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A New Scheme for Static Hedging of European

Derivatives under Stochastic Volatility Models ∗

Akihiko Takahashi and Akira Yamazaki

June 9 2008

Abstract

This paper proposes a new scheme for static hedging of European
path-independent derivatives under stochastic volatility models.

First, we show that pricing European path-independent derivatives
under stochastic volatility models is transformed to pricing those under
one-factor local volatility models.

Next, applying an efficient static replication method for one-dimensional
price processes developed by Takahashi and Yamazaki[2007], we present
a static hedging scheme for European path-independent derivatives.

Finally, a numerical example comparing our method with a dynamic
hedging method under the Heston[1993]’s stochastic volatility model is
used to demonstrate that our hedging scheme is effective in practice.

Keywords: Static Hedging, Stochastic Volatility, Markovian Projec-
tion, Plain Vanilla Option, Heston Model

∗Forthcoming in Journal of Futures Markets.
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1 Introduction

This paper develops a new scheme for the static hedging of European path-

independent derivatives under stochastic volatility models. When the dynamics

of the underlying asset price is described by a multi-dimensional process, a one-

dimensional price process that has the same distribution as the original one

can be obtained by using the result proved by Gyöngy[1986](theorem 4.6 in his

paper). Piterbarg[2006] called this result Markovian projection in the context of

financial mathematics, and noted that Dupire[1994], Derman and Kani[1998],

and Savine[2001] derived essentially the same result in finance. In particular,

Savine[2001] applied Tanaka’s formula for the derivation.

Preceding literatures such as Avellaneda, Boyer-Olson, Busca and Friz[2002],

Henry-Labordere[2005], Antonov and Misirpashaev[2006], Piterbarg [2006], and

Madan, Qian and Ren[2007] used the Gyöngy’s theorem mainly for pricing

and calibration in some complicated multi-factor models. Due to his theorem,

certain approximation formulas of European derivative prices and/or the Black-

Scholes equivalent volatilities can be obtained under the models for which it is

difficult to derive exact closed-form formulas.

Unlike these literatures, we propose a new application of Gyöngy’s theorem

in finance, that is a static hedging strategy under stochastic volatility models.

Specifically, based on his theorem pricing European path-independent deriva-

tives under stochastic volatility models is transformed to pricing those under

one-factor local volatility models. Thus, we can apply an efficient method for

one-dimensional price processes developed by Takahashi and Yamazaki[2007] to

forming a static hedging portfolio for a European derivative: compared with a

standard static replication approach, their method of gamma-weighted portfo-

lio of options is more efficient, that is, a more precise hedge is derived from a

smaller number of options.

In particular, if the drift and diffusion terms of the one-dimensional price

processes are obtained analytically, it is easy to implement this scheme. For

instance, when the option price is analytically or semi-analytically obtained,

the scheme is implemented through the relation between the option price and

its volatility function developed by Dupire[1994]. As an example, we derive the

2



local volatility model that corresponds to the Heston[1993]’s model.

To demonstrate how our scheme works, this paper uses a standard plain

vanilla option under the Heston[1993]’s model in a numerical example. It should

also be noted that this method can be applied to other European derivatives

such as cash digital, asset digital and power options. Finally, simulation ex-

ercises comparing our scheme with a dynamic hedging method, specifically the

minimum-variance hedging method(see Bakshi,Cao and Chen[1997] for example)

are used to demonstrate that our hedging scheme is effective in practice.

For over a decade, static hedging techniques have been developed and in-

vestigated extensively for barrier type options. See, for example, Derman, Er-

gener and Kani[1995], Carr, Ellis and Gupta[1998], Carr and Picron[1999] and

Fink[2003]. Carr and Chou[1997] shows the representation of any twice differ-

entiable payoff functions, that is the basis for theorem 2 in this paper as well

as for proposition 1 of Takahashi and Yamazaki[2007]. Their paper then devel-

ops the so called strike-spreads method for static hedging of barrier under the

Black-Scholes model.

More recently, Carr and Lee[2008] extends put-call symmetry(PCS) and ap-

plies it to constructing semi-static replications for barrier-type claims under

general asset dynamics. For other works related with static hedging of barrier

options, see their paper and references therein.

On the other hand, Carr and Wu[2002] concentrates on an efficient replica-

tion of a plain vanilla option though their approach implies the possibility of

further extensions and applications. It also applies the Gauss-Hermite quadra-

ture rule to approximate static hedging of the option by plain vanilla options

with shorter terms under the Black-Scholes and Merton[1976] jump-diffusion

models. Moreover, their paper undertakes extensive simulation exercises to in-

vestigate the robustness of the method. In a certain sense, this paper extends

the methodologies developed by Carr and Wu[2002], Carr and Chou[1997] and

Carr and Madan[1998, 1999] to stochastic volatility models.

The remainder of the paper is organized as follows. The next section presents

our proposed method for static hedging, and also provides a key result for the

Heston[1993]’s stochastic volatility model in our framework. Section 3 shows a

numerical example and concluding remarks are presented in Section 4.
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2 New scheme for static hedging of European

path-independent derivatives

This section presents a new scheme for static hedging of European options.

Specifically, under stochastic volatility models, we develop a methodology to

hedge European path-independent derivatives and their portfolios based on a

static portfolio of shorter term plain vanilla options. Static portfolio implies that

the weights in the portfolio remain unchanged when the prices of underlying

assets move and options in the portfolio approach maturity. This static hedging

scheme is not entirely perfect, but provides much better performance than a

dynamic hedging method. Robustness of our scheme will be shown in section 3.

Under the assumptions of a frictionless and no-arbitrage market, let St de-

note the spot price of a stock, an underlying asset at time t ∈ [0, T ∗] where T ∗

is some arbitrarily fixed time horizon. For sake of simplicity, the interest rate

r and the dividend yield q are assumed to be constants. The no-arbitrage con-

dition ensures the existence of a risk-neutral probability measure Q such that

the instantaneous expected rate of return on every asset is equal to the instan-

taneous interest rate r. Furthermore, the risk-neutral process of the underlying

asset price is assumed to be an Itô process under a filtered probability space

(Ω,F , {Ft}t∈[0,T∗], Q). In addition, the analysis in this paper concentrates on

static hedging of European path-independent options where the final payoff of

the option is solely determined by the stock price at maturity. Typical examples

in this class include plain vanilla, cash digital, asset digital and power options.

2.1 General case

Suppose that the underlying asset price S under the risk-neutral measure Q is

evolved by a stochastic volatility model. In particular, (S, V ) is a R2
++-valued

process and it is the unique solution of a stochastic differential equation given

(S0, V0) ∈ R2
++:

dSt = cStdt +
√

VtStσ̄1dWt (1)

dVt = µ(ω, t)dt + σ2(ω, t)σ̄2dWt,
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where c := r − q is a constant and W = (W1,W2) is a 2-dimensional Brownian

motion. Here µ and σ2 are R-valued {Ft}-progressively measurable processes

that guarantee the unique solution to the stochastic differential equation. Also,

σ̄i(i = 1, 2) are defined by σ̄1 = (1, 0) and σ̄2 = (ρ,
√

1 − ρ2)(|ρ| ≤ 1) respec-

tively.

Our subsequent analysis relies on the next result due to Gyöngy [1986].

Theorem 1 (Gyöngy [1986];theorem 4.6)

ξ is a Rn-valued process and it is the unique solution of a stochastic differ-

ential equation:

ξt = x0 +
∫ t

0

β(ω, u)du +
∫ t

0

δ(ω, u)dWu

where x0 ∈ Rn, β and δ are bounded measurable Fu-adapted Rn-valued and

Rn×n-valued processes respectively, and W is a n-dimensional Brownian mo-

tion.

We put a condition: ∑
i,j

αi,jzizj ≥ p|z|2

for every (ω, t) ∈ Ω× [0,∞) and z ∈ Rn where α := δδ⊤ and p is a fixed positive

constant. Here, x⊤ denotes the transpose of x.

Under the condition, the stochastic differential equation:

Xt = x0 +
∫ t

0

b(Xu, u)du +
∫ t

0

σ(Xu, u)dWu

admits a weak solution X̄t which has the same one-dimensional distribution as

ξt, where b : Rn × [0,∞) → Rn and σ : Rn × [0,∞) → Rn×n are respectively

bounded measurable functions such that

b(x, t) := E[β(t)|ξt = x]

σ(x, t) := E[δ(t)δ(t)⊤|ξt = x]
1
2 .

That is, the distribution of ξt and X̄t are the same for every t ≥ 0.
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For pricing a European path-independent derivative, only the distribution

at maturity of the underlying asset price does matter. Hence, due to Gyöngy’s

above theorem, pricing a European path-independent derivative under the stochas-

tic volatility model (1) is transformed to pricing it under a local volatility model

if S is regarded as ξ in his theorem. This result is stated as the following propo-

sition:

Proposition 1 Suppose that fT (S) is the payoff at maturity T of a European

path-independent derivative whose randomness depends solely on the underlying

price at maturity, ST . Suppose also that the time-0 price function v0(y, z) of

the derivative under the stochastic volatility model (1) with S0 = y and V0 = z.

then, v0(y, z) is given by:

v0(y, z) = e−rT E[fT (Ŝ)],

where E[·] denotes the expectation operator under the risk-neutral probability

measure Q, and Ŝ follows a local volatility model:

dŜt = cŜtdt + σ(Ŝt, t)dW1t; Ŝ0 = y. (2)

Here, σ(x, t) is defined by:

σ(x, t) := E[Vt|St = x]
1
2 . (3)

Also, in stead of getting the local volatility σ(x, t) by evaluating the right hand

side of (3), we can sometimes obtain it easier through the following Dupire

[1994]’s result:

Proposition 2 (Dupire [1994]) Suppose that the underlying spot price Ŝ is

evolved by a local volatility model (2). Let C(t, x) := C(y; t, x) represent the

time-0 price of a plain vanilla call option with spot price Ŝ0 = y, strike x and

maturity t. Then, the local volatility σ(x, t) is given by:

σ2(x, t) = 2
qC(t, x) + cx ∂

∂xC(t, x) + ∂
∂tC(t, x)

x2 ∂2

∂x2 C(t, x)
. (4)
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Note that the option prices and its derivatives appearing in the right hand side

of (4) is equivalent to those under the stochastic volatility model (1). Hence,

if the option prices and the derivatives under the stochastic volatility model

is obtained analytically or semi-analytically, then the local volatility is easy to

calculate. We will see this case using the Heston[1993]’s model in the next

subsection.

Of course, when pricing derivatives under the stochastic volatility model is

possible analytically, the transformation to a local volatility model does not

have any advantage in terms of valuation. However, in terms of hedging, it

does have advantage because the reduction of a two-factor model to a one-

factor model allows us the direct application of proposition 1 in Takahashi and

Yamazaki[2007]. The following theorem is our main result.

Theorem 2 Suppose that fT (S) is the payoff at maturity T of a European path-

independent derivative and that its underlying asset price is evolved by the model

(1). Also let τ ∈ [0, T ] and suppose that the time-τ price function v̂τ (Ŝ) of the

European derivative under model (2) is twice differentiable for all Ŝ ≥ 0, that

is, both the delta and gamma of the derivative exist at time τ . Here, the process

Ŝ is the solution to the stochastic differential equation of (2). Then, it holds

that for any κ > 0,

v0(y, z) = e−rτ v̂τ (κ) + e−rτ ∂v̂τ

∂Ŝ
|Ŝ=κ {F (τ) − κ}

+
∫ κ

0

∂2v̂τ

∂Ŝ2
|Ŝ=x P (τ, x)dx +

∫ +∞

κ

∂2v̂τ

∂Ŝ2
|Ŝ=x C(τ, x)dx,

(5)

where F (τ) denotes the time-0 price of the forward contract with maturity τ ,

and P (τ, x) and C(τ, x) represent the time-0 prices of plain vanilla put and call

options with spot price y, strike x and maturity τ respectively.

The implication of this theorem is that the risk embedded in a target European

derivative can be hedged using a static portfolio of liquid plain vanilla options

with a maturity that is shorter than the maturity of the target derivative. The

equation (5) implies that the static portfolio consists of the following securities

with maturities τ ; ∂2v̂τ

∂Ŝ2 |Ŝ=x dx units of a call with strike x for each x > κ and

∂2v̂τ

∂Ŝ2 |Ŝ=x dx units of a put with strike x for each x < κ as well as ∂v̂τ

∂Ŝ
|Ŝ=κ
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units of a forward contract with delivery price κ and v̂τ (κ) units of a zero coupon

bond with face value 1. Here static portfolio indicates that once the hedging

portfolio is created, re-balancing is unnecessary until the maturity date of the

options in the portfolio.

Finally, theorem 1 in Takahashi and Yamazaki[2007] provides a practically

efficient scheme based on the Gauss-Legendre quadrature rule for approximating

the theoretical hedging portfolio given by the right hand side of (5). We will

show the validity of our scheme in the next section through a numerical example.

Remark 1 The equation (5) indicates that the value of the target derivative is

replicated exactly by the hedging portfolio at time-0. However, after time-0 to the

end of the hedging period the value may not be replicated for all the realization

of (St, Vt) for t ∈ (0, τ ]; more precisely, if the realization of Vt given St deviates

from E[Vt|St], the target derivative is not hedged perfectly. Therefore, we need

to examine the performance of our hedging scheme in further detail. In fact,

simulation exercises in the next section show that our static scheme provides

much better performance than a dynamic hedging method.

Remark 2 When the hedging target is a plain vanilla call option under non-

stochastic volatility environment, our theorem 2 is reduced to theorem 1 in Carr

and Wu [2002].

2.2 Example: Heston Model

This subsection derives the formula for the volatility function σ(x, t) under the

Heston[1993]’s model used for a numerical example in the next section. The

stochastic volatility model (1) becomes the following in this case:

dSt = cStdt +
√

VtStσ̄1dWt; S0 = y (6)

dVt = ξ(η − Vt)dt + θ
√

Vtσ̄2dWt; V0 = z,

where ξ, η and θ are positive constants such that ξη ≥ θ2/2. Also, σ̄i(i = 1, 2)

are defined by σ̄1 = (1, 0) and σ̄2 = (ρ,
√

1 − ρ2)(|ρ| ≤ 1) respectively, and W is

a 2-dimensional Brownian motion. We next present expressions for the call price

and its derivatives in the right hand side of (4) based on a slight modification
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of Carr and Madan[1999]’s Fourier transform method.

Carr and Madan [1999] introduces a fast Fourier transform method for op-

tion pricing. This paper proposes to compute the time value of the option after

subtracting an intrinsic value from the option price in order to avoid the oscil-

lation of the integrand in the Fourier inversion. As a result, the option price

can be obtained as the time value derived by the Fourier inversion plus the

intrinsic value. On the other hand, to compute the partial derivatives of a call

option with respect to strike K, we propose to subtract the Black-Scholes price

with appropriate volatility from the option price instead of subtracting the in-

trinsic value. This choice is made because the intrinsic value of a call option

is not differentiable. See also p.363 of Cont and Tankov[2003]. (Note that the

Black-Scholes call price is twice differentiable with respect to strike K.)

In the Heston model, let Xt := ln {St/S0} − ct and then ϕXt(u), the char-

acteristic function of Xt is obtained by:

ϕXt(u) = exp{A(u, t)}B(u, t),

where

A(u, t) :=
ξηt(ξ − iρθu)

θ2
− (u2 + iu)V0

γ coth(γt/2) + ξ − iρθu

B(u, t) :=
{

cosh(γt/2) +
ξ − iρθu

γ
sinh(γt/2)

}−2ξη/θ2

γ :=
√

θ2(u2 + iu) + (ξ − iρθu)2, i =
√
−1.

For the case of the Black-Scholes model (i.e. Sbs
t = S0e

ct− 1
2 σ2t+σW1t), note that

ϕXbs
t

(u), the characteristic function of Xbs
t := ln {Sbs

t /S0} − ct is expressed as

ϕXbs
t

(u) = exp{−σ2t(u2+iu)/2}. Then, we have the following proposition. The

proof is easy and is omitted.1

Proposition 3 Under the Heston[1993]’s stochastic volatility model (6), let

C(t, x) the call price at time 0 with strike x and maturity t. Then, C(t, x),

1The proof and more detailed expressions are given for the interested readers upon request.

9



∂C(t,x)
∂x , ∂2C(t,x)

∂x2 and ∂C(t,x)
∂t in (4) are given as follows:

C(t, x) =
S0e

−αk

2π

∫ ∞

−∞
e−iukζt(u)du + Cbs(t, x) (7)

∂C(t, x)
∂x

=
−e−(α+1)k

2π

∫ ∞

−∞
(α + iu)e−iukζt(u)du +

∂Cbs(t, x)
∂x

∂2C(t, x)
∂x2

=
e−(α+2)k

2πS0

∫ ∞

−∞
(α + iu)(α + iu + 1)e−iukζt(u)du

+
∂2Cbs(t, x)

∂x2

∂C(t, x)
∂t

=
S0e

−αk

2π

∫ ∞

−∞
e−iuk ∂ζt(u)

∂t
du +

∂Cbs(t, x)
∂t

where α > 0, k := ln {x/S0}, Cbs(t, x) denotes Black-Scholes call price at time

0 with strike x and maturity t, and

ζt(u) :=
exp {[c(iu + α + 1) − r]t}

(iu + α)(iu + α + 1)
{ϕXt

(u − iα − i) − ϕXbs
t

(u − iα − i)}.

3 Numerical examples

This section shows the validity of our scheme through numerical examples under

the Heston[1993]’s model. The examples are two types of simulation test, which

are Monte Carlo simulation and historical simulation.

Note first that the market is incomplete under the stochastic volatility model

and that the perfect hedge is not possible by dynamic trading of the underly-

ing asset. Specifically, we implement hedging simulations comparing the per-

formance of our scheme with that of the minimum-variance hedging method, a

standard method of dynamic hedging in an incomplete market. In the minimum-

variance hedging method, the units of the underlying asset to be held at each

time t are computed as follows:2

∂Ct

∂St
+

ρθ

St

∂Ct

∂Vt
, (8)

where Ct denotes the time-t price of a target call option , and ρ and θ are param-

eters in (6). Here we observe that volatility risk is partially hedged through the

2For example, see Bakshi,Cao and Chen[1997] for the detail and for a practical application
of the minimum-variance hedging method.
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correlation between the underlying asset’s price and its instantaneous variance.

Moreover, based on the equation (8), we re-balance the dynamic portfolio once

a day in our simulations.

Let us describe briefly the procedure for implementation of our static hedg-

ing scheme. First, we transform the Heston model (6) into a local volatility

model (2) by applying (7). Next, in order to obtain a static hedging portfolio

in theorem 1 of Takahashi and Yamazaki[2007] that is a practical method for

implementing theorem 2 in this paper, we need approximations of the price,

the delta and gammas of the target option in theorem 2, in other words v̂τ (κ),

∂v̂τ

∂Ŝ
|Ŝ=x and ∂2v̂τ

∂Ŝ2 |Ŝ=x in (5) respectively. Solving the relevant partial differen-

tial equation(PDE) numerically by the Crank-Nicholson method provides those

approximations.

3.1 Monte Carlo simulation test

In Monte Carlo simulations, we consider two cases: the first case(Case 1) is that

the Heston parameters are the same under a risk-neutral measure and under the

physical measure except a mean reverting rate η, while the second case(Case 2)

is that volatility on the variance θ under the risk-neutral measure is higher than

the one under the physical measure. Under the physical measure, we assume

that S has a drift coefficient of 0.06. These parameters are taken form Carr and

Lee[2007]. The initial conditions of our simulations and the Heston parameters

for the first and second cases are listed in tables 1 and 2 respectively. For both

cases, the hedging period is set to be τ = 0.5 while the maturity of the target

option is T = 1.0.

Table 3 shows approximations of the target option’s price by the values of

options’ portfolios used for static hedging; the target option’s true price is given

by direct application of Heston[1993]’s formula. Also these static portfolio com-

positions are reported in table 4. Clearly, the more the number of options, the

better is the approximation. A portfolio of more than eight options gives rather

good approximation; the absolute values of the error and the error ratio are

less than 0.002 and 0.03% respectively for the portfolio of eight options(call=4,

put=4 in the table).
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Next, tables 5 and 6 provide basic statistics of Monte Carlo simulation results

for Case 1 and Case 2 respectively. Moreover, figure 1 shows the histograms of

hedging errors. The statistics and the histograms are based on 10,000 simulated

paths. All the statistics and figures shows that our static hedging scheme out-

performs the dynamic hedging based on the minimum-variance hedging method.

In particular, for Case 2, that is when the volatility on the variance under

the physical measure differs from the one under the risk-neutral measure, our

scheme gives more robust result than the dynamic hedging in a sense that its

hedging performance is less affected by the parameter’s change than the dy-

namic hedging’s performance. Because this situation is common in practice,

the result indicates that our static hedging scheme seems useful.

3.2 Historical simulation test

This subsection shows the historical performance of our static hedging scheme in

USD/EUR currency option market. The data on USD/EUR currency options

are obtained from British Bankers Association’s homepage. They are daily

time-series data of plain vanilla options on USD/EUR spot exchange rate from

August 2001 to January 2008.

In currency option markets, option prices are provided as Black-Scholes im-

plied volatilities and the moneyness of an option is expressed in terms of Black-

Scholes delta, rather than its strike price(See Carr and Wu[2005] for the detail).

Using the daily data of 25-delta call, 25-delta put and ATM with 3-month

and 1-year maturities and re-calibrating the Heston model every business day,

we compare the performance of the static hedging with that of the minimum-

variance hedging. The target option is plain vanilla call with maturity T = 1.0

and ATM strike at hedging starting date. The maturity of options on a static

hedging portfolio is set to be τ = 0.5 and τ = 0.25 for investigation of option

maturity effects in our static hedging scheme. Table 7 shows the static portfolio

compositions on 2001/08/29 as an example. To set each period of the hedg-

ing performance measurement to be one month(21 business days), we obtain

78 non-overlapping hedging experiments on the data from August 2001 to Jan-

uary 2008. Hedging errors in each hedging experiment are normalized by the

12



target option price at the starting date of each month for comparison of the

performance among 78 experiments.

Table 8 provides basic statistics of historical simulation results and figure 2

shows the histograms of hedging errors in the case of τ = 0.5 and τ = 0.25. All

the statistics and figures shows that our static hedging scheme outperforms the

dynamic hedging based on the minimum-variance hedging method as in Monte

Carlo simulation tests of the previous subsections. Even the static hedging with

τ = 0.25, which shows worse performance than the static hedging with τ = 0.5,

gives much more robust result than the dynamic hedging. According to the

historical simulation results, our static hedging scheme seems very effective in

practice.

4 Concluding remarks

This paper presents a new scheme for the static hedging of European path-

independent derivatives under stochastic volatility models. The scheme can be

applied to European path-independent derivatives including digital-type options

for which dynamic hedging is sometimes difficult to implement and is therefore

not very effective in practice. Also, our efficient method can be extended to more

general class of the underlying models with certain approximation methods.

Moreover, a numerical example in the Heston[1993]’s stochastic volatility model

confirms the validity of our scheme through comparison with a dynamic hedging

method. Finally, our next research topic will be to establish an effective and

efficient scheme for the static hedging of more general multi-factor derivatives,

such as cross-currency derivatives with stochastic interest rates and stochastic

volatilities.
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Table 1: Initial condition (Case 1 & Case 2)
target option S0 T r q K τ

call 100 1.0 0.0 0.0 100 0.5

Table 2: Heston parameters (Case 1 & Case 2)
parameter V0 ξ η θ ρ
risk-neutral 0.202 1.15 0.202 0.39 −0.64
physical (Case 1) 0.202 1.15 0.182 0.39 −0.64
physical (Case 2) 0.202 1.15 0.182 0.15 −0.64

Table 3: Pricing (Case 1 & Case 2)
target option static portfolio

call=2, put=2 call=4, put=4 call=8, put=8
price 7.240 7.202 7.238 7.240
error - −0.038 −0.002 0.001
error ratio (%) - −0.522 −0.026 0.007
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Table 5: Monte Carlo simulation result (Case 1)
hedge error dynamic hedge static hedge

call=2, put=2 call=4, put=4 call=8, put=8
mean −0.152 −0.045 −0.104 −0.100
standard deviation 1.939 1.203 1.165 1.161
percentile 1% −5.555 −3.941 −3.661 −3.666
percentile 5% −3.699 −2.448 −2.252 −2.230
percentile 10% −2.795 −1.694 −1.585 −1.579

Table 6: Monte Carlo simulation result (Case 2)
hedge error dynamic hedge static hedge

call=2, put=2 call=4, put=4 call=8, put=8
mean −0.521 −0.203 −0.253 −0.252
standard deviation 1.180 0.706 0.715 0.703
percentile 1% −3.166 −2.082 −1.956 −1.903
percentile 5% −2.414 −1.504 −1.431 −1.397
percentile 10% −2.069 −1.198 −1.163 −1.136
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