω− −=  



 34

approximates 0( , )i iv ω ω , and from Assumption 2 that ( , )p mβ  approximates 0( , )p eω . 

Since the number r  of distinct groups is sufficiently large, it is almost certain that both 

( ( ))\{ }
\{ }min ( , )

N i i
i i N iv

βω
ω ω  and 

( ( ))\{ }
\{ }max ( , )

N i i
i i N iv

βω
ω ω  approximate 0( , )i iv ω ω , and therefore, 

,3 \ ( ( )),1( )i N N im m β  approximates 0( , )i iv ω ω . From the specifications of ( )
1( )l

lG ∞
= , for 

sufficiently large l , the price-taking rule 3 3( , )g x  almost certainly determines the 

allocation, which implies that the probability of each player i  receiving one unit is close 

to 1 (close to zero) if *
0 0( , ) ( , )i iv p eω ω ω>  (if *

0 0( , ) ( , )i iv p eω ω ω< ). The monetary 

transfer to seller i  approximates *
0( . )p eω  (zero) if *

0 0( , ) ( , )i iv p eω ω ω<  

( *
0 0( , ) ( , )i iv p eω ω ω> ). Moreover, the monetary transfer to buyer i  approximates 

*
0( , )p eω−  (zero) if *

0 0( , ) ( , )i iv p eω ω ω>  ( *
0 0( , ) ( , )i iv p eω ω ω< ). Thus, we have 

presented the full proof. 
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