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Abstract 

 

We analyze the stock market by modeling it as a timing game among arbitrageurs 

for beating the gun. We assume that (1) arbitrageurs are behavioral with a small 

probability, (2) the bubble soft-lands, and (3) the postcrash price increases as the X-day 

is postponed. Due to these assumptions, the effect of reputation assumes importance 

because any rational arbitrageur is willing to build a reputation in order to ride the 

bubble. It is demonstrated that the bubble persists for a long period as an outcome of a 

unique symmetric Nash equilibrium, even if all arbitrageurs are almost certainly 

rational. 

 

Keywords: Bubbles and Crashes, Timing Games, Soft-Landing, Behavioral Finance, 

Reputation, Self-Control. 
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1. Introduction 

 

This paper demonstrates the theoretical foundation underlying the willingness of 

rational arbitrageurs to develop reputations to ride the bubble in the stock market, 

instead of competing with each other to beat the gun at the earliest. We modeled the 

stock market as a timing game among arbitrageurs. Our model is inspired by Abreu and 

Brunnermeier (2003); however, it does not require their key assumptions such as 

sequential awareness and coordinated attacks.3 Instead, we assume that arbitrageurs are 

behavioral with a small probability, in that they are subject to momentum trading just 

like amateur behavioral traders. We also assume that the bubble soft-lands after it 

crashes, and that the postcrash price increases as the X-Day is postponed. Based on 

these assumptions, we can apply the basic concept of the reputation theory explored by 

Kreps, Milgrom, Roberts, and Wilson (1982) in the finitely repeated prisoners’ 

dilemma4 to the stock market. According to the effect of the arbitrageurs’ reputation, 

the bubble can persist for a long period, even if arbitrageurs are almost certainly 

rational. 

                                                 

3 See also Abreu and Brunnermeier (2002) and Brunnermeier and Morgan (2006). 
4 For general surveys on the reputation theory, see Fudenberg and Tirole (1991, Chapter 9) and 
Mailath and Samuelson (2006, Part IV). 
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The efficient market hypothesis asserts that by reflecting all relevant information, 

the stock price is always adjusted to its fundamental value (for instance, see Fama (1970, 

1991)). However, even though it is a cornerstone of modern financial theory, the 

efficient market hypothesis is highly controversial. There are considerable empirical 

evidences that contradict this hypothesis: the stock price sometimes increases beyond 

the fundamental value, and continues to increase until it goes into a free fall. In other 

words, the bubble sometimes develops, persists, and then suddenly crashes. Advocates 

of behavioral finance, such as Shleifer (2000) and Shiller (2000), argued that the bubble 

is driven by behavioral traders; they incorrectly believe that the stock price will increase 

at a high growth rate in perpetuity. The efficient market hypothesis, on the other hand, 

claims that rational arbitrageurs quickly undo this mispricing; their selling pressure 

dampens the enthusiasm of these traders, immediately bursting the bubble. 

In contrast to this ideal of rational arbitrageurs, actual professional arbitrageurs, 

who are mostly considered to be rational, generally do not think that the best strategy is 

to undo mispricing quickly. Instead, they would like to ride the bubble and sell out just 

prior to the X-Day on which they anticipate the bubble to crash. On the basis of 

historical facts and experiences, several authors such as Kindleberger (1978) and Soros 

(1994) emphasized the notion of self-feeding bubbles. In their view, speculative price 
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movements involve multiple professional arbitrageurs who continuously drive the stock 

price up and then sell out at the top to the behavioral traders, who, in turn, sell out at the 

bottom. 

However, we disagree with this view because arbitrageurs may compete with each 

other to beat the gun at the earliest; this phenomenon, along with the backward 

induction method, prevents a bubble from persisting. Hence, in order for the notion of 

self-feeding bubbles to be convincing, we need to demonstrate a theoretical foundation 

based on which each rational arbitrageur is willing to terminate this chain reaction of 

competition and develop a reputation in order to ride the bubble for a long period. 

Based on these arguments, the present paper models the stock market as a timing 

game among arbitrageurs. The stock market operates during the continuous time 

interval 0[0, ]τ , and each arbitrageur selects a timing at or before the terminal time 

0 0τ >  to exit the market by selling her/his share. As long as no arbitrageur has sold, 

the bubble continues to be driven by the behavioral traders. Once any arbitrageur sells, 

the bubble crashes and the stock price decreases drastically. Any arbitrageur who fails 

to keep up with this crash cannot enjoy the benefit of bubbles as well as the winner can. 

We assume that every arbitrageur is not necessarily rational; there is a small 

probability that she/he is behavioral like the behavioral traders, and never bursts the 
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bubble of her/his own accord. Moreover, we assume that the bubble soft-lands after it 

crashes, i.e., the stock price does not immediately decline to its fundamental value. 

Hence, even a rational arbitrageur who fails to keep up with this crash can sell at the 

postcrash price that is still greater than the fundamental value. We also assume that the 

postcrash price increases exponentially as the X-Day is postponed. 

Based on these assumptions, we observe that the reputation of the arbitrageur 

facilitates the persistence of bubbles. On witnessing the persistence of a bubble, each 

rational arbitrageur is increasingly convinced that the other arbitrageurs are behavioral, 

which incentivizes her/him to further postpone timing the market. With a minor 

restriction on timing games, it is shown that there exists a unique symmetric mixed 

strategy Nash equilibrium. This equilibrium describes a pattern of bubbles and crashes 

where a particular point of time referred to as the hazard time exists such that: 

(i) the bubble never crashes until the hazard time, and 

(ii) the bubble crashes at a constant hazard rate after the hazard time. 

Given that the terminal time 0τ  is sufficiently late, we can make the probability of 

each arbitrageur being behavioral close to zero. It is important to note that any rational 

arbitrageur expects to earn hardly any profit by exploiting behavioral arbitrageurs; 

instead, she/he expects to make a considerable profit from the increase in the postcrash 
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price by postponing the X-Day. 

The present paper is closely related to Abreu and Brunnermeier (2003), who also 

modeled the stock market as a timing game, and were the first to present a theoretical 

ground which explained that the resilience of the bubble stems from the inability of 

arbitrageurs to coordinate their selling strategies. Abreu and Brunnermeier assumed 

sequential awareness and coordinated attacks, i.e., the arbitrageurs become sequentially 

aware that the bubble has developed, and selling pressure bursts the bubble only when a 

sufficient number of arbitrageurs have sold out. The present paper does not require these 

assumptions; instead, we assume that (1) each arbitrageur is not necessarily rational, (2) 

the bubble soft-lands, and (3) the delay of the X-Day increases the postcrash price. 

Using these assumptions along with mixed strategies, we can show an alternative 

ground with regard to the inability of arbitrageurs to coordinate their selling strategies. 

In Abreu and Brunnermeier (2003), the endogenous determination of the X-Day is 

not greatly influenced by the delay of the terminal time 0τ , at which the bubble 

inevitably crashes for exogenous reasons. In contrast, in the model proposed by the 

present paper, the determination of the X-Day is sensitive to the delay of the terminal 

time 0τ  in a substantial manner. This delay strengthens the effect of reputation, which 

can prompt the bubble to persist much longer. 
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Keynes (1936, Chapter 12) likened the competition among professional 

arbitrageurs to a beauty contest, in which people guess which faces others will find to 

be the most beautiful. Experimental economists such as Nagel (1995) designed a simple 

beauty contest game that captures the basic concept of reasoning that Keynes had in 

mind. They reported that subjects in laboratories are mostly irrational in terms of 

reasoning ability; they tend to enforce only two or three rounds of iteration in order to 

eliminate dominated strategies.5 The experimental economists explained that the bubble 

can persist, since arbitrageurs are almost certainly irrational. 

The main body of the present paper, however, assumes that arbitrageurs are almost 

certainly rational; there is only a very small probability of each arbitrageur being 

irrational—not in terms of reasoning ability but of behavioral bias. A huge volume of 

empirical and experimental researches in behavioral finance reported that amateur 

traders are tend to be greatly influenced by behavioral cultures that lead them to engage 

in momentum trading.6 Even professional arbitrageurs are not immune to the effect of 

these cultures; as Shiller (2000) has explained, there may be no clear distinction 

between professionals and amateurs, because the professionals advise the amateurs. 

                                                 

5 See Camerer (2003, Chapters 1 and 5) for experimental researches on beauty contest games. 
6 See Barberis and Thaler (2003) for a general survey of behavioral finance. See also DeLong, 
Shleifer, Summers, and Waldmann (1990a, 1990b). 
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 In the final section, like Strotz (1955) and Rabin (1998), we shall replace the 

reputation theory with the self-control problem in the following manner. We assume 

that each arbitrageur is quasi-rational, in that at the early stage of the timing game, 

she/he does not know whether she/he will become behavioral in the future. Hence, any 

quasi-rational arbitrageur may control her/himself by advancing the timing to exit the 

market out of the fear that she/he becomes behavioral and fails to sell out before the 

stock price reaches bottom. We, however, show that as long as the terminal time 0τ  is 

sufficiently late, any quasi-rational arbitrageur will be willing to take this risk. The 

persistence of bubbles is robust to the self-control exercised by arbitrageurs, because we 

can make the probability of each arbitrageur becoming behavioral close to zero. 

 The rest of the paper is organized as follows. Section 2 defines timing games. 

Section 3 indicates a necessary and sufficient condition under which the quick crash of 

bubbles at the initial time can be supported by a symmetric Nash equilibrium. Section 4 

presents a specification of symmetric Nash equilibria, according to which the bubble 

persists for a while. Section 5 focuses on the case when the terminal time is sufficiently 

late, and illustrates that the bubble can persist for a long period even if every arbitrageur 

is almost certainly rational. Section 6 characterizes the set of symmetric Nash equilibria 

and considers the uniqueness issue. Section 7 is devoted to the self-control problem. 
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2. The Model 

 

This paper considers the trade in a company’s shares on a stock market during the 

time interval 0[0, ]τ . The fundamental value of this company’s shares is considered to 

be [0,1)y∈  at the initial time 0, and it grows exponentially at the market interest rate 

[0, )δ ∈ ∞ . Further, we assume that no dividends are paid. There exist 2n ≥  

arbitrageurs, each of whom decides the timing to exit the stock market by selling out 

her/his stockholding, which is normalized to a single share. At the initial time 0, they 

recognize that the bubble has occurred at or before this time. This bubble persists as 

long as no arbitrageur sells her/his stockholding. 

 Figure 1 illustrates the process that leads to bubbles and crashes. If no arbitrageur 

sells before time 0[0, ]τ τ∈ , the stock price per share grows at a rate higher than the 

interest rate. It is considered to be the precrash price eρτ , where ρ δ>  is referred to 

as the growth rate of bubbles. The precrash price at the initial time 0 is normalized to 1. 

If there exists any arbitrageur who sells at time τ , we regard this time as the X-Day. 

This selling pressure bursts the bubble at the moment immediately after X-Day τ , and 

the stock price declines to the postcrash price eρτλ . We assume that 1y λ< < , i.e., the 

postcrash price eρτλ  is less than precrash price eρτ  but greater than the fundamental 
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value yeδτ  at time τ . This arbitrageur can sell at the precrash price eρτ , and the 

bubble crashes just after she/he has completed selling out her/his stockholding. If no 

arbitrageur has sold during the time interval 0[0, ]τ , the bubble inevitably crashes at the 

moment immediately after the terminal time 0τ  for exogenous reasons.7 

 

[Figure 1] 

 

Against the abovementioned background, we implicitly assume the presence of 

behavioral traders who have psychological biases that lead them to engage in 

momentum trading. They incorrectly believe that the stock price will grow at the growth 

rate ρ δ>  in perpetuity, and attempt to maintain the stock price at the precrash price. 

The moment any arbitrageur sells her/his share, the resulting selling pressure 

immediately dampens their enthusiasm and leads to the crash of the bubble. Even if no 

arbitrageur has sold out, their enthusiasm is automatically dampened for exogenous 

reasons at the moment immediately after the terminal time 0τ . 

The selling pressure does not instantaneously cause a drastic dampening in the 

enthusiasm of behavioral arbitrageurs, since e yeρτ δτλ >  for all 0[0, ]τ τ∈ . Hence, the 

                                                 

7 We assume that each arbitrageur’s position is restricted to be either 0 or +1. 
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stock price soft-lands, i.e., it does not immediately decline to the fundamental value 

yeδτ . Let us refer to the soft-landing index as λ . The postcrash price increases at the 

same rate that the precrash price does, namely, ρ . 

We arbitrarily set (0,1)ε ∈  and (0,1)r∈ . By regarding the n  arbitrageurs as 

players, we define a timing game 0( , , , , , , )G n rτ δ ρ λ ε=  as follows. A strategy for 

each arbitrageur {1,..., }i n∈  is defined as a cumulative distribution 0:[0, ] [0,1]iq τ →  

that is nondecreasing, right continuous, and satisfies 0( ) 1iq τ = .8 Let iQ  denote the set 

of strategies for arbitrageur i . 

We assume that each arbitrageur {1,..., }i n∈  is not necessarily rational. She/he is 

either rational or behavioral in the following manner. With the probability 1 ε− , 

arbitrageur i  is rational; further, according to strategy iq , she/he plans to sell at or 

before each time 0[0, ]ia τ∈  with the probability 0( ) [0, ]i iq a τ∈ . With regard to the 

remaining probability ε , arbitrageur i  is behavioral like the behavioral traders; she/he 

does not follow strategy iq  and never bursts the bubble of her/his own accord. 

Whether or not each arbitrageur is behavioral is independently determined. Each 

arbitrageur does not know if the other arbitrageurs are rational. 

                                                 

8  We will consider i iq a=  to be a pure strategy if ( ) 0iq τ =  for all [0, )iaτ ∈ , and 
( ) 1iq τ =  for all 0[ , ]iaτ τ∈ . 
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Assuming that arbitrageur i  is rational, if arbitrageur 'i s  time choice ia  is 

earlier than that of any other rational arbitrageur, she/he sells just at her/his planned 

time ia  and earns the present value of the precrash price ( ) iae ρ δ−  as the winner’s gain. 

If there exists any other arbitrageur j i≠  who is rational and whose time choice ja  is 

the earliest (and earlier than ia ), arbitrageur i  loses. She/he earns the present value of 

the postcrash price ( ) jae ρ δλ −  as the loser’s gain by selling out at the next moment. If 

arbitrageur 'i s  time choice is the earliest but there exists another arbitrageur whose 

time choice is the same as that of arbitrageur i , arbitrageur i  wins only with the 

probability (0,1)r∈ . 9  In this case, her/his expected earning is given by 

( ){ (1 ) } iar r e ρ δλ −+ − . 

Let 1 nQ Q Q= ×⋅ ⋅ ⋅× . Let 1( ,..., )nq q q Q= ∈  denote a strategy profile. We define 

the payoff function :iu Q R→  for each arbitrageur {1,..., }i n∈  as follows. We 

arbitrarily set 0( ) [0, ]n
j j Na a τ∈= ∈  and assume that any rational arbitrageur 

{1,..., }i n∈  selects ia . We then arbitrarily set any subset {1,..., }H n⊂ . We assume 

that any arbitrageur in subset H  could be behavioral, while any arbitrageur in its 

complementary set {1,..., } \n H  could be rational. Then, any rational arbitrageur 

                                                 

9 At the expense of complexity, we could allow r  to be dependent on the number of 
arbitrageurs whose time choices are the earliest. This dependence is irrelevant to this paper 
since tie-breaking hardly occurs, except at the initial time 0. 
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{1,..., } \i n H∈  can obtain the payoff ( , )iv H a R∈  as follows: 

  ( )( , ) ia
iv H a e ρ δ−=   if i ja a<  for all { }j H i∉ ∪ , 

  ( )( , ) { (1 ) } ia
iv H a r r e ρ δλ −= + −  if i ja a≤  for all { }j H i∉ ∪ , and 

j ia a=  for some { }j H i∉ ∪ . 

For every { }j H i∉ ∪ , 

  ( )( , ) ja
iv H a e ρ δλ −=   if j ia a< , and j ja a ′≤  for all { }j H j′∉ ∪ . 

We define ( )iu q  as the expected value of ( , )iv H a : 

1

{1,..., }\{ }
( ) [ ( , )(1 ) | ]n H H

i i
H n i

u q E v H a qε ε− −

⊂

≡ −∑ . 

The probability that there exists any arbitrageur j i≠  other than arbitrageur i  who 

sells at or before time τ  is given by 

(1)   ( ; ) 1 {1 (1 ) ( )}i i j
j i

D q qτ ε τ−
≠

≡ − − −∏ . 

From (1), it follows that 

(2)   (0, ) 1 (0; ) { (1 ) } (0; )i i i i i iu q D q r r D qλ− − −= − + + − , 

and 

(3)   ( )( , ) {1 ( ; )}ia
i i i i i iu a q e D a qρ δ−

− −= −  

( ){ (1 ) } { ( ; ) lim ( ; )}i

i

a
i i i i ia

r r e D a q D qρ δ

τ
λ τ−

− −↑
+ + − −  

( )

0

( ; ) (0; )
ia

i i i ie dD q D qρ δ τ

τ

λ τ λ−
− −

=

+ +∫  for all 0(0, ]ia τ∈ . 

Moreover, the probability that the bubble crashes at or before time τ  is given by 
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1

( ; ) 1 [ (1 ){1 ( )}]
n

i
i

D q qτ ε ε τ
=

≡ − + − −∏ . 

We define the hazard rate at time 0[0, ]τ τ∈  for strategy profile q Q∈  by 

( ; )

( ; )
1 ( , )

dD q
dq

D q

τ
τθ τ
τ

≡
−

. 

The hazard rate multiplied by dτ  indicates the conditional probability that the bubble 

crashes over the interval [ , ]dτ τ τ+ , given that the bubble has persisted up to time τ . 

A strategy profile q Q∈  is said to be symmetric in G  if 1iq q=  for all 

{1,..., }i n∈ . A strategy profile q Q∈  is said to be a Nash equilibrium in G  if 

( ) ( , )i i i iu q u q q−′≥  for all {1,..., }i n∈  and all i iq Q′∈ . 



 16

3. Quick Crashes 

 

We denote the symmetric pure strategy profile by (0,...,0)q ≡� , according to 

which any rational arbitrageur sells at the initial time 0. The bubble quickly crashes at 

the initial time 0, except in the case where all arbitrageurs are behavioral. Note that for 

every {1,..., }i n∈ , 

  1 1( ) (1 ){ (1 ) }n n
iu q r rε ε λ− −= + − + −� , 

and 

  ( )1 1( , ) (1 )ian n
i i iu a q e ρ δε ε λ−− −

− = + −�  for all 0(0, ]ia τ∈ . 

Hence, q�  is a Nash equilibrium in G  if and only if 

  0( )1 1 1 1(1 ){ (1 ) } (1 )n n n nr r e ρ δ τε ε λ ε ε λ−− − − −+ − + − ≥ + − , 

that is, 

(4)   0( )1 1 1(1 )(1 )n n ne rρ δ τε ε λ ε−− − −≤ − − + . 

This implies that if the terminal time 0τ  is not greatly delayed in relation to the 

smallness of ε , timing game G  can describe the case where any rational arbitrageur 

never rides the bubble as a symmetric Nash equilibrium. Note that 0ε =  automatically 

guarantees (4), i.e., it guarantees the Nash equilibrium property of q� . 

 The main body of this paper will assume that 0ε > . We shall also focus on other 
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symmetric Nash equilibria, according to which rational arbitrageurs do ride the bubble. 

The assumption of 0ε >  is very crucial, without which the backward induction 

method eliminates all strategy profiles except q� , i.e., q�  becomes the unique Nash 

equilibrium. 
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4. Bubbles and Crashes 

 

We arbitrarily set 0ˆ [0, ]τ τ∈ , which we refer to as the hazard time. Let us specify a 

symmetric strategy profile ˆ ˆ
1( )n

i iq q Qτ τ
== ∈  as follows: for every {1,..., }i n∈ , 

ˆ ( ) 0i iq aτ =  for all ˆ[0, )ia τ∈ , 

and 

(5)   

0

ˆ

( )( )1 exp[ ]
(1 )( 1)( )
1

i

i i

a
nq aτ

ρ δ τε
λ
ε

− −
−

− −=
−

 for all 0ˆ[ , ]ia τ τ∈ . 

In order for ˆqτ  to be well specified, we need to assume that 

(6)   0 ˆ( )( )exp[ ]
( 1)(1 )n
ρ δ τ τε

λ
− − −

≤
− −

, 

because (6) guarantees ˆ ˆ( ) 0iqτ τ ≥ . 

According to ˆqτ , no arbitrageur ever bursts the bubble until the hazard time τ̂ . 

The X-Day is randomly selected over the interval 0ˆ[ , ]τ τ ; the hazard rate ˆ( ; )qτθ τ  at 

time τ  for strategy profile ˆqτ  is equal to 

   ˆ( ; ) 0qτθ τ =      if ˆ0 τ τ< < , 

and 

(7)   ˆ ( 1)( )( ; )
(1 )

nq
n

τ ρ δθ τ
λ

− −
=

−
   if 0τ̂ τ τ< < . 

Note that the hazard rate after the hazard time τ̂  is constant with respect to time τ , 

and increases with respect to the growth rate ρ  and the soft-landing index λ . 
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Theorem 1: Based on the assumption in (6), strategy profile ˆqτ  is a Nash equilibrium 

in G  if and only if (6) holds with equality, i.e., 

(8)   0 ˆ( )( )exp[ ]
( 1)(1 )n
ρ δ τ τε

λ
− − −

=
− −

, 

where for every {1,..., }i n∈ , 

(9)   ˆ ˆ( )
0( ) exp[( ) ( 1)(1 ) log ]iu q e nτ ρ δ τ ρ δ τ λ ε−= = − + − − . 

 

Proof: Note that (8) is necessary for ˆqτ  to be a Nash equilibrium. Without (8), ˆ
iqτ  is 

discontinuous at the hazard time, i.e., ˆ ˆ

ˆ
ˆ( ) lim ( ) 0i iq qτ τ

τ τ
τ τ

↑
> = ; each arbitrageur prefers to 

sell slightly earlier than τ̂  instead of τ̂ , which contradicts the Nash equilibrium 

property. 

Suppose that (8) holds. From (1), 

ˆ( ; ) 0i iD qττ − =  for all ˆ[0, )τ τ∈ , 

and 

   
0( )( )

ˆ 1 1( ; ) 1 n
i iD q e

ρ δ τ τ
τ λτ ε

− −
− −

− = −  for all 0ˆ[ , ]τ τ τ∈ . 

Hence, from (2), (3), and (8), 

ˆ ( )( , ) ia
i i iu a q e ρ δτ −

− =  for all ˆ[0, ]ia τ∈ , 

and the following first-order conditions hold. For every 0ˆ[ , ]ia τ τ∈ , 
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ˆ

ˆ( )( , ) [ {1 ( ; )}iai i i
i i i

i i

u a q e D a q
a a

τ
ρ δ τ−−

−

∂ ∂
= −

∂ ∂
 

ˆ ˆ( )

0

( ; ) (0; )]
ia

i i i ie dD q D qρ δ τ τ τ

τ

λ τ λ−
− −

=

+ +∫  

ˆ
ˆ( ) ( ) ( ; ){1 ( ; )} (1 )i ia a i i i

i i i
i

dD a qe D a q e
da

τ
ρ δ ρ δτρ λ− − −

−= − − −  

0 0( )( ) ( )( )
( ) ( )1 11 1( )( ) (1 )( )

1

i i
i i

a a
a an ne e e e

ρ δ τ ρ δ τ
ρ δ ρ δλ λρ δρ δ ε λ ε

λ

− − − −
− −− −− −− −

= − − −
−

 

0= . 

From the continuity of ˆqτ  and (8), 

ˆ ˆ( )
0ˆ( , ) exp[( ) ( 1)(1 ) log ]i iu q e nτ ρ δ ττ ρ δ τ λ ε−

− = = − + − − , 

which implies (9). Since ˆ ( )( ) iae e ρ δρ δ τ −− ≥  for all ˆ[0, )ia τ∈ , it follows that 

ˆ ˆ( ) ( , )i i i iu q u a qτ τ
−≥  for all 0[0, ]ia τ∈ . 

Q.E.D. 

 

We show that for every 0ˆ (0, )τ τ∈ , there exists (0,1)ε ∈  such that timing game 

0( , , , , , , )G n rτ δ ρ λ ε=  can describe the pattern of bubbles and crashes where the 

bubble persists until terminal time τ̂ , and later crashes at the hazard rate 

( 1)( )
(1 )

n
n

ρ δ
λ

− −
−

, as is characteristic of a symmetric Nash equilibrium. 

 

Theorem 2: For every 0ˆ (0, )τ τ∈ , there exist (0,1)ε ∈  and a symmetric Nash 

equilibrium q  in 0( , , , , , , )G n rτ δ ρ λ ε=  such that 
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(0) 0iq =  for all {1,..., }i n∈ , 

( ; ) 0qθ τ =  for all ˆ(0, )τ τ∈ , 

and 

( 1)( )( ; )
(1 )

nq
n

ρ δθ τ
λ

− −
=

−
 for all 0ˆ( , )τ τ τ∈ . 

 

Proof: In this case, we only have to show that there exists (0,1)ε ∈  such that ˆqτ  is a 

Nash equilibrium in 0( , , , , , , )G n rτ δ ρ λ ε= . From Theorem 1, (8) is sufficient for ˆqτ  

to be a Nash equilibrium. Since 0 ˆ( )( )0 exp[ ] 1
( 1)(1 )n
ρ δ τ τ

λ
− − −

< <
− −

, it follows that (0,1)ε ∈ . 

Q.E.D. 
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5. Late Terminal Time 

 

From (8), the distance between the hazard time τ̂  and terminal time 0τ  is given 

by 

0
( 1)(1 ) logˆ n λ ετ τ

ρ δ
− −

− = −
−

. 

This distance does not depend on the terminal time 0τ . The hazard time is postponed at 

the same rate as the terminal time. 

Let us confine our attention to timing games where the terminal time 0τ  is 

sufficiently late. We will show that even a very small probability ε  of each 

arbitrageur’s being behavioral facilitates the persistence of bubbles. We arbitrarily set 

any infinite sequence of vectors [ ] [ ]
0 1ˆ( , )m m

mτ τ ∞
=  such that 

   [ ] [ ]
0 ˆ 0m mτ τ> >  for all 1, 2,...m = , 

   [ ]ˆlim m

m
τ

→∞
= ∞ , [ ]

0lim m

m
τ

→∞
= ∞ , and [ ] [ ]

0 ˆlim( )m m

m
τ τ

→∞
− = ∞ . 

For every 1,2,...m = , we specify that 

(10)   
[ ] [ ]

[ ] 0 ˆ( )( )exp[ ]
( 1)(1 )

m m
m

n
ρ δ τ τε

λ
− − −

≡
− −

. 

From (10), note that [ ] (0,1)mε ∈ , i.e., [ ]mε  is well specified. From (8) and (10), for 

every 1,2,...m = , strategy profile 
[ ]ˆ m

qτ  is a Nash equilibrium in G , where 

[ ] [ ]
0 0( , ) ( , )m mτ ε τ ε=  was assumed. From (10) and [ ] [ ]

0 ˆlim( )m m

m
τ τ

→∞
− = ∞ , it follows that 
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[ ] [ ]
[ ] 0 ˆ( )( )lim lim exp[ ] 0

( 1)(1 )

m m
m

m m n
ρ δ τ τε

λ→∞ →∞

− − −
= =

− −
. 

This along with [ ]ˆlim m

m
τ

→∞
= ∞  implies that even with a very small probability ε  that 

each arbitrageur is behavioral, we can describe the infinitely long persistence of 

bubbles as a symmetric Nash equilibrium. 

According to the Nash equilibrium property of ˆqτ , any time choice in the interval 

0ˆ[ , ]τ τ  is a best response to ˆqτ . This implies that each rational arbitrageur i  has an 

incentive to postpone the market timing until the terminal time 0τ . Hence, 

0

0

ˆ ˆ ( )1 ( )
0

0

( ) ( , ) lim ( ; )n
i i i i iu q u q e e dD q

τ
ρ δ ττ τ ρ δ τ

τ τ
τ

τ ε λ τ−− −
− −↑

′=

′= = + ∫ . 

Let us denote 

0( )1
0( , ) nw w e ρ δ ττ ε ε −−= ≡ , 

which we refer to as the gain from behavioral arbitrageurs; in other words, she/he can 

earn w  as the winner’s gain when all the other arbitrageurs are behavioral. The 

following theorem states that the gain from behavioral arbitrageurs w  is negligible in 

relation to ˆ ˆ( )( )iu q eτ ρ δ τ−= . 

 

Theorem 3: The following property holds: 

   [ ]

[ ] [ ])
0

ˆ( )

( , )lim 0m

m m

m

w
e ρ δ τ

τ ε
−→∞

= . 
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Proof: From (10) and [ ] [ ]
0 ˆlim( )m m

m
τ τ

→∞
− = ∞ , it follows that 

   
[ ] [ ]
0

[ ]

[ ] [ ])
ˆ( )( )[ ]) 10

ˆ( )

( , )lim lim( )
m m

m

m m
m n

m m

w e
e

ρ δ τ τ

ρ δ τ

τ ε ε − −−

−→∞ →∞
=  

[ ] [ ]
[ ] [ ]0
0

ˆ( )( ) ˆlim exp[ ( )( )]
(1 )

m m
m m

m

τ τ ρ δ ρ δ τ τ
λ→∞

− − −
= + − −

−
 

   [ ] [ ]
0

1ˆlim exp[( )( )(1 )] 0
1

m m

m
τ τ ρ δ

λ→∞
= − − − =

−
. 

Q.E.D. 

 

 The remaining payoff ˆ( )iu q wτ −  is equal to 
0

( )

0

lim ( ; )i ie dD q
τ

ρ δ τ

τ τ
τ

λ τ−
−↑

′=

′∫ , which 

corresponds to the loser’s gain when some of the other arbitrageurs are rational. 

Theorem 3 implies that any rational arbitrageur expects to earn hardly any profit by 

exploiting behavioral arbitrageurs; instead, she/he expects a considerable increase in the 

loser’s gain by postponing the market timing. The following theorem shows that the 

gain from behavioral arbitrageurs w  can be small even in absolute terms. 

 

Theorem 4: The following properties hold: 

(i)    [ ] [ ]
0[0 lim ( , ) ]m m

m
w τ ε

→∞
< < ∞ ⇒

[ ]

[ ]
0

ˆ
[lim ]

m

mm

τ λ
τ→∞

= ; 

(ii)     
[ ]

[ ]
0

ˆ
[lim ]

m

mm

τ λ
τ→∞

< ⇒ [ ] [ ]
0[lim ( , ) 0]m m

m
w τ ε

→∞
= ; 

(iii)    
[ ]

[ ]
0

ˆ
[lim ]

m

mm

τ λ
τ→∞

> ⇒ [ ] [ ]
0[lim ( , ) ]m m

m
w τ ε

→∞
= ∞ . 
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Proof: From (10), 

(11)   
[ ]
0( )[ ] [ ] [ ] 1

0lim ( , ) lim( )
mm m m n

m m
w e ρ δ ττ ε ε −−

→∞ →∞
=  

   
[ ] [ ]

[ ]0
0

ˆ( )( )lim exp[ ( ) ]
1

m m
m

m

τ τ ρ δ ρ δ τ
λ→∞

− − −
= + −

−
 

[ ] [ ]
0

[ ]
0

ˆ( )lim exp[ ( )]
1

m m

mm

ρ δ τ τ λ
λ τ→∞

−
= −

−
. 

If 
[ ]

[ ]
0

ˆ
lim

m

mm

τ λ
τ→∞

< , then from [ ]
0lim m

m
τ

→∞
= ∞ , 

   
[ ] [ ]
0

[ ]
0

ˆ( )lim exp[ ( )] 0
1

m m

mm

ρ δ τ τ λ
λ τ→∞

−
− =

−
. 

This along with (11) implies property (ii). If 
[ ]

[ ]
0

ˆ
lim

m

mm

τ λ
τ→∞

> , then from [ ]
0lim m

m
τ

→∞
= ∞ , 

    
[ ] [ ]
0

[ ]
0

ˆ( )lim exp[ ( )]
1

m m

mm

ρ δ τ τ λ
λ τ→∞

−
− = ∞

−
. 

This along with (11) implies property (iii). From properties (ii) and (iii), it follows that 

if 
[ ]
0( )[ ]0 lim( )

mm n

m
e ρ δ τε −

→∞
< < ∞ , then 

[ ]

[ ]
0

ˆ
lim

m

mm

τ λ
τ→∞

=  must hold. This implies property (i). 

                Q.E.D. 

 

Property (i) of Theorem 4 is particularly important because whenever the gain from 

behavioral arbitrageurs is non-negligible, i.e., [ ] [ ]
0lim ( , ) 0m m

m
w τ ε

→∞
> , and moderate, i.e., 

[ ] [ ]
0lim ( , )m m

m
w τ ε

→∞
< ∞ , then the ratio 

[ ]

[ ]
0 0

ˆ ˆ m

m

τ τ
τ τ

=  of the hazard time to the terminal time is 

approximated by the soft-landing index λ . Note that given that the terminal time 0τ  is 

sufficiently late, it is almost certain that the ratio of the X-Day to the terminal time is 

approximated by 
0

τ̂
τ

. Hence, it is almost certain that the ratio of the X-Day to the 
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terminal time is approximated by the soft-landing index λ . Figure 2 illustrates these 

observations. 

 

[Figure 2] 

  

By approximating the ratio of the X-Day to 0λτ , we can regard 0(1 )eλρτλ−  as 

the range of the stock price drop on the X-Day. Note that 0(1 )eλρτλ−  increases with 

respect to 
0

1[0,1 ]
( )

λ
ρ δ τ

∈ −
−

, where 
0

11
( )ρ δ τ

−
−

 is close to 1. Hence, the more the 

bubble soft-lands, the greater is the range of the stock price drop on the X-Day. 

Property (ii) implies that whenever 
[ ]

[ ]
0 0

ˆ ˆ m

m

τ τ
τ τ

=  is less than λ , the gain from 

behavioral arbitrageurs must be negligible, i.e., [ ] [ ]
0lim ( , ) 0m m

m
w τ ε

→∞
= . Hence, even if any 

rational arbitrageur hardly expects to have an advantage over the other behavioral 

arbitrageurs in absolute terms, the bubble persists for a significantly long time. 
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6. Uniqueness 

 

This section characterizes the set of all symmetric Nash equilibria, and then shows 

a sufficient condition for strategy profile ˆqτ  to be the unique symmetric Nash 

equilibrium. We arbitrarily set 0ˆ (0, )τ τ∈  and (0,1)k∈ . Let us specify another 

symmetric strategy profile ˆ ˆ( , ) ( , )
1( )k k n

i iq q Qτ τ
== ∈  as follows: for every {1,..., }i n∈ , 

ˆ( , ) ( )k
i iq a kτ =  for all ˆ[0, )ia τ∈ , 

and 

0

ˆ( , )

( )( )(1 )(1 ) exp[ ]
(1 )( 1)( )

(1 )(1 )

i

k
i i

ak
nq a

k
τ

ρ δ τε ε ε
λ

ε

− −
− − + −

− −=
− −

 for all 0ˆ[ , ]ia τ τ∈ . 

In order for ˆ( , )kq τ  to be well specified, we need to assume 

(12)   0 ˆ( )( ){1 (1 ) }exp[ ]
( 1)(1 )

k
n
ρ δ τ τε ε

λ
− − −

≤ − −
− −

, 

because (12) guarantees ˆ( , ) ˆ( ) 0k
iq τ τ ≥ . 

According to ˆ( , )kq τ , with probability 0k > , any rational arbitrageur bursts the 

bubble at the initial time 0. With probability 1 0k− > , she/he never bursts the bubble 

until the hazard time τ̂ . The hazard rate ˆ( , )( ; )kq τθ τ  for ˆ( , )kq τ  is the same as that for 

ˆqτ : 

ˆ( , )( ; ) 0kq τθ τ =     if 0 τ τ< < � , 

and 
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ˆ( , ) ( 1)( )( ; )
(1 )

k nq
n

τ ρ δθ τ
λ

− −
=

−
 if 0τ̂ τ τ< < . 

 

Proposition 5: Based on the assumption in (12), strategy profile ˆ( , )kq τ  is a Nash 

equilibrium in G  if and only if 

(13)   
1

ˆ( )
1

(1 ) {(1 ) 1}{1 (1 ) }
{1 (1 ) }

n

n

r r ke
k

ρ δ τ λ λ ε
ε

−
−

−

− − − − − −
=

− −
, 

and (12) holds with equality, i.e., 

(14)   0 ˆ( )( ){1 (1 ) }exp[ ]
( 1)(1 )

k
n
ρ δ τ τε ε

λ
− − −

= − −
− −

, 

where for every {1,..., }i n∈ , 

(15)   ˆ( , ) 1( ) 1 (1 )(1 )[1 {1 (1 ) } ]k n
iu q r kτ λ ε −= − − − − − − . 

 

Proof: See the Appendix. 

 

From (15), it follows that ˆ( , )( ) 1k
iu q τ < , i.e., the payoff induced by ˆ( , )kq τ  is less 

than the precrash price at the initial time. Hence, no rational arbitrageur takes advantage 

of riding the bubble. The following theorem indicates a characteristic of the set of 

symmetric Nash equilibria, which states that there exists no symmetric Nash 

equilibrium other than q� , ˆqτ , and ˆ( , )kq τ . 
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Theorem 6: If any strategy profile q Q∈  is a symmetric Nash equilibrium in G , then 

any one of the following three properties hold: 

(iv) q q= � . 

(v) ˆq qτ= , where 0ˆ [0, ]τ τ∈  is given by (7). 

(vi) ˆ( , )kq q τ= , where 0ˆ [0, ]τ τ∈  and [0,1]k∈  satisfy (13) and (14). 

 

Proof: We set any symmetric Nash equilibrium q Q∈  arbitrarily. Let 

  0 1 1inf{ (0, ] : ( ) (0)}q qτ τ τ τ= ∈ >�  and 0 1min{ [0, ] : ( ) 1}qτ τ τ τ= ∈ = . 

 First, we show that 1( )q τ  is continuous in 0[0, ]τ . Suppose that 1( )q τ  is not 

continuous in 0[0, ]τ . Then, there exists [ , ]τ τ τ′∈ �  such that 0τ ′ >  and 

1 1lim ( ) ( )q q
τ τ

τ τ
′↑

′< . From 0 1λ< < , 0 1r< < , and the symmetry of q , it follows that 

any arbitrageur can increase her/his probability of becoming the winner by selecting any 

time that is slightly earlier than time τ ′  instead of time τ ′ . This implies that no 

arbitrageur ever selects time τ ′ , which is a contradiction. 

Second, we show that 1( )q τ  is increasing in ( , )τ τ� . Suppose that 1( )q τ  is not 

increasing in ( , )τ τ� . From the continuity of 1q  and the definition of τ� , we can select 

, [ , )τ τ τ τ′ ′′∈ �  such that τ τ′ ′′< , 1 1( ) ( )q qτ τ′ ′′= , and time choice τ ′  is a best response. 

Since no arbitrageur selects any time τ  in ( , )τ τ′ ′′ , by selecting time τ ′′  instead of 
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τ ′ , any arbitrageur can increase the winner’s gain without decreasing the probability of 

winning this gain. This is a contradiction. 

Third, we show that either 0τ =  or 0τ τ= . Suppose that 00 τ τ< < . Since 

1( )q τ  is continuous at time τ , by selecting time 0τ  instead of τ , any arbitrageur 

can increase the winner’s gain from ( )e ρ δ τ−  to 0( )e ρ δ τ−  without decreasing the 

probability of winning this gain. This contradicts the fact that time choice τ  is a best 

response. 

Suppose that (0,...,0)q ≠ , i.e., property (v) does not hold. Since either 0τ =  or 

0τ τ= , it follows that 0τ τ= . Since 1( )q τ  is increasing in ( , )τ τ� , any time choice 

0[ , ]τ τ τ∈ �  is a best response to q . Hence, the following first-order conditions must 

hold: for every 0[ , ]τ τ τ∈ � , 

    ( ) ( )1 1 1 1
1 1

( , ) ( ; )( ) {1 ( ; )} (1 ) 0u q dD qe D q e
d

ρ δ τ ρ δ ττ τρ δ τ λ
τ τ

− −− −
−

∂
= − − − − =

∂
,  

that is, 

    
( )
1

1 1( ; ) 1D q Ce
ρ δ τ
λτ

− −
−

− = −  for all 0[ , ]τ τ τ∈ � , 

where C  is a positive real number. The continuity of 1q  along with the symmetry of 

q  implies that 

(16)    
0( )

11
1 0 1( ; ) 1 1 nD q Ce

ρ δ τ
λτ ε

− −
−−

− = − = − , 

and 
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(17)    
( )
1

1 1 1 1( ; ) 1 (0; )D q Ce D q
ρ δ τ
λτ

− −
−

− −= − =
�

� . 

From (16), it follows that 
0( )

1 1nC e
ρ δ τ

λε
−

− −= , and therefore, 

(18)    
0( )( )

1 1
1 1( ; ) 1 nD q e

ρ δ τ τ
λτ ε

− −
− −

− = −  for all 0[ , ]τ τ τ∈ � . 

 Suppose that 1(0) 0q = . Note that the symmetry of q  implies that 1 1(0; ) 0D q− = , 

which along with (17) and (18) implies that 

  0
( 1)(1 ) logn λ ετ τ

ρ δ
− −

= +
−

� . 

These observations imply that ˆq qτ= , where τ̂  is given by (7). Hence, property (vi) 

holds. 

 Suppose that 1(0) 0q > . Then, there is a positive real number (0,1)k∈  such that 

1(0)q k=  and 1
1 1(0; ) 1 {1 (1 ) }nD q kε −

− = − − − . This along with (17) and (18) implies 

that 

  0

( 1)(1 ) log( )
1 (1 )

n
k

ελ
ετ τ

ρ δ

− −
− −= +

−
� . 

These observations imply that ˆ( , )kq q τ= , where ˆ( , )kτ  satisfies (14). Since ˆ( , )kq τ  is a 

Nash equilibrium, ˆ( , )kτ  also satisfies (13). Hence, property (vii) holds. 

Q.E.D. 

 

The proof of Theorem 6 shows that in order for any symmetric strategy profile 

other than (0,...,0)q =�  to be a Nash equilibrium, there must exist the hazard time τ̂  
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such that any time choice between this time and the terminal time is a best response. 

This implies that the first-order conditions addressed in the proof of Theorem 6 play a 

crucial role in eliminating all strategy profiles, except for ˆqτ  and ˆ( , )kq τ . 

The Nash equilibrium properties of (0,...,0)q =�  and ˆ( , )kq τ  require that time 

choice 0 be a best response. This along with Theorem 6 implies that whenever time 

choice 0 is a dominated strategy, strategy profile ˆqτ  must be the unique symmetric 

Nash equilibrium. Hence, we can show a sufficient condition for ˆqτ  to be the unique 

symmetric Nash equilibrium as follows. 

 

Theorem 7: With the assumption in (7), strategy profile ˆqτ  is the unique symmetric 

Nash equilibrium in G  if the gain from behavioral arbitrageurs is greater than 

11 (1 )nε λ−− − , i.e., 

 (19)  1
0( , ) 1 (1 )nw τ ε ε λ−> − − . 

 

Proof: For every q Q∈ , 

    1 1(0, ) 1u q− ≤  and 0( )1 1
1 0 1( , ) (1 )n nu q e ρ δ ττ ε ε λ−− −

− ≥ + − , 

which along with (19) implies that time choice 0 is dominated by time choice 0τ , i.e., 

    1 0 1 1 1( , ) (0, )u q u qτ − −>  for all 1 1q Q− −∈ . 
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Hence, any symmetric Nash equilibrium q Q∈  must satisfy 1(0) 0q = , which along 

with Theorem 6 implies that ˆq qτ= . 

Q.E.D. 

 

We assume that the terminal time 0τ  is sufficiently late. Then, ε  must be close 

to zero, and therefore, the right-hand side of (19) is approximated by 1 λ− . Hence, 

from Theorem 7, it follows that strategy profile ˆqτ  is the unique symmetric Nash 

equilibrium if the gain from behavioral arbitrageurs 0( , )w τ ε  is greater than 1 λ− . 

From Theorems 5 and 7, we conclude that the high soft-landing index λ  not only plays 

a decisive role in prolonging the equilibrium persistence of bubbles but also in 

eliminating irrelevant equilibria. 
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7. Quasi-Rationality 

 

We have assumed that each arbitrageur knows whether she/he is rational or 

behavioral from the beginning of the timing game. This section, however, eliminates 

this assumption. Instead, we assume that all arbitrageurs are quasi-rational as follows. 

We arbitrarily set *
0(0, )τ τ∈  and (0,1)ε ∈ . We shall refer to *τ  as the critical time. 

We assume (8) and * ˆτ τ< . Until the critical time *τ , each arbitrageur i  behaves 

rationally and then follows ˆqτ . Once the bubble has persisted beyond the critical time 

*τ , she/he becomes behavioral with probability ε ; in other words, she/he stops 

following ˆqτ  and is committed to not bursting the bubble of her/his own accord. With 

probability 1 ε− , she/he remains rational and continues to follow ˆqτ  even after the 

critical time *τ . 

This section will provide an affirmative answer to the question of whether even 

quasi-rational arbitrageurs are willing to follow ˆqτ . If arbitrageur i  is rational, she/he 

obtains ˆ ˆ( )( )iu q eτ ρ δ τ−= . We assume that no behavioral arbitrageur can sell out before 

the stock price declines to the fundamental value; in this case, she/he obtains y  as the 

payoff evaluated at the initial time. Hence, according to ˆqτ , any quasi-rational 

arbitrageur i  obtains the expected payoff given by 
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ˆ( )(1 )e yρ δ τε ε−− + . 

Quasi-rational arbitrageur i  is faced with the following self-control problem. By 

selecting the critical time *τ  as the timing to sell out instead of following ˆ
iqτ , she/he 

can avoid the loss from her/his becoming behavioral, and obtains the winner’s gain 

*( )e ρ δ τ−  with certainty. Hence, in order for any quasi-rational arbitrageur to follow ˆqτ , 

it is necessary and sufficient to satisfy not only (8) but also the inequality 

(20)   
*ˆ( ) ( )(1 )e y eρ δ τ ρ δ τε ε− −− + ≥ . 

Note that inequality (20) does not hold if the critical time *τ  is close to the hazard 

time τ̂ ; in this case, (0,...,0)q =�  is the unique Nash equilibrium. If the terminal time 

0τ  is sufficiently late, however, the requirement of (20) is not restrictive at all; in this 

case, ε  can be close to zero. Hence, the right-hand side of (20) is close to ˆ( )e ρ δ τ− , 

which is greater than 
*( )e ρ δ τ−  since * ˆτ τ< . Given that the terminal time 0τ  is 

sufficiently late, we can conclude that the Nash equilibrium property of ˆqτ  is robust to 

the quasi-rational arbitrageurs’ self-control. 
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Appendix: Proof of Proposition 5 

 

Note that (14) is necessary for ˆ( , )kq τ  to be a Nash equilibrium. Without (14), 

ˆ( , )k
iq τ  is discontinuous at the hazard time τ̂ , i.e., ˆ ˆ( , ) ( , )

ˆ
ˆ( ) lim ( ) 0k k

i iq qτ τ

τ τ
τ τ

↑
> = ; hence, 

each arbitrageur prefers any time slightly earlier than τ̂  instead of τ̂ , and this 

contradicts the Nash equilibrium property of ˆ( , )k
iq τ . 

We suppose that (14) holds. From (1), 

   ˆ( , ) 1( ; ) 1 {1 (1 ) }k n
i iD q kττ ε −

− = − − −  for all ˆ[0, )τ τ∈ , 

and 

   
0( )( )

ˆ( , ) 1 1( ; ) 1k n
i iD q e

ρ δ τ τ
τ λτ ε

− −
− −

− = −  for all 0ˆ[ , ]τ τ τ∈ . 

From (2), (3), and (14), it follows in the same manner as in the proof of Theorem 1 that 

(A1)   ˆ( , ) 1(0, ) 1 (1 )(1 )[1 {1 (1 ) } ]k n
i iu q r kτ λ ε −

− = − − − − − − , 

(A2)   ˆ ( )( , ) 1 1( , ) [1 {1 (1 ) } ] {1 (1 ) } iak n n
i i iu a q k k e ρ δτ λ ε ε −− −

− = − − − + − −  

for all ˆ(0, )ia τ∈ , 

and 

(A3)   ˆ( , )( , )k
i i iu a q τ

−
1[ (1 ) {1 (1 ) }nr kλ λ ε −= + − − −  

0 ˆ( )( )
ˆ1 ( )1(1 )(1 ) ]nr e e

ρ δ τ τ
ρ δ τλλ ε

− −
− −−+ − −  for all 0ˆ[ , ]ia τ τ∈ . 

Note that (A1) implies (15). From (14), 
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0 ˆ( )( )
ˆ1 1 ( )1[ (1 ) {1 (1 ) } (1 )(1 ) ]n nr k r e e

ρ δ τ τ
ρ δ τλλ λ ε λ ε

− −
− − −−+ − − − + − −  

ˆ1 1 ( )[1 {1 (1 ) } ] {1 (1 ) }n nk k e ρ δ τλ ε ε− − −= − − − + − − , 

which along with (A2) and (A3) imply that 

ˆ ˆ( , ) ( , )( ) ( , )k k
i i i iu q u a qτ τ

−≥  for all 0(0, ]ia τ∈ . 

Hence, from (A1) and (A3), ˆ( , )kq τ  is a Nash equilibrium in G  if and only if 

ˆ ˆ( , ) ( , )( ) (0, )k k
i i iu q u qτ τ

−= , that is, 

0 ˆ( )( )
ˆ1 1 ( )1[ (1 ) {1 (1 ) } (1 )(1 ) ]n nr k r e e

ρ δ τ τ
ρ δ τλλ λ ε λ ε

− −
− − −−+ − − − + − −  

   11 (1 )(1 )[1 {1 (1 ) } ]nr kλ ε −= − − − − − − , 

which is equivalent to (13). 
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Figure 1: Bubbles and Crashes 
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Figure 2: Late Terminal Time 
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