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A STRATEGIC THEORY OF A MARKET1
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Eiichiro Kazumori

This paper investigates the asymptotic behavior of a Bayesian Nash
equilibrium in uniform price double auctions among buyers and sellers
with a unit demand and supply who receive private signals indepen-
dently and identically distributed conditional on the unknown state with
the monotone likelihood ratio condition and have interdependent values
with a strictly private value element. Every nontrivial mixed strategy
Bayesian Nash equilibrium converges to the fully revealing rational ex-
pectation equilibrium as the number of buyers and sellers increases and
the bid step size goes to zero. A monotone pure strategy Bayesian Nash
equilibrium exists in sufficiently large finite economies, and provides a
consistent and asymptotically normal estimator of the unknown value
when the set of possible bids is continuous.

Keywords: Double auction, information aggregation.

1. INTRODUCTION

The role of market prices in an economy with dispersed information has been a
central question in modern economic theory. In a seminal paper, Hayek (1945) argued
that the price mechanism is an effective method of communicating information and
utilizing knowledge initially dispersed in the economy. Examples of applications of the
idea include the efficient market hypothesis in asset pricing and the use of prediction
markets to estimate uncertain parameters in the economy1.
One approach to study the properties of the market price is a rational expectation
equilibrium which extends the notion of the Walrasian equilibrium to the economy
under uncertainty. Grossman (1981) showed that a fully revealing rational expectation
equilibrium price in an Arrow-Debreu complete market is the sufficient statistic for all
of the economy’s information. But Grossman and Stiglitz (1980) and others pointed
out that the rational expectation equilibrium does not formulate the process by which
players incorporates the private information into the price.
This observation prompted an investigation of the properties of the market price
formed through auction and bidding processes. In a pioneering paper, Wilson (1977)
claimed that a Bayesian Nash equilibrium price of the first price auction among sym-
metric buyers with common values could be a consistent estimator of the unknown
value. Subsequently, fundamental papers by Milgrom (1979, 81) and Pesendorfer and
Swinkels (1997) extended the result to one-sided uniform price auctions with common
values and obtained necessary and sufficient conditions for the consistency.
These papers developed the asymptotic theory of a Bayesian Nash equilibrium in
one-sided auctions with common values. In view of the Wilson (1977)’s conjecture that
1This version: December 21, 2008.
1See Arrow et al. (2008) for a recent proposal to facilitate the development of prediction markets. Segal (2006) pointed

out the need for a theoretical foundation of the prediction market.
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a theory of price formation can be consistent with a theory of value, and of the fact
that many financial markets are organized as large double auctions, it is of significance
to study the asymptotic properties of a Bayesian Nash equilibrium in double auctions
with interdependent values.

In an important contribution, Reny and Perry (2006) developed the key model of
uniform price double auctions among buyers and sellers with interdependent values.
Reny and Perry (2006) offered a through analysis of the single crossing conditions
(Athey (2001)) of the double auction game and demonstrated that, generically, there
exists a nontrivial monotone pure strategy Bayesian Nash equilibrium in sufficiently
large finite economies, and that the Bayesian Nash equilibrium converges to the fully
revealing rational expectation equilibrium in the large economy as the number of buyers
and sellers increases and the bid step size goes to zero.

The goal of this paper is to extend and strengthen the universality of the informa-
tion aggregation result of Wilson (1977), Milgrom (1979, 81), Pesendorfer and Swinkels
(1997), and Reny and Perry (2006), among others, by studying the asymptotic prop-
erty of a Bayesian Nash equilibrium of uniform price double auctions among buyers
and sellers who receive private signals independently and identically distributed con-
ditional on the unknown state with the monotone likelihood ratio condition and have
interdependent values with a strictly private value element. The main results are:

(a) when the bid grid sizes is sufficiently small, a nontrivial mixed strategy equilibrium
exists in the finite economy, and it is asymptotically equivalent to the fully revealing
rational expectation equilibrium in the large economy as the bid grid size goes to
zero

(b) when the set of possible bids is continuum, a monotone pure strategy equilibrium
exists in the large finite economies, and it provides a consistent and asymptotically
normal estimator of the unknown value with the rate of convergence O(1/n).

In short, the results generalize the results of Reny and Perry (2006) by showing that
information aggregation takes place not only in a monotone pure strategy equilibrium,
but also in a more robust way, in a larger class of mixed Bayesian Nash equilibria, and
that a Bayesian Nash equilibrium price is not only a consistent estimator of the un-
known value, but also an asymptotically normal estimator with the rate of convergence
O(1/n).

An intuition is as follows. In the finite economy, the structures of one-sided auctions
and double auctions differ since buyers and sellers want to influence the market clear-
ing price in a different way and employ asymmetric strategies. But in a large economy,
buyers and sellers are price takers. Consequently, ex ante buyers and sellers have a sym-
metric best response even when the strategies to which they choose the best responses
are asymmetric. Thus, the structure of double auction game among ex ante symmetric
buyers and sellers is closely related to the structure of one-sided uniform price auction
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game among symmetric buyers as the number of buyers and sellers increase. This as-
ymptotic equivalence between one-sided uniform price auction and uniform price double
auctions allows us to extend the monotonic structure of one-sided uniform price auction
to the two-sided uniform price auction in the large economy.

The key structure is that the double auction game in the large economy satisfies a
best response strict single crossing property to a Bayesian Nash equilibrium strategy2.
That is, incremental returns from a low bid to a high bid, which is a best response,
cross zero at most once, only from below, as a function of a player’s signal. In other
words, if a player with some signal prefers a high bid to a low bid as a best response
to a Bayesian Nash equilibrium strategy, then a player with a higher signal strictly
prefers this high bid to this low bid. To show that the best reply strict single crossing
property holds in the double auction game in the large economy, we first start with
a local comparison when the distance between the high bid and the low bid is small.
Since a signal is affiliated with the state, a player with the higher signal has a more
favorable estimate of the value of the good. When the distance between the high bid
and the low bid is small, the increase in the estimate of the value of the good outweighs
the possible increase in the expected price. Thus, the high bid is preferred to the low
bid for a high signal. Even when the distance between the high bid and the low bid
is large, it is still strictly preferable for a player with the high signal to increase a bid
incrementally.

There are two important consequences of the strict single crossing property. The first
consequence is that a player’s equilibrium strategy has monotone supports. When a
player’s decision problem satisfies the strict single crossing condition, every selection
from a best response is monotone nondecreasing in a player’s signal3. Therefore, the
smallest bid of the support of the best response strategy of a player with a higher signal
is at least equal to the largest bid of the support of the best response of a player with
a lower signal.

The second consequence is that the single crossing property implies an existence of
winner’s curse.When a player uses a strategy whose supports are monotone in signals,
losing the good at the tie actually conveys a good news compared with winning the
good at the tie at an equilibrium, since losing the good at the tie indicates there are
more higher bids than the case of winning the good at the tie. An implication is that,

2This single crossing property is different than the single crossing conditions (SCC) for games of incomplete information
introduced by Athey (2001), and throughly analyzed by Reny and Perry (2006) for the double auction game. Athey
(2001)’s condition requires that a best response satisfies single crossing property to every monotone strategy of other
players. In contrast, the condition here requires that a best response satisfies the strict single crossing property to every
equilibrium strategy of other players. This condition is satisfied in private value models and versions of this condition are
studied in the interdependent value models of Pesendorfer and Swinkels (1997) and Reny and Zamir (2004).
3See Milgrom and Shannon (1994), Theorem 4’. This monotonicity is stronger than monotonicity in a strong set order

commonly used in monotone comparative statics. It is a consequence of the fact that the best response in this model
satisfies a strict single crossing property, stronger than the standard single crossing property in the sense that it requires
that the incremental return to a best response crosses zero at most at a single point.
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for a sufficiently small bid grid size, when two players are tied for some bid, a player
with a higher signal prefers to change the bid to break the tie.

Using these ideas, the results of the paper can be summarized as follows. We begin
with the double auction game when the set of possible bids and the set of signals are
finite in the finite economy. By introducing a possibility of nonstrategic bids and then
taking the probability to zero, we can show that there exists a nontrivial mixed Bayesian
Nash equilibrium. We then increase the number of buyers and sellers in the economy.
When the best response satisfies the strict single crossing condition, a player’s best
response has a monotone support. We then take the bid grid size go to zero. Winner’s
curse effect then implies that players with distinct signals will place distinct bids. It
follows that the limit equilibrium as the bid grid size goes to zero is separating and
does not involve a tie. This implies that the equilibrium is characterized by the limit
of the first order condition of the double auction game with a positive bid grid size. It
follows that a bid is equal to the expected value of the good conditional on the bidder
being on the margin. Consequently, the limit equilibrium is symmetric and increasing,
and equivalent to the fully revealing rational expectation equilibrium.

We then consider a behavior of a Bayesian Nash equilibrium in the large finite econ-
omy. Since the payoff changes continuously from the finite economy to the large econ-
omy, the best response strict single crossing property holds in the large finite economy.
Thus a Bayesian Nash equilibrium in the large finite economy has monotone supports.
We then take the signal grid size go to zero. Since every Bayesian Nash equilibrium
with a finite set of signals has monotone supports, a Bayesian Nash equilibrium when
the set of signals is continuous has also monotone supports. When the set of possible
bids is finite and the set of possible signals is continuous, the Bayesian Nash equilib-
rium has to be pure and monotone almost everywhere. As the bid grid size becomes
small, winner’s curse effect and a strictly private value element in the value implies that
the limit strategy profile does not involve tie, thus we have a monotone pure strategy
equilibrium in the double auction game with a continuous set of bids and a continuous
set of signal in the large finite economy.

We next study asymptotic distributions, which will be useful when comparing as-
ymptotic efficiency of exchange mechanisms, in constructing confidence intervals, and
in conducting hypothesis testing. The asymptotic behavior of a Bayesian Nash equilib-
rium price consists of the sample size effect which deals with the asymptotic behavior
of order statistics and the strategic effect which deals with players’ misrepresentation
of bids from price-taking behavior. In contrast to a case of one-sided auctions (Hong
and Shum (2004)), we need to deal with not only a buyer’s misrepresentation but also
a seller’s misrepresentation. But both buyers’ and sellers’ misrepresentation will vanish
at the rate of O(1/n), since, for every possible state, due to the conditional indepen-
dence of the signal distribution, a room that a player can manipulate the market price
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without changing allocation vanishes at the rate of O(1/n). It follows that the strate-
gic effect is asymptotically negligible and that the asymptotic behavior of a Bayesian
Nash equilibrium price can be evaluated based on the asymptotic theory of an order
statistics.

The organization of the paper is as follows. Section 2 defines the model. Section 3
contains the main results of the paper. Section 4 provides a detailed sketch of the
proof. Section 4.1 discusses the existence of a nontrivial mixed strategy Bayesian Nash
equilibrium of the double auction game in the finite economy. Section 4.2 studies the
asymptotic behavior of a nontrivial mixed strategy Bayesian Nash equilibrium. Section
4.3 deals with the existence of a monotone pure strategy equilibrium in the large finite
market with a continuous set of signals and a finite set of bids. Section 4.4 examines
asymptotic normality. The supplement to the present paper contains the proof.

1.1. Related literature

This paper puts together three strands of the literature: one-sided uniform price
auctions with common values, uniform price double auctions with private values, and
uniform price double auction with interdependent values.

One-sided uniform price auction with common values. Milgrom (1981) developed the
canonical model of a one-sided uniform price auction of a fixed number of units among
buyers with unit demand, symmetric values, signals distributed iid conditional on the
state, and the monotone likelihood ratio condition. Milgrom (1981) showed that a
symmetric monotone pure strategy Bayesian-Nash equilibrium converges to the true
value of the good when the distinguishability condition (Milgrom (1979)) is satisfied.
The equilibrium identified by Milgrom (1981) is also the unique equilibrium of the
uniform price double auction game among ex ante symmetric buyers and sellers in the
large economy.

Pesendorfer and Swinkels (1997) showed that the symmetric monotone pure strat-
egy Bayesian-Nash equilibrium of Milgrom (1981) is indeed unique among symmetric
strategies, and that when the signal conveys only a limited amount of information, the
equilibrium price converges to the true value of the good if and only if the double large-
ness condition (i.e. both the number of units of the good and the number of bidders
who do not receive the good grow large) holds. In our double auction setting, buyers
and sellers are asymmetric in the finite economy. But since buyers and sellers will be
symmetric in the large economy, their uniqueness result extends to the double auction
in the large market.

Hong and Shum (2004) established the rate of convergence and asymptotic distrib-
ution of a monotone pure strategy equilibrium in uniform price and English auctions
under Wilson (1977) and Pesendorfer and Swinkels (1997) assumptions on the infor-
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mation structure. In our double auction setting, buyers and sellers are asymmetric and
there is not any closed form representation of the equilibrium strategies. But since
misrepresentations by buyers and sellers vanish sufficiently fast, it is still possible to
derive the asymptotic distributions.

Uniform price double auction with private values. Rustichini, Satterthwaite, andWilliams
(1994) considered k-double auctions among buyers and sellers with unit demand and
supply and independently distributed types. They showed that the equilibrium bid
converges to the truthful bidding at the rate of O(1/n). In our setting, players have
interdependent values. But since the distribution of signals is iid conditional on the
state, the probability that there is a bid in an interval increases at the rate of O(1/n)
at each state, thus it is possible to extend their results.

Jackson and Swinkels (2005) showed existence of a nontrivial mixed strategy equilib-
rium in the large class of private value auctions. We extend their result to an interde-
pendent value setting by introducing asymptotic expansion of payoffs around the limit
where the probability of perturbation is zero.

Cripps and Swinkels (2006) showed that in uniform price double auctions among buy-
ers and sellers with multiple units of demand and supply and much weaker assumptions
of distributions (no asymptotic atoms, no asymptotic gaps, and z-independence con-
ditions), every nontrivial mixed strategy equilibria are asymptotically unique and effi-
cient. In our setting, the values are nonprivate. But in our model, the strictly increasing
private value element of the values, ex ante symmetries and monotone likelihood ratio
conditions provide a set of conditions under which their asymptotic uniqueness and
efficiency can be extended, and they serve a first step to generalize their results to a
nonprivate value setting.

Uniform price double auction with interdependent values. In Reny and Perry (2006)’s
analysis, they first showed existence of a monotone pure strategy Bayesian Nash equi-
librium in the large economy and its convergence to a fully revealing rational expec-
tation equilibrium as the grid size goes to zero. Then they constructed a monotone
pure strategy Bayesian Nash equilibrium in large finite economies by showing that the
strict single crossing condition holds in large finite economies. In contrast, we first show
existence of a nontrivial mixed strategy Bayesian Nash equilibrium in the finite econ-
omy and then show that it converges to the monotone pure strategy equilibrium of the
double auction game in the large economy. A difference between the approach by Reny
and Perry (2006) and ours is that they established a strict single crossing condition as
a response to every monotone strategy of other players, and that we need to show a
strict single crossing property only for (possibly mixed) equilibrium strategies.
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2. THE MODEL

2.1. Players

We first define the information structure which generates the state and the signals.

1. The state variable. Let θ0 ∈ (0,1) be the true state of the world. θ0 is unobservable,
and each player considers it as a realization of a random variable θ. Each player has a
correct and common prior that θ takes a value in [0,1] with the distribution function
Fθ and the density function fθ.

Assumption 1 (a). There exists f0 <∞ such that for every θ, 0 < fθ(θ) < f0 <∞.
(b). fθ is continuous.

2. The signal. Let Xi be a random variable which represents player i’s private infor-
mation about θ. Xi takes values in [0,1] according to the distribution FXi|θ(xi|θ) and
the density function fXi|θ(xi|θ).

We now define order statistics and quantile functions which play important roles in
analysis of auctions.

3. Order statistics and quantile functions. If the random variablesX1,...,Xn are arranged
in the order of magnitude, we write X1:n ≥...≥ Xn:n. For example, Xm:n implies the
mth highest out of n random variables.

For a given α, for each θ, let

xi(θ) = sup{xi : FXi|θ(xi(θ)|θ) ≤ α}.

That is, given θ, xi(θ) is the largest signal such that there are more than 1 − α of
players whose signal is equal or higher than xi(θ).

For each xi, let

θ(xi) = {θ ∈ [0, 1] : FXi|θ(xi|θ(xi)) = α}4.

That is, when the signal is xi, θ(xi) is the state under which there are 1−α of players
whose signal is equal or above xi. When Xi is continuous, for each xi, xi(θ(xi)) = xi
and for each θ, θ(xi(θ)) = θ.

4. Assumptions on the conditional distribution Xi given θ. We first distinguish between
two assumptions on the common support of a signal Xi.

The first assumption is that the support of the signal is finite with the signal grid
size γ > 05.

4When there are multiple x0 which will give xi as the αth percentile of the distribution, we choose an arbitrary one and
fix it.
5The assumption of a discrete set of signals is used, for example, in Pesendorfer and Swinkels (1995).
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Assumption 2 The common support of Xi is Xγ = {0,γ...,1}.

The second assumption is that the signals are continuum.

Assumption 3 The common support of Xi is X = [0,1].

We consider the following conditions on the behavior of fXi|θ(xi|θ).

Assumption 4 (a). The signals {Xi} are independent and identically distributed
conditional on θ with the distribution function FXi|θ(xi|θ). (b). For each xi, fXi|θ(xi|θ)
is continuous in θ ∈ [0,1]. (c). When X = [0,1], for every θ,fXi|θ(xi|θ) is continuous in
xi. (d). There exists f1 <∞ such that for every θ ∈ [0,1] and xi ∈ X, 0 < fXi|θ(xi|θ) <
f1. (e). The family of conditional density functions fXi|θ(xi|θ), indexed by θ, satisfies
the monotone likelihood ratio property. (f). xi(0) = 0 and xi(1) = 1.

Assumption 4 (a) and (e) imply that random variables θ,X1,..., are affiliated (Milgrom
and Weber (1982a)). Assumption 4 (e) ensures that xi(θ) is a nondecreasing function
of θ and that θ(xi) is a nondecreasing functions of xi. Assumption 4 (g) implies that
every signal can be on the margin. This assumption was used in Proposition 1(d).

We next define players’ objective functions.

5. The value function. Let v(θ,xi) denote the actual value of a unit of good to player i.
Player i puts zero value on further units of the good. We assume following conditions.

Assumption 5 (a). There exists 0 < v ≤ v < ∞ such that, for every θ and xi,

0 < v < ∂v(θ,xi)
∂θ < v. (b). There exists 0 < λ ≤ λ < ∞ such that for every θ and xi,

λ < ∂v(θ,xi)
∂xi

< λ. (c). There exists 0 < v <∞ such that, for every θ ∈ [0,1], v(θ,0) = 0
and v(θ,1) = v.

Assumption 5 (c) means that, when the signals are extreme, values are private67. Its
role is to ensure that a player with a lower signal will have a low estimate of the value
of the object regardless of the state8.

As explained in Introduction, a player’s objectives are different depending on whether
a player is a buyer or a seller.

6Reny and Perry (2006) also make an assumption about the behavior of the value function at the boundary.
7The probabilities that a player has these exterme signal can be arbitary small.
8As a concrete example, consider a political prediction market where X 0 takes a value of 1 if a candidate is elected

and 0 otherwise, and Xi is the impression of the candidate held by a player. When a player has a good impression of the
candidate (that is, the signal xi is high), it will not only provide a favorable assessment about electability of a candidate
and but also a higher possibility that the player will be able to work with the candidate for a future project, regardless
of whether the candidate will be elected to this particular pubic office. Thus, a player with a higher signal will value the
candidate higher than a player with a lower signal regardless of whether the candidate will get elected or not. Furthermore,
if a player has really a good impression of a candidate, the player will value the candidate highly regardless of the outcome
of a particular election.
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6. Endowments. Let ei ∈ {0,1} denote player i’s endowment. Players with ei = 0 are
potential buyers and players with ei = 1 are potential sellers.

7. Ex post utility function. Let ui(θ,xi,p,qi) be player i
0s ex post utility function when

the state is θ, the signal is xi, the market clearing price is p ∈ R, and the allocation is
qi ∈ {0,1}9. We assume

ui(θ, xi, p, qi) =

⎧⎨⎩ (v(θ, xi)− p)qi if i is a buyer
(p− v(θ, xi))(1− qi) if i is a seller

We assume that every player is risk neutral.

2.2. Rational expectation equilibrium in the large economy

We now consider the rational expectation equilibrium in the large economy.

8. The large economy. The large economy has a unit mass of players of whom α ∈
(1/2,1) are buyers and 1− α are sellers.

9. The rational expectation equilibrium. A rational expectation equilibrium in the large
economy is a price function pREE(θ) and an allocation qi(xi,p

REE(θ)) such that

(a) a player chooses the excess demand taking his signal, the price, and the information
contained in the price as given10.

(b) The demand and the supply balance at each state.

In the large economy, the actual distribution of players’ signals is equal to the prior
distribution of signals. Thus, given the state, there are no uncertainty about the dis-
tribution of players’ signals. It follows that the rational expectation equilibrium in the
large economy is defined as a function of the state variable θ.

10. Characterization of the rational expectation equilibrium. Reny and Perry (2006),
Proposition 3.1 (i) derived a fully revealing rational expectation equilibrium in the
large economy.

Lemma 2.1 (Reny and Perry (2006)). There is a unique fully revealing rational
expectation equilibrium in the large economy with pREE(θ0) = v(θ0,xi(θ0)).

In this equilibrium, for each state, the fully revealing rational expectation equilibrium
price will be the expected value of the good of the player who is on the margin11.

9We sometimes denote ub to be an ex post payoff function of a buyer and us to be an ex post payoff function of a seller.
10We assume that when a player is indifferent between qi = 1 and 0, a tie will be broken in a way so that the resulting

allocation is consistent with the market clearing condition.
11Even when the distribution of the signal is discrete, the argument in Reny and Perry (2006) can be applied and Lemma

1 holds. To see this, first note that v(θ, xi(θ)) is a strictly increasing function of θ since even when xi(θ) is nondecreasing
and constant, v is still strictly increasing in the first argument θ. Thus, given the price v(θ0, xi(θ0)), a player can infer the
state θ0. Then, a player strictly prefers to be assigned a good if the value is strictly higher than v(θ0, xi(θ0)), which takes
place if the signal is strictly above xi(θ0). A player does not want to be assigned a good if the signal is strictly less than
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2.3. Bayesian Nash equilibrium in uniform price double auctions

We now specify a Bayesian Nash equilibrium of the uniform price double auction.

11. Consider a sequence of auctions where the nth auctions has n players of whom nB
players are potential buyers and nS players are potential sellers. That is n = nB + nS.
Let Nn, Nn,B, and Nn,S denote the set of players, buyers and sellers in the nth auction.
It follows Nn = Nn,B ∪Nn,S.
We consider central rank case auctions (Hong and Shum (2004)) where the double
largeness condition (Pesendorfer and Swinkels (1997)) holds and the supply grows
proportionally to demand.

Assumption 6 A sequence {nS, nB} satisfies the following conditions: (a). 0 < nS
n <

1
2. (b). limn→∞

nS
n = 1− α.

We suppose that the prices are formed through a uniform price double auction (Rusti-
chini, Satterthwaite, and Williams (1994), Wilson (1995), Cripps and Swinkels (2004),
and Reny and Perry (2006)).

12. Bids. Each buyer submits a bid and each seller submits an offer. Let bi denote the
bid or the offer submitted by player i and let b = (b1,...,bn).
We distinguish between two assumptions about the set of possible bids. The first
assumption is that the set of possible bids is finite and the bid grid size is ∆. Let
B∆ = {0,∆,2∆,...,b} ∪ b denote the set of possible bids when the bid step size ∆ is
positive where v(1,1) < b < ∞ is the largest possible bid and b is a nonparticipation
option with zero expected payoff regardless of the behavior of other players.

The second assumption is that the bids are continuum. Let B0 = [0,b]∪ b denote the
set of possible bids in this case.

13. The price function. Let pn(b) denote the market price pn(b) in the nth auction
when players submits bids b = (b1, ..., bn). We assume that the price is determined by
the k-double auction pricing rule. That is, for a fixed k ∈ [0,1],

pn(b) = (1− k)bnS+1:n + kbnS:n

14. The allocation function. Let qn(bi,b−i) be the allocation of player i in the nth
auction when player i bids bi and other players’ bids are b−i. When a player’s bid or
offer bi is higher than bnS:n, then the player is assigned a unit of the good. When bi
is lower than bnS:n, then the player is not assigned a unit of good. The ties will be

xi(θ0). When the signal is equal to xi(θ0), the player is indifferent whether a good is assigned or not. By breaking ties in
a way consistent with the market clearing condition, the price function pREE(θ0) = v(θ0, xi(θ0)) satisfies the conditions
for the rational expectation equilibrium.
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broken symmetrically among buyers and sellers12, independently from other events in
the game. That is, qn(bi,b−i) satisfies the following condition:

qn(bi, b−i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if bi > bnS:n.

1 with probability
nS−|j:bj>bnS :n|
|j:bj=bnS :n|

if bi = bnS:n.

0 else.

Let G(γ,f ,∆, n) be a non-cooperative game induced by a double auction when the
support of the signal is Xγ, the information structure is f , the size of the economy is
n, and the bid step size is ∆.

15. Distributional strategies. Player i’s distributional strategy (Milgrom and Weber
(1985)) in G(γ,f ,∆, n) is a probability measure μγ,∆,n,i on B∆×Xγ with its distribution
function Hγ,∆,n,i(bi,xi) and the probability mass function hγ,∆,n,i(bi,xi) such that the
marginal distribution on Xγ is equal to FXi

(xi).
Given a distributional strategy μγ,∆,n,i, let βγ,∆,n,i be a corresponding behavioral
strategy in the sense that βγ,∆,n,i(xi) is a random variable whose distribution over B∆
corresponds to the distribution of bids conditional on xi according to Hγ,∆,n,i(bi|xi).
Let suppHγ,∆,n,i(bi|xi) denote the support of βγ,∆,n,i(xi).
Let B∆ be the set of possible behavioral strategies when the set of possible bids is

B∆.
We say that a strategy is pure if there exists a function βγ,∆,n,i(xi) such thatHγ,∆,n,i(bi,xi)
puts a probability 1 on the set {(xi,βγ,∆,n,i(xi))}xi∈Xγ

. A pure strategy is monotone if
βγ,∆,n(xi) is a nondecreasing function of xi.

Given a set of strategies by players other than i, we can write down player i’s objective
function as follows.

16. Expected payoffs. Let Uγ,∆,n(xi,bi,β
∗
γ,∆,n,−i) be player i’s interim expected payoff

in G(γ,f ,∆, n) when player i’s signal is xi, a bid is bi, and other players place bids b−i
according to strategies β∗γ,∆,n,−i. That is,

Uγ,∆,n(xi, bi, β
∗
γ,∆,n,−i) = Eθ,X−i|Xi

[ui(θ, xi, pn(bi, b−i), qn(bi, b−i))].

Let πγ,∆,n,i(βi,β
∗
γ,∆,n,−i) be player i’s ex ante expected payoff function in G(γ,f ,∆, n)

when the strategy profile is βγ,∆,n.

We are now in a position to specify a Bayesian Nash equilibrium of the double auction
game.

17. Bayesian Nash equilibrium. A Bayesian Nash equilibrium of G(γ,f ,∆, n) is a profile
of distributional strategies β∗γ,∆,n where (a) every buyer chooses the symmetric strat-

12See Reny and Zamir (2004) and Reny and Perry (2006) for a discussion of the implication of symmetric tie-breaking
rules.
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egy and every seller chooses the symmetric strategy13 and (b) each player’ s strategy
satisfies the best response property. That is, for every i,

β∗γ,∆,n,i ∈ arg max
β0∆,i∈B∆

πγ,∆,n,i(β
0
∆,i, β

∗
γ,∆,n,−i).

18. A nontrivial Bayesian Nash equilibrium. We say that an outcome according to a
strategy profile is nontrivial if trade occurs between buyers and sellers. We say that a
Bayesian Nash equilibrium is nontrivial if the probability the outcome according to the
equilibrium strategy profile is nontrivial is positive. Let τ(β∗γ,∆,n) denote the probability
that an outcome according to β∗γ,∆,n is nontrivial. A Bayesian-Nash equilibrium β∗∆,n
is nontrivial if τ(β∗γ,∆,n) > 0.

19. A Bayesian Nash equilibrium price. Let Pγ,∆n(β
∗
γ,∆,n) be a random variable which

represents the price generated by the equilibrium strategy profile β∗γ,∆,n of the double
auction game G(γ,f ,∆, n).

3. THE MAIN RESULT

20. The main proposition of the paper states asymptotic properties of a nontrivial
Bayesian-Nash equilibrium of the uniform price double auction game.
(a) Given Assumption 1, 2, 4, 5 and 6, there exists a signal grid size γ > 0 and a

bid grid size ∆ > 0 such that for every 0 < γ < γ and 0 < ∆ < ∆, there
exists a nontrivial Bayesian-Nash equilibrium β∗γ,∆,n of the double auction game
G(γ,f ,∆,n).

(b) Given Assumption 1, 2, 4, 5, 6, and with conditions in Proposition 1(a), every
sequence of nontrivial Bayesian-Nash equilibrium β∗γ,∆,n is asymptotically outcome
equivalent to the fully revealing rational expectation equilibrium in the large economy
identified in Lemma 1 as the number of players n→∞ and the bid step size ∆→ 0.

(c) Given Assumption 1, 3, 4, 5, 6, and conditions of Proposition 1(a), there exists
n such that for every n > n, there exists a nontrivial monotone pure strategy
equilibrium β∗∆,n of the double auction game G(f ,∆,n).

(d) Given Assumption 1, 3, 4, 5, 6 and condition of Proposition 1(a) and 1(c), there
exists a nontrivial monotone pure strategy equilibrium β∗n of the double auction
game G(f ,n) and it satisfies the following relationship√

n(Pn(β
∗
n)− v(θ0, xi(θ0))

d→ N(0,
α(1− α)

f2Xi|θ(xi(θ0)|θ0)
·

(
∂v(θ0, xi(θ0))

∂θ

∂θ(xi(θ0))

∂xi
+

∂v(θ0, xi(θ0))

∂xi
)2) as n→∞.

13The assumption that equilibrium strategies are symmetric among buyers and also among sellers can be relaxed at the
cost of additional notations.



A STRATEGIC THEORY OF A MARKET 13

We now offer an interpretation of Proposition 1 and its relation to the previous results.

21. Part (a) says that there exists a mixed nontrivial Bayesian-Nash equilibrium of the
double auction game with a finite set of signals and a finite set of bids in the finite mar-
ket. It extends the existence result of Jackson and Swinkels (2005) in the private value
environment to an interdependent value environment14. It also complements the result
of Reny and Perry (2006) by showing that there exists a mixed strategy equilibrium in
the small finite market, even when Reny and Perry (2006)’s Theorem 6.1. (i) does not
ensure the existence of a monotone pure strategy Bayesian Nash equilibrium15.

22. Part (b) says that every nontrivial mixed strategy equilibrium in the finite economy
converges to the fully revealing rational expectation equilibrium in the large economy. It
extends Theorem 6.1. (ii)-(iv) of Reny and Perry (2006) by showing that information
aggregation can take place in the larger class of nontrivial mixed strategy Bayesian
Nash equilibria. It also extends Theorem 1 of Cripps and Swinkels (2006) by show-
ing that asymptotic uniqueness and efficiency of mixed strategy equilibria in private
value uniform price double auctions can be extended to a class of interdependent value
uniform price double auctions.

23. Part (c) says that there exists a monotone pure strategy equilibrium of the double
auction in the sufficiently large finite economy. This result was first proved by Reny
and Perry (2006) as Theorem 6.1 (i).

Part (a), (b) and (c), taken together, generalize Theorem 6.1 of Reny and Perry (2006)
in the following sense. Reny and Perry (2006) Theorem 6.1 showed that the uniform
price auction among sufficiently large number of buyers and sellers has a monotone pure
strategy equilibrium in the sufficiently large finite economies where bidding behavior is
arbitrary close to a price taking behavior, the market clearing price is arbitrary close
to the rational expectation equilibrium price, and the allocation is arbitrary close to
efficient. This paper shows that every nontrivial mixed strategy equilibrium, including
the monotone pure strategy equilibrium identified in Reny and Perry (2006), satisfies
these properties16.

14To be precise, Jackson and Swinkels (2005) assumed a continuum set of bids and signals, while the result here assumes
a finite set of bids and signals. It is straightforward to extend the existence result of Part (a) to the case of a continuum
set of signals. But an assumption of a finite set of bids is somewhat necessary since it is harder to deal with discontinuities
due to ties in the interdependent value models without monotonicity structure of equilibrium strategies.
15Reny and Perry (2006) considered a continuum set of signals and the finite set of bids, while the result here assumes

a finite set of bids and signals. It is straightforward to extend the existence result of Part (a) to the case of a continuum
set of signals.
16To be precise, the first result (asymptotic uniqueness and efficiency of nontrivial mixed strategy Bayesian Nash

equilibria) assumes the finite set of signals and the second result (existence of a monotone pure strategy Bayesian Nash
equilibrium in the sufficienlty large economies) assumes the contiuum of signals, while Reny and Perry (2006) assumes
the continuum of signals.
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24. Part (d) says when the signal is continuum, the Bayesian Nash equilibrium price
of the double auction is not only a consistent and asymptotically normal estimator of
the value of the good. It follows that the Bayesian Nash equilibrium price provides a
consistent and asymptotically normal estimator of the uncertain state of the world.
This result extends the result of Reny and Perry (2006) by showing that a Bayesian
Nash equilibrium price is not only a consistent estimator of the value but also an
asymptotically normal estimator. Also this result generalizes the asymptotic normality
result of Hong and Shum (2004) in the one-sided auctions to a uniform price double
auction.

We now provide a short sketch of the proof. We elaborate a detailed sketch in the
next subsections.

25. Proof of Part (a).We first define a modified game G(γ,f ,∆, n, δ) where a nonstrate-
gic bidding takes place with probability δ. When the set of possible bids is finite, the
mixed extension of the game is continuous. When there is a possibility of nonstrategic
bidding, buyers and sellers place a serious bid to trade. Thus, there exists a nontrivial
Bayesian-Nash equilibrium β∗γ,∆,n,δ of G(γ,f ,∆, n, δ). Furthermore, since buyers and
sellers prefer to bid seriously even with small δ, the limit strategy profile β∗γ,∆,n as
δ → 0 is a nontrivial equilibrium of G(γ,f ,∆, n).

26. Proof of Part (b). Consider a limit β∗γ,∆ of a sequence of nontrivial Bayesian Nash
equilibria {β∗γ,∆,n} of G(γ,f ,∆, n). Since the payoff function of G(γ,f ,∆, n) converges
to the payoff function in the large economy G(γ,f ,∆) as n → ∞, β∗γ,∆ is a nontrivial
Bayesian Nash equilibrium of G(γ,f ,∆). Then we consider the behavior of β∗γ,∆ for small
bid grid size ∆. In the large economy, a player’s bid cannot affect the market clearing
price and every player faces a symmetric distribution of strategies of other players.
Thus, buyers and sellers’ decision problems are symmetric. Then, for sufficiently small
∆, a best response to β∗γ,∆ satisfies the strict single crossing property. It follows that
β∗∆ has monotone supports. When we take the bid grid size ∆ → 0, winner’s curse
effect implies β∗γ,∆ will be separating. Thus the limit β

∗ is characterized by the limit
of first order conditions for a Bayesian-Nash equilibrium in G(γ,f ,∆). It follows that
the limit equilibrium is outcome equivalent to the rational expectation equilibrium.

27. Proof of Part (c). From Part (b), we know that the best response to β∗γ,∆ sat-
isfies the strict single crossing property for G(γ,f ,∆). Since the convergence of the
expected payoff of G(γ,f ,∆, n) to that of G(γ,f ,∆) is uniform when the set of signals
and the set of bids are finite, for sufficiently large n, the best response to β∗γ,∆,n satisfies
strict single crossing property. It follows that both buyer’s and seller’s strategies have
monotone supports. We now set the signal grid size γ → 0 and consider G(f ,∆, n).
Then, since equilibrium strategies have monotone supports for every γ > 0, the limit
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equilibrium β∗∆,n also has monotone supports. Since the set of signals is continuum and
the set of possible bids is finite in G(f ,∆, n), β∗∆,n has to be pure and monotone almost
everywhere.

28. Proof of Part (d). We first extend the result of Part (c) to G(f ,n) by taking
the bid grid size ∆ → 0. Since the equilibrium strategies β∗∆,n is monotone, winner’s
curse effect implies that the limit strategy profile β∗n does not involve ties and thus a
monotone pure strategy Bayesian Nash equilibrium. We can now derive the asymptotic
distribution of β∗n by decomposing into the difference between v(θ(xnS:n),xnS:n) and
v(θ, xi(θ)) and the difference between v(x0(xn:nS),xn:nS) and β∗n. The first difference
can be evaluated by the delta method. The second difference goes to zero because β∗n
converges to v(θ(xi), xi) at the rate of O(1/n).

4. PROOF

4.1. Proof of Part (a)

We begin with the definition of the modified game.

29. The modified game G(γ,f ,∆,n,δ). Given G(γ,f ,∆,n), let G(γ,f ,∆,n,δ) denote the
game where, in addition to players in Nn, there is a nonstrategic player

bi who partic-
ipates in the auction as a buyer with probability δ/2 and participates as a seller with
probability δ/2. Either as a buyer or a seller, bi bids uniformly over b ∪ {0,∆,2∆,...,b},
independent of other events in the game. Let Hbi,∆ denote its distribution function and
let hbi,∆ denote the probability mass function.
The auction mechanism treats players in Nn and a nonstrategic player

bi symmetri-
cally. Let pn(bi,b−i,bbi) and qn(bi,b−i,bbi) be the market clearing price and the allocation
of player i when players Nn submitted bids (bi,b−i) and a nonstrategic player bi sub-
mitted a bid bbi.
30. We now introduce notations to describe strategies and equilibrium of the modified
game G(γ,f ,∆,n,δ).
Let β∆,n,δ,i be player i’s distributional strategy in G(γ,f ,∆,n,δ). Let H∆,n,δ,i be its
distribution function and let h∆,n,δ,i(b,xi) be its probability mass function.

Let Uγ,∆,n,δ,i(xi,bi,βγ,∆,n,δ,−i) denote player i’s interim expected utility given xi, bi,
and βγ,∆,n,δ,−i where the expectation is taken over the participation and the distrib-
ution of bids by nonstrategic bidders, in addition to the distribution of the state and
other players’ signals conditional on xi. Let πγ,∆,n,δ,i(βγ,∆,n,δ,i,βγ,∆,n,δ,−i) denote the
ex ante expected utility given players’ strategies βγ,∆,n,δ,i and βγ,∆,n,δ,−i.

31. Continuity of ex ante payoff functions πγ,∆,n,δ(βγ,∆,n,δ,i,βγ,∆,n,δ,−i). We first note
that the payoff function πγ,∆,n,δ is continuous, since the set of possible bids B∆ is finite
and we consider distributional strategies.
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Lemma 4.1 πγ,∆,n,δ(βγ,∆,n,δ,i,βγ,∆,n,δ,−i) is continuous in (βγ,∆,n,δ,i,βγ,∆,n,δ,−i).

32. Definition of a best response correspondence. Let Φ : B∆ ×B∆ → B∆ ×B∆ denote
a correspondence defined by

Φ(βγ,∆,n,δ,b, βγ,∆,n,δ,s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

argmaxβ0b∈B∆ πγ,∆,n,b(β
0
b, βγ,∆,n,δ,b, ..., βγ,∆,n,δ,b| {z }

nB−1 buyers

,

βγ,∆,n,δ,s, ..., βγ,∆,n,δ,s| {z }
nS sellers

)

argmaxβ0s∈B∆ πγ,∆,n,s(βγ,∆,n,δ,b, ...βγ,∆,n,δ,b,| {z }
nB buyers

β0s, βγ,∆,n,δ,s, ..., βγ,∆,n,δ,s| {z }
nS−1 sellers

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
This correspondence takes bidding strategies of a buyer βγ,∆,n,δ,b, and a seller βγ,∆,n,δ,s,
and returns a best response of a buyer when all other buyers follow βγ,∆,n,δ,b and
every seller follows βγ,∆,n,δ,s, and a best response of a seller when every buyer follows
βγ,∆,n,δ,b and all other sellers follow βγ,∆,n,δ,s.

33. Existence of a nontrivial Bayesian Nash equilibrium β∗γ,∆,n,δ. Since the set of distri-
butional strategies is compact and ex ante payoff function πγ,∆,n,δ is continuous, there
exists a fixed point of Φ, which is a symmetric Bayesian equilibrium. Furthermore, since
a nonstrategic player offers a serious bid with a positive probability, this equilibrium
is nontrivial.

Lemma 4.2 There exists ∆ > 0 such that for every 0 < ∆ < ∆ and δ > 0, there
exists a nontrivial Bayesian-Nash equilibrium β∗γ,∆,n,δ of G(γ, f,∆,n,δ).

We now take the probability of nonstrategic bidding δ → 0.

34. Construction of an equilibrium of G(γ,f ,∆, n, δ). Let {β∗γ,∆,n,δ}δ be a sequence of a
nontrivial Bayesian-Nash equilibrium G(γ, f,∆,n,δ). Then there is a subsequence δ and
a subsequence limit β∗γ,∆,n such that β

∗
γ,∆,n,δ → β∗γ,∆,n in the sense that, for each xi

and bi, the probability that a player with signal xi chooses a bid bi converges as δ → 0.
Since the expected utility function πγ,∆,n,δ is continuous, β

∗
γ,∆,n is an equilibrium of

G(γ,f ,∆, n). Since the probability of trade τ is a continuous function of equilibrium
strategies, the probability of trade also converges.

Lemma 4.3

(a) β∗γ,∆,n is a Bayesian Nash equilibrium of the double auction game G(γ,f ,∆, n).
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(b) For each x0,

lim
δ→0

τγ,∆,n,δ(β
∗
γ,∆,n,δ|x0) = τγ,∆,n(β

∗
γ,∆,n|x0).

We now suppose that β∗γ,∆,nis trivial and derive an estimate of the distribution of
bids.

35. Estimates of the distribution of bids in G(γ,f ,∆, n, δ) for small δ. Suppose that
β∗γ,∆,n is trivial. That is, τγ,∆,n(β

∗
γ,∆,n) = 0. The only way that β

∗
γ,∆,n can be trivial is

that sell bids will be very high and buy bids will be very low. Consequently, when δ is
small, the probability of a high buy bid and a low sell bid need to be very small.

Lemma 4.4 Suppose β∗γ,∆,n is trivial. Then, for every xi, 0 < bi ≤ b,

lim
δ→0

h∗γ,∆,n,δ,b(bi|xi) = 0

and 0 ≤ bi < b,

lim
δ→0

h∗γ,∆,n,δ,s(bi|xi) = 0.

We now consider whether a seller with a low signal might prefer to lower the offer
rather than the high offer required to sustain a trivial equilibrium.

36. An alternative strategy. By Assumption 5 (c), v(x0,0) = 0 for every x0. Then, for
sufficiently small ∆ > 0,

Pr{xi ∈ Xγ : v(1, 1)− 6∆− v(1, xi) > 0} > 0.

We note that this ∆ are independent of other structure of the economy.

Consider an alternative strategy for seller i whose signal xi satisfies the above con-
dition such that whenever the equilibrium sell bid is at least v(1,1), seller i lowers the
bid to v(1,1)− 2∆.
37. The change in payoffs from the alternative strategy. Let W i,n be the nS-th highest
bid among bids by players other than i, that is, W i,n = bnS:|Nn∪{bi}−{i}|. There are four
cases to be considered.

(a) Consider the case W i,n = v(1,1). An offer of v(1,1) can be accepted (subject to
ties). An offer of v(1,1) − 2∆ will be accepted. But the sales price will be lower
with an offer of v(1,1)− 2∆. An upper bound of the loss from changing to an offer
of v(1,1) − 2∆ can be obtained by assuming that both offers will be accepted for
sure. The k double auction pricing rule implies that the loss is bounded above by
2∆.

(b) Consider the case W i,n = v(1,1) − ∆. An offer of v(1,1) is above W i,n, so it will
not be accepted. An offer of v(1,1) − 2∆ is below W i,n, so it will be accepted.
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With an offer of v(1,1) − 2∆, the sales price is between W i,n = v(1,1) − ∆ and
v(1,1)−2∆. The lowest possible price is v(1,1)−2∆. On the other hand, the largest
possible value is of the good is v(1,xi). Thus the lower bound of payoff from sales
is v(1,1)− 2∆− v(1,xi).

(c) Consider the caseWi,n = v(1,1)−2∆. An offer of v(1,1) is aboveW i,n, so it will not
be accepted. An offer of v(1,1)− 2∆ is equal to W i,n, so it can be accepted. When
there is a sale, the lower bound of payoff from sales price is v(1,1)− 2∆− v(1,xi).

(d) When W i,n < v(1,1) − 2∆, both offers of v(1,1) and v(1,1) − 2∆ is above W i,n.
Consequently, neither offers will be accepted and payoffs are zero.

The gain from the sales at case (c) is larger than 4∆ and the loss of sales at case (a)
is at most 2∆.

It remains to evaluate the probabilities of case (a) and case (c). We use an asymptotic
expansion method to evaluate the distribution of the equilibrium bids at small δ by
ignoring the higher order terms in terms of δ. For sufficiently small δ, the probability
of event (a) and (c) can be approximated by the probability that a nonstrategic playerbi chooses a bid of v(1,1) and v(1,1) − ∆, respectively. Since Hbi,∆ is uniform, these
probabilities are approximately equal. Consequently, the expected benefit from new
sales outweighs the expected cost of lower prices from existing sales.

Lemma 4.5 Suppose that β∗γ,∆,n is trivial. Then there exists δ > 0 and ∆ > 0 such
that for every 0 < δ < δ and ∆ < ∆, the set of signals such that every seller i with the
signal in that set prefers to deviate from βγ,∆,n,δ,i has a positive measure.

This is a contradiction to the assumption that β∗γ,∆,n,δ is an equilibrium of G(γ,f ,∆, n, δ).
Consequently, it has to be that a Bayesian Nash equilibrium β∗γ,∆,n is nontrivial. This
establishes Part (a) of Proposition 1.

4.2. Proof of Part (b)

Having established existence of a nontrivial Bayesian Nash equilibrium of the double
auction game in the finite economy, we now study its asymptotic properties.

38. Convergence to a Bayesian-Nash equilibrium of double auction in the large economy.
It follows from Part (a) that for sufficiently small∆, there exists a sequence of nontrivial
mixed strategy equilibria {β∗γ,∆,n}n. Let β∗γ,∆ = (β∗γ,∆,b,β∗γ,∆,s) be its subsequence limit.
We need to show that β∗γ,∆ is a nontrivial equilibrium of the double auction game in
the large economy G(γ,f,∆). For that purpose, we show that the ex ante payoff func-
tion πγ,∆,n,i(β

∗
γ,∆,n,i,β

∗
γ,∆,n,−i) of G(γ,f ,∆, n) converges to the ex ante payoff function

πγ,∆,i(β
∗
γ,∆,i,β

∗
γ,∆,i) of G(γ,f,∆). The change in the ex ante payoffs is the sum of two

effects:

(a) The first effect concerns the effect of change of strategies from β∗γ,∆,n to β
∗
γ,∆ while
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keeping the size of the economy n constant. This term πγ,∆,n,i(β
∗
γ,∆,n,i,β

∗
γ,∆,n,−i)−

πγ,∆,n,i(β
∗
γ,∆,i, β

∗
γ,∆,i) converges to zero since β

∗
γ,∆,n converges to β

∗
γ,∆.

(b) The second effect concerns the effect of the change of the size of the economy n
while keeping the strategy β∗γ,∆,n constant. This term πγ,∆,n,i(β

∗
γ,∆,n,i,β

∗
γ,∆,n,−i)−

πγ,∆,i(β
∗
γ,∆,n,i,β

∗
γ,∆,n,−i) converges to zero because of convergence of the empiri-

cal distribution of bids generated by β∗γ,∆,n converges to the distribution of bids
generated by β∗γ,∆,n.

It remains to show that β∗γ,∆ is nontrivial. To see this, suppose β
∗
γ,∆ is trivial. Then,

it follows that for sufficiently large n, the probability of trade under β∗γ,∆,n has to be
very small. But an argument similar to a previous lemma implies that it cannot be the
case. Thus we have

Lemma 4.6 β∗γ,∆ is a nontrivial Bayesian Nash equilibrium of G(γ,f,∆).

We now examine the structure of a best response to β∗γ,∆. We first begin with its
symmetry.

39. Symmetry of interim expected payoffs and best responses. LetBRγ,∆,i(xi, β
∗
γ,∆,b, β

∗
γ,∆,s)

be the set of best responses for player i when, except for player i, all buyers use
β∗γ,∆,b and all sellers use β

∗
γ,∆,s. Then, since buyers and sellers are symmetric in val-

ues and informations, their interim expected payoff functions are symmetric. That
is, and since they face a symmetric distribution of bidding strategies of other players,
their best responses are symmetric. That is, there exists a best response correspondence
BRγ,∆(xi,β

∗
γ,∆,b,β

∗
γ,∆,s) common to every player i, such that BRγ,∆(xi,β

∗
γ,∆,b,β

∗
γ,∆,s) =

BRγ,∆,i(xi,β
∗
γ,∆,b,β

∗
γ,∆,s) for every i. That is, although buyers and sellers’ best responses

are asymmetric in the finite economy, players’ best responses will be symmetric in the
double auction in the large economy.

We now proceed to examine its monotonicity structure.

40. The strict single crossing property. Let bi ∈ BRγ,∆(xi,β
∗
γ,∆,b,β

∗
γ,∆,s). We now want

to show that the best response to β∗∆ satisfies the best reply strict single crossing
property17. That is,

If bi is a best response for xi to (β
∗
γ,∆,b, β

∗
γ,∆,s),

then, for bi > bi, xi > xi,

Uγ,∆(xi, bi, β
∗
γ,∆,b, β

∗
γ,∆,s) ≥ Uγ,∆(xi, bi, β

∗
γ,∆,b, β

∗
γ,∆,s)| {z }

if bi is preferred to a lower bid by a player with the signal xi

→ Uγ,∆(xi, bi, β
∗
γ,∆,b, β

∗
γ,∆,s) > Uγ,∆(xi, bi, β

∗
γ,∆,b, β

∗
γ,∆,s)| {z }

then bi is still, and strictly preferred to the lower bid by a player with the higher signal xi

17Reny and Zamir (2004) first introduced a notion of the best reply single crossign condition (BR-SCC).
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and, for bi < bi, xi > xi,

Uγ,∆(xi, bi, β
∗
γ,∆,b, β

∗
γ,∆,s) ≥ Uγ,∆(xi, bi, β

∗
γ,∆,b, β

∗
γ,∆,s)| {z }

if bi is preferred to a higher bid bi by a player with signal xi

→ Uγ,∆(xi, bi, β
∗
γ,∆,b, β

∗
γ,∆,s) > Uγ,∆(xi, bi, β

∗
γ,∆,b, β

∗
γ,∆,s).| {z }

then bi is still, and strictly preferred to the higher bid by a player with a lower signal xi
Intuitively, the strict single crossing property holds when the incremental return from
bi to bi ∈ BRγ,∆(β

∗
γ,∆,b, β

∗
γ,∆,s) crosses zero only once, only from below, and at most

at a single point.

We now proceed to show that the best response correspondence BRγ,∆ satisfies the
strict single crossing properties. We proceed in the following steps.

41. We first estimate the effect of a change in the signal from xi to xi on the estimate
of the value of the good. The change is the sum of the following two effects:

• Private value effect: By Assumption 5, a player with a signal xi increases the
estimate of the value of the good at least by λ(xi − xi).

• Affiliation effect: By Assumption 4 and 5, the estimated value is nondecreasing in
the signal.

Thus, in total, the value estimate increases at least by λ(xi − xi).

Next we establish the strict single crossing property holds locally.

42. Local strict single crossing property. Suppose that bi and bi are one grid size apart
(bi − bi = ∆).

• The change in the estimated value is at least λγ.
• On the other hand, the possible increase in the payment is bounded above by
bi − bi = ∆.

Thus, for sufficiently small∆, the increase in the expected value of the good outweighs
the possible increase in the payment, and the strict single crossing holds.

Lastly, we extend the local result to a more general case.

43. Strict single crossing property in a general case. Suppose that the difference bi− bi
is more than one grid size apart. We sketch the argument in three cases.

• Suppose that no other players place a bid between bi and bi. It follows that the
player with signal xi should have a nonnegative payoff from winning with the price
bi, otherwise the player could have lowered the bid. Then, a player with the high
signal xi should have a positive expected payoff from winning with the price bi.
Thus, even when the probability that the price is bi increases with signal xi, the
player with signal xi strictly prefers bi over bi.

• Suppose that there is another player, with signal lower than xi, who places a bid
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between bi and bi. It follows from the previous local argument, the player with
signal xi will prefer to increase a bid incrementally from bi to bi.

• The remaining case is that the player who places a bid between bi and bi has a signal
strictly higher than xi. But in this case, this player should have strictly preferred
bi over the bid between bi and bi in the first place, which is a contradiction.

Therefore, we have

Lemma 4.7 There exists ∆ > 0 such that for all 0 < ∆ < ∆, in the double auction
game in the large economy G(γ,f ,∆), a best response to an equilibrium strategy β∗γ,∆
satisfies the strict single crossing property for bids in the range of the equilibrium prices.

The first important consequence of the strict single property is that the distribution
of bids according to β∗γ,∆ has supports nondecreasing in signals.

44. Monotone supports. Since the player’s best response satisfies the strict single cross-
ing property, a Monotone selection theorem (Milgrom and Shannon (1994), Milgrom
(2004)) implies that every selection from a best response correspondence is nonde-
creasing in the player’s signal. A consequence is that an equilibrium strategy β∗γ,∆ has
monotone supports in the sense that every selection from suppβ∗γ,∆(xi) is nondecreas-
ing in xi. That is, for the minimum bid placed by a player with a high signal is no less
than the maximum bid placed by a player with a low signal.

Lemma 4.8 β∗γ,∆(xi) has monotone supports in the range of the equilibrium prices.

Strict single crossing property in a decision problem itself still does not imply that the
optimizer is strictly increasing18. That is, it is still possible that the minimum bid placed
by a player with a high signal is equal to the maximum bid placed by a player with a
high signal so that β∗γ,∆ is not separating. But in affiliated value auctions, monotonicity
of bidding strategies can affect a player’s inference, and thus choice, through winner’s
curse, and it will lead to a separation of β∗γ,∆ for ∆ sufficiently small.

45. Winner’s curse and separation at β∗γ,∆. The next step is to show that players with
distinct signals will place distinct bids. Suppose otherwise that players with two distinct
signals xi > xi place the same bid in bi according to β

∗
∆ with positive probability.

First, a previous lemma implies that winner’s curse is present at the tie. That is,
when the state is higher, the bids will be higher, and a player is more likely to lose the
tie. It follows that the expected value of the good conditional on the event of losing
the tie at bi is higher than the expected value of the good conditional on the event of
winning at the tie at bi.
18See Athey, Milgrom, and Roberts (forthcoming) for a counterexample.
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On the other hand, since bidders with distinct signals bid the same amount, it has to
be that the player with signal xi should have a negative expected payoff from losing
the tie at bi, otherwise the player will increase the bid to outbid the player with the
low signal. Also, the player with signal xi should have a positive expected payoff from
winning the tie at bi, otherwise the player will decrease the bid so that the player will
not be tied with the player with the high signal.
These three conditions are mutually exclusive. Therefore,

Lemma 4.9 There exists ∆ > 0 such that for all ∆ < ∆, for every player i 6= j,
signal xi 6= xj, and a bid b which is in the range of the equilibrium price, Pr(β

∗
∆,i(xi) =

b) · Pr(β∗∆,j(xj) = b) = 0.

We now proceed to prove Proposition 1 part (b).

46. Asymptotic equivalence of β∗γ,∆ to a fully revealing rational expectation equilibrium
as ∆→ 0.
We now take ∆→ 0 and consider the property of a limit strategy profile β∗γ. Winner’s
curse effect will imply that there would not be a tie at β∗γ, thus β

∗
γ is a Bayesian Nash

equilibrium of G(γ f).
We now consider the first order condition at G(γ,f ,∆). Let bi be a bid which is in the
support of β∗γ,∆(xi). Then,Z X

Xγ:p(bi,b−i)=bi+∆

(v(θ, xi)− (bi +∆))q(bi +∆, b−i)h∆(b−i|x−i)

fθ|Xi
(θ|xi)dxi

+
Z X
Xγ×...×Xγ:p(bi,b−i)=bi

(v(θ, xi)− bi)(1− q(bi, b−i))h∆(b−i|x−i)

fθ|Xi
(θ|xi)dxi

≤ 0.
The first term deals with the case where a bid bi+∆ wins the good at the price bi+∆.
The second term deals with the case when the bid of bi previously lost the tie but now
a bid bi+∆ wins the tie. Similar condition holds for a change in bid from bi to bi−∆.
The previous lemma implies that there will not be a tie between bids by players
with different signals for sufficiently small ∆. Thus, for ∆ small, a changing a bid
a little bit will not affect the allocation. Furthermore, winner’s curse effect implies
that there would not be a tie at the limit strategy profile β∗γ(xi). It follows that,
q(bi +∆,b−i) → q(bi,b−i) as ∆ → 0. Therefore, the first order condition implies that
E[(v(θ,Xi)− bi)|Xi = xi,p(bi,b−i) = bi] = 0. In words, the bid is equal to the expected
value of the good conditional on the bid being on the margin.
Given the monotone likelihood ratio condition, the bidding strategy is strictly in-
creasing in xi. This implies that the limit strategy β∗∆,b is outcome equivalent to the
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fully revealing rational expectation equilibrium. Thus we have:

Lemma 4.10 The limit strategy profile β∗γ is outcome equivalent to the fully revealing
rational expectation equilibrium identified in Lemma 2.1.

This lemma concludes the proof of Proposition Part (b).

4.3. Proof of Part (c)

This subsection studies the property of a Bayesian Nash equilibrium in the double
auction game in the large finite economies. We begin with understanding the rela-
tions between the double auction games in the large economy and in the large finite
economies.

47. Uniform convergence of the interim expected payoff functions from G(γ,f ,∆,n) to
G(γ,f ,·). We saw in Lemma 4.6 that the ex ante payoff functions in G(γ,f ,∆,n) as
the size of the economy increases. Since the set of possible bids and the set of possible
signals are both finite, the convergence is uniform.

Lemma 4.11 Suppose β∗γ,∆,n → β∗γ,∆.Then,

Uγ,∆,n,i(xi, bi, β
∗
γ,∆,n,b, β

∗
γ,∆,n,s)→ Uγ,∆(xi, bi, β

∗
γ,∆,b, β

∗
γ,∆,s) as n→∞

uniformly for player i, signal xi, and a bid bi.

Lemma 4.11 implies that, when the economy is sufficiently large, (a) the difference of
the expected payoffs between the large finite economy and the large economy is small,
and (b) the difference of payoffs between a buyer and a seller is small.

48. Best responses. It follows from the previous lemma that for sufficiently large n, a
player’s expected payoff in G(γ,f ,∆,n) will be very close to the player’s expected payoff
in G(γ,f ,∆). Since the set of signals and the bids are finite, for sufficiently large n, a best
response to β∗γ,∆,n in G(γ,f ,∆,n) is also a best response to β∗γ,∆ of G(γ,f ,∆). To see this,
suppose that bγ,n,i is a best response for a player with signal xi to β

∗
γ,∆,n in G(γ,f ,∆,n)

but not to β∗γ,∆ of G(γ,f ,∆). Then, there should be a best response b0i which does
better than bγ,n,i to β

∗
γ,∆. That is, Uγ,∆(xi,b

0
i,β
∗
γ,∆,b,β

∗
∆,s) > Uγ,∆(xi,bn,i,β

∗
∆,b,β

∗
∆,s).But

it follows from Lemma 4.11 that, for sufficiently large n, b0i does better than bi,n in
G(γ,f ,∆,n). It is a contradiction to the fact that bi,n is a best response to (β∗∆,n,b,β∗∆,n,s)
in G(γ,f ,∆,n). Since the number of possible combinations of xi and bi is finite, it is
possible to find a finite lower bound n.

Lemma 4.12 There exists n such that for every n >n, for every player i and for every
signal xi,

BRγ,∆,n,i(xi, β
∗
∆,n,b, β

∗
∆,n,s) ⊆ BRγ,∆(xi, β

∗
∆,b, β

∗
∆,s).
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This relation of best responses between double auction games in the large finite
economy and in the large economy allows us to extend the best response strict single
crossing properties to the large finite economy.

49. Strict single crossing properties in the large finite economy. Consider a buyer with
signal xn,i and a bid bγ,∆,n,i ∈ BRγ,∆,n,b(xn,i,β

∗
γ,∆,n,b,β

∗
γ,∆,n,s). We now increase the

signal from xi to xi and we would like to see that a buyer with signal xi still and
strictly prefers b∆,n,i to a lower bid bi < b∆,n,i. That is,

Uγ,∆,n,b(xi, b∆,n,i, β
∗
∆,n,b, β

∗
∆,n,s) > Uγ,∆,n,b(xi, bi, β

∗
∆,n,b, β

∗
∆,n,s).

From Lemma 4.12, bγ,∆,n,i is also a best response of a buyer with signal xn,i to β
∗
γ,∆

in G(γ,f ,·). It follows from the strict single crossing condition of the double auction in
the large economy (Lemma 4.7) that

Uγ,∆(xi, b∆,n,i, β
∗
∆,b, β

∗
∆,s) > Uγ,∆(xi, bi, β

∗
∆,b, β

∗
∆,s).

From Lemma 4.11, for sufficiently large n, the distance between Uγ,∆,n,b(xi,b∆,n,i,β
∗
∆,n,b,β

∗
∆,n,

and Uγ,∆,n(xi,b∆,n,i,β
∗
γ,∆,b,β

∗
γ,∆,s) and the distance between Uγ,∆,n, b(xi,bi,β

∗
γ,∆,n,b,β

∗
γ,∆,n,s)

and Uγ,∆(xi,bi,β
∗
γ,∆,b,β

∗
γ,∆,s) will be sufficiently small. Therefore, the best response

strict single crossing condition holds for sufficiently large finite economies.

Lemma 4.13 There exists ∆ > 0 and n<∞ such that for all 0 < ∆ < ∆ and n >n,
the uniform price auction game in the large finite economy G(γ,f ,∆,n) satisfies a best
response strict single crossing property for bids in the range of the equilibrium prices.

50. Monotone and separating supports in the large finite economy. It follows from a
reasoning similar to Lemma 4.9 that both the support of equilibrium strategies of
buyers and sellers increase monotonically in signals and the supports are separating
for sufficiently small ∆.

Lemma 4.14 There exists ∆ > 0 and n<∞ such that for all ∆ < ∆ and n >n, (a).
β∗γ,∆,n,i has a monotone supports. (b). for each player i, signal xi 6= xj, and a bid bi
which is in the range of the equilibrium price, Pr(β∗γ,∆,n,i(xi) = bi) · Pr(β∗γ,∆,n,i(xj) =
bi) = 0.

Reny and Perry (2006) considered the setting where the set of possible bids is finite
and the set of possible signals is continuous. We now take the signal grid size γ → 0
and characterize a Bayesian-Nash equilibrium β∗∆,n of the double auction with a finite
set of possible bids in the large finite economy with continuum signals G(f,∆, n).



A STRATEGIC THEORY OF A MARKET 25

51. We approximate G(f,∆, n) by a sequence of double auction games with a finite
set of signals {G(γ,fγ,∆,n)}γ by approximating the posterior distribution fXi|θ(xi|θ)
with {fXi|θ,γ(xi|θ)}γ. Specifically, for each θ and γ > 0, let

fXi|θ,γ(xi|θ) =
⎧⎪⎨⎪⎩
Rxi+γ/2
xi−γ/2 fXi|θ(x

0
i|θ)dx0i if xi = kγ ∈ [0, 1] for some k ∈ N.

0 else

It follows from Lemma 4.15 that G(γ, fγ,∆,n) has a nontrivial Bayesian-Nash equilib-
rium β∗γ,∆,n with monotone and separating supports for each γ > 0.

52. Bayesian-Nash equilibrium of G(f,∆, n).Let β∗∆,n be a limit strategy profile of
{β∗γ,∆,n}γ as γ → 0. Since fθ|Xi,γ(θ|xi) converges weakly to fθ|Xi

, β∗∆,n is a Bayesian-
Nash equilibrium of G(f,∆, n).
Furthermore, since every β∗γ,∆,n has monotone and separating supports and β∗γ,∆,n
changes continuously in n,β∗∆,n also has monotone supports. Since the set of possible
bids is finite and signals is continuum, β∗∆,n is monotone and pure almost everywhere.

Lemma 4.15 There exists n< ∞ such that for n >n, there exists a monotone pure
Bayesian Nash equilibrium β∗∆,n of the double auction game in the large finite market
G(f ,∆,n).

Lemma 4.15 corresponds to Theorem 6.1 (i) of Reny and Perry (2006). This concludes
the proof of part (c).

4.4. Proof of Part (d)

In this subsection we establish the asymptotic normality of a monotone pure strategy
Bayesian Nash equilibrium price. We first show that a monotone pure strategy Bayesian
Nash equilibrium exists of the double auction game with a continuum set of bids in
the large finite economy.

53. Bayesian-Nash equilibrium of the double auction game in the large finite economy
G( f ,n). Let β∗∆,n be a sequence of monotone pure strategy equilibria in G(f ,∆,n). Let
β∗n be a limit of {β∗∆,n}∆ as ∆ → 0. β∗n is a strategy profile in the double auction
game with a continuum of bids G(f ,n). Due to winner’s curse effect, when there are
ties in the limit, a buyer with a high signal prefers to increase the bid in the sufficiently
large finite economy. Analogous relation holds for a seller. Therefore, the limit strategy
profile does not involve a tie among players. Therefore, β∗n does not involve a tie and
is a monotone pure strategy equilibrium of G(f ,n).

Lemma 4.16 There exists n< ∞ such that for each n >n, there exists a nontrivial
monotone pure strategy equilibrium β∗n in the double auction game in the finite market
G(f ,n).
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We now study the limit behavior of β∗n as n→∞.

54. Asymptotic outcome equivalence to the fully revealing rational expectation equilib-
rium in the large economy. Let β∗ denote a limit of a sequence of monotone pure
strategy equilibria β∗n in {G(f ,n)}n. Since β∗n does not involve a tie due to winner’s
curse effect and the outcomes in the finite economies converge to the outcome in the
large economy. it is possible to extend Lemma 4.11 to show that β∗ is a nontrivial
monotone pure strategy equilibrium of G(f). Furthermore, analysis of the first order
conditions show that, similar to Lemma 4.10, β∗ is outcome equivalent to the fully
revealing rational expectation equilibrium in the large economy.

Lemma 4.17 As n → ∞, a nontrivial monotone pure strategy equilibrium β∗n in the
double auction game G(f ,n) is asymptotically outcome equivalent to the fully revealing
rational expectation equilibrium identified in Lemma 2.1.

We now study the asymptotic behavior of Pn(β
∗
n)− v(θ0,xi(θ0)).

55. Decomposition of
√
n(Pn(β

∗
n) − v(θ0,xi(θ0))). Let Pn(θ0) be the transaction price

where each player uses a bidding strategy in the rational expectation equilibrium
v(θ(xi),xi). Since buyers and sellers can bid asymmetrically in the finite market, the
transaction price PBNE

n (β∗n) can very well be different from Pn(θ0). Then we split the
difference as follows:√

n(Pn(β
∗
n)− v(θ0, xi(θ0)))

=
√
n(Pn(θ0)− v(θ0, xi(θ0)))| {z }

the sample size effect

+
√
n(Pn(β

∗
n)− Pn(θ0))| {z }

the strategic effect

.

56. The sample size effect. Our analysis is based on a standard result of the asymptotic
distribution order statistics of a continuous random variable (David and Nagaraja
(2003)):

√
n(XnS;n − xi(θ0))→d N

⎛⎜⎝0, α(1− α)

f2Xi|θ(xi(θ0)|θ0)

⎞⎟⎠
Since Pn(θ0) = v(θ(XnS;n),XnS;n),

√
n(Pn(θ0)− v(θ0, xi(θ0))) can be evaluated by ap-

plying the delta method (e.g. van der Vaart (2000)).

57. The strategic effect. We first derive the condition that the strategic effect will be
asymptotically negligible. Let

ηn(x) = Pr(
√
n(Pn(β

∗)− v(θ(xi), x0)) ≤ x)−
Pr(
√
n(Pn( θ0)− v(θ(xi), θ0)) ≤ x).

Suppose, hypothetically, that every player use the same strategy. In this case, ηn(x)
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can be evaluated as

ηn(x) =
1

Beta(nS, n− nS + 1)

Z Hn(v(θ(xi),θ0)+
x√
n
)

H∗n(v(θ(xi),θ0)+
x√
n
)
tnS−1(1− t)n−nS

where Hn is the distribution of Pn(θ0), H
∗
n is the distribution of Pn(β

∗
n), and Beta(a,b)

denotes a beta function. By evaluating this integral, we can show that it is suffice
that the distribution of bidding strategies HBNE

n converges H at a rate faster than
O(1/

√
n).

By extending the argument to the case where buyers and sellers use asymmetric
strategies, we can see that it is suffice that both H∗n,b and H∗n,s converge at the rate
faster than O(1/

√
n).

58. The rate of convergence of β∗n,b and β∗n,s. It now remains to show that β
∗
n,b and

β∗n,s converge to v(θ(xi),xi) at a rate faster than O(1/
√
n).

We first show that the size of misrepresentation v(θ(xi),xi) − β∗n,i(xi) converges to
0 at the rate of O(1/n). To see this, consider a buyer who bids below v(θ(xi),xi) and
increases a bid from bi by a small amount ε. This change in the payoff is the sum of
the following two effects:

• If the bid bi is on the margin and losing and if there is a bid between bi and bi+ ε,
then the bid bi + ε wins.

• If the bid bi is on the margin and winning, then increasing the bid from bi to bi+ ε
will increase the payment.

As the number of buyers and sellers increases, the probability that a buyer or a seller
have placed a bid in the interval [bi,bi + ε] increases at the rate of O(n). On the other
hand, a probability that a buyer wins at bid bi will not drift as the n increases. That is,
as n→∞, even if a buyer increases a bid just a small amount of ε, the buyer can win
the good additionally with a significant probability while the cost from this increased
bid is small. The rate by which the buyer can profitably increases a bid is O(1/n),
corresponding to the rate of increase in the probability that there will be a buyer and
seller in the interval.

Since the same argument holds for the seller, the asymmetry between the buyer and
the seller will vanish at the rate of O(1/n) and their equilibrium bidding strategies
will approach to the rational expectation equilibrium demand and supply at the rate
of O(1/n).

Thus we have,

Lemma 4.18 Let Pn(β
∗
n) be a Bayesian-Nash equilibrium price in an equilibrium β∗n
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in the large finite economy G(n). Then,√
n(Pn(β

∗
n)− v(θ0, xi(θ0))

→ dN(0,
α(1− α)

f2Xi|θ(xi(θ0)|θ0)

(
∂v(θ0, xi(θ0))

∂θ

∂θ(xi(θ0))

∂xi
+

∂v(θ0, xi(θ0))

∂xi
)2) as n→∞.

If we hypothetically set the value function v(θ0,xi) = θ0, the limit distribution in
this case will be the same with the limit distribution of the one-sided uniform price
auction of Pesendorfer and Swinkels (1997) derived by Hong and Shum (2004), due
to the asymptotic equivalence of one-sided uniform price auctions and uniform price
double auctions. Lemma 4.18 concludes the proof of part (d).

The Center for Advanced Research in Finance, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo, Japan 113-0033.
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Supplement to ”A Strategic Theory of a Market”1 Preliminary and
Incomplete. Please do not circulate.

Eiichiro Kazumori

This supplement presents the proof of Proposition 1 in the main paper.

5. INTRODUCTION

In this supplement we proceed as follows. In section 2, We explain the proof of
Proposition 1(a). Section 3 contains the proof of Proposition 1(b). Section 4 the proof
of Proposition 1(c). Section 5 is devoted to the proof of Proposition 1(d). All symbols,
definitions, and assumptions are as given in the text.

6. PROOF OF PROPOSITION 1(A)

6.1. Lemma 2.1

Lemma 4.1. In G(γ,f ,∆,n,δ) and G(γ,f,∆,n), for each player i, for each strategy profile
of other players β−i,∆,n,δ, the ex ante payoff function πn,i(β∆,n,δ,i,β∆,n,δ,−i) is contin-
uous in player i0s strategy βi,∆,n.

Proof: Before proving the lemma, we first transform the seller’s payoff by a term
which is independent of the seller’s choice variable1. Then we show that the ex ante
expected payoff function πi,n(βi,∆,n,β−i,∆,n,δ) is continuous in G(γ,f ,∆,n). The proof
for G(γ,f ,∆, n, δ) is analogous.

60. Definition of a modified seller’s payoff function in G(γ,f ,∆,n). Let pn(b−i)
denote the market clearing price calculated hypothetically assuming that every bidder
but i submits the bid b−i. For each i ∈ NX , define a modified interim expected payoff

1This device was first introduced by Reny and Perry (2006).

30



A STRATEGIC THEORY OF A MARKET 31

U 0i,n(xi,bi,β4,n,−i) by

U 0n,i(xi, bi, β4,n,−i)

=
Z
[0,1]

X
B∆ × ...×B∆| {z }

n−1

×X × ...×X| {z }
nS−1

(pn(bi, b−i)− v(θ0, xi))| {z }
the profit when the seller sells the good

(1− qn(bi, b−i))| {z }
the probability that an offer bi sells

h∆,n,−i(b−i|x−i)fθ,X−i|Xi
(θ0, x−i|xi)dθ0| {z }

the density of the state and the other player’s bids given xi

−
Z
[0,1]

X
B∆ × ...×B∆| {z }

n−1

×X × ...×X| {z }
nS−1

(pn(b−i)− v(θ0, xi))| {z }
the adjustment term intended to approximate pn(bi,b−i)−v(θ0,xi)
h∆,n,−i(b−i|x−i)fθ,X−i|Xi

(x0, x−i|xi)dx0.

This device was first introduced by Reny and Perry (2006). U 0n,i(xi,bi,β4,n,−i) is ad-
justed by the term which is independent of seller i’s choice variable bi.As the size of
the economy n grows large, the payoff function of a seller converges to the payoff of a
buyer with the same signal and the bid given other players’ strategies.

61. Definition of the modified game. Suppose that, in G(γ,f ,∆,n),the seller’s pay-
off function is replaced from Un,i to U 0n,i. Then, for each seller i, a bid bi is a best
response to β−i,4,n in a game where the seller’s payoff function is Un,i(xi,bi,β4,n,−i) if
and only if it will be so in a game where the seller’s payoff function is U 0n,i(xi,bi,β4,n,−i).
Therefore, these two games are strategically equivalent. Therefore, it is without loss of
generality to consider the game where the seller’s payoff is U 0i,n(xi,bi,β−i,4,n,δ). Here-
after, to simplify the notation, we denote Ui,n(xi,bi,β−i,4,n) by U

0
i,n(xi,bi,β−i,4,n).

We now show that the ex ante payoff function πi,n,δ(βi,∆,n,β−i,∆,n,δ) of G(γ,f ,∆,n,δ)
is jointly continuous in players’ strategies.
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62. Expansion of πi,n,δ(βi,∆,n,β−i,∆,n,δ,m). We note

πi,n,δ(βi,∆,n,δ,m, β−i,∆,n,δ,m) (1)

=
X

B∆×X
Ui,n,δ(xi, bi, β−i,∆,n,δ,m)hi,∆,n,δ,m(bi, xi)

= δ|{z}
this is the probability that there is a nonstrategic bidX
B∆×X

[(
Z
[0,1]

X
B∆ × ...×B∆| {z }

n−1

×X ...×X| {z }
n−1

ui(x0, xi, pn(bi, b−i, bbi), qn(bi, b−i, bbi))| {z }
the ex post expected payoff with a nonstrategic bid

h−i,∆,n,δ,m(b−i|x−i)fθ,X−i|Xi
(x0, x−i|xi)| {z }

the conditional density of the state and the other players’ bid given the signal of player i

· hbi(bbi)| {z }
the density of a nonstrategic bid

]

hi,∆,n,δ,m(bi|xi)fXi
(xi)| {z }

the density of a player’s bid and a signal

+ (1− δ)| {z }
this is th e case where there is no nonstrategic bidX

B∆×X
[
Z
[0,1]

X
B∆ × ...×B∆| {z }

n−1

×X ...×X| {z }
n−1

ui(x0, xi, p(bi, b−i), q(bi, b−i))| {z }
the ex post payoff without a nonstrategic bid

h−i,∆,n,δ,m(b−i|x−i)fθ,X−i|Xi
(x0, x−i|xi)| {z }

the conditional density of the state and the other players’ bid given the signal xi

]

hi,∆,n,δ,m(bi|xi)fXi
(xi).

That is, a player’s ex ante payoff πi,n,δ(βi,∆,n,δ,m,β−i,∆,n,δ,m) is the sum of payoffs when
there is a nonstrategic bidder and when there is no strategic bidder. When there is a
nonstrategic bidder, the expected payoff is obtained by taking expectations in terms
of other players’ signal and bids, the state, and the behavior of a nonstrategic bidder
given the player’s signal.

63. Convergence of strategies in G(γ,f ,∆,n,δ). We note, in G(γ,f ,∆,n,δ), both
the set of possible signals and the set of possible bids are finite in G(γ,f ,∆, n, δ), a
distributional strategy βi,∆,n,δ is defined by a (b/∆+ 1) · (1/γ + 1) dimensional finite
dimensional vector {hi,∆,n,δ(bi|xi)}bi∈B∆,xi∈X . Therefore, we can define a topology on
a set of strategies in a standard way. That is, a sequence of distributional strategies
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βi,∆,n,δ,m,m = 1,2,...,converges to βi,∆,n,δ as m→∞, if and only if, for each bi and xi,

lim
m0→∞

hi,∆,n,δ,m0(bi|xi) = hi,∆,n,δ(bi|xi). (2)

That is, for each signal xi, for every bid bi, the probability that a player uses a bid bi
given signal xi converges.

64. Joint continuity of πi,n,δ(βi,∆,n,δ,β−i,∆,n,δ) in G(γ,f ,∆,n,δ). Suppose that By
substituting (2) into (1), we obtain

lim
m→∞πi,n,δ(βi,∆,n,δ,m, β−i,∆,n,δ,m) = πi,n,δ(βi,∆,n,δ, β−i,∆,n,δ). (3)

6.2. Lemma 2.2

Lemma. There exists ∆ > 0 such that for every 0 < ∆ < ∆ and δ > 0, there exists a
nontrivial Bayesian-Nash equilibrium β∗∆,n,δ of G(γ,f ,∆,n,δ).

Proof: We first show existence of a Bayesian Nash equilibrium and then show that
this equilibrium is nontrivial.

65. Definition of a best response correspondence. Recall the definition of Φ∆,n,δ :
B∆ ×B∆ → B∆ ×B∆ from the text:

Φ∆,n,δ(β∆,n,δ,b, β∆,n,δ,s)

=

⎛⎜⎜⎜⎜⎜⎜⎝
argmaxβ0b∈B∆ πn,∆,δ,b(β

0
b, β∆,n,δ,b, ..., β∆,n,δ,b| {z }

nB−1 buyers

, β∆,n,δ,s, ..., β∆,n,δ,s| {z }
nS sellers

)

argmaxβ0s∈B∆ πn,∆,δ,s(β∆,n,δ,b, ...β∆,n,δ,b,| {z }
nB buyers

β0s, β∆,n,δ,s, ..., β∆,n,δ,s| {z }
nS−1 sellers

)

⎞⎟⎟⎟⎟⎟⎟⎠ .
That is, Φ∆,n,δ returns a best response of a buyer when all other buyers use β∆,n,δ,b
and every seller uses β∆,n,δ,s and a best response of a seller when every buyer uses
β∆,n,δ,b and all other sellers use β∆,n,δ,s.

66. Existence of a fixed point of Φ∆,n,δ. We will show existence of a fixed point of
Φ∆,n,δ by showing that Φ∆,n,δ satisfies the conditions for Kakutani fixed point theorem.
• Nonemptiness. Follows from continuity of π∆,n,δ, established in Lemma 4.1.
• Closed graph. It follows from continuity of π∆,n,δ and the Maximum theorem.
• Convex-valued. It follows from (1) that πn,∆,δ is a linear function of hi,∆,n,δ(bi|xi).
Therefore, Φ∆,n,δ is convex-valued.

Since B∆ is a compact, convex subset of ((1/γ)+1) · ((b/∆)+1) dimensional Euclidean
space, and since Φ∆,n,δ is nonempty, has a closed graph, and is convex-valued, then it
follows from Kakutani’s fixed point theorem that there exists a fixed point β∗∆,n,δ of
Φ∆,n,δ.

It remains to show that β∗∆,n,δ is nontrivial.
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67. Assumption of triviality. Contrary suppose that β∗∆,n,δ is trivial. Then, by
definition in the text, the probability of trade between buyers and sellers is zero. By
the definition of trading rule, almost surely, the highest buy bid in the support of the
buyer’s strategy is strictly less than the lowest sell bid in the support of the seller’s
strategy. It is because, otherwise, a buyer’s buy bid would be at least equal to a seller’s
sell offer with a positive probability, and it would lead to a trade with a positive
probability.

68. Conditions for the support of seller’s trading strategy. We now claim that,
in order for β∗∆,n,δ to be trivial, it has to be that every sell offer in the support of the
seller’s bidding strategy, including the one of a nonstrategic seller, is at least v = v(1,1).
Suppose not and that the seller will choose an offer strictly less than v with some
positive probability. Then, with the positive grid size ∆ > 0, a seller’s offer will be
equal or less than v −∆ with some positive probability. In order for this equilibrium
to be trivial, it has to be that all buy bids have to be strictly less than v −∆ almost
surely.
We now show that then there will be some buyers who wants to trade with these
offers. By Assumption 5 (c), when xi = 1, v(x0,1) = v for every x0. By Assumption 4
(c), for every x0, the probability that xi = 1 conditional on x0 is positive. Suppose that
a buyer with xi = 1 bids v − ∆ instead of an equilibrium strategy which will ensure
the triviality. Then, this bid v −∆ wins with some positive probability, since the sell
offer is equal or less than v−∆ with positive probability and all buy bids are less than
v −∆ almost surely. When the buyer trades, from the k-double auction pricing rule,
the transaction price is equal or less than v −∆. Therefore, the buyer gets a positive
expected payoff for every x0 ∈ [0,1]. Since the buyer’s payoff at any trivial equilibrium
is zero, the buyer prefers to deviate. It is a contradiction. Thus it follows that every
sell offer in the support of the seller’s bidding strategy is at least v.

69. Derivation of contradiction. But in G(γ,f ,∆,n,δ), there is a positive probability
of a sell offer less than v(1,1) because of a nonstrategic bidder. It follows that β∗∆,n,δ
cannot be trivial.

6.3. Lemma 2.3

Lemma. (a). β∗∆,n is a Bayesian equilibrium of G(γ,f ,∆, n); (b).

lim
δ→0

τ∆,n,δ(β
∗
∆,n,δ|x0) = τ∆,n(β

∗
∆,n|x0). (4)

Proof: We proceed in three steps. We first prove the statement (a). Then we derive
a formula for τ∆,n,δ(β

∗
,∆,n,δ|x0) and show it converges to τ∆,n(β∗∆,n|x0) as δ → 0.
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70. Equilibrium conditions for β∗∆,n. By definition, β
∗
∆,n is a Bayesian equilibrium

if, for every player i, every possible strategies βi,∆,n,

πn,i(β
∗
∆,n,i, β

∗
∆,n,−i) ≥ πn,i(β∆,n,i, β

∗
∆,n,−i) (5)

Let {β∆,n,δ}δ denote a sequence of distributional strategies such that β∆,n,δ → β∆,n.
Since β∗∆,n,δ is an equilibrium,

πn,δ,i(β
∗
∆,n,δ,i, β

∗
∆,n,δ,−i) ≥ πn,δ,i(β∆,n,δ,i, β

∗
∆,n,δ,−i). (6)

Therefore, in order to establish (5), it is suffice to show that

lim
δ→0

πn,δ,i(β
∗
∆,n,δ,i, β

∗
∆,n,δ,−i) = πn,i(β

∗
∆,n,i, β

∗
∆,n,−i) (7)

and
lim
δ→0

πn,δ,i(β∆,n,δ,i, β
∗
∆,n,δ,−i) = πn,i(β∆,n,i, β

∗
∆,n,−i) (8)

That is, it is suffice to show that the expected payoffs in G(γ,f ,∆, n, δ) converge to the
expected payoff in G(γ,f ,∆, n).

We now show (8). An argument for (7) is similar.

71. Decomposition of πn,δ,i(β∆,n,δ,i,β
∗
∆,n,δ,−i)− πn,i(β∆,n,i,β

∗
∆,n,−i). We note

πn,δ,i(β∆,n,δ,i, β
∗
∆,n,δ,−i)− πn,i(β∆,n,i, β

∗
∆,n,−i) (9)

=
h
πn,δ,i(β∆,n,δ,i, β

∗
∆,n,δ,−i)− πn,i(β∆,n,δ,i, β

∗
∆,n,δ,−i)

i
| {z }
change in the probability of participation by a nonstrategic player

while strategies fixed

+
h
πn,i(β∆,n,δ,i, β

∗
∆,n,δ,−i)− πn,i(β∆,n,i, β

∗
∆,n,−i)

i
| {z }

change in player’s strategies
without taking into account of a nonstrategic player

That is, the change in expected payoff can be decomposed into the change caused by
a change in the probability of participation by a nonstrategic bidder and the effect
caused by a change in players’ strategies without taking into account of a change in
the probability of a nonstrategic bidding.

We now evaluate these two terms one by one.

72. Convergence of the first term of (9). We note that, for the first term of (1),

δ
X

B∆×X
[
Z
[0,1]
(

X
B∆ × ...×B∆| {z }

n−1

×X ...×X| {z }
n−1

ui(x0, xi, p(bi, b−i, bbi), q(bi, b−i, bbi))

h∆,n,δ,−i(b−i|x−i)fθ,X−i|Xi
(x0, x−i|xi)hbi(bbi)]h∆,n,δ,i(bi|xi)fXi

(xi)

→ 0 as δ → 0
Thus, from similar calculation for the second term of (1) that πn,δ,i(β∆,n,δ,i,β

∗
∆,n,δ,−i)−

πn,i(β∆,n,δ,i,β
∗
∆,n,δ,−i)→ 0
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73. Convergence of the second term of (9). It follows from (1) that

πn,i(βi,∆,n,δ, β−i,∆,n,δ)− πn,i(βi,∆,n, β−i,∆,n) (10)

=
X

B∆×X
[
Z
[0,1]

X
B∆ × ...×B∆| {z }

n−1

×X ...×X| {z }
n−1

ui(x0, xi, p(bi, b−i), q(bi, b−i))

h∆,n,δ,−i(b−i|x−i)fX−i|Xi
(x−i|xi)]h∆,n,δ,i(bi|xi)fXi

(xi)

−
X

B∆×X
[
Z
[0,1]

X
B∆ × ...×B∆| {z }

n−1

×X ...×X| {z }
n−1

ui(x0, xi, p(bi, b−i), q(bi, b−i))

h∆,n,−i(b−i|x−i)fX−i|Xi
(x−i|xi)]h∆,n,i(bi|xi)fXi

(xi).

Then, we have

lim
δ→0

πi,n(βi,∆,n,δ, β−i,∆,n,δ) = πi,n(βi,∆,n, β−i,∆,n). (11)

75. Conclusion of the proof. It follows from (9) and (11), that (8) holds. Similarly,
(7) holds. Therefore, (5) holds.

Having established convergence of expected payoffs, we now show that the proba-
bility that an equilibrium is nontrivial converges from G(γ,f ,∆, n, δ) to G(γ,f ,∆, n).
For that purpose, we first derive the probability that an equilibrium is nontrivial at
G(γ,f ,∆, n, δ).

76. Calculation of the probability that an equilibrium is nontrivial. Let β∆,n,δ
be a strategy profile of G(γ,f ,∆, n, δ). We note that

an outcome is nontrivial

⇐⇒ the highest buy bid is equal or higher than the lowest sell offers

Thus,

Pr (an outcome is nontrivial)

= Pr(the highest buy bid is equal or higher than the lowest sell offer)

Thus we need to calculate this probability.

78. Decomposition into cases depending on the behavior of a nonstrategic
player. The probability that the highest buy bid is equal or higher than the lowest
sell offer can be calculated by conditioning on the behavior of a nonstrategic player.

• (a) the nonstrategic player bi does not participate
• (b) bi participates as a buyer
• (c) bi participates as a seller.
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That is, the probability that a strategic profile is nontrivial is
τ∆,n,δ(β∆,n,δ|x0) (12)

= (1− δ)τ∆,n,δ(β∆,n,δ|x0, bi is not active)
+
δ

2
τ∆,n,δ(β∆,n,δ|x0, bi participates as a buyer)

+
δ

2
τ∆,n,δ(β∆,n,δ|x0, bi participates as a seller).

We now calculate the first term.

79. The case when bi is nonactive. Let b1:nB be a random variable which indicates
the highest buy bid. Let bnS:nS be a random variable which indicates the lowest sell
bid. Then trade takes place if and only if b1:nB ≥ bnS:nS . Thus we next calculate these
probability distribution function of b1:nB and bnS:nS .

80. The probability distribution function of b1:nB . For each xi, each buyer chooses
a bid according to a behavioral strategy h∆,n,δ,b(bi|xi). Consequently, a probability that
a buyer chooses a bid bi in state x0 isX

xi∈Xγ

h∆,n,δ,b(bi|xi)fXi|θ(xi|x0). (13)

Thus the probability that a buyer will choose a bid equal or less than bi isX
b0i≤bi

X
xi∈X

h∆,n,δ,b(b
0
i|xi)fXi|θ(xi|x0). (14)

Since players’ signals are independently distributed conditional on x0, the conditional
probability distribution function of b1:nB is, from (14),

Pr (b1:nB ≤ bi|x0) =
⎛⎜⎝ X
b0i≤bi

X
xi∈X

h∆,n,δ,b(b
0
i|xi)fXi|θ(xi|x0)

⎞⎟⎠
nB

. (15)

That is, the probability that the maximum buy bid is less than bi conditional on x0 is
given by the probability that every buy bid is less than b0 conditional on x0.

81. The probability mass function of b1:nB . It follows from (15) that the probability
that b1:nB takes a value of bi conditional on x0 is

Pr(b1:nB = bi|x0) (16)

= Pr (b1:nB ≤ bi|x0)− Pr (b1:nB ≤ bi −∆|x0)

=

⎛⎜⎝ X
b0i≤bi

X
xi∈X

h∆,n,δ,b(b
0
i|xi)fXi|θ(xi|x0)

⎞⎟⎠
nB

−
⎛⎜⎝ X
b0i≤bi−∆

X
xi∈X

h∆,n,δ,b(b
0
i|xi)fXi|θ(xi|x0)

⎞⎟⎠
nB

.
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82. The probability distribution function of bnS:nS. Similarly, the probability
that a seller chooses a bid bi in state x0 is

P
xi∈Xγ

h∆,n,δ,s(bi|xi)fXi|θ(xi|x0) and the
probability that seller i will choose a bid equal or less than bi is

X
b0i≤bi

X
xi∈X

hs,∆,n,δ(b
0
i|xi)fXi|θ(xi|x0). (17)

Since a seller’s signal is independently distributed conditional on x0, the probability
that the minimum sell bid bnS:nS is less than bi is given by, from (17),

Pr (bnS:nS ≤ bi|x0) (18)

= 1−
⎛⎜⎝1− X

b0i≤bi

X
xi∈X

hs,∆,n,δ(b
0
i|xi)fXi|θ(xi|x0)

⎞⎟⎠
nS

.

That is, the event that a minimum bid is less than bi is a complement of the event that
there is a bid above bi.

83. The probability mass function of bnS:nS. It follows from (18) that the proba-
bility mass function of bnS:nS is

Pr(bnS:nS = bi|x0) (19)

= Pr (bnS:nS ≤ bi|x0)− Pr (bnS:nS ≤ bi −∆|x0)

=

⎡⎢⎣1−
⎛⎜⎝1− X

b0i≤bi

X
xi∈X

hs,∆,n,δ(b
0
i|xi)fXi|θ(xi|x0)

⎞⎟⎠
nS⎤⎥⎦

−
⎡⎢⎣1−

⎛⎜⎝1− X
b0i≤bi−∆

X
xi∈X

hs,∆,n,δ(b
0
i|xi)fXi|θ(xi|x0)

⎞⎟⎠
nS⎤⎥⎦

=

⎛⎜⎝1− X
b0i≤bi−∆

X
xi∈X

hs,∆,n,δ(b
0
i|xi)fXi|θ(xi|x0)

⎞⎟⎠
nS

−
⎛⎜⎝1− X

b0i≤bi

X
xi∈X

hs,∆,n,δ(b
0
i|xi)fXi|θ(xi|x0)

⎞⎟⎠
nS

.

84. Calculation of the probability of trade. For each value of the minimum sell
bid hnS:nS = bi, 0 ≤ bi ≤ b, trade takes place if the maximum buy bid b1:nB ≥ bi.
Since the minimum sell bids hnS:nS and the maximum buy bids b1:nB are distributed
independently conditional on x0, the probability that trade takes place given hnS:nS = bi
is X

b0i≥bi
Pr(b1:nB = b0i|x0) Pr(bnS:nS = bi|x0). (20)

By summing up, the probability that trade takes place conditional on the state x0 and
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that bi being not active is, from (20),

τ∆,n,δ(β∆,n,δ|x0, bi is not active) (21)

=
X

bi∈B∆

X
b0i≥bi

Pr(b1:nB = b0i|x0) Pr(bnS:nS = bi|x0).

We now consider the second case of (12).

85. The case where bi participates in the auction as a buyer. Let b1:|Nn,B∪bi| be
a random variable which indicates the highest buy bid among the bids by Nn,B ∪ bi.
Then trade takes place if and only if b1:|Nn,B∪bi| ≥ bnS:nS . Since we already calculated the

probability distribution of bnS:nS , we need to understand the probability distribution
of b1:|Nn,B∪bi|.
86. Calculation of the probability distribution function of b1:|Nn,B∪bi|. Since bids
by buyers in Nn,B and a bid by a nonstrategic buyer are independently distributed
conditional on x0, the probability distribution function of the maximum bid among
bids by i ∈ Nn,B ∪ bi is

Pr
µ
b1:|Nn,B∪bi| ≤ bi|x0

¶
(22)

=

⎛⎜⎝ X
b0i≤bi

X
xi∈X

hb,∆,n,δ(b
0
i|xi)fXi|θ(xi|x0)

⎞⎟⎠
nB ⎛⎜⎝ X

b0i≤bi
hbi(b0i)

⎞⎟⎠ .
87. The probability mass function of b1:|Nn,B∪bi|. Thus, the probability mass func-
tion of b1:nB conditional on x0 is

Pr(b1:|Nn,B∪bi| = bi|x0) (23)

=

⎛⎜⎝ X
b0i≤bi

X
xi∈X

hb,∆,n,δ(b
0
i|xi)fXi|θ(xi|x0)dxi

⎞⎟⎠
nB ⎛⎜⎝ X

b0i≤bi
hbi(b0i)

⎞⎟⎠
−
⎛⎜⎝ X
b0i≤bi−∆

X
xi∈X

hb,∆,n,δ(b
0
i|xi)fXi|θ(xi|x0)dxi

⎞⎟⎠
nB ⎛⎜⎝ X

b0i≤bi−∆
hbi(b0i)

⎞⎟⎠ .
88. The probability that β∆,n,δ is nontrivial when

bi participates in the auction
as a buyer. Similarly to (21),

τ∆,n,δ(β∆,n,δ|x0, bi is a buyer) (24)

=
X

bi∈B∆

X
b0i≥bi

Pr(bi:|Nn,B∪bi| = b0i|x0) Pr(bnS:nS = bi|x0).

We now consider the third case of (12).

89. The case where bi is a seller. Let b|Nn,S∪bi|:|Nn,S∪bi| be a random variable which

indicates the lowest sell bid among sell bids by i ∈ Nn,S ∪ bi. Then trade takes place if
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b1:nB ≥ b|Nn,S∪bi|:|Nn,S∪bi|.
90. Calculation of the probability mass function of b|Nn,S∪bi|:|Nn,S∪bi|. Following a
similar reasoning in the case bi is a buyer, the probability that the maximum bid among
bids by i ∈ Nn,S ∪ bi is less than bi is given by

Pr
µ
bnS∪bi:nS∪bi ≤ bi|x0

¶
(25)

= 1−
⎛⎜⎝1− X

b0i≤bi

X
xi∈X

hs,∆,n,δ(b
0
i|xi)fXi|θ(xi|x0)dxi

⎞⎟⎠
nS ⎛⎜⎝1− X

b0i≤bi
hbi(b0i)

⎞⎟⎠ .
Thus, the probability mass function of bnS∪bi:nS∪bi conditional on x0 is

Pr(b|Nn,S∪bi|:|Nn,S∪bi| = bi|x0) (26)

=

⎛⎜⎝1− X
b0i≤bi−∆

X
xi∈X

hs,∆,n,δ(b
0
i|xi)fXi|θ(xi|x0)dxi

⎞⎟⎠
nS ⎛⎜⎝1− X

b0i≤bi−∆
hbi(b0i)

⎞⎟⎠
−
⎛⎜⎝1− X

b0i≤bi

X
xi∈X

hs,∆,n,δ(b
0
i|xi)fXi|θ(xi|x0)dxi

⎞⎟⎠
nS ⎛⎜⎝1− X

b0i≤bi
hbi(b0i)

⎞⎟⎠
91. Calculation of the probability of nontriviality when bi is a seller. Similar
to (21),

τ∆,n,δ(β∆,n,δ|x0, bi is a seller) (27)

=
X

bi∈B∆−{b}

X
b0i≥bi

Pr(bi:nB = b0i|x0) Pr(bnS∪bi:nS∪bi = bi|x0).

The trading probability τ∆,n,δ(β∆,n,δ|x0) is obtained from substituting (21), (24), and
(27) into (12). We now proceed to show Part (b) of the lemma. We first decompose the
change into two terms:

92. Decomposition of τ∆,n,δ(β
∗
∆,n,δ|x0) − τ∆,n(β

∗
∆,n|x0). We now decompose the

change in trading probabilities as follows:

τ∆,n,δ(β
∗
∆,n,δ|x0)− τ∆,n(β

∗
∆,n|x0) (28)

=
h
τ∆,n,δ(β

∗
∆,n,δ|x0)− τ∆,n,δ(β

∗
∆,n|x0)

i
+
h
τ∆,n,δ(β

∗
∆,n|x0)− τ∆,n(β

∗
∆,n|x0)

i
.

That is, the change in the probabilities that an equilibrium is nontrivial is decomposed
into the effect of changes in β∗∆,n,δ while keeping the probability of nonstrategic bidding
constant and the effect of changes in δ while keeping the strategy constant.

We now deal with these two cases one by one.

93. Convergence of τ∆,n,δ(β
∗
∆,n,δ|x0) − τ∆,n,δ(β

∗
∆,n|x0). We first consider the case

that bi is not active and show that, as β∗∆,n,δ → β∗∆,n

τ∆,n,δ(β
∗
∆,n,δ|x0, bi not active)→ τ∆,n,δ(β

∗
∆,n|x0, bi not active) (29)
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In view of (21), it is suffice to show Pr(b1:nB = bi|x0) and Pr(bnS:nS = bi|x0) calculated
when players follow β∗∆,n,δ converges to Pr(b1:nB = bi|x0) and Pr(bnS:nS = bi|x0) calcu-
lated when players follow β∗∆,n for each bi ∈ B∆. For Pr(b1:nB = bi|x0), we recall, from
(16),

Pr(b1:nB = bi|x0) (30)

=

⎛⎜⎝ X
b0i≤bi

X
xi∈X

h∆,n,δ,b(bi|xi)fXi|θ(xi|x0)
⎞⎟⎠
nB

−
⎛⎜⎝ X
b0i≤bi−∆

X
xi∈X

h∆,n,δ,b(bi|xi)fXi|θ(xi|x0)dxi

⎞⎟⎠
nB

Then, Pr(b1:nB = bi|x0) under β∗∆,n,δ converges to Pr(b1:nB = bi|x0) under β∗∆,n. Simi-
larly, Pr(bnS:nS = bi|x0) converges as β∗∆,n,δ to β∗∆,n. Thus (29) holds. Following similar
reasoning, it is straightforward to show the other terms of (12) also converge. Thus,
the convergence of the first term of (28) holds.

94. Convergence of τ∆,n,δ(β
∗
∆,n|x0) − τ∆,n(β

∗
∆,n|x0). For the second term of (28),

when the strategies β∗∆,n are fixed and δ goes to 0, the convergence follows from the
fact that τ∆,n,δ(β

∗
∆,n|x0) is a continuous function of δ.

It follows that, from (28), τ∆,n,δ(β
∗
∆,n,δ|x0)→ τ∆,n(β

∗
∆,n|x0) as δ → 0.

6.4. Lemma 2.4

Lemma. Suppose β∗∆,n is trivial. Then, for every xi, 0 < bi ≤ v,

lim
δ→0

h∗∆,n,δ,b(bi|xi) = 0| {z }
the probability that a buyer will bid anything other than lowest possible bid of 0,

will go to zero

(31)

and 0 ≤ bi < v,

lim
δ→0

h∗∆,n,δ,s(bi|xi) = 0.| {z }
the probability that a seller will bid less than the highest possible value

will go to zero

(32)

Proof. Suppose that the conclusion does not hold. Suppose that, although (31) holds,
there exists bi < v and a signal xi such that

lim
δ→0

h∗∆,n,δ,s(bi|xi) > 0. (33)

Then, there exists a signal x0i such that for every x0,

v(x0, x
0
i) > bi. (34)
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Suppose a buyer with a signal x0i chooses to bid bi,although (31) requires that the player
with signal x

0

i will not bid bi. It follows from (31) that buyers with other signals will
not place a competing bid, that is, a bid higher than bi. It follows that a buyer i will
get the good with a positive probability. From (34), the expected payoff is positive. It
is a contradiction to the assumption that β∗∆,n is an equilibrium.

6.5. Lemma 2.5

Lemma. Suppose that β∗∆ is trivial. Then there exists δ > 0 and ∆ > 0 such that for
every δ < δ and ∆ < ∆, the set of signals such that sellers with a signal in that set
prefer to deviate from β∗i,∆,n,δ has a positive measure.

Proof:

95. Introduction. We first recall from the text that the definition of the alternative
strategy from the text. We first evaluate the change in expected payoffs, by evaluating
the gains from an additional sales and the losses from a lower price for existing sales.
We then evaluate the likelihood of these events by evaluating the probability of these
events using an asymptotic expansion.

Jackson and Swinkels (2005) provided an ingenious proof about existence of a non-
trivial mixed strategy equilibrium in a large class of private value double auctions using
a device of a nonstrategic bidder. This proof builds on their argument to show exis-
tence of a nontrivial mixed strategy equilibrium in an uniform price double auction
with a finite set of possible bids in an interdependent value setting. The argument here
assumes a strictly private value element and the private value at the boundary to avoid
nontrade equilibrium seen in, for example, in lemon’s market. Also the argument here
uses asymptotic expansion to simply the estimation of trading probability when the
probability of nonstrategic bid is sufficiently small and close to zero.

96. Definition of alternative strategies. From the text, consider a signal xi which
satisfies the condition of

v(1, 1)− 6∆− v(1, xi) > 0 (35)

For sufficiently small ∆, the probability that a player gets the signal which satisfies
the condition of (35) is positive. Now consider an alternative strategy for a seller
that whenever the equilibrium sell bid is at least v(1,1),the seller lowers the bid to
v(1,1)− 2∆.

We first introduce notations on the order statistics by other players’ bids.

97. Notations. Let W i,n be the nS-th highest bid among bids by players other than
i, that is, W i,n = bnS:|Nn∪{bi}−{i}|. Let W i,n be the nS +1st highest bid among bids by
players other than i. That is, W i,n = bnS+1:|Nn∪{bi}−{i}|.
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Figure 1.–

Using this notation, we can estimate the change in the expected payoffs.

98. Change in expected payoffs for seller i. We would like to estimate

U∆,n,δ,s(xi, v(1, 1)− 2∆, β∗−i,∆,n,δ)| {z }
the seller’s payoff from bidding v(1,1)−2∆

− U∆,n,δ,s(xi, v(1, 1), β
∗
−i,∆,n,δ)| {z }

the seller’s payoff from bidding v(1,1)

. (36)

99. Decomposition into cases depending on W i,n. The change in outcomes and

payoffs will depend on the behavior of the highest bid among bid made players other
than i.
• Case 1. W i,n = v(1,1).
• Case 2 W i,n = v(1,1)−∆.
• Case 3. W i,n = v(1,1)− 2∆.
• Case 4. W i,n < v(1,1)− 2∆.

We consider each case one by one.

100. Case 1: W i,n = v(1,1). In this case,
• An offer of v(1,1) may be accepted (subject to ties). The price is v(1,1).
• An offer of v(1,1)− 2∆ will be accepted. The price is k(max(v(1,1)− 2∆,,W i,n) +
(1− k)v(1,1).

The maximum loss can be obtained by making the assumptions that
• An offer of v(1,1) will be accepted for sure.
• The sales price is v(1,1)− 2∆.
With these assumptions, the maximum loss in payoff is

E[v(1, 1)− 2∆− v(1, 1)|xi,W i,n = v(1, 1)] ≥ −2∆. (37)

We now turn to the second case.

101. Case 2. W i,n = v(1,1)−∆. In this case,
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• An offer v(1,1) will not be accepted.
• An offer v(1,1) − 2∆ will be accepted. The sales price is k(v(1,1) − 2∆) + (1 −
k)(v(1,1)−∆).

Figure 2.–

Assuming that the sales price is v(1,1)− 2∆, the minimum gain is
E[v(1, 1)− 2∆− v(1, xi))|xi,W i,n = v(1, 1)−∆] (38)

≥ v(1, 1)− 2∆− v(1, xi)

> 4∆ from (35).

We now turn to the third case.

102. Case 3. W i,n = v(1,1)− 2∆. In this case,
• An offer v(1,1) will not be accepted.
• An offer v(1,1)−2∆ may be accepted (subject to ties). When an offer of v(1,1)−2∆
is accepted, the price is v(1,1)− 2∆.

Figure 3.–

The payoffs from sales is at least

v(1, 1)− 2∆− v(1, xi) > 0 by (35). (39)
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The probability of sales from an offer of v(1,1) − 2∆ is positive depending on the
number of bidders who is tied at v(1,1) − 2∆. In order to obtain the lower bound of
the benefit from the alternative strategy, we assume that the probability to be zero.

103. Case 4. W i,n < v(1,1)− 2∆. Neither of v(1,1) and v(1,1)− 2∆ will be accepted.
In this case, the change in payoff is zero.

From the above cases, we can estimate the change in expected payoff from the alter-
native strategy.

104. An estimate of change in expected payoffs. Collecting (36),(37), (38), and
(39), the change in expected payoff is

Ui,∆,n,δ(xi, v(1, 1)− 2∆, β∗−i,∆,n,δ)− Ui,∆,n,δ(xi, v(1, 1), β
∗
−i,∆,n,δ) (40)

> (−2∆) Pr(W i,n = v(1, 1)|xi)
+ 4∆Pr(W i,n = v(1, 1)−∆|xi)

Therefore,

Ui,∆,n,δ(xi, v(1, 1)− 2∆, β∗−i,∆,n,δ)− Ui,∆,n,δ(xi, v(1, 1), β
∗
−i,∆,n,δ) > 0 (41)

⇔ Pr(W i,n = v(1, 1)|xi) < 2Pr(W i,n = v(1, 1)−∆|xi).
Thus it remains to show (41).

In order to show (41), we now estimate Pr(W i,n = bi|Xi = xi) for δ small. For
that goal, we first derive the formula for Pr(W i,n = bi|Xi = xi). We first simply the
expression by conditioning on the state x0.

105. Conditioning Pr(W i,n = bi|Xi = xi) on x0. We note

Pr(W i,n = bi|Xi = xi) (42)

=
Z
Pr(W i,n = bi|θ = x0, Xi = xi)fθ|Xi

(x0|xi)dx0
=

Z
Pr(W i,n = bi|θ = x0)fθ|Xi

(x0|xi)dx02

.

107. Decomposition depending on the behavior of a nonstrategic bidder.
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We now decompose the

Pr(W i,n = bi|θ = x0) (43)

= Pr(W i,n = bi|θ = x0,
bi nonactive)| {z }

A

(1− δ)

+Pr(W i,n = bi|θ = x0,
bi buyer)| {z }

B

(δ/2)

+Pr(W i,n = bi|θ = x0,
bi seller)| {z }

C

(δ/2).

We now calculate A, B, and C. Before starting the calculation, we recall the distrib-
ution of bids by buyers and sellers.

108. Calculation of A. We first decompose A into cases. We observe

Pr(W i,n = bi|θ = x0,
bi nonactive) (44)

= Pr(W i,n = bi|θ = x0,
bi nonactive, there is a buy bid at bi)| {z }

A1

Pr(there is a buy bid at bi|θ = x0,
bi nonactive)| {z }

A2

+

Pr(W i,n = bi|θ = x0,
bi nonactive, there is a sell bid at bi)| {z }

A3

Pr(there is a sell bid at bi|θ = x0,
bi nonactive)| {z }

A4

We consider A1.

109. The distribution of bids in case A1. We note that³
W i,n = bi|θ = x0,

bi nonactive, there is a buy bid at bi´ (45)

⇔

⎛⎜⎜⎜⎜⎜⎜⎝
out of n− 1 bids (other than a bid by seller i)

there are nS − 1 bids equal or above bi
there is a buy bid equal to bi

and there are n− nS − 1 bids strictly lower than bi

⎞⎟⎟⎟⎟⎟⎟⎠
Let j denote the number of sell offers equal or above bi. We note that, there are
freedoms for nS−1 sell bids after taking off one seller whom we have been working on.
Given j, we can determine the distribution of bids.

• since there are nS − 1 bids in total equal or above bi (other than a buy bid equal
to bi), there will be nS − j − 1 buy bids

• since there are nS − 1 sell bids (other than the seller whom we have been working
on ), n− j − 1 sell bids below bi

• since there are nB−1 buy bids (other than a buy bid equal to bi), nB−nS+ j buy
bids below bi

The distribution of bids is given in the following table.
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bid # of buy bids # of sell bids total # of bids

equal or above bi nS − j − 1 j nS − 1
below bi nB − nS + j nS − j − 1 nB − 1

total # of bids nB − 1 nS − 1 nB + nS − 2
It follows that

Pr(W i,n = bi|θ = x0,
bi nonactive, there is a buy bid at bi) (46)

=
X

0≤j≤nS−1
Pr(W i,n = bi, jsell bids equal or higher than bi

|x0, bi nonactive, there is a buy bid at bi) (47)

=
X

0≤j≤nS−1
[

(nS − 1)!
j!(nS − j − 1)!

(1−H∆,n,δ,s(bi −4|x0))jH∆,n,δ,s(bi −4|x0)nS−j−1
(nB − 1)!

(nS − j − 1)!(nB − nS + j)!

(1−H4,n,δ,b(bi −4|x0))n−j−1H4,n,δ,b(bi −4|x0)nB−nS+j].

We now estimate (46) around δ = 0 as follows. First we estimate the distribution of
bids around δ = 0.

110. Asymptotic estimation of the distribution of bids. It follows from (31) and
(32) that

H4,n,δ,s(bi|x0)→ 0 for every 0<bi < v(1, 1).| {z }
the probability that a sell bid take the value strictly less than v(1,1)

goes to zero

(48)

and

H4,n,δ,b(bi|x0)→ 1for every 0<bi<v(1, 1)| {z }
all the buy bids will concentrate on 0

so the probability that a buy bid take the value above 0 goes to zero

(49)

Thus, for sufficiently small δ, given that the set of possible bids is finite, there exists
� > 0 such that

H4,n,δ,s(bi|x0)<ε for every 0<bi < v(1, 1), (50)

H4,n,δ,b(bi|x0)>1− ε for every 0<bi ≤ v(1, 1), (51)

h4,n,δ,s(bi|x0)<ε for every 0<bi < v(1, 1)| {z },
the probability that a sell bid will be less than v(1,1) goes to zero

(52)
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and

h∗4,n,δ,b(bi|x0)<ε for every 0 < bi ≤ v(1, 1)| {z }
the probability that a buy bid will be more than 0 will go to zero

. (53)

We now estimate (46) by finding the principal term.

111. Asymptotic estimation of (46). We note, by substituting (50) and (51) into
(46),

• 1−H4,n,δ,s(bi−4|x0) ≈ 1− ε. That is, a probability that a sell bid is higher than
bi −4 is very high.

• H4,n,δ,s(bi −4|x0) ≈ ε. The probability that a sell bid is less than bi −∆ is very
low.

• 1−H4,n,δ,b(bi −4|x0) ≈ ε. The probability that a buy bid is higher than bi −∆
is very low.

• H4,n,δ,b(bi −4|x0) ≈ 1 − ε. The probability that a buy bid is less than bi −∆ is
very high.

Thus,(46) has the principal term from setting j = nS − 1. That is, the probability is
highest when the number of the seller who bids highest is largest. In this case, we can
evaluate each term of (46)

• (nS−1)!
j!(nS−j−1)! = 1 when j = nS − 1. That is, since every seller bids equal or above bi,
there is only one possible combination.

• (1−H4,s,n,δ(bi −4|x0))jH4,s,n,δ(bi −4|x0)nS−j−1 ≈ (1 − ε)nS−1ε0 ≈ 1. That is,
since every seller bids equal or above bi and it is a high probability event that a
seller bids high, it is a high probability event.

• (nB−1)!
(nS−j−1)!(nB−nS+j)! = 1. That is, since every buyer bids strictly less than bi. there
is only one possible combination.

• 1−H4,b,n,δ(bi −4|x0))n−jH4,b,n,δ(bi −4|x0)nB−nS+j ≈ (1− ε)nB−1 ≈ 1. That is,
since every buyer bids less than bi−∆ and since it is a high probability event that
a buy bid is less than bi −∆, it is a high probability event.

By combining these four terms, we get

(A1) ≈ 1 (54)

We then calculate A2.

112. Calculation of A2. We observe

Pr(there is a buy bid at bi|θ=x0,binonactive) ≈ nBε (55)
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113. Calculation of A3. We note, as in case of A1,³
W i,n = bi|θ = x0,

bi nonactive, there is a sell bid at bi´ (56)

⇔

⎛⎜⎜⎜⎜⎜⎜⎝
out of n− 1 bids (other than a bid by seller i)

there are nS − 1 bids equal or above bi
there is a sell bid equal to bi

and there are n− nS − 1 bids strictly lower than bi

⎞⎟⎟⎟⎟⎟⎟⎠
Let j be the number of sell bids. There are nS− 2 freedom of sell bids other than the
sell bid by the seller i we have been working on and the seller who will bid bi.

For each 0<j<nS − 2, the distribution of bids will be determined as follows:
• since there are nS − 1 bids in total equal or above bi (other than a buy bid equal
to bi), there will be nS − j − 1 buy bids equal or above bi

• since there are nS − 2 sell bids (other than the seller whom we have been working
on ), n− j − 2 sell bids below bi

• since there are nB buy bids, nB − nS + j + 1 buy bids below bi
The distribution of bids is given in the following table.

bid # of buy bids # of sell bids total # of bids

equal or above bi nS − j − 1 j nS − 1
below bi nB − nS + j + 1 nS − 2− j nB − 1

total # of bids nB |Nn,S|− 2 nB + nS − 2
It follows that

Pr(W i,n = bi|θ = x0,
bi nonactive, there is a sell bid at bi) (57)

=
X

0≤j≤nS−1
Pr(W i,n = bi, jsell bids equal or higher than bi

|x0, bi nonactive, there is a sell bid at bi) (58)

=
X

0≤j≤nS−1
[

(nS − 2)!
j!(nS − j − 2)!

(1−H∆,n,δ,s(bi −4|x0))jH∆,n,δ,s(bi −4|x0)nS−j−2
(nB)!

(nS − j − 1)!(nB − nS + j + 1)!

(1−H4,n,δ,b(bi −4|x0))n−j−1H4,n,δ,b(bi −4|x0)nB−nS+j+1
It is maximized at j = nS − 2. We now evaluate each term at

Thus,(46) has the principal term from setting j = nS − 2. That is, the probability is
highest when the number of the seller who bids highest is largest. In this case, we can
evaluate each term of (57)

• (nS−2)!
j!(nS−j−2)! = 1 when j = nS − 2. That is, since every seller bids equal or above bi,
there is only one possible combination.

• (1−H4,s,n,δ(bi −4|x0))jH4,s,n,δ(bi −4|x0)nS−j−1 ≈ (1 − ε)nS−1ε0 ≈ 1. That is,
since every seller bids equal or above bi and it is a high probability event that a
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seller bids high, it is a high probability event.
• (nB)!
(nS−j−1)!(nB−nS+j+1)! = nB. That is, since there are only nS − 1 sell bids equal
or above bi, it has to be one buy bid equal or above bi,and there is nB possible
combination.

• (1−H4,b,n,δ(bi−4|x0))n−j−1H4,b,n,δ(bi−4|x0)nB−nS+j+1 ≈ ε. That is, since one
buyer has to bid above bi, it is a probability ε event.

By combining these four terms,

(A3) = nB�. (59)

114. Calculation of A4. We recall

Pr(there is a sell bid at bi|θ=x0,binonactive) (60)

≈ nSε

115. Calculation of A. We can now collect these terms to estimate A. That is,

A = (A1) · (A2) + (A3) · (A4) (61)

= 1 · nBε+ nB� · nSε
≈ nBε.

An intuition is as follows. When there is no nonstrategic bid, in order for the nSth order
statistics out of the bids other than seller i equal to be bi, there are two possibilities.

The first possibility is that a bid bi is provided by a buy bid. In this case, the proba-
bility is highest when every nS−1 seller stays above bi and every nB buyers stay below
bi. In this case, one buyer bids bi, and it is the event which take place with probability
ε.

The second possibility is the case where a bid bi is provided by a sell bid. In this case,
even when every remaining nS−2 seller stays above bi, there is only nS−1 bids out of
the sellers which will be equal or above bi. It implies that there has to be one buy bid
equal or above bi. In this case, one seller has to bid below v(1,1) and one buyer has to
bid above 0, thus it is the event which take place with probability ε2.

Therefore, asymptotically, the first possibility dominates the second.

We now calculate B,that is, Pr(W i,n = bi|θ = x0,
bi buyer).

116. Decomposition of B. We now decompose the event W i,n = bi|θ = x0,
bi buyer
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by conditioning on the behavior of a nonstrategic bidder. We note

Pr(W i,n = bi|θ = x0,
bi buyer) (62)

= Pr(W i,n = bi|θ = x0,
bi buyer, there is a buy bid at bi)| {z }

B1

·Pr(there is a buy bid at bi|θ = x0,
bi buyer)| {z }

B2

+

Pr(W i,n = bi|θ = x0,
bi buyer, there is a sell bid at bi)| {z }

B3

·Pr(there is a sell bid at bi|θ = x0,
bi buyer)| {z }

B4

+

Pr(W i,n = bi|θ = x0,
bi buyer, there is a bid by a nonstrategic bidder at bi)| {z }

B5

·Pr(there is a nonstrategic bid at bi|θ = x0,
bi buyer)| {z }

B6

That is, the probability that W i,n = bi takes the value bi can be calculated from the
case where there is a buyer who bids bi,or the seller, or the nonstrategic bidder.

We now calculate B1, Pr(W i,n = bi|θ = x0,
bi buyer, there is a buy bid at bi).

117. Decomposition of B1.In this case, the distribution of bids is³
W i,n = bi|θ = x0,

bi buyer, there is a buy bid at bi´ (63)

⇔

⎛⎜⎜⎜⎜⎜⎜⎝
out of n bids (other than a bid by seller i, but with a nonstrategic bid)

there are nS − 1 bids equal or above bi
there is a buy bid equal to bi

and there are n− nS + 1 bids strictly lower than bi

⎞⎟⎟⎟⎟⎟⎟⎠
B1 can be further decomposed depending on whether ı̂ bids equal or above bi.

Pr(W i,n = bi|θ = x0,
bi buyer, there is a buy bid at bi)| {z }

B1

= Pr(W i,n = bi|x0, ı̂ buyer, there is a buy bid at bi, bi bids strictly above bi)| {z }
B1-1

·Pr(̂ı bids strictly above bi|x0, ı̂ buyer, there is a buy bid at bi)| {z }
B1-2

+Pr(W i,n = bi|x0, ı̂ buyer, there is a buy bid at bi, bi bids strictly below bi)| {z }
B1-3

·Pr(̂ı bids strictly below bi|x0, ı̂ buyer, there is a buy bid at bi)| {z }
B1-4
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118. Calculation of B1-1. We consider

[W i,n = bi| ı̂ buyer, there is a buy bid at bi, bi bids equal or above bi]

⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

out of nB buy bid, (nS − 1) sell bids, and a nonstrategic bid,
there are nS − 2| {z }

there should be nS bids above or equal bi
and there is a nonstrategic bid above bi

there is one bid at bi by a buyer

bids equal or higher than bi

and
there is one bid equal or above bi by a nonstrategic bidder

bi
and

there is one bid at bi by a buyer
and

there are n− nS + 1 bids lower than bi

Let j denote the number of sell bids above bi. There are nS−1 freedoms of allocation
of sell bids after a seller whom we have been working on.

For each 0 ≤ j ≤ nS − 1, the distribution of bids will be determined as follows:

• since there are nS − 2 bids in total equal or above bi (other than a buy bid equal
to bi and a bid by a nonstrategic bidder

bi), there will be nS − j − 2 buy bids equal
or above bi

• since there are nS − 1 sell bids (other than the seller whom we have been working
on ), n− j − 1 sell bids below bi

• since there are nB − 1 buy bids (other than the buyer who bids bi), there are
nB − nS + j + 1 buy bids below bi

The distribution of bids is given in the following table.

bid # of buy bids # of sell bids total # of bids

equal or above bi nS − j − 2 j nS − 2| {z }
there is a buyer bid at bibi bids equal or above bi

below bi nB − nS + j + 1 nS − j − 1 n− nS
total # of bids nB − 1 nS − 1 nB + nS − 2
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It follows that the principal term is obtained by

(B1-1) (64)

= Pr(W i,n = bi|x0, ı̂ is buyer, there is a buy bid at bi, bi bids above bi) (65)

=
X

0≤j≤nS−1
[

(nS − 1)!
j!(nS − j − 1)!

(1−HX ,∆,n,δ(bi −4|x0))| {z }
1−ε

jHX ,∆,n,δ(bi −4|x0)| {z }
ε

nS−j−1

(nB − 1)!
(nS − j − 2)!(nB − nS + j + 1)!

(1−H4,b,n,δ(bi −4|x0))| {z }
ε

n−2−jH4,b,n,δ(bi −4|x0)| {z }
1−ε

nB−nS+j+1.

We note that, from (68), it follows that the principal terms is obtained by setting
j = nS − 2.In this case,

• (nS−1)!
j!(nS−j−1)! = nS−1. It is because, since there is a buy bid above bi and a nonstrategic
bid equal or above bi, in order for the number of bids equal or above bi to be equal
to nS, it has to be that one sell bid is below bi, and there is nS − 1 possible
combinations for this.

• (1−H4,n,δ,s(bi −4|x0))jH4,n,δ,s(bi −4|x0)nS−j−1 ≈ ε. It is because, one sell bid

has to be strictly below bi, and it is a probability ε event.
• (nB−1)!
(nS−1−j)!(nB−nS+j+1)! = 1. It is because every nB buy bids stays strictly below bi.

• (1−H4,n,δ,b(bi −4|x0))n−2−jH4,n,δ,b(bi −4|x0)nB−nS+j+2 ≈ 1.

By combining these four terms, we get

(B1− 1) ≈ (nS − 1)ε (66)

Intuitively, in order for the nSth bid equal to bi, at least one sellers need to bid less
than bi, which occurs at the probability at the order of ε

2.

119. Calculation of B1-2. We note

Pr(̂ı bids equal or above bi|x0, ı̂ buyer, there is a buy bid at bi)| {z }
B1−2

(67)

=
(b−bi∆ − 1)
( b∆ + 1)
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120. Calculation of B1− 3. We note
[W i,n = bi conditional on ı̂ being a buyer, there is a buy bid at bi,

bi bids strictly below b

⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

out of n bids
by nB buyers, (nS − 1) sellers, and one nonstrategic bidder

there are nS − 1 bids equal or higher than bi
and

there is one bid at bi by a buyer
and

there is one bid strictly below bi by a nonstrategic bidder
bi

and
there are n− nS + 1 bids lower than bi

Let j denote the number of sellers who bids equal or above bi. There is a nS − 1
degrees of freedom available sell bids.

For each j, the allocation of bids will be determined as follows:

• since there are nS − 1 bids in total equal or above bi (other than a buy bid equal
to bi), there will be nS − j − 1 buy bids equal or above bi

• since there are nS − 1 sell bids (other than the seller whom we have been working
on ), n− j − 1 sell bids below bi

• since there are nB − 1 buy bids (other than the buyer who bids bi), there are
nB − nS + j buy bids below bi

The distribution of bids is given in the following table.

bid # of buy bids # of sell bids total # of bids

equal or above bi nS − j − 1 j nS − 1| {z }
take off a bid by a buyer at bi

below bi nB − nS + j nS − j − 1 n− nS − 1
total # of bids nB − 1 nS − 1 nB + nS − 2

It follows that the principal term is obtained by

(B1-3) (68)

= Pr(W i,n = bi|x0, ı̂ is buyer, there is a buy bid at bi, bi bids above bi) (69)

=
X

0≤j≤nS−1
[

(nS − 1)!
j!(nS − j − 1)!

(1−HX ,∆,n,δ(bi −4|x0))| {z }
1−ε

jHX ,∆,n,δ(bi −4|x0)| {z }
ε

nS−j−1

(nB − 1)!
(nS − 1− j)!(nB − nS + j)!

(1−H4,b,n,δ(bi −4|x0))| {z }
ε

n−1−jH4,b,n,δ(bi −4|x0)| {z }
1−ε

nB−nS+j.
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We note that, from (68), it follows that the principal terms is obtained by setting
j = nS − 1.In this case,
• (nS−1)!

j!(nS−j−1)! = 1. It is because every remaining sell bid stays equal or above bi, and
there is only one possible combination for this.

• (1−H4,n,δ,s(bi−4|x0))jH4,n,δ,s(bi −4|x0)nS−j−1 ≈ 1. It is because every remain-
ing sell bid stays equal or above bi is a high probability event.

• (nB−1)!
(nS−1−j)!(nB−nS+j+1)! = 1. It is because that every remaining buy bid (other than
the one bidding bi) stays below bi.

• (1−H4,n,δ,b(bi −4|x0))n−1−jH4,n,δ,b(bi −4|x0)nB−nS+j+1 ≈ 1.Because every re-
maining buy bid stays below bi is a high probability event.

By combining these four terms, we get

(B1− 3) ≈ 1. (70)

Intuitively, when there is one buy bid at bi, it is suffice that all remaining sell nS − 1
bids stay at v(1,1) in order to have W i,n = bi.

121. Calculation of B1-4. We note

Pr(̂ıbids strictly below bi|x0, ı̂buyer,there is a buy bid at bi) (71)

=
( bi∆ + 1)

( b∆ + 1)
We now collect terms for B1.

122. Calculation of B1.We now combine these terms to calculate

(B1) = (B1− 1) · (B1− 2) (72)

+(B2− 1) · (B2− 2)

= (nS − 1)ε
( bi∆ + 1)

( b∆ + 1)
+ 1 · (

bi
∆ + 1)

( b∆ + 1)

≈ 1 · (
bi
∆ + 1)

( b∆ + 1)
(73)

The intuition is as follows. When bi is a buyer, there is a buy bid at bi, there are two
possibilities about the behavior of bbi.
The first possibility is that bi bids strictly above bi. In this case, there are already 2
bids equal or above bi. Therefore, it has to be that one sell bid has to be less than bi.
It is a probability ε event.

The second possibility is that bi bids strictly less bi. In this case, there is one bid equal
or above bi by a buyer, Therefore, it is suffice that every remaining nS− 1 sell bid stay
equal or above bi, and it is a high probability event.



56 EIICHIRO KAZUMORI

Therefore, the probability of the second event dominates the probability of the first
event.

We now consider B2.

123. Calculation of B2. We note

Pr(there is a buy bid at bi|θ = x0,
bi buyer)| {z }

B2

(74)

= nBh4,n,δ,b(bi|x0)
≈ nBε (75)

We now consider B3

124. Calculation of B3. We consider Pr(W i,n = bi|θ = x0,
bi buyer, there is a sell bid

at bi)

W i,n = bi ⇔

⎛⎜⎜⎜⎜⎜⎜⎝
out of n bids

there arenS − 1bids equal or higher than bi
there is a sell bid at bi

and there are n− nSbids strictly lower than bi

(76)

B3 can be further decomposed depending on whether ı̂ bids equal or above bi.

Pr(W i,n = bi|θ = x0,
bi seller, there is a sell bid at bi)| {z }

B3

(77)

= Pr(W i,n = bi|x0, ı̂ buyer, there is a sell bid at bi, bi bids strictly above bi)| {z }
B3−1

·Pr(̂ı bids equal or above bi|x0, ı̂ buyer, there is a sell bid at bi)| {z }
B3−2

+Pr(W i,n = bi|x0, ı̂ buyer, there is a sell bid at bi, bi bids strictly below bi)| {z }
B3−3

·Pr(̂ı bids strictly below bi|x0, ı̂ buyer, there is a sell bid at bi)| {z }
B3−4

We now need to calculate B3-1.
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125. Calculation of B3− 1. We consider

W i,n = biconditional on ı̂ buyer, there is a sell bid at bi,
bi bids strictly above bi

⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

out of n bids
by nB buyers, (nS − 1)| {z }

other than the seller who is deviating

sellers, and one nonstrategic bidder,

there are nS − 2| {z }
there should be nS bids above or equal bi
and there is a nonstrategic bid above bi

there is one bid at bi by a seller

bids equal or higher than bi

and
there is one bid equal or above bi by a nonstrategic bidder

bi
and

there is one bid at bi by a seller
and

there are n− nS + 1 bids lower than bi

Let j denote the number of sellers who bid equal or above bi. Since there are nS − 2
freedoms of sell bids other than the seller we have been working on and the bid at bi,

For each j,the distribution of bids will be determined as follows:

• since there are nS − 2 bids in total equal or above bi (other than a sell bid equal to
bi and a nonstrategic bid), there will be nS − j − 2 buy bids equal or above bi

• since there are nS − 2 sell bids (other than the seller whom we have been working
on and a sell bid at bi), n− j − 2 sell bids below bi

• since there are nB buy bids, there are nB − nS + j + 2 buy bids below bi

The distribution of bids is given in the following table.

bid # of buy bids # of sell bids total # of bids

equal or above bi nS − 2− j j |Nn,S|− 2| {z }
there is a sell bid at bi

there is a nonstrategic bid above bi

below bi nB − |Nn,S|+ j + 2 |Nn,S|− 2− j n− |Nn,S|
total # of bids nB |Nn,S|− 2 nB + |Nn,S|− 2
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It follows that the principal term is obtained by

(B3-1) (78)

= Pr(W i,n = bi|x0, ı̂ is buyer, there is a sell bid at bi, bi bids above bi) (79)

=
X

0≤j≤nS−1
[

(nS − 2)!
j!(nS − j − 2)!

(1−H∆,n,δ,s(bi −4|x0))| {z }
1−ε

jH∆,n,δ,s(bi −4|x0)| {z }
ε

nS−j−2

nB!

(nS − 2− j)!(nB − nS + j + 2)!

(1−H4,n,δ,b(bi −4|x0))| {z }
ε

n−2−jH4,n,δ,b(bi −4|x0)| {z }
1−ε

nB−nS+j+2.

We note that, from (68), it follows that the principal terms is obtained by setting
j = nS − 2.In this case,

• (nS−2)!
j!(nS−j−2)! = 1. It is because every seller will stay above bi and there is only one
combination.

• (1−H4,n,δ,s(bi−4|x0))jH4,n,δ,s(bi −4|x0)nS−j−2 ≈ 1. Because it is a high prob-
ability event that every seller will stay above bi.

• (nB)!
(nS−2−j)!(nB−nS+j+2)! = 1. It is because every buyer will stay below bi and there is
only one combination.

• (1−H4,n,δ,b(bi−4|x0))n−2−jH4,n,δ,b(bi−4|x0)nB−nS+j+2 ≈ 1.It is because every
buyer will stay below bi and there is only one combination.

By combining these four terms, we get

(B3− 1) ≈ 1 (80)

We now consider B3-2.

126. Calculation of B3-2. We note

Pr(̂ı bids equal or above bi|x0, ı̂ buyer, there is a sell bid at bi)

=
b−bi
∆

( b∆ + 1)
.
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127. Calculation of B3− 3. We note
W i,n = biconditional on ı̂ buyer, there is a sell bid at bi,

bi bids strictly below bi

⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

out of n bids by nB buyers, (nS − 1) sellers, and one nonstrategic bidder,
there are nS − 1 bids equal or higher than bi

and
there is one bid at bi by a seller

and
there is one bid strictly below bi by a nonstrategic bidder

bi
and

there are n− nS + 1 bids lower than bi
Let j denotes the number of sellers who bid equal or higher than bi. There are
0<j<nS − 2 freedom of the number of sell bids after the seller we have been working
on and the seller who bids bi.

The distribution of bids are

• since there are nS − 1 bids in total equal or above bi (other than a sell bid equal to
bi), there will be nS − j − 1 buy bids equal or above bi

• since there are nS − 2 sell bids (other than the seller whom we have been working
on and a bid at bi ), n− j − 2 sell bids below bi

• since there are nB buy bids, there are nB − nS + j + 1 buy bids below bi
The distribution of bids is given in the following table.

bid # of buy bids # of sell bids total # of bids

equal or above bi nS − 1− j j nS − 1
below bi nB − nS + j + 1 nS − 2− j n− nS − 1

total # of bids nB |Nn,S|− 2 nB + nS − 2

It follows that the principal term is obtained by

(B3-3) (81)

= Pr(W i,n = bi|x0, ı̂ is buyer, there is a sell bid at bi, bi bids strictly below bi)(82)

=
X

0≤j≤nS−1
[

(nS − 2)!
j!(nS − j − 2)!

(1−H∆,n,δ,s(bi −4|x0))| {z }
1−ε

jH∆,n,δ,s(bi −4|x0)| {z }
ε

nS−j−2

nB!

(nS − j − 1)!(nB − nS + j + 1)!

(1−H4,n,δ,b(bi −4|x0))| {z }
ε

n−j−1H4,n,δ,b(bi −4|x0)| {z }
1−ε

nB−nS+j+1.

We note that, from (68), it follows that the principal terms is obtained by setting
j = nS − 2.In this case,
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• (nS−2)!
j!(nS−j−2)! = 1.Since every seller’s bid is equal or above bi.

• (1−H4,n,δ,s(bi−4|x0))jH4,n,δ,s(bi −4|x0)nS−j−2 ≈ 1. Since it is a high probability
event that ever seller’s bid is equal or above bi.

• (nB)!
(nS−2−j)!(nB−nS+j+2)! = nB. Since, in order to have nS bids equal or above bi, whenbi bids strictly below bi, it has to be that one buy bid has to be equal or above bi.
There is nB possible choices.

• (1−H4,n,δ,b(bi−4|x0))n−2−jH4,n,δ,b(bi−4|x0)nB−nS+j+1 ≈ ε. Since, it is an event
with probability ε that one bid is equal or above bi.

By combining these four terms, we get

(B3− 1) ≈ nBε. (83)

128. Calculation of B3-4. We note

Pr(̂ı bids strictly below bi|x0, ı̂ buyer, there is a sell bid at bi)

=
( bi∆ + 1)

( b∆ + 1)
129. Calculation of B3. We now combine the above calculations to get

B3 = (B3− 1) · (B3− 2)
+(B3− 3) · (B3− 4)

=
b−bi
∆

( b∆ + 1)
· 1

+nBε.
( bi∆ + 1)

( b∆ + 1)

=
b−bi
∆

( b∆ + 1)
· 1.

Intuitively, when there is a sell bid at bi, there are two possibilities.

The first possibility is that bi bids strictly above bi. In this case, if every seller bids
equal or above bi, there are just nS bids equal and above bi. Thus it is suffice that
every seller bids equal or above bi and every buyer bids below bi. It is an event with
probability O(1).

The second possibility is that bi bids strictly below bi. In this case, if every seller bids
equal or above bi, there are only nS−1 bids equal or above bi.That is, it is needed that
one buyer bids equal or strictly above bi. It is an event with probability O(ε).

Since the probability of the first possibility dominates the possibility of the second
possibility, it is an event with probability O(1).
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130. Calculation of B4. We note

Pr(there is a sell bid at bi|θ = x0,
bibuyer) ≈ nSε. (84)

We now move to the calculation of B5 where there is a nonstrategic bid at bi.

131. Calculation of B5. We consider Pr(W i,n = bi|θ = x0,
bi buyer, there is a non-

strategic bid at bi). We note that

W i,n = biconditional on ı̂ buyer, there is a nonstrategic bid at bi

⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

out of n bids by nB buyers, (nS − 1) sellers, and one nonstrategic bidder,
there are nS − 1 bids equal or higher than bi

and
there is one bid at bi by a nonstrategic bidder

and
there are n− nS bids strictly below bi

Let j denote number of possible sell bids equal or above bi. Since there are nS − 1
degree of freedom about the bids by the seller, 0<j<nS − 1.

For each j, the distribution of bids is as follows:

• since there are nS − 1 bids in total equal or above bi (other than a sell bid equal to
bi), there will be nS − j − 1 buy bids equal or above bi

• since there are nS − 1 sell bids (other than the seller whom we have been working
on ), n− j − 1 sell bids below bi

• since there are nB buy bids, there are nB − nS + j + 1 buy bids below bi

The distribution of bids is given in the following table.

bid # of buy bids # of sell bids total # of bids

equal or above bi nS − 1− j j nS − 1|{z}
a nonstrategic bid at bi

below bi nB − nS + j + 1 nS − 1− j n− nS
total # of bids nB |Nn,S|− 1 nB + nS − 1
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It follows that the principal term is obtained by
(B5) (85)

= Pr(W i,n = bi|x0, ı̂ is buyer, bi bids bi) (86)

=
X

0≤j≤nS−1
[

(nS − 1)!
j!(nS − j − 1)!

(1−H∆,n,δ,s(bi −4|x0))| {z }
1−ε

jH∆,n,δ,s(bi −4|x0)| {z }
ε

nS−j−1

nB!

(nS − 1− j)!(nB − nS + j + 1)!

(1−H4,n,δ,b(bi −4|x0))| {z }
ε

n−1−jH4,n,δ,b(bi −4|x0)| {z }
1−ε

nB−nS+j+1.

The principal terms is obtained by setting j = nS − 1.In this case,
• (nS−1)!

j!(nS−j−1)! = 1.Since every seller chooses to bid equal or above bi, there is only one
possibility.

• (1−H4,n,δ,s(bi−4|x0))jH4,n,δ,s(bi −4|x0)nS−j−1 ≈ 1. Since it is a high probability
event that every seller bids equal or above bi.

• (nB)!
(nS−1−j)!(nB−nS+j+1)! = 1. Since every buyer chooses to bid strictly less than bi, it
is the only possibility.

• (1−H4,n,δ,b(bi −4|x0))n−2−jH4,n,δ,b(bi −4|x0)nB−nS+j+1 ≈ 1. Since it is a high
probability event that every buyer bids strictly below bi.

By combining these four terms, we get (B5) ≈ 1.

132. Calculation of B6.We observe

Pr(there is a nonstrategic bid at bi|θ = x0,
bi buyer) = 1

( b∆ + 1)

We now calculate B.

133. Collecting terms for B. We have
Pr(W i,n = bi|θ = x0,

bibuyer) (87)

= B1 ·B2 +B3 ·B4 +B5 ·B6

≈ 1 · (
bi
∆ + 1)

( b∆ + 1)
· nBε+

b−bi
∆

( b∆ + 1)
· nBε+

1

( b∆ + 1)
· 1

≈ 1

( b∆ + 1)
· 1.

Intuition is very simple. For all three cases where a buyer, a seller, or a nonstrategic
bidder places a bid at bi, when a nonstrategic bidder places a bid bi, every seller
bids equal or above bi, and every buyer bids below bi, the probability is highest and
dominates other possibilities.
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134. Calculation of C. This case is symmetric to B. Thus,

(C) ≈ 1

( b∆ + 1)
· 1 (88)

By collecting above cases, we can derive the formula for Pr(W i,n = bi|θ = x0).

135. Formula for Pr(W i,n = bi|θ = x0). From (43), (46), and (88),

Pr(W i,n = bi|θ = x0) (89)

= Pr(W i,n = bi|θ = x0,
bi nonactive)| {z }

A

(1− δ)

+Pr(W i,n = bi|θ = x0,
bi buyer)| {z }

B

(δ/2)

+Pr(W i,n = bi|θ = x0,
bi seller)| {z }

C

(δ/2)

≈ nBε · (1− δ) + 2 ∗ 1

( b∆ + 1)
· 1 · (δ/2)

' nBε+
1

( b∆ + 1)
δ.

which is independent of bi. Intuitively, for sufficiently small ε and δ, the most probable
case is that (1) every nS − 1 seller chooses a bid equal or above bi, one buyer bids bi,
and every other buyer bids strictly below bi (this corresponds to the first term), and
(2) every nS−1 seller chooses a bid equal or above bi, every buyer chooses a bid strictly
below bi, and a nonstrategic bidder chooses a bid bi (this corresponds to the second
term). Since a nonstrategic bidder chooses a bid uniformly over B∆, the probabilities
is approximately uniform, independent of the specific value of bi.

136. Verification of (41). It follows from (89) that

Pr(W i,n = v(1, 1)|xi) ≈ Pr(W i,n = v(1, 1)−4|xi). (90)

It follows from (90) that (41) holds.

7. PROOF OF PROPOSITION 1(B)

7.1. Lemma 3.1

Lemma. β∗∆ is a nontrivial equilibrium of G(γ,f,∆).

Proof.

137. Overview of the proof. We first derive the double outcome functions in the
large economy G(γ,f ,∆). We then show that β∗∆ is an equilibrium of G(γ,f,∆). Finally,
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we show that β∗∆ is nontrivial. We first begin with the definition of the price and the
allocation function in the auction mechanism in the large economy.

138. The price function p(b). Let b be a profile of bids. Given a profile of bids b, we
can construct an empirical distribution function of b as follows. Let μ be an uniform
measure on the unit interval. Since the set of possible bids B∆ is finite, it is legitimate
to define, for each bi ∈ B∆,

μ(bi) = {j ∈ [0, 1] : bj = b}. (91)

μ(bi) is the ratio of players who bid bi. By definition,
P
bi∈B∆ μ(bi) = 1.

We now recall that 1− α is the ratio of the seller in the economy. We define

p(b) = min{bi ∈ B∆ :
X
b0≥bi

μ(bi) ≤ 1− α}. (92)

and
p(b) = max{bi ∈ B∆ :

X
b0≥bi

μ(bi) > 1− α}. (93)

That is, p(b) is the smallest bid such that the ratio of bids equal or above bi is less
than 1−α. p(b) is the largest bid such that the ratio of bids equal or above bi exceeds
p(b). Here p(b) and p(b) is an extension of bnS:n and bnS+1:n in the finite economy to
the large economy.
The market clearing price p(b) is determined as p(b) = k p(b) +(1− k)p(b)3.

139. The allocation function. A bid which is greater than p(b) is sure to be assigned
a good, since the ratio of bids above p(b) is less than 1 − a. But the players who bid
p(b) may need to be rationed.

q(bi, b−i) (94)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if bi ≥ p(b)

1 with probability (1−α)−μ(j:bj>p(b))
μ(j:bj=p(b))

if p(b) > bi = p(b)

0 else.

Given these price and the allocation functions, we can define the game induced by
the double auctions defined by p(b) and q(bi,b−i).

140. Notations for the double auction game in the large market G(γ,f ,∆).
Let Ui(xi,bi,β−i) and πi(βi,β−i) be the interim and the ex ante expected payoff at
G(γ,f ,∆). Let BRi(xi,β−i,∆) = argmaxb0i Ui(xi,b

0
i,β−i,∆) be player i’s best response to

other players’ strategies β−i,∆.

3When there are multiple possible values of p(b) and p(b) which are consistent with the definition of (92) and (93)
because of negligible number of bids, we will choose the one which will be consistent with the behavior of the market
clearing price in the finite economy. That is, we define p(b) and p(b) as the limit of b|Nr,S |:|Nr| and b|Nr,S |+1:|Nr|.
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141. Definition of the limit strategy. As defined in the text, let β∗∆ = (β
∗
∆,b,β

∗
∆,s)

be its subsequence limit of a sequence of a nontrivial mixed strategy equilibria β∗∆,n as
n→∞.

We now show that β∗∆ is an equilibrium of G(γ,f,∆). Following the discussion in
the text, we show πn,i(β

∗
∆,n,i,β

∗
,∆,n,−i) → πn,i(β

∗
∆,i,β

∗
∆,−i) as and πn,i(β

∗
∆,i,β

∗
∆,−i) →

πi(β
∗
∆,i,β

∗
∆,−i). We first show the convergence in terms of the buyer’s payoff. The ar-

gument for the seller’s payoff is similar.

142. Show πn,i(β
∗
∆,n,i,β

∗
∆,n,−i)→ πn,i(β

∗
∆,i,β

∗
∆,−i). By definition.

πn,i(β
∗
∆,n,i, β

∗
∆,n,−i) (95)

=
Z
[0,1]

X
X×...×X

⎡⎣ X
B∆×...×B∆

ui(x0, xi, p(bi, b−i), q(bi, b−i))h
∗
i,∆,n(bi|xi)h∗−i,∆,n(b−i|x−i)

⎤⎦
fθ,Xi,X−i(x0, xi, x−i)dx0

β∗i,∆,n → β∗i,∆ implies that h
∗
i,∆,n(bi|xi) → h∗i,∆(bi|xi) for every xi and every bi. Thus,

πi,n(β
∗
i,∆,n,β

∗
−i,∆,n)→ πi,n(β

∗
i,∆,β

∗
−i,∆) as β

∗
i,∆,n → β∗i,∆.

Having shown the convergence of πn,i(β
∗
∆,n,i,β

∗
∆,n,−i) → πn,i(β

∗
∆,i,β

∗
∆,−i), we would

like to show that πn,i(β
∗
∆,i,β

∗
∆,−i) → πi(β

∗
∆,i,β

∗
∆,−i). For that purpose, We first take a

look at the ex post payoff function.

143. Decomposition of the ex ante payoff function in terms of allocation and
price. By definition,

πn,i(β
∗
∆,i, β

∗
∆,−i) (96)

=
Z
[0,1]

X
Xγ

X
Xγ × ...×Xγ| {z }

n−1

X
B∆×...×B∆

[v(x0, xi)− p(bi, b−i))q(bi, b−i)]

h∆,n,i(bi|xi)h∆,n,−i(b−i|x−i)fXi|θ(xi|x0)fX−i|θ(x−i|x0)fθ(x0)dx0
= [

Z
[0,1]

X
sγ
(

X
Xγ × ...×Xγ| {z }

n−1

v(x0, xi)
X

B∆×...×B∆
q(bi, b−i)h∆,n,−i(b−i|x−i)

fX−i|θ(x−i|x0))h∆,n,i(bi|xi)fXi|θ(xi|x0) (97)

−
Z
[0,1]

X
Xγ

(
X

Xγ × ...×Xγ| {z }
n−1

X
B∆×...×B∆

p(bi, b−i)q(bi, b−i)h∆,n,−i(b−i|x−i)

fX−i|θ(x−i|x0))h∆,n,i(bi|xi)fXi|θ(xi|x0)fθ(x0)dx0. (98)

Thus, it is suffice to show weak convergence of the distribution of the price and the
allocation conditional on x0 as the size of the market increases. In order to show this,
we first define the empirical distribution of bids and its convergence.

144. The empirical distribution of bids. The empirical distribution function of
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bids b1,....,bn is

Hn(b
0) =

1

n

nX
i=1
1bi≤b0. (99)

That is, the distribution function has a jump of 1n at each bid. Then, decomposing the
empirical distribution function into the buyer’s and sellers’ bids distribution.

Hn(b
0) =

1

n

⎡⎢⎣ X
i∈Nn,B

1bi≤b0 +
X

i∈Nn,S

1bi≤b0

⎤⎥⎦ (100)

=
nB
n

⎡⎢⎣ 1
nB

X
i∈Nn,B

1bi≤b0

⎤⎥⎦+ nS
n

⎡⎢⎣1
n

X
i∈Nn,S

1bi≤b0

⎤⎥⎦ .
145. Convergence of the empirical distribution of bids. By assumption 4, con-
ditional on x0, players’ signals are iid. Thus, as n increases, for each of buyer and seller,
the empirical distribution of bids according to β∆,i converges uniformly to the distrib-
ution of bids under β∆,i. Since, as is seen in (100), the distribution of bids is a convex
combination of the distribution of buyers’ bids and the distribution of sellers’ bids,
the empirical distribution of bids under the strategies β∆,i in G(γ,f ,∆, n, δ) converges
uniformly to the distribution of bids in G(γ,f,∆) under the strategies β∆,i.
146. Convergence of the distribution of the price. Since the distribution function
of the order statistics is a continuous function of the distributions function of bids,
by the continuous mapping theorem, the empirical distribution of order statistics also
converges uniformly in the distribution of order statistics. By k-double auction rule, the
price is a convex combination of the nSth and the nS +1st bids. Thus the distribution
function the price in the finite game G(γ,f ,∆, n, δ) under the strategies βi,∆ converges
uniformly to the distribution function of the price in G(γ,f,∆) under the strategies βi,∆.
147. Convergence of the distribution of allocation. We note, by fixing β∆, the
probability that a bid bi win is

Pr
n
(qi(bi, b−i) = 1|x0) (101)

= Pr
n
(bi > Wi,n|x0) +

nS −#(j : bj > Wi,n)

#(j : bj =Wi,n)
· Pr
n
(bi =Wi,n|x0)

→ Pr(bi > Wi|x0) +
1− Pr(bj > Wi,n|x0)
Pr(bj =Wi,n|x0)

· Pr(bi =Wi|x0) as n→∞.
The last line follows since the distribution of bids converges. Therefore, the distribution
of allocation also converges.

148. Convergence of the expected payoffs. From the arguments above, since
πi,n(β

∗
i,∆,n,β

∗
−i,∆,n) is a continuous function of the allocation qn and the price pn, and pn

and qn converges in distribution for each x0, πi,n(β
∗
i,∆,β

∗
−i,∆) converge to πi(β

∗
i,∆,β

∗
−i,∆).
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149. Nontriviality of β∗∆. Suppose β
∗
∆ is trivial. Then, it has to be that for very

large n, the probability of trade has to be arbitrary small. This implies that even the
seller with signal xi = 0 will choose to bid at least v(1,1), although there are some buy
bids (in order to keep the probability of trade positive). But then the argument similar
to the previous Lemma shows that these sellers will prefer to trade by decreasing the
bid, and it is a contradiction to an assumption of that β∗∆ is trivial

7.2. Lemma 3.2

Lemma. In G(γ,f ,∆), there exists ∆ > 0 such that for all ∆ < ∆, for every player
i, player i0s best response to β∗i,∆ satisfies the strict single crossing condition for bids
bi > bi such that bi is in the range of equilibrium prices.

Proof.

151. Introduction. The argument is based on the point made in the text that buyers
and sellers in G(γ,f ,∆) are symmetric. we then show that when a player has a more
optimistic signal, the expected value of the good increases with a uniform lower bound
of the rate of increase. Then we study strict single crossing conditions for adjacent
signals and bids. Then we extend the local single crossing condition to a more general
case.

Pesendorfer and Swinkels (1997) provided a strikingly beautiful proof that the single
crossing condition holds for the best response to a mixed strategy equilibrium in a
one-sided uniform price auction with a continuous set of bids among a finite number
of symmetric bidders. The proof here extends their argument to show the strict single
crossing condition holds for best response to a possibly asymmetric mixed strategy
equilibrium in a large uniform price double price auction with a finite set of bids in the
large economy with a finite set of signals.

152. Symmetry of payoffs functions between buyers and sellers in G(γ,f ,∆).
Let i ∈ Nn,S. In the large economy, a player’s bid is negligible. Thus it does not affect
the market clearing price of the double auction in the large economy. That is, pn(b−i)
will converge to p(bi,b−i) as n→∞. Thus,
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lim
n→∞Un,i(xi, bi, β∆,−i) (102)

=
Z X
X×...×X

X
B∆×...×B∆

(p(bi, b−i)− v(x0, xi))(1− q(bi, b−i))

h(b−i|x−i)fθ,X−i|Xi
(x0, x−i|xi)dx0

−
Z X
X×...×X

X
B∆×...×B∆

(p(bi, b−i)− v(x0, xi))h(b−i|x−i)

fθ,X−i|Xi
(x0, x−i|xi)dx0

=
Z X
X×...×X

X
B∆×...×B∆

(v(x0, xi)− p(bi, b−i))q(bi, b−i))h(b−i|x−i)

fθ,X−i|Xi
(x0, x−i|xi)dx0

which is equal to a buyer’s payoff in G(γ,f ,∆). That is, in G(γ,f ,∆), buyers and sell-
ers have symmetric payoffs. Let U(xi,bi,β−i,∆) denote the payoff function common to
buyers and sellers. Let BR(xi,β) denote a best response correspondence of player with
signal xi when all other players follows strategy β, which is common to buyers and
sellers.

Let me now introduce notations to define strict single crossing condition.

153. Setup. Let xi > xi and bi ∈ BR(xi,β
∗
∆,b,β

∗
∆,s). Then it follows that

U(xi, bi, β
∗
∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s) ≥ 0. (103)

we now would like to show

U(xi, bi, β
∗
∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s) > 0. (104)

That is, we would like to show that when a player with a signal xi prefers bi to bi and
a signal increases from xi to xi, then a player with a signal xi still prefers bi to bi. We
now focus on the argument for The other condition of strict single crossing condition

We now introduce a useful event to express (103) and (104).

154. The event of winning from increasing the bid. When a player increases a
bid from bi to bi, a player wins a tie at price bi and will be possibly tied at price bi. Let
Y (bi,bi) be this event, that is, an event that a bid bi may not lead to an assignment of
the good with positive probability the but a bid bi will lead to an assignment of the
good with positive probability given other players use an equilibrium strategy β∗∆.

The event Y (bi,bi) may be empty if bids bi and bi are too high so that both bids lead
to the assignment for sure or too low so that both bids will not lead to an assignment
for sure. To deal with this possibility, we first define the range of prices which can take
place with positive probability when buyers and sellers choose strategies β∗∆,b and β

∗
∆,s.
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155. The range of equilibrium prices. Let pmin(β∗∆,b,β
∗
∆,s) and pmax(β∗∆,b,β

∗
∆,s)

be the lowest and the highest prices that can arise with a positive probability as an
equilibrium outcome of (β∗∆,b,β

∗
∆,s). Let P(β∗∆,b,β∗∆,s) be the set of prices which take

place with positive probabilities given that players use strategies β∗∆,b and β∗∆,s.

Given this definition, we only consider cases where Y (bi,bi) is relevant.

156. Cases when Y (bi,bi) is nonempty. We note that

bi ≤ pmax(β∗∆,b, β
∗
∆,s) and bi ≥ pmin(β∗∆,b, β

∗
∆,s) (105)

→ f(Y (bi, bi)|x0) > 0.

To see this, suppose bi ≤ pmax(β∗∆,b,β
∗
∆,s) and bi ≥ pmin(β∗∆,b,β

∗
∆,s). Then, with some

positive probability, bi will not be assigned a good and bi will be assigned a good and
f(Y (bi,bi)|x0) > 0. On the other hand, if bi > pmax(β∗∆,b,β

∗
∆,s) or bi < pmin(β∗∆,b,β

∗
∆,s),

then both bids bi and bi have the same outcome. By Assumption 4, f(xi|x0) > 0 for
every xi. Thus, if f(xi,Y (bi,bi)) > 0 for some xi, then f(xi,Y (bi,bi)) > 0 for every xi.
Therefore, for every xi,the support of f(xi,Y (bi,bi)) is the same and equal to {(bi,bi) :
bi ≤ pmax(β∗∆,b,β

∗
∆,s) and bi ≥ pmin(β∗∆,b,β

∗
∆,s)}. Hereafter, in the rest of the analysis,

we consider bi and bi such that bi ≤ pmax(β∗∆,b,β
∗
∆,s) and bi ≥ pmin(β∗∆,b,β

∗
∆,s).

In order to evaluate the marginal change in expected payoffs when a signal changes,
we decompose the change into the change which comes from the change in the expected
value of the good and the change which comes from the change in the expected payment.

157. Decomposition of payoffs. We note that

U(xi, bi, β
∗
∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s) (106)

= E[v(θXi)− p(bi, b−i)|Xi = xi, Y (bi, bi)]

= E[v(θXi)|Xi = xi, Y (bi, bi)]−E[p(bi, b−i)|Xi = xi, Y (bi, bi)]

where the first term denotes the change in the estimated value and the second terms
denote the expected changes in the price.

We first estimate the change in the expected value of the good when a player’s
signal increases. For that purpose, we first consider a property of the distribution of θ
conditional on Xi and Y (bi,bi).

158. Monotone likelihood condition for fθ|Xi,Y (x0|xi,Y (bi,bi)). From conditional
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independence, it follows that

fθ|Xi,Y (x0|xi, Y (bi, bi)) =
fθ,Xi,Y (x0, xi, Y (bi, bi))

fXi,Y (xi, Y (bi, bi))
(107)

by definition of conditional expectation

=
fXi,Y |θ(xi, Y (bi, bi)|x0)fθ(x0)

fXi,Y (xi, Y (bi, bi))

by definition of conditional expectation

=
fXi|θ(xi|x0)fY |θ(Y (bi, bi)|x0)fθ(x0)

fXi,Y (xi, Y (bi, bi))

by conditional independence

The likelihood ratio for x0 > x0 is

f(x0|xi, Y (bi, bi))
f(x0|xi, Y (bi, bi))

=

µ
f(xi|x0)

f(xi,Y (bi,bi))

¶
µ

f(xi|x0)
f(xi,Y (bi,bi))

¶ by (107) (108)

=
f(xi|x0)
f(xi|x0)

· f(xi, Y (bi, bi))
f(xi, Y (bi, bi))

by rewriting

≥ f(xi|x0)
f(xi|x0)

· f(xi, Y (bi, bi))
f(xi, Y (bi, bi))

=

µ
f(xi|x0)

f(xi,Y (bi,bi))

¶
µ

f(xi|x0)
f(xi,Y (bi,bi))

¶ by rewriting

=
f(x0|xi, Y (bi, bi))
f(x0|xi, Y (bi, bi))

by (107)

Therefore, f(x0|xi,Y (bi,bi)) satisfies the affiliation inequality. Intuitively, f(x0|xi,Y (bi,bi))
is considered a garbling of f(x0|xi,x−i) and x−i does not affect the statistical relation-
ship between θ and Xi

4.

Building on this property of the conditional distributions, we can now estimate the
change in the expected value of the good.

4Pesendorfer and Swinkels (1997) proposed this interpretation.



A STRATEGIC THEORY OF A MARKET 71

159. Lower bound of the rate of change of E
h
v(x0, xi)|xi, Y (bi, bi)

i
. We note

E
h
v(x0, xi)|xi, Y (bi, bi)

i
−E

h
v(x0, xi)|xi, Y (bi, bi)

i
(109)

= E
h
v(x0, xi)|xi, Y (bi, bi)

i
−E

h
v(x0, xi)|xi, Y (bi, bi)

i
| {z }

private value effect while keeping the conditioning information constant

+ E
h
v(x0, xi)|xi, Y (bi, bi)

i
−E

h
v(x0, xi)|xi, Y (bi, bi)

i
| {z }

common value effect while keeping the private value element constant

by adding and subtracting E
h
v(x0, xi)|xi, Y (bi, bi)

i
≥ λ(xi − xi).

For the last inequality, for the private value effect, by Assumption 5, v(x0,xi) is increas-
ing in xi with uniform lower bound of the rate of increase λ. Thus, the difference is at
least λ(xi − xi). For the common value effect is nonnegative because of the affiliation
inequality (108) and Theorem 5 of Milgrom and Weber (1982a).

We prove the single crossing conditions using mathematical induction. As a first step,
we consider the local case where two bids are adjacent and then extend to then case
where two bids are more than one bid step size apart.

160. Strict single crossing condition for adjacent signals and bids. Suppose
that two bids are adjacent (bi = bi + ∆) and two signals are adjacent (xi = xi + γ).
Take ∆ to be sufficiently small so that

λγ > ∆. (110)

Then,

U(xi, bi, β
∗
∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s) (111)

= E[v(θXi)|Xi = xi, Y (bi, bi)]−E[p(bi, b−i)|Xi = xi, Y (bi, bi)]

≥ E[v(θXi)|Xi = xi, Y (bi, bi)] + λγ| {z }
by (109)

−(E[p(bi, b−i)|Xi = xi, Y (bi, bi)] +∆)| {z }
upper bound of the possible increase in payment

= (E[v(θXi)|Xi = xi, Y (bi, bi)]−E[p(bi, b−i)|Xi = xi, Y (bi, bi)])| {z }
≥0 by (103)

+(λγ −∆)| {z }
>0 by (110)

> 0.

That is, when bi − bi is sufficiently small, the increase in the value estimate outweighs
the possible change in the price and the single crossing condition holds. Finally, we
note that it is immediate to extend the argument to the case where the two signals are
more than γ apart.
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We now move to the next step of the induction. For a simplicity of the argument, we
consider the case where bids are two step size apart. We start by defining cases.

161. Strict single crossing conditions for the case of bi = bi+2∆ and xi = xi+γ.
Let exi = max

xi∈X
{xi : bi +∆ ∈ BR(xi, β

∗
∆,b, β

∗
∆,s)}. (112)

That is, exi is the highest signal such that a player with signal exi will bid bi+∆. Then,
depending on the bids at exi, there are three possible cases.
• There is no exi. That is, no player bids bi +∆.
• exi ≤ xi.
• exi > xi.

To see this, please consult the figure below.

Figure 4.–

We now consider the first case where there is no exi. In this case, we decompose the
change into two cases where the price is bi and where the price is bi. When there are
no bids at bi +∆, then it has to be that player with signal xi has nonnegative payoffs
from winning at bi. Thus, even when the price bi becomes more likely, the player with
signal xi has a positive expected payoff. We elaborate this intuition below.

162. Decomposition of payoffs. We note that 106 can be further expanded into

U(xi, bi, β
∗
∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s) (113)

= Pr(p(b) = bi|Xi = xi, Y (bi, bi))
h
E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi]− bi

i
+

Pr(p(b) = bi|Xi = xi, Y (bi, bi))
h
E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi]− bi

i
.

That is, the change in payoffs come from the case of winning the tie at the price bi and
the case of winning (may be at the tie) at the price bi.

We first estimate the expected payoff from winning at the price bi.



A STRATEGIC THEORY OF A MARKET 73

163. Estimation of E[v(θXi)|Xi = xi,Y (bi,bi),p(b) = bi] − bi. By assumption, it is
a best response for a player with signal xi to bid bi. Then, it has to be that winning
at the price bi provides a nonnegative payoff, otherwise the player could bid bi +∆ to
avoid this outcome keeping the payoffs from other events the same. That is,

E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi]− bi ≥ 0. (114)

From 109 and 114, we can estimate

E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi]− bi (115)

≥ E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi] + λγ − bi

> 0.

That is, a player with the high signal gets a positive expected payoff from winning at
the high price.

We now consider two cases: (a) the probability that the price is bi decreases with the
high signal and (b) the probability that the price is bi increases with the high signal
and show that the single crossing condition holds for both cases.

164. Case (a). This is the case where

Pr(p(b) = bi|Xi = xi, Y (bi, bi)) ≤ Pr(p(b) = bi|Xi = xi, Y (bi, bi)) (116)

Since the prices can be either bi or bi conditional on Y (bi,bi) given that no one bids
bi +∆, it follows that

Pr(p(b) = bi|Xi = xi, Y (bi, bi)) > Pr(p(b) = bi|Xi = xi, Y (bi, bi)). (117)

It follows from (113) that the marginal increase in the expected payoff from a higher
bid is decomposed into

U(xi, bi, β
∗
∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s) (118)

= E[v(θXi)|Xi = xi, Y (bi, bi)]−
biPr(p(b) = bi|Xi = xi, Y (bi, bi))− biPr(p(b) = bi|Xi = xi, Y (bi, bi)).

That is, the change in the expected payoff from a higher bid is decomposed into the
change in the expected value from winning at the high bid (and losing at the low bid)
and the expected change in the payment.

Now from (109),

E[v(θXi)|Xi = xi, Y (bi, bi)] > E[v(θXi)|Xi = xi, Y (bi, bi)]. (119)

That is, the change in the expected payoff increases when the signal increases. It

remains to evaluate the change in the payment when the signal changes.
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165. Change in the expected payment. From (116) and (117),
biPr(p(b) = bi|Xi = xi, Y (bi, bi)) + (120)

biPr(p(b) = bi|Xi = xi, Y (bi, bi))

≤ biPr(p(b) = bi|Xi = xi, Y (bi, bi)) +

biPr(p(b) = bi|Xi = xi, Y (bi, bi)).
That is, since the probability of the high price (bi) is lower when the signal is high by
the assumption of (116), it has to be that the expected payment decreases.

We now have the estimate of changes in the expected value of the good and the
expected payment. Thus,

166. Strict single crossing for case (a). Therefore, by substituting (119) and (120)
into (118), we get

U(xi, bi, β
∗
∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s)

> U(xi, bi, β
∗
∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s)

≥ 0 from (103).
Intuitively, in this case, when the signal increases, the expected value of the good
increases and the expected payment decreases. Thus the player with the high signal
still prefers the high bid.

167. Case (b). This is the case where

Pr(p(b) = bi|Xi = xi, Y (bi, bi)) ≥ Pr(p(b) = bi|Xi = xi, Y (bi, bi)) (121)

It follows that

Pr(p(b) = bi|Xi = xi, Y (bi, bi)) < Pr(p(b) = bi|Xi = xi, Y (bi, bi)). (122)

From (113), we have
U(xi, bi, β

∗
∆,b, β

∗
∆,s)− U(xix, bi, β

∗
∆,b, β

∗
∆,s) (123)

= Pr(p(b) = bi|Xi = xi, Y (bi, bi))h
E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi]− bi

i
+

Pr(p(b) = bi|Xi = xi, Y (bi, bi))h
E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi]− bi

i
.

That is, the change in the expected payoff is the weighted sum of the payoff when the
price is low (bi) and high (bi).

We first evaluate the change in the expected payoff when the price is high.

169. Expected payoff when the price is high. We recall, following the same line
of calculation of (107) and (108),

E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi] (124)

> E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi].
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That is, the player with the high signal has the high expected value of the good.

It follows from (115), (121), and (124), we have

Pr(p(b) = bi|Xi = xi, Y (bi, bi)) (125)h
E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi]− bi

i
> Pr(p(b) = bi|Xi = xi, Y (bi, bi))h

E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi]− bi
i
.

That is, the player with the high signal has the higher expected payoff from winning
at the high price compared with the player with the lower signal. Since the player with
the low signal has a nonnegative expected payoff from winning at the high price, the
expected payoff from winning at the high price is positive for the player with the high
signal. Since the probability that the price will be high increases when the signal is
high in this case, the expected payoff from the high price will be higher.

Using this information, we can study single crossing condition for case (b).

171. Strict single crossing condition for case (b). It follows from (113) and
(125), if there is a violation of single crossing conditions, it has to be that

Pr(p(b) = bi|Xi = xi, Y (bi, bi)) (126)h
E[v(θ,Xi)|Xi = xi, Y (bi, bi), p(b) = bi]− bi

i
< Pr(p(b) = bi|Xi = xi, Y (bi, bi))h

E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi]− bi
i

That is, the expected payoff when the price is low should be lower with the high signal.

It follows from (122), for (126) to hold, it has to be that

E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi] (127)

< E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi].

That is, since the probability of the low price decreases with the high signal for case
(b), in order to have a lower expected payoff, it has to be that the expected value of
the good decreases with the high signal.

But from a similar calculation with (124),

E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi] (128)

> E[v(θXi)|Xi = xi, Y (bi, bi), p(b) = bi].

That is, monotone likelihood ratio conditions on the distribution ensures that the player
with the high signal has the higher expected value of the good than the player with
the low signal.

It follows that (127) cannot happen. Therefore, the single crossing condition holds.

So far we have covered the case where there is no exi. We next consider the case whereexi ≤ xi where, exi is the highest signal who will bid bi +∆ as defined in (112).
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172. Decomposition of payoffs. This is the case where the highest signal who will
bid bi+∆ is very low, lower than xi. In this case, we decompose the difference in payoff
from a high bid for a high signal bi is decomposed into the sum of incremental change
in the payoffs:

U(xi, bi, β
∗
∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s) (129)

=
h
U(xi, bi, β

∗
∆,b, β

∗
∆,s)− U(xi, bi +∆, β∗∆,b, β

∗
∆,s)

i
+
h
U(xi, bi +∆, β∗∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s)

i
.

That is, the difference in the payoff is the sum of differences of the payoff when the
player with the signal xi increases the bid from bi to bi +∆ and the payoff when the
player increases the bid from bi +∆ to bi.

We first evaluate the first case, the payoff changes from bi +∆ to bi from the result
in the local case.

174. Change in the payoff from bi +∆ to bi. Since bi ∈ BR(xi,β
∗
∆,b,β

∗
∆,s),

U(xi, bi, β
∗
∆,b, β

∗
∆,s)− U(xi, bi +∆, β∗∆,b, β

∗
∆,s) ≥ 0. (130)

Then, from (111),

U(xi, bi, β
∗
∆,b, β

∗
∆,s)− U(xi, bi +∆, β∗∆,b, β

∗
∆,s) > 0. (131)

That is, since the higher bid bi is a best response for a player with signal xi and bi and
bi + ∆ are adjacent, by applying the local strict single crossing condition above, the
player with the high signal xi has the strictly prefers the high bid bi.

We now evaluate the second term.

176. Change in the payoff from bi to bi +∆. It follows from the definition of exi
that

U(exi, bi +∆, β∗∆,b, β
∗
∆,s)− U(exi, bi, β∗∆,b, β∗∆,s) ≥ 0. (132)

Then, it follows from the same argument of (111),

U(xi, bi +∆, β∗∆,b, β
∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s) ≥ 0. (133)

Intuitively, the player with signal exi has bi+∆ as a best response. Since bi+∆ and bi
are adjacent, and since xi is higher than exi, by applying the local strict single crossing
condition, it follows that the player with the signal xi strictly prefers bi +∆ over bi.

178. Strict single crossing condition for exi ≤ xi. It follows from (129), (131),and
(133), we get U(xi,bi,β

∗
∆,b,β

∗
∆,s)− U(xi,bi,β

∗
∆,b,β

∗
∆,s) > 0.

So far we have considered the first two cases. It remains to consider the case of exi > xi.
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Figure 5.–

Figure 6.–

179. Case where exi >.xi. This is the case that there is a player who bids bi+∆ can
have a very high signal, higher than xi. In this case, from (130) and (111),

U(exi, bi, β∗∆,b, β∗∆,s)− U(exi, bi +∆, β∗∆,b, β
∗
∆,s) ≥ 0. (134)

That is, since a player with signal xi prefers to bid bi over bi + ∆, the player with
the higher signal exi will prefer to bid bi over bi +∆ by the local strict single crossing
condition. Since it is a strict condition, it is a contradiction to the assumption that
bi+∆ is a best reply for player with signal exi. Consequently, this case will not happen.
The figure below describes the argument.

Thus we covered the case of bi = bi + 2∆ and xi = xi + γ. It follows from the
argument of mathematical induction that the single crossing condition follows for the
general case.
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7.3. Lemma 3.3

Lemma. There exists ∆ > 0 such that for all ∆ < ∆, for each player i and j, signal
xi 6= xj, and a bid bi ∈ B∆ which is in the range of equilibrium prices,

Pr(β∗∆,i(xi) = bi) · Pr(β∗∆,j(xj) = bi) = 0. (135)

Proof

181. Introduction. We start from assuming a contradiction. We first examine the
monotonic relationship about the distribution of the support of equilibrium bids and
then stochastic dominance relationship of the distribution of bids. It follows that there
exists a winner’s curse that for each price winning a good is a bad news compared with
losing a good. Its consequence is that it is not compatible that players with distinct
signals choose the same bid.
The arguments that there would not be a mass point in the distribution of equi-
librium bids in an interdependent value environment are presented, among others, in
Pesendorfer and Swinkels (1997), Athey (2001), Reny and Zamir (2004), and Reny and
Perry (2006). The proof here extends the argument to a possibly asymmetric mixed
strategy equilibrium in a large uniform price double auctions with a discrete set of bids
in an interdependent value environment.

182. Suppose that there is no ∆ > 0 which satisfies (135). It follows that for every
∆ > 0, there exists player i,j and signal x∆,i > x∆,j and a bid bi,∆ such that

Pr(β∗∆,i(x∆,i) = bi,∆) · Pr(β∗∆,j(x∆,j) = bi,∆) > 0. (136)

That is, for every grid size ∆ > 0, there are two signals x∆,i > x∆,j and a bid bi,∆ such
that players with these two signals will choose bi,∆ with positive probability.

The strict single crossing conditions implies a monotonic relationship about the sup-
ports of the distribution of bids under β∗∆,b.

183. The supports of the distribution of the equilibrium bids of a buyer and
a seller. For each xi, let

suppβ4,b(xi) = {bi ∈ B∆ : h∆,b(bi|xi) > 0}.

and
suppβ4,s(xi) = {bi ∈ B∆ : h∆,s(bi|xi) > 0}.

In words, suppβ4,b(xi) is the set of bids that a buyer with signal xi will choose with
positive probability. For a buyer’s bid, let

pmax(β4,b(xi)) = max suppβ4,b(xi)
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and
pmin(β4,b(xi)) = min suppβ4,b(xi).

That is, since the set of possible bids B∆ is finite, p
max(β4,b(xi)) is the largest bid that

a buyer with signal xi will choose with a positive probability. Similarly, p
min(β4,b(xi))

is the smallest bid that a buyer with signal xi will choose with a positive probability.
Similarly, for a seller, let

pmax(β4,s(xi)) = max suppβ4,s(xi)

and
pmin(β4,s(xi)) = min suppβ4,s(xi).

The figure below explains these definitions.

Figure 7.–

Since it is possible that the supports of the distribution of bids by the buyer and the
seller are different even though the buyer and the seller have identical preferences, we
define the union of the supports as follows:

184. The support of the equilibrium bids of buyers and sellers with the same
signal. For each xi, define suppβ4(xi) as follows:
• Suppose

max(pmax(βB,4(xi)), p
max(βX ,4(xi))) ≤ pmax(βB,4, βX ,4)

and
min(pmax(βB,4(xi)), p

max(βX ,4(xi))) ≥ pmin(βB,4, βX ,4).

It is the case where the maximum and the minimum bids are contained in the range
of the transaction price. In this case, we define

suppβ4(xi) = suppβ4,b(xi) ∪ suppβ4,s(xi).
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• Suppose

max(pmax(βB,4(xi)), p
max(βX ,4(xi))) > pmax(βB,4, βX ,4)

and
min(pmax(βB,4(xi)), p

max(βX ,4(xi))) ≥ pmin(βB,4, βX ,4).

In this case, the maximum bids are above the range of the equilibrium prices. In
this case, we define

suppβ4(xi) = suppβB,4(xi) ∪ suppβX ,4(xi) ∪ [pmax(βB,4, βX ,4), b]

• Suppose

max(pmax(βB,4(xi)), p
max(βX ,4(xi))) ≤ pmax(βB,4, βX ,4)

and
min(pmax(βB,4(xi)), p

max(βX ,4(xi))) < pmin(βB,4, βX ,4).

In this case, the minimum bids are below the range of the possible equilibrium
prices. In this case, we define

suppβ4(xi) = suppβB,4(xi) ∪ suppβX ,4(xi) ∪ [0, pmin(βB,4, βX ,4)].

Suppose

max(pmax(βB,4(xi)), p
max(βX ,4(xi))) ≥ pmax(βB,4, βX ,4)

and
min(pmax(βB,4(xi)), p

max(βX ,4(xi))) < pmin(βB,4, βX ,4).

In this case, both the maximum bid and the minimum bids are above and below the
possible equilibrium prices. In this case, we define

suppβ4(xi) = [0, b].

This definition takes into account of the point where players can get the same outcome
for the bids outside the range of the equilibrium prices. The following figure explains
one construction of suppβ4(xi).

We first compare the supports of the distribution of equilibrium bids for two signals
where both signals place bids in the range of equilibrium prices.

185. Monotonicity of the supports of the distribution of the equilibrium
bids when both signals place bids in the range of equilibrium prices. Let
xi > xi and bi ∈suppβ4(xi)∩ P(β∗∆,b,β∗∆,s) and bi ∈suppβ4(xi) ∩ P(β∗∆,b,β∗∆,s). Then
we claim that

∀bi ∈ suppβ4(xi) ∩ P (β∗∆,b, β∗∆,s),∀bi ∈ suppβ4(xi) ∩ P (β∗∆,b, β∗∆,s), bi ≥ bi. (137)
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That is, if we take two signals, then every bid which is in the support of the bidding
strategies of a buyer and a seller of a higher signal is higher than every bid which is in
the support of the bidding strategy of a buyer and a seller of a lower signal.

We now present the proof of the above claim.

186. Proof of the claim. Suppose otherwise. Then there exists bi ∈suppβ4(xi) ∩
P(β∗∆,b,β∗∆,s) and bi ∈suppβ4(xi)∩P(β∗∆,b,β∗∆,s) such that bi < bi. Since, bi ∈suppβ4(xi),
there exists a player (buyer or seller) that will prefer bi over other bid, including bi.
That is,

U(xi, bi, β
∗
∆,b, β

∗
X ,∆) ≥ U(xi, bi, β

∗
∆,b, β

∗
X ,∆). (138)

Since xi > xi, the previous lemma implies that, the player with the higher signal xi
will prefer bi as well.

U(xi, bi, β
∗
∆,b, β

∗
X ,∆) > U(xi, bi, β

∗
∆,b, β

∗
X ,∆). (139)

This implies that both of the buyer with signal xi and the seller with signal xi will
not choose bi over bi. It follows that bi /∈suppβ4(xi). It is a contradiction. The figure
below summarizes the argument.

Figure 8.–

We now extend the argument for signals which place a bid outside the range of
equilibrium prices.

187. Monotonicity of the supports of the distribution of the equilibrium
bids outside the range of equilibrium prices. Let xi > xi be two signals such
that suppβ4(xi)∩ P(β∗∆,b,β∗∆,s) 6= φ and suppβ4(xi)∩ P(β∗∆,b,β∗∆,s) 6= φ. That is, both
signals have bids in the range of equilibrium prices. We now show that
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∀b0i ∈ suppβ4(xi)\P(β∗∆,b, β∗∆,s) and b0i ≤ minP(β∗∆,b, β∗∆,s), (140)

b0i /∈ suppβ4(xi).
That is, for two signals xi and xi which will place a bid in the range of equilibrium
prices, if a player with signal xi places a bid outside the range of equilibrium prices,
the player with signal xi will not choose the bid.

189. Proof of the claim. To see this, let bi ∈suppβ4,i(xi) ∩ P(β∗∆,b,β∗∆,s). Then
bi > b0i and

U(xi, bi, β
∗
∆,b, β

∗
∆,s) ≥ U(xi, b

0
i, β
∗
∆,b, β

∗
∆,s). (141)

Thus, by the previous lemma,

U(xi, bi, β
∗
∆,b, β

∗
∆,s) > U(xi, b

0
i, β
∗
∆,b, β

∗
∆,s). (142)

For bi ∈suppβ4,b(xi),

U(xi, bi, β
∗
∆,b, β

∗
∆,s) ≥ U(xi, bi, β

∗
∆,b, β

∗
∆,s) (143)

That is, from (141), (142), and (143),
U(xi, bi, β

∗
∆,b, β

∗
∆,s)− U(xi, b

0
i, β
∗
∆,b, β

∗
∆,s)

=
³
U(xi, bi, β

∗
∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s)

´
−
³
U(xi, bi, β

∗
∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s)

´
> 0

Therefore, b0i /∈suppβB,4(xi). This implies that only the lowest signal who will place a
bid in the range of equilibrium prices will place a bid outside a range of equilibrium
prices.

Figure 9.–

We further extend the result to a signal such that the player with that signal will not
place a bid in the range of equilibrium prices.
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Figure 10.–

190. Monotonicity of the support of the equilibrium bids of buyers for signals
who will not place a bid in the range of equilibrium prices. Let x0i be such
that suppβ4,b(x

0
i)∩ P(β∗∆,b,β∗∆,s) = φ and maxsuppβ4,b(x

0
i) ≤ minP(β∗∆,b,β∗∆,s). Let

xi be any signal such that suppβ4,b(xi)∩ P(β∗∆,b,β∗∆,s) 6= φ. Then xi > x0i.
That is, a signal whose support of the equilibrium bid is less than the range of
equilibrium prices is less than any signal such that the player with that signal places a
bid in the range of equilibrium prices.

191. Proof of the claim. To see this, suppose, on the contrary that x0i > xi. Let
bi ∈suppβ4,b(xi)∩ P(β∗∆,b,β∗∆,s) and bi ≤ minP(β∗∆,b,β∗∆,s) and b0i ∈suppβ4,b(x

0
i)∩

P(β∗∆,b,β∗∆,s). Then, by construction,

bi > b0i.

Also, since bi is a best response for a player with signal xi,

U(xi, bi, β
∗
∆,b, β

∗
∆,s) ≥ U(xi, b

0
i, β
∗
∆,b, β

∗
∆,s) (144)

Then, since the assumption is such that x0i > xi,

U(x0i, bi, β
∗
∆,b, β

∗
∆,s) > U(x0i, b

0
i, β
∗
∆,b, β

∗
∆,s). (145)

This is a contradiction to the fact that b0i is a best response to a player with signal x
0
i.

The figure below summarizes the argument.

We have so far derived monotonicity properties of the supports of the distribution of
equilibrium bidding strategies. That is, the support of the distribution of equilibrium
strategies by a player with the higher signal is higher than the support of the distri-
bution of equilibrium strategies by a player with the lower signal. We now derive a
consequence on the distribution of equilibrium bids.
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192. Distribution of the equilibrium bids. Consider two signals xi < xi. Let
H∗4,i(·|xi) andH∗4,i(·|xi) be the distribution function of an equilibrium bidding strategy
associated with signal xi and xi. Let bi be in the range of equilibrium prices. There are
several cases.

• Case where

suppβ∗∆(xi) ⊂ B∆\P(β∗∆,b, β∗∆,s) and max suppβ∗∆(xi) ≤ minP(β∗∆,b, β∗∆,s)

and

suppβ∗∆(xi) ⊂ B∆\P(β∗∆(β∗∆,b, β∗∆,s))) and max suppβ∗∆(xi) ≤ minP(β∗∆,b, β∗∆,s)

This is the case where both signals have the support of the equilibrium bids less
than the range of equilibrium prices. In this case, for bi ∈ P (β∗∆,b,β

∗
∆,s),

H∗4,i(bi|xi) = H∗4,i(bi|xi) = 1.

• Case where

suppβ∗∆(xi) ⊂ B∆\P(β∗∆(β∗∆,b, β∗∆,s))) and max suppβ∗∆(xi) ≤ minP(β∗∆,b, β∗∆,s)

and

suppβ∗∆,i(xi) ∩ P(β∗∆,b, β∗∆,s) 6= φ.

This is the case where the support of the distribution of a player with a high signal
has a bid in the range of an equilibrium bids. In this case, for bi ∈ P (β∗∆,b,β

∗
∆,s),

H∗4,i(bi|xi) = 1 ≥ H∗4,i(bi|xi).

• Case where
suppβ∗∆(xi) ∩ P(β∗∆,b, β∗∆,s))) 6= φ

and

suppβ∗∆(xi) ∩ P(β∗∆,b, β∗∆,s)) 6= φ.

This is the case where the supports of the distribution of a player with a high and a
low signal place a bid in the range of equilibrium prices. Suppose bi ∈ P(β∗∆,b,β∗∆,s)
and bi < maxsuppβ∗∆(xi). In this case, a player with a higher signal xi will not
choose to place a bid on bi,

H∗4,i(bi|xi) ≥ 0 ≥ H∗4,i(bi|xi) = 0.

For bi ∈ P(β∗∆(β∗∆,b,β∗∆,s)) and bi ≥ maxsuppβ∗∆(xi),from (137),

H∗4,i(bi|xi) = 1 ≥ H∗4,i(bi|xi).
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The argument for the cases where a support of an equilibrium bids is higher than
maxP(β∗∆,b,β∗∆,s) is similar.
It follows from these cases that, for bi ∈ P(β∗∆(β∗∆,b,β∗∆,s))

H∗4,i(bi|xi)>H∗4,i(bi|xi). (146)

Intuitively, when a strict single crossing condition holds, it cannot be that a player with
a higher signal places a bid strictly lower than a bid by a player with a lower signal.
Otherwise, a player with a higher signal strictly should have preferred a high bid chosen
by a player with a lower signal. This implies that the support of an equilibrium bid by a
low signal is less than the support of an equilibrium bid by a high signal. It will implies
that the probability distribution of bids by a player with a low signal is stochastically
dominated by the distribution of bids by a player with a high signal.

We now derive a stochastic dominance relationship of the distribution of equilibrium
bids conditional on the state.

193. Stochastic dominance relationship of the conditional distribution of
bids. Recall

H∗4,b(bi|x0) =
X
xi∈X

H∗4,b(bi|xi)fXi|θ(xi|x0) (147)

From (146), and (147),

x0 ≥ x0 → H∗4,b(bi|x0) ≥ H∗4,b(bi|x0) (148)

Similarly,

x0 ≥ x0 → H∗4,s(bi|x0) ≥ H∗4,s(bi|x0) (149)

It follows from (148) and (149) that

αH∗4,b(bi|x0) + (1− α)H∗4,s(bi|x0) is nonincreasing in x0. (150)

Having established the stochastic dominance relationship about the distribution of
bids, we will now start working on existence of winner’s curse. As a first step, we study
how the allocation probability changes as the signal changes.

194. The allocation function at the tie. Suppose there is a tie at bid bi in the range
of an equilibrium price when the state is x0. Let q(bi,W = bi|x0) be the probability
that a player who bid bi will get the good when the market clearing price is bi and the
state is x0. We note
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• The ratio of goods available for buyers and sellers with bid bi is the amount of the
ratio of the good left after the goods are allocated to buyers and sellers whose bids
are strictly above bi. Noting that the set of possible bid B∆ is finite, it is,

(1− α)| {z }
total ratio of available goods

(151)

−

⎡⎢⎢⎢⎣α (1−H∗b,4(bi|x0))| {z }
ratio of buyers who bid strictly above bi

+ (1− α) (1−H∗s,4(bi|x0))| {z }
ratio of sellers who bid strictly above bi

⎤⎥⎥⎥⎦
=

h
αH∗B,4(bi|x0) + (1− α)H∗X ,4(bi|x0)

i
− α

• The ratio of buyers and sellers who bid exactly bi is⎡⎢⎢⎢⎣ αH∗B,4(bi|x0) + (1− α)H∗X ,4(bi|x0)| {z }
the ratio of buyers and sellers who bid equal or less than bi

⎤⎥⎥⎥⎦ (152)

−

⎡⎢⎢⎢⎣αH∗B,4(bi −∆|x0) + (1− α)H∗X ,4(bi −∆|x0)| {z }
the ratio of buyers and sellers who bid strictly less than bi

⎤⎥⎥⎥⎦
It follows from (94),(151),(152),

Pr(q(bi,W = bi|x0) = 1) (153)

=

h
αH∗B,4(bi|x0) + (1− α)H∗X ,4(bi|x0)

i
− α⎡⎣ h

αH∗B,4(bi|x0) + (1− α)H∗X ,4(bi|x0)
i

−
h
αH∗B,4(bi −∆|x0) + (1− α)H∗X ,4(bi −∆|x0)

i ⎤⎦

=
1− α

(αH∗B,4(bi|x0)+(1−α)H∗X ,4(bi|x0))

1− (αH∗B,4(bi−∆|x0)+(1−α)H∗X ,4(bi−∆|x0))
(αH∗B,4(bi|x0)+(1−α)H∗X ,4(bi|x0))

.

We now derive a monotonicity property of Pr(q(bi,W = bi|x0) = 1).

195. Monotonicity property of Pr(q(bi,W = bi|x0) = 1). It follows from (148) and
(149) that

αH∗B,4(bi|x0) + (1− α)H∗X ,4(bi|x0) is nonincreasing in x0. (154)

and

αH∗B,4(bi −∆|x0) + (1− α)H∗X ,4(bi −∆|x0) is nonincreasing in x0 (155)

It follows from (154) and (155) that
α

(αH∗B,4(bi|x0) + (1− α)H∗X ,4(bi|x0))
increases faster than (156)

(αH∗B,4(bi −∆|x0) + (1− α)H∗X ,4(bi −∆|x0))
(αH∗B,4(bi|x0) + (1− α)H∗X ,4(bi|x0))

as x0 increases.
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Consequently, from (156),the numerator of (153) decreases faster than the denominator.
Therefore,

x0 ≥ x0 (157)

→ Pr(bi wins |θ = x0,W = bi) ≤ Pr(bi wins |θ = x0,W = bi).

It follows that

x0 ≥ x0 (158)

→ Pr(bi loses |θ = x0,W = bi) ≥ Pr(bi loses |θ = x0,W = bi).

That is, as x0 increases, the distribution of bids by other players increases in the sense
of stochastic dominance, so the ratio of bids equal or above at x0 increases. Given that
a bid bi is tied with W , it implies that the ratio of bids strictly above x0 is the same
in these two cases of x0 = x0 and x0 = x0. This implies that the ratio of bids equal
to bi is larger with x0 compared with x0. It follows that the probability that a good is
assigned conditional on being at a tie will be lower with x0 rather with x0.

(157) and (158) imply that losing at the tie is a good news compared with winning
at the tie.

196. Winner’s curse. Consider a player with signal xi and a bid bi. The expected
value of the good from winning at the tie is E[v(θ,Xi)|Xi = xi,W (θ) = bi,biwins at
the tie] and the expected value of the good from losing at the tie is E[v(θ,Xi)|Xi =
xi,W (θ) = bi,bi loses at the tie].

We first examine the monotone likelihood ratio condition for f(x0|Xi = xi,W (θ) =
bi,bi loses at the tie). We note that

fθ|Xi,W (x0|xi,W (θ) = bi, biloses at the tie) (159)

=
fθ,Xi,W (x0, xi,W (θ) = bi, biloses at the tie)

fXi,W (xi,W (θ) = bi, biloses at the tie)

=
fXi,Y |θ(xi,W (θ) = bi, biloses at the tie|x0)fθ(x0)

fXi,Y (xi,W (θ) = bi, biloses at the tie)

=

⎡⎣ fXi,Y |θ(xi|x0) Pr(biloses at the tie|x0,W (θ) = bi)

f(W (x0) = bi|x0)fθ(x0)

⎤⎦
fXi,Y (xi,W (θ) = bi, biloses at the tie)
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It follows from (159) that the likelihood ratio for x0 > x0 is
fθ|Xi,Y (x0|xi,W (θ) = bi, biloses at the tie)

fθ|Xi,Y (x0|xi,W (θ) = bi, biwin at the tie)
(160)

=

µ
Pr(biloses at the tie|x0,W (θ)=bi)
fXi,Y (xi,W (θ)=bi,biloses at the tie)

¶
µ
Pr(biwins at the tie|x0,W (θ)=bi)
fXi,Y (xi,W (θ)=bi,biwins at the tie)

¶
by (159)

=
Pr(biloses at the tie|x0,W (θ) = bi)

Pr(biwins at the tie|x0,W (θ) = bi)

·fXi,Y (xi,W (θ) = bi, biwins at the tie)

fXi,Y (xi,W (θ) = bi, biloses at the tie)

>
Pr(biloses at the tie|W (θ) = bi, x0)

Pr(biwins at the tie|W (θ) = bi, x0)

by (157) and (158)

·fXi,Y (xi,W (θ) = bi, biwins at the tie)

fXi,Y (xi,W (θ) = bi, biloses at the tie)

=
fθ|Xi,Y (x0|xi,W (θ) = bi, biloses at the tie)

fθ|Xi,Y (x0|xi,W (θ) = bi, biwin at the tie)
That is, the variable θ and the variable bi wins or loses at the tie satisfy the monotone
likelihood ratio condition. Thus, it follows from Theorem 5 of Milgrom and Weber
(1982a) and Assumption 5 that the value is strictly increasing in the state with a
uniform lower bound that

E[v(θ,Xi)|Xi = xi,W (θ) = bi, biloses at the tie] (161)

> E[v(θ,Xi)|Xi = xi,W (θ) = bi, bi wins at the tie]

It follows that

E[v(θ,Xi)− bi|Xi = xi,W (θ) = bi, biloses at the tie] (162)

> E[v(θ,Xi)− bi|Xi = xi,W (θ) = bi, bi wins at the tie]

Intuitively, winning at the tie suggests, compared with losing at the tie, that the state
is lower, thus the value of the good is lower. Since the value function is strictly increas-
ing in the state with a uniform lower bound, the expected payoff conditional on the
information of winning the tie is strictly lower than the expected payoff conditional on
the information of losing the tie.

We have deduced the existence of winner’s curse. We now derive consequences of
the assumption that bidders with distinct signals will submit the same bid. For that
purpose, we consider a property of a mapping Z(p) which gives the set of states such
that p is the market clearing price given that players choose strategies β∗∆.

197. Monotonicity properties of Z(p).Consider two prices p< p which are in
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P(β∗∆,b,β∗∆,s). We first show that

for any x0 ∈ Z(p) and x00 ∈ Z(p), x0 ≤ x00. (163)

That is, every state which will induces a lower price is lower than the state which will
induce a higher price.

To see this, suppose, on the contrary, that x0 > x00. Then, for every bi, αH
∗
B,4(bi|x0)+

(1−α)H∗X ,4(bi|x0) is nonincreasing in x0. It follows that p≥ p. It is a contradiction to
the assumption.

Next we consider another property of Z(p) such that Z(p) does not have a gap.

198. Z(p) does not have a gap. Suppose there are two signals x0< x0 such that the
market clearing prices under x0 and x0 are both p. From (150), the market clearing price
p(β∗∆(x0)) is monotone in x0. Thus, for any x0 ∈ [x0,x0], p(β∗∆(x0)) = p(β∗∆(x0)) =
p(β∗∆(x0)). Thus, x0 ∈ Z(p).

From these two properties, for each p ∈ P(β∗∆,b,β∗∆,s), there is an interval Z(p) ⊂ [0,1]
which yields p as an equilibrium market clearing price. We also note that Z(p) changes
’smoothly’ in p in the following sense.

199. Z(p) does not jump around. Let p< p be two consecutive prices in P(β∗∆,b,β∗∆,s).
Let Z(p) be the set of signals such that the equilibrium outcome price is p. Let
x= supZ(p). Then, there does not exist ε > 0 such that the equilibrium price with
x+ε is p and the equilibrium price p0 with x+ε0,ε0 < ε is different from p.

To see this, suppose otherwise. Then, if the price p0 is lower than p, it will contradict
monotonicity property of Z(p) in terms of p and p0, and if p0 is higher than p,it will
contradict monotonicity property of Z(p) in terms of p0 and p.

Intuitively, we have already seen that the distribution of equilibrium bids is increasing
in the sense of stochastic dominance as the state increases. This implies that, as the
state increases, the market clearing price, which is a convex combination of the order
statistics of the distribution of bids, increases monotonically.

We are now able to study the first order conditions for the bidder with the high signal
xi,∆.

200. First order condition for the bidder with the high signal. It follows from
the first order condition for the signal xi,∆ that it has to be that a player with a signal
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xi,∆ does not wish to increase a bid from bi,∆ to bi,∆ +4. That is,Z
x0∈Z(bi,∆+4)

(v(x0, xi,∆)− (bi,∆ +4)) (164)

q(bi,∆ +4,W = bi,∆ +4|x0)fθ|Xi
(x0|xi,∆)dx0

+
Z
x0∈Z(bi,∆)

(v(x0, xi,∆)− bi,∆)

(1− q(bi,∆,W = bi,∆|x0))fθ|Xi
(x0|xi,∆)dx0

<0.

The first term of (164) evaluates the payoff of a player when a player’s new bid bi,∆+∆
wins when the market clearing price is bi,∆ +∆ and the player wins the possible tie
and the allocation is q(bi,∆+4,W = bi,∆+4|x0). The second term of (164) evaluates
the payoff of a player when a player’s new bid bi,∆+∆ wins when the market clearing
price is bi,∆.

We have already seen the first order condition in the form of Y (bi,bi) in the previous
Lemma for example, in (113). The condition here, (164), explicitly deals with the
information about the state contained in Y (bi,bi) in the form of Z(bi) and Z(bi). The
reason that we use this formulation here is that, since we know now more about the
structure of the equilibrium strategies, we know more about the structure of Z.

202. The limit of the first order condition as ∆→ 0. We now take 4→ 0. By
taking subsequences, let xi denote a subsequence limit of xi,∆, bi is a subsequence limit
of bi,∆, and q(bi,W = bi,∆|x0) is a subsequence limit of q(bi +4,W = bi,∆ +4|x0),Z1
be the limit of the interval of Z(bi,∆+4) and Z2 be the limit of the intervals of Z(bi,∆).
Then, Z

Z1
(v(x0, xi)− bi)q(bi,∆,W = bi|x0)f(x0|xi)dx0 (165)

+
Z
Z2
(v(x0, xi)− bi)(1− q(bi,∆,W = bi|x0))f(x0|xi)dx0<0

Given the monotonic structure of Z(p), we can draw inference on the payoff of a high
signal bidder at the tie.

204. Estimation of the payoff of a high signal player with losing at the tie.
From the monotonic structure of Z, let x0 be the common point of Z1 and Z2.

• Suppose
v(x0, xi)− bi ≥ 0. (166)

That is, at the highest state where the price is bi,∆, it is profitable to own the good.
Then, since, for every x0 ∈ Z1, x0 ≥ x0, it follows from (166) that

v(x0, xi)− bi > 0. (167)

From q(bi,∆,W = bi|x0) ≥ 0 and (167), it implies that it is profitable to win the
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good when the state is Z1 :Z
Z1
(v(x0, xi)− bi)q(bi,∆,W = bi|x0)f(x0|xi)dx0 ≥ 0 (168)

Therefore, from (165) and (168), it has to be thatZ
Z2
(v(x0, xi)− bi)(1− q(bi,∆,W = bi|x0))f(x0|xi)dx0 ≤ 0 (169)

• Suppose
v(x0, xi)− bi < 0. (170)

That is, it is not profitable to own the good at the highest state where the price is
bi. For every x0 ∈ Z1, x0 ≤ x0. Thus, from (170),

v(x0, xi)− bi < 0. (171)

Therefore, from q(bi,∆,W = bi|x0) ≥ 0 and (171),Z
Z2
(v(x0, xi)− bi)(1− q(bi,∆,W = bi|x0))f(x0|xi)dx0 ≤ 0 (172)

Consequently, (169) holds for all cases. That is, losing the tie at the price bi should not
be profitable.

For intuition, suppose otherwise and that losing the tie at the price bi is profitable.
Then, winning at the price bi +∆ when the market clearing price is bi +∆ is a better
news for the state than losing at the price bi. It is because, in order for the market
clearing price to be bi+∆, the ratio of the bids equal or strictly above bi+∆ is at least
1− α. In this case, it cannot be that the market clearing price is bi. This implies that
winning when the market clearing price is bi +∆ is a better news. This implies that,
if losing the tie at the price bi is profitable, winning at the price bi + ∆ is profitable
for sufficiently small ∆, and it will provide contradiction to the assumption that the
player with the signal xi,∆ does not wish to increase the bid to bi +∆.

We bow consider the first order condition for the low signal.

205. First order condition for the low signal and its limit. It follows from (136),
as in the case of a high signal xi,∆, that a player with signal xj,∆ prefers to increase
the bid from bi,∆ −∆ to bi∆. That is,Z
x0∈Z(bi,∆−∆)

(v(x0, xj,∆)− (bi,∆ −∆))(1− q(bi,∆ −∆,W = bi,∆ −∆|x0))fθ|Xi
(x0|xj,∆)dx

+
Z
x0∈Z(bi,∆)

(v(x0, xj,∆)− bi,∆)q(bi,∆,W = bi,∆|x0)fθ|Xi
(x0|xj,∆)dx0

≥ 0.
The first term expresses the payoff when the state is such that the market clearing
price is bi,∆ −∆ and a higher bid of bi,∆ wins the good even when the bid of bi,∆ −∆
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does not win the good. The second case expresses the payoff from when the state is
such that the market clearing price is bi,∆ and a higher bid of bi,∆ wins the good. The
first order condition implies that increasing the bid from bi,∆−∆ to bi,∆ is preferable.
We take ∆ → 0. Let xi be a subsequence limit of xi,∆, bi is a subsequence limit
of bi,∆, and q(bi,W = bi,∆|x0) is a subsequence limit of q(bi +4,W = bi,∆ +4|x0),
q(bi,W = bi,∆|x0) is a subsequence limit of q(bi−4,W = bi,∆−4|x0) for each x0,Z2 be
the limit of the intervals of Z(bi,∆), and Z2 be the limit of the intervals of Z(bi,∆−∆).
Then, Z

Z2
(v(x0, xi)− bi)q(bi,∆,W = bi|x0)f(x0|xi)dx0 (173)

+
Z
Z3
(v(x0, xi)− bi)(1− q(bi,∆,W = bi|x0))f(x0|xi)dx0 ≥ 0

207. Estimation of the payoff of a low signal player with winning at the tie.
Let x0 be the common point of Z2 and Z3.
• Suppose

v(x0, xj)− bi ≥ 0. (174)

Then, for every x0 ∈ Z2,
v(x0, xj)− bi > 0. (175)

Therefore, from q(bi,W = bi|x0) ≥ 0,Z
Z2
(v(x0, xj)− bi)q(bi,W = bi|x0)f(x0|xj)dx0 ≥ 0. (176)

• Suppose
v(x0, xj)− bi < 0. (177)

Then for every x0 ∈ Z3,
v(x0, xj)− bi < 0. (178)

It follows that, from 1− q(bi,W = bi|x0) ≥ 0, by integrating,Z
Z3
(v(x0, xj)− bi)(1− q(bi,W = bi|x0))f(x0|xj)dx0 ≤ 0. (179)

It follows from (173) and (179) thatZ
Z2
(v(x0, xj)− bi)q(bi,W = bi|x0)f(x0|xj)dx0 ≥ 0. (180)

This implies that for a player with a low signal, it has to be that winning the tie at
when the market clearing price bi is profitable. To see the intuition, suppose otherwise
and assume that it is not profitable to win at the tie when the market clearing price is
bi. Then, for sufficiently small ∆, since losing the tie at bi−∆ is a worse than winning
the tie at the price bi, it will be that losing the tie at the price bi−∆ and winning the
tie by a higher bid of bi is still nonprofitable. This implies that the player with signal
xj,∆ will not prefer to increase the bid from bi −∆ to bi, which is a contradiction.
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We now consider the relationship between winner’s curse (162) and the first order
condition (172) and (180).

208. Derivation of contradiction. We note that from (162), for every xi,Z
Z2
(v(x0, xi)− bi,∆)(1− q(bi,∆,W = bi,∆|x0))f(x0|xi)dx0 (181)

≥
Z
Z2
(v(x0, xi)− bi,∆)qi(bi, p(b) = bi|x0)f(x0|xi)dx0

Therefore,
0 ≥

Z
Z2
(v(x0, xi)− bi)(1− q(bi,∆,W = bi|x0))f(x0|xi)dx0 (182)

≥
Z
Z2
(v(x0, xi)− bi)(1− qi(bi, p(b) = bi|x0))f(x0|xi)dx0

>
Z
Z2
(v(x0, xi)− bi)qi(bi, p(b) = bi|x0)f(x0|xi)dx0

>
Z
Z2
(v(x0, xj)− bi)qi(bi, p(b) = bi|x0)f(x0|xi)dx0

≥ 0
The first inequality comes from (169).The second inequality comes from the affiliation
inequality and the strictly private value element. The third inequality comes from
(162).The fourth inequality comes from the affiliation inequality and the private value
element. The last inequality comes from (180).
(182) is not consistent. Consequently, the assumption (136) is not logically consistent.
Thus (135) holds.

7.4. Lemma 3.4

Lemma. The limit strategy profile β∗∆ is an equilibrium of the limit game G(γ,f) and
is outcome equivalent to the fully revealing rational expectation equilibrium identified
in Lemma 1.

Proof.

210. Introduction. We show that the limit strategy profile β∗∆,b is an equilibrium
of the limit game G(γ,f). Then, we show outcome equivalence to the fully revealing
rational expectation equilibrium.

211. Consequence of the previous lemma. The previous lemma implies that for
sufficiently small ∆, players with distinct signals will place distinct bids so that the
tie with distinct signals will not take place with positive probability. Players with the
same signal choose the same strategy. In the large economy, the allocation probability
is symmetric among buyers and sellers with the same signal. It follows that for each
x0, as ∆→ 0,

lim
∆→0

Pr(q(bi, β
∗
4,b, β

∗
4,s|x0) = 1) = Pr(q(bi, β∗b , β∗X |x0) = 1)). (183)
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Consequently, q(bi,β
∗
4,b,β

∗
4,s) converges in distribution to q(bi,β

∗
b ,β
∗
s|x0).

212. Equilibrium conditions for β∗∆. We first consider convergence of expected
payoff in G(γ,f ,∆) to expected payoff in G(γ,f).

U(xi, bi, β
∗
4,b, β

∗
4,s)− U(xi, bi, β

∗
b , β
∗
s) (184)

=
Z
(v(x0, xi)− p(bi, β

∗
4,b, β

∗
4,s|x0))q(bi, β∗4,b, β

∗
4,s|x0)f(x0|xi)dx0

−
Z
(v(x0, xi)− p(bi, β

∗
b , β
∗
s|x0))q(bi, β∗b , β∗s|x0)f(x0|xi)dx0

=
Z
v(x0, xi)(q(bi, β

∗
4,b, β

∗
4,s|x0)− q(bi, β

∗
b , β
∗
s|x0))f(x0|xi)dx0

−
Z
[p(bi, β

∗
4,b, β

∗
4,s|x0)q(bi, β∗4,b, β

∗
4,s|x0)− p(bi, β

∗
b , β
∗
s|x0)q(bi, β∗b , β∗s|x0)]

f(x0|xi)dx0.
From (183),q(bi,β

∗
4,b,β

∗
4,s|x0)→ q(bi,β

∗
b ,β
∗
s|x0) weakly, thus

lim
∆→0

Z
v(x0, xi)(q(bi, β

∗
4,b, β

∗
4,s|x0)− q(bi, β

∗
b , β
∗
s|x0)) (185)

f(x0|xi)dx0 = 0.
For the second term, weak convergence of β∗4,b and β∗4,s to β

∗
b and β∗s implies that for

each bi,

p(bi, β
∗
4,b, β

∗
4,s|x0)→ p(bi, β

∗
b , β
∗
s|x0) (186)

It follows from (186) that

lim
∆→0

Z
[p(bi, β

∗
4,b, β

∗
4,s|x0)q(bi, β∗4,b, β

∗
4,s|x0) (187)

−p(bi, β∗b , β∗s|x0)q(bi, β∗b , β∗s|x0)]
f(x0|xi)dx0 = 0.

Thus, it follows from (185) and (187) that

lim
∆→0

U(xi, bi, β
∗
4,b, β

∗
4,s) = U(xi, bi, β

∗
b , β
∗
s). (188)

We now characterize the property of β∗b and β∗s from the first order condition for β∗b
and β∗s.

213. First order conditions for β∗∆,b. Since β
∗
4 is an equilibrium of G(γ,f ,∆), for

each bi ∈ suppβ4,b(xi),Z
x0∈Z(bi+4)

(v(x0, xi)− (bi +4)) (189)

q(bi +4,W = bi +4|x0)fθ|Xi
(x0|xi)dx0

+
Z
x0∈Z(bi)

(v(x0, xi)− bi)

(1− q(bi,W = bi|x0))fθ|Xi
(x0|xi)dx0

<0.
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and Z
x0∈Z(bi)

(v(x0, xi)− bi) (190)

q(bi,W = bi|x0)fθ|Xi
(x0|xi)dx0

+
Z
x0∈Z(bi−∆)

(v(x0, xi)− bi)

(1− q(bi,W = bi −∆|x0))fθ|Xi
(x0|xi)dx0

≥ 0.
The first inequality says that for a player with signal xi, it is not preferable to increase
the bid from bi to bi +∆. The second inequality says that it is preferable to increase
the bid from bi −∆ to bi.

214. The limit of the first order condition. Following the notation of the previous
lemma, we have, from (189),Z

Z1
(v(x0, xi)− bi)q(bi,∆,W = bi|x0)fθ|Xi

(x0|xi)dx0 (191)

+
Z
Z2
(v(x0, xi)− bi)(1− q(bi,∆,W = bi|x0))fθ|Xi

(x0|xi)dx0<0
and from (190),Z

Z2
(v(x0, xi)− bi)q(bi,W = bi|x0)fθ|Xi

(x0|xi)dx0 (192)

+
Z
Z3
(v(x0, xi)− bi)(1− q(bi,W = bi|x0))fθ|Xi

(x0|xi)dx0>0.

216. Conditions for expected payoffs when the market clearing price is bi.
Following the steps of the previous lemma, from (191),Z

Z2
(v(x0, xi)− bi)(1− q(bi,∆,W = bi|x0))fθ|X(x0|xi)dx0 ≤ 0

and Z
Z2
(v(x0, xi)− bi)(1− q(bi,∆,W = bi|x0))fθ|Xi

(x0|xi)dx0 ≥ 0, (193)

and, from (161),Z
Z2
(v(x0, xi)− bi)(1− q(bi,W = bi|x0))fθ|Xi

(x0|xi)dx0 (194)

≥
Z
Z2
(v(x0, xi)− bi)qi(bi,W = bi|x0)fθ|Xi

(x0|xi)dx0.
Therefore, from (193), and (194),Z

Z2
(v(x0, xi)− bi)(1− q(bi,∆,W = bi|x0))fθ|Xi

(x0|xi)dx0 = 0 (195)

and Z
Z2
(v(x0, xi)− bi)(1− q(bi,∆,W = bi|x0))fθ|Xi

(x0|xi)dx0 = 0. (196)

From (195) and (196), Z
Z2
(v(x0, xi)− bi)fθ|Xi

(x0|xi)dx0 = 0. (197)
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The argument is similar to the one used in the proof of 4.9. The difference is that,
in the proof of the previous lemma, the assumption was that these two first order
conditions about increasing the bid and decreasing the bid were derived for players with
distinct signals, and the winner’s curse condition was used to derive inconsistency of
the assumption that players with two distinct signals chooses the same bid. Here, after
the argument of the previous lemma, we already know that players with two distinct
signals will not choose the same bid, and the first order conditions were applied to
players with the same signal.

218. Interpretation of the conditions (197)

By rewriting (197), we get

E [v(θ,Xi)− bi|Xi = xi,W (θ) = bi] = 0. (198)

That is,

bi = E [v(θ,Xi)|Xi = xi,W (θ) = bi] . (199)

This condition holds for both buyers and sellers, so we conclude that β∗∆,b is symmetric
among buyers and sellers. This is the equilibrium strategy derived in Milgrom (1981),
Pesendorfer and Swinkels (1997), and Reny and Perry (2006). In the large economy,
since buyers and sellers are symmetric, the equilibrium strategy in the finite one-sided
uniform price auctions continues to apply in the uniform price double auctions.

We now show that this bidding strategy is monotone in xi.

219. Monotonicity of bi. Let xi ≥ xi and define, following (199),

bi = E
h
v(θ,Xi)|Xi = xi,W (θ) = bi

i
(200)

and

bi = E [v(θ,Xi)|Xi = xi,W (θ) = bi] . (201)

Suppose

bi ≥ bi. (202)

Then, from (200) and (201)

E[v(θ,Xi)|Xi = xi,W (θ) = bi] (203)

≤ E [v(θ,Xi)|Xi = xi,W (θ) = bi] .
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On the other hand,

E[v(θ, xi)|Xi = xi,W (θ) = bi] (204)

−E [v(θ, xi)|Xi = xi,W (θ) = bi]

=

⎛⎝ E[v(θ, xi)|Xi = xi,W (θ) = bi]
−E [v(θ, xi)|Xi = xi,W (θ) = bi]

⎞⎠
| {z }

common value effect

+

⎛⎝ E[v(θ, xi)|Xi = xi,W (θ) = bi]
−E [v(θ, xi)|Xi = xi,W (θ) = bi]

⎞⎠
| {z } .

private value effect

The first term is positive because Xi is affiliated with θ and from W (θ) is monotone
in x0. The second term is also positive. We note that (203) and (204) are mutually
exclusive. Thus we conclude that (202) does not hold. Therefore we conclude bi > bi.

220. Asymptotic equivalence to the fully rational expectation equilibrium.
The above argument shows that the bidding strategy β∗∆,b is pure, symmetric between
buyers and sellers, and strictly increasing in xi Since the market clearing price is deter-
mined by the 1−αth quantile of bids (counted from above), for each realization of state
x0 it is determined by the bid of the bidder who is on the margin xi(x0). Therefore,
p(x0) = v(x0,xi(x0)). Thus, the equilibrium under β∗∆,b is outcome equivalent to the
fully revealing rational expectation equilibrium identified in Lemma 1.

8. PROOF OF PROPOSITION 1(C)

8.1. Lemma 4.1

Lemma. Suppose β∗∆,n → β∗∆ and consider the interim expected payoff functions
Un,i(xi,bi,β

∗
∆,b,n,β

∗
∆,s,n) in the double auction game in the finite economy G(γ,f ,∆,n)

and the interim expected payoff function U(xi,bi,β
∗
∆,b,β

∗
∆,s) in the double auction game

in the large economy G(γ,f ,∆). Then, as n→∞, Un,i(xi,bi,β
∗
∆,b,n,β

∗
∆,s,n)→ U(xi,bi,β

∗
∆,b,β

∗
∆

uniformly for player i, signal xi, and a bid bi.

Proof.

222. Introduction. We show convergence for buyer i. An argument for a seller is
similar, and uniform convergence across buyers and sellers can be obtained by taking
the largest bound out of the bound for buyers and sellers. First of all, the difference
between Un,b(xi,bi,β

∗
∆,n,b,β

∗
∆,n,s) and U(xi,bi,β

∗
∆,b,β

∗
∆,s) can be decomposed into the

differenced caused by the difference in strategies of other players an difference from
the size of the economy. We can deal with the first difference from the fact that the
behavioral strategies converge for each signal and bids. We can deal with the second
difference from the fact that the distribution of bids converges for each signal and bids.
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223. Decomposition of the difference.We note, by adding and subtracting Un,b(xi,bi,β
∗
∆

Un,b(xi, bi, β
∗
∆,n,b, β

∗
∆,n,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s) (205)

=
h
Un,b(xi, bi, β

∗
∆,n,b, β

∗
∆,n,s)− Un,b(xi, bi, β

∗
∆,b, β

∗
∆,s)

i
| {z }

change in other players’ strategies

+
h
Un,b(xi, bi, β

∗
∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s)

i
| {z }

change in the size of the economy

.

That is, the change in the expected payoff from Un,b(xi,bi,β
∗
∆,n,b,β

∗
∆,n,s) to U(xi,bi,β

∗
∆,b,β

∗
∆,s)

is decomposed into the change in the expected payoff from (1) the change in other play-
ers’ strategies while keeping the size of the economy fixed, and (2) the change in the
size of the economy while keeping other players’ strategies fixed.

We now consider the first term of (205).

224. Effect of the changes in other players’ strategies. We note, by definition

Un,b(xi, bi, β−i,4,n) (206)

=
Z
[0,1]

X
X × ...×X| {z }

nS−1

⎡⎢⎢⎢⎢⎢⎢⎣
X

B∆ × ...×B∆| {z }
n−1

(v(x0, xi)− pn(bi, b−i))q(bi, b−i)h∆,n,−i(b−i|x−i)

⎤⎥⎥⎥⎥⎥⎥⎦
fθ,X−i|Xi

(x0, x−i|xi)dx0.
That is, the interim expected payoff is obtained taking expectations in terms of the
distribution of bids of other players and the distribution of the state conditional on a
player’s signal.

It follows from (206) that the first term of (205) is

Un,b(xi, bi, β
∗
∆,n,b, β

∗
∆,n,s)− Un,b(xi, bi, β

∗
∆,b,, β

∗
∆,s) (207)

=
Z
[0,1]

X
X × ...×X| {z }

nS−1

⎡⎢⎢⎢⎣
P
B∆ × ...×B∆| {z }

n−1

(v(x0, xi)− pn(bi, b−i))q(bi, b−i)

(h∆,n,−i(b−i|x−i)− h∆,−i(b−i|x−i))

⎤⎥⎥⎥⎦
fθ,X−i|Xi

(x0, x−i|xi)dx0.
That is, the difference of the interim expected payoff between strategies (β∗∆,n,b,β

∗
∆,n,s)

and (β∗∆,b,β
∗
∆,s) is expressed in terms of the differences in probabilities that these

strategies will assume for a bid profile b−i.
It follows from the assumption of the lemma that β∗∆,n → β∗∆. Since the sets of
signals and bids are finite and we assume buyers use symmetric strategies and sellers
use symmetric strategies, we have, for each buyer or seller i,

lim
n→∞h∆,n,i(bi|xi) = h∆,i(bi|xi). (208)

That is, for each buyer or seller i, bi and xi, for every ε > 0, there exists ni,xi,bi(ε) such
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that, for every n > ni,xi,bi(ε),

|hi,∆,n(bi|xi)− hi,∆(bi|xi)| < ε. (209)

It follows from (209) that, for every ε > 0, there exists

n(ε) = max
i∈{b,s},xi∈Xγ,bi∈B∆

ni,xi,bi(ε)

such that, for every n > n(ε),

|hi,∆,n(bi|xi)− hi,∆(bi|xi)| < ε for every i, bi, and xi. (210)

Now, there exists v such that 0 ≤ v(x0,xi) < v for every x0 and xi. It follows that
there exists f such that 0 < fθ,X−i|Xi

(x0,x−i|xi) < f for every x0,xi, and x−i. Then,
0 ≤ pn(bi,b−i) < b for every bi and b−i. Then, 0 ≤ q(bi,b−i) ≤ 1. It follows from (207)
that for every η > 0, there exists n(η) such that, for every n > n(η),

|Un,b(xi, bi, β
∗
∆,n,b, β

∗
∆,n,s)− Un,b(xi, bi, β

∗
b∆,n, β

∗
∆,n,s)| < η (211)

for every i ∈ {b, s}, every xi, and bi.

We now examine effect of the change in the size of the economy. We note the distrib-
ution of bids conditional on signal xi and state x0. From Assumption 4, conditional on
x0, xi does not affect the distribution of {xj}j 6=i. Therefore, once we condition on x0,
the conditional distribution is independent of xi. (Of course xi affects the conditional
distribution of x0 given xi).

225. The distribution of bids conditional on the state. Given signal xi, player i
knows that the state x0 is distributed according to the conditional density fθ|Xi

(x0|xi).
Conditional on x0, another buyer’s signal is distributed according to the conditional
density fXi|θ(xi|x0). A buyer’s bidding behavior is characterized by the behavioral
strategy h∆,n,b(bj|xj). Thus, the probability that another buyer’s bid is b0j conditional
on xi and x0 is described by

Pr(b0j|xi, x0) =
X

xj∈Xγ

h∆,n,b(b
0
j|xj)fXi|θ,Xi

(xj|x0, xi) (212)

By Assumption 4, we have

Pr(b0j|xi, x0) (213)

=
X

xj∈Xγ

hb,∆,n(b
0
j|xj)fXi|θ,Xi

(xj|x0, xi)

=
X

xj∈Xγ

hb,∆,n(b
0
j|xj)fXi|θ,Xi

(xj|x0)

= Pr(b0j|x0)



100 EIICHIRO KAZUMORI

We now apply the Glivenko-Cantelli theorem to the distribution of bids conditional
on the state.

226. Application of Glivenko-Cantelli theorem. By (213), conditional on x0,
buyer’s bids are distributed independently and identically distributed. Let f(b0j|x0)
be the probability mass function. Let Fn,−i(b0j|x0) be the empirical probability mass
function of buyer’s bids by buyers other than i. That is,

Fn,−i(b
0
j|x0) =

1

nB − 1
X

j∈Nn,B\{i}
1{bj=b0j} (214)

Then, by Glivenko-Cantelli theorem, for every x0 and every b
0
j ∈ B∆,

Fn,−i(b
0
j|x0)→ F (b0j|x0) almost surely (215)

We now derive the convergence of the distribution of bids given xi.

227. Convergence of the distribution of bids conditional on x0. It follows that,
for every bj and xi,

Fn,−i(bj = b0j|xi) (216)

=
Z
Fn,−i(b

0
j|x0, xi)f(x0|xi)dx0 (217)

=
Z
Fn,−i(b

0
j|x0)f(x0|xi)dx0

→
Z
F (b0j|x0)f(x0|xi)dx0

= F (bj = b0j|xi)
That is, for each bj ∈ B∆, the probability mass function of buyers’ bid by buyers other
than i, conditional on a player’s signal xi, converges as n→ 0.

We now show that when player i chooses a bid bi, the outcome of the auction game
in G(γ,f ,∆, n) converges to the outcome in G(γ,f ,∆).

228. Convergence of the market clearing price. By definition,
bnS:n\{i} = b0i (218)

⇔
⎛⎝ Fn,−i(bi ≤ b0i −∆|xi) < α
Fn,−i(bi > b0i +∆|xi) ≥ α.

It follows from (216) that
bnS:n\{i} → p(b) (219)

Similarly,
bnS−1:n\{i} → p(b) (220)
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and
bn+1:n\{i} → p(b) (221)

Therefore,

kbnS+1:n\{i} + (1− k)bnS:n\{i} → kp(b) + (1− k)p(b) (222)

Now, the only way that the market clearing price can be different from kp(b)+(1−k)p(b)
is

bnS+1:n\{i} < bi < bnS−1:n\{i}. (223)

We consider two cases.
• If p(b) = p(b), then, conditional on bnS+1:n\{i} < bi < bnS−1:n\{i},

kbnS+1:n\{i} + (1− k)bi → kp(b) + (1− k)p(b) (224)

and
kbi + (1− k)bnS:n\{i} → kp(b) + (1− k)p(b) (225)

• If p(b) < p(b), p(b) and p(b) are indeterminate because of bi. In this case, by a
convention adapted in the definition of p(b) and p(b), we can use choose the market
clearing price which will be a limit of the market clearing price in the finite economy.

It follows from (222), (224), and (225) that under strategies (β∗∆,b,β
∗
∆,s), for each bi,

pn(bi, b−i|xi)→ p(bi, b−i|xi) (226)

229. Convergence of the allocation. Following steps similar to the one in the proof
of the previous lemma,

qn(bi, b−i|xi)→ q(bi, b−i|xi) (227)

We are now able to show convergence of expected payoffs.

230. Convergence of expected payoffs. From (226) and (227), it follows that, for
each bi and xi,

Un,b(xi, bi, β
∗
∆,b, β

∗
∆,s)− Ub(xi, bi, β

∗
∆,b, β

∗
∆,s) (228)

= E [(v(x0, xi)− pn(bi, b−i))qn(bi, b−i)|xi]
−E [(v(x0, xi)− p(bi, b−i))q(bi, b−i)|xi]

→ 0 as n→∞.
We now combine (205), (211) and (228) to get for each bi and xi,

Un,b(xi, bi, β
∗
∆,n,b, β

∗
∆,n,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s)→ 0 as n→∞. (229)
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That is, for each ε, there exists n(xi,bi,ε) <∞ such that for every n > n(xi,bi,ε),

|Un,b(xi, bi, β
∗
∆,n,b, β

∗
∆,n,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s)| < �. (230)

It follows from (230) that, for each ε, there exists n(ε) = maxxi∈Xγ,bi∈B∆ n(xi,bi,ε) <∞
such that for every n > n(xi,bi,ε),

|Un,b(xi, bi, β
∗
∆,n,b, β

∗
∆,n,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s)| < �. (231)

8.2. Lemma 4.2

Lemma. There exists n such that for every n >n, for every player i and for every
signal xi, the set of best response BRi,∆(xi,β

∗
∆,n,b,β

∗
∆,n,s) in G(γ,f ,∆,n) and the set of

best response in G(γ,f ,∆),BR∆(xi,β∗∆,b,β∗∆,s) satisfy the following relationship

BRn,i(xi, β
∗
∆,n,b, β

∗
∆,n,s) ⊆ BR∆(xi, β

∗
∆,b, β

∗
∆,s) (232)

Proof.

232. Suppose that the conclusion does not hold. Then, there exists player i and signal
xi such that there exists a bid bi which satisfies the following relationship:

bi ∈ BR∆,n,i(xi, β
∗
∆,n,b, β

∗
∆,n,s) but bi /∈ BR∆(xi, β

∗
∆,b, β

∗
∆,s). (233)

It follows from (233) that

Un,i(xi, bi, β
∗
∆,n,b, β

∗
∆,n,s) ≥ Un,i(xi, b

0
i, β
∗
∆,b, β

∗
∆,s) for every b

0
i ∈ B∆ (234)

and that there exists b00i ∈ B∆ such that

U(xi, b
00
i , β
∗
∆,b, β

∗
∆,s) > U(xi, bi, β

∗
∆,b, β

∗
∆,s). (235)

Then, there exists η > 0 such that

η = U(xi, b
00
i , β
∗
∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s) (236)

From the previous Lemma, there exists n(i,xi,bi) > 0 such that for every n > n(i,xi,bi),

|U(xi, b00i , β∗∆,b, β∗∆,s)− Un,i(xi, b
00
i , β
∗
∆,n,b, β

∗
∆,n,s)| < η/2 (237)

and

|U(xi, bi, β∗∆,b, β∗∆,s)− Un,i(xi, bi, β
∗
∆,n,b, β

∗
∆,n,s)| < η/2 (238)
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It follows from (237) and (238),

Un,i(xi, b
00
i , β
∗
∆,n,b, β

∗
∆,n,s)− Un,i(xi, bi, β

∗
∆,n,b, β

∗
∆,n,s) (239)

>
h
U(xi, b

00
i , β
∗
∆,b, β

∗
∆,s)− η/2

i
−
h
U(xi, bi, β

∗
∆,b, β

∗
∆,s) + η/2

i
= U(xi, b

00
i , β
∗
∆,b, β

∗
∆,s)− U(xi, bi, β

∗
∆,b, β

∗
∆,s)− η

> 0

But they are mutually exclusive. That is, for xi and for bi, for n > n(i,xi,bi),

BRn,i(xi, β
∗
∆,n,b, β

∗
∆,n,s) ⊆ BR∆(xi, β

∗
∆,b, β

∗
∆,s).

Let n= maxi∈{b,s},xi∈Xγ ,bi∈B∆ n(i,xi,bi). Then, since Xγ and B∆ are finite, n<∞. For
any n >n, for every xi and bi, (232) holds.

8.3. Lemma 4.3

Lemma. There exists ∆ > 0 and n< ∞ such that for all 0 < ∆ < ∆ and n >n,
in the uniform price auction game in the finite economy G( γ,f ,∆,n), for every player
i, a best response to an equilibrium strategy β∗∆,n satisfies the strict single crossing
condition for bids in the range of the equilibrium prices.

Proof.

234. Definition of strict single crossing conditions. It follows from the definition
that we need to prove

If bi is a best reply for xi to (β
∗
∆,n,b, β

∗
∆,n,s),

then, for every bi > bi and every xi > xi,

Un,i(xi, bi, β
∗
∆,n,b, β

∗
∆,n,s) ≥ Un,i(xi, bi, β

∗
∆,n,b, β

∗
∆,n,s)| {z }

if bi is preferred to a lower bid by a player with the signal xi

→ Un,i(xi, bi, β
∗
∆,n,b, β

∗
∆,n,s) > Un,i(xi, bi, β

∗
∆,n,b, β

∗
∆,n,s)| {z }

then bi is still preferred to a lower bid by player with the higher signal xi

and, for bi < bi, xi > xi,

Un,i(xi, bi, β
∗
∆,n,b, β

∗
∆,n,s) ≥ Un,i(xi, bi, β

∗
∆,n,b, β

∗
∆,n,s)| {z }

if bi is preferred to a higher bid bi by a player with signal xi

→ Un,i(xi, bi, β
∗
∆,n,b, β

∗
∆,n,s) > Un,i(xi, bi, β

∗
∆,n,b, β

∗
∆,n,s)| {z }

then bi is still preferred to a higher bid by a player with the lower signal xi

We first choose a signal xi, a best response bi and consider a condition for an ap-
proximation n such that single crossing condition holds for an economy larger than
n
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235. Strict single crossing conditions for a single comparison of bids and
signals. Let bi ∈ BR∆,n,i(xi,β

∗
∆,n,b,β

∗
∆,n,s). Let bi ∈ B∆ and xi > xi. It follows from

the previous Lemma that, for sufficiently large n, bi is also a best response to (β
∗
∆,b,

β∗∆,s) in G(γ,f ,∆). It follows that
U(xi, bi, β

∗
∆,b, β

∗
∆,n,s) ≥ U(xi, bi, β

∗
∆,b, β

∗
∆,s) (240)

It follows from the strict single crossing condition of best response in the large economy,
for a higher signal xi > xi, we have

U(xi, bi, β
∗
∆,b, β

∗
∆,s) > U(xi, bi, β

∗
∆,b, β

∗
∆,s) (241)

It follows that there exists n(xi,bi,bi) such that for every n > n(xi,bi,bi),

Ui,n(xi, bi, β
∗
∆,n,b, β

∗
∆,n,s)− Ui,n(xi, bi, β

∗
∆,n,b, β

∗
∆,n,s) > 0 (242)

That is, a strict single crossing condition holds for a comparison between bi and bi for
a signal xi. It is because, a strict single crossing condition for the double auction game
in the large economy says that it is strictly preferable to increase the bid from bi to
bi for a player with signal xi. Since the payoff of the double auction game in the large
finite economy will be very close to the payoff of the double auction game in the large
economy, the strict single crossing condition extends to the large finite double auction
game.

We now extend the argument to obtain strict single crossing condition for every
comparison in the double auction game in the large finite economy. It is because the
set of possible signals and the set of possible bids are finite.

236. Single crossing condition for all cases. Let

n = max
xi∈Xi,bi∈B∆ such that there exists xi<xi
such that bi is a best response to xl

n(xi, bi, bi) (243)

Then, for every n > n,

Un,i(xi, bi, β
∗
∆,n,b, β

∗
∆,n,s) ≥ Un,i(xi, bi, β

∗
∆,n,b, β

∗
∆,n,s)

and
Un,i(xi, bi, β

∗
∆,n,b, β

∗
∆,n,s)− Un,i(xi, bi, β

∗
∆,n,b, β

∗
∆,n,s) > 0. (244)

From (244), the result holds.
The other direction of single crossing condition can be shown in a similar manner.
Intuitively, the previous paragraph showed that for sufficiently large n, a strict single
crossing condition holds for a set of a signal and two bids. Since the set of possible bids
and signals are finite, by taking the largest n which will work for all possible combina-
tions of a signal, and bids, we can ensure that the strict single crossing condition holds
of the double auction game in the large finite economy.



A STRATEGIC THEORY OF A MARKET 105

8.4. Lemma 4.4

Lemma. There exists ∆ > 0 and n<∞ such that for all ∆ < ∆ and n >n, (a) β∗∆,b
has a monotone supports, and (b) for each buyer i 6= j, signal xi 6= xj, and a bid b
which is in the range of the equilibrium price,

Pr(β∗∆,n,b(xi) = b) · Pr(β∗∆,n,b(xj) = b) = 0. (245)

The similar condition holds for sellers.

Proof.

238. Introduction. We prove the condition for buyers’ strategies. The argument
for the seller is similar. The argument is similar to the previous lemma extends to
the large economy. There are two differences. The first difference is that, since buyers
and sellers are asymmetric in the finite economy, the supports of the distribution of
buyer’s equilibrium strategies and seller’s equilibrium strategies are monotone in their
signals. The second difference is that, since a bid can affect a market clearing price
of the double auction in the finite economy. But these differences will not affect the
argument

239. Suppose that there is no ∆ > 0 which satisfies (245). It follows that for every
∆ > 0, there exists buyer i,j and signal xi,∆ > xj,∆ and a bid bi,∆ such that

Pr(β∗∆,b,n(xi,∆) = bi,∆) · Pr(β∗∆,s,n(xj,∆) = bi,∆) > 0. (246)

From lemma 13, we derive some monotonic relationships of the support of the distri-
bution of equilibrium bids for buyers. We first define the support of the distribution of
equilibrium bids as we did in the previous lemma.

240. Monotonicity of the supports of the distributions of bidding strate-
gies. Consider two signals xi < xi and consider the distribution of equilibrium bids
H∗4,n,i(bi|xi) and H∗4,n,i(bi|xi). Let bi be in the range of equilibrium prices. Then, we
have, for each of a buyer and a seller,

H∗4,n,i(bi|xi)>H∗4,n.i(bi|xi). (247)

Let
H∗4,n,i(bi|x0) =

X
xi∈X

H∗4,n,i(bi|xi)fXi|θ(xi|x0) (248)

From (248)
x0 ≥ x0 → H∗4,n,i(bi|x0) ≥ H∗4,n,i(bi|x0) (249)
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Thus,

αH∗4,n,b(bi|x0) + (1− α)H∗4,n,s(bi|x0) is nonincreasing in x0. (250)

That is, even if buyers and sellers have asymmetric payoffs, each of a buyer and a seller’s
best response has supports monotonically increasing in bids, thus the distribution of
bids, which is a convex combination of bids by buyers and sellers, is stochastically
increasing.

From (250), we have monotonicity of allocation probability at ties, as in the previous
lemma. It follows that there exists a winner’s curse at winning the tie. That is,

E[v(θ,Xi)|Xi = xi,Wn,−i(θ) = bi, biloses at the tie] (251)

> E[v(θ,Xi)|Xi = xi,Wn,−i(θ) = bi, bi wins at the tie]

This implies that

E[v(θ,Xi)− bi|Xi = xi,Wn,−i(θ) = bi, biloses at the tie] (252)

> E[v(θ,Xi)− bi|Xi = xi,Wn,−i(θ) = bi, bi wins at the tie]

8.5. Lemma 4.5

Lemma. There exists ∆ > 0 and n< ∞ such that for all ∆ < ∆ and n >n, there
exists a monotone pure strategy equilibrium β∗∆,n in the double auction game in the
finite market G(f ,∆,n).

Proof

242. We first extend the result of Lemma 4.4. to a setting with a continuous set of
signals. Since the distribution of signals with a finite set of possible signals converge
smoothly to the distribution of signals with a continuous set of signals, the limit strat-
egy profile is a Bayesian Nash equilibrium strategy profile. Furthermore, since every
Bayesian Nash equilibrium with finite set of signals has monotone and separating sup-
ports, the limit Bayesian Nash equilibrium strategy profile has also monotone supports.
Given that the set of possible bids is finite and the set of possible signals is contin-
uous, it has to be that the Bayesian Nash equilibrium is monotone and pure almost
everywhere.

243. Approximation by the game with a discrete signal. Consider G(f ,∆,n) be
a double auction game characterized by Assumption 1, Assumption 3-6. Thus we first
approximate game G(f ,∆,n) by a sequence of a double auction game G(γ,fγ,∆,n). The
following figure explains the approximation.

We first verify that, given f satisfies Assumption 3 and 4, fγ satisfies Assumption 4

• Assumption 4(a) holds.
• Assumption 4(b) holds since fsatisfies Assumption 4(b).
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Figure 11.–

• Assumption 4(c) holds since fsatisfies Assumption 4(c).
Thus it remains to show that fγ satisfies the monotone likelihood ratio condition
(Assumption 4(d)). Let x0 > x0 in [0,1] and xi >xi in Xγ. By definition, we need to
show, that, for each γ > 0,

fXi|θ,γ(xi|x0)fXi|θ,γ(xi|x0)− fXi|θ,γ(xi|x0)fXi|θ,γ(xi|x0) ≥ 0.

By the definition of fγ, it is equivalent to show thatZ xi+γ/2

xi−γ/2
fXi|θ(x

0
i|x0)dx0i

Z xi+γ/2

xi−γ/2
fXi|θ(x

0
i|x0)dx0i (253)

−
Z xi+γ/2

xi−γ/2
fXi|θ(x

0
i|x0)dx0i

Z xi+γ/2

xi−γ/2
fXi|θ(x

0
i|x0)dx0i

≥ 0.
To show (253), we further approximate fXi|θ(xi|x0) by

fXi|θ,n(xi|x0) =
⎧⎨⎩ fXi|θ(xi|x0) if xi = 0, 1/nγ, 2/nγ, ..., 1

0 else
(254)

The following figure explains the approximation (254). We note

Figure 12.–

fXi|θ,n(xi|x0)→ fXi|θ(xi|x0) weakly as n→∞ (255)
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and
1

(2n− 1)
X

xi−γ/2≤x00i≤xi+γ/2
fXi|θ,n(x

00
i |x0) (256)

→
Z xi+γ/2

xi−γ/2
fXi|θ(x

0
i|x0)dx0i as n→∞

Also, we have
1

(2n− 1)
X

xi−γ/2≤x00i≤xi+γ/2
fXi|θ,n(x

00
i |x0) (257)

· 1

(2n− 1)
X

xi−γ/2≤x000i ≤xi+γ/2
fXi|θ,n(x

000
i |x0)

− 1

(2n− 1)
X

xi−γ/2≤x00i≤xi+γ/2
fXi|θ,n(x

00
i |x0)

· 1

(2n− 1)
X

xi−γ/2≤x000i ≤xi+γ/2
fXi|θ,n(x

000
i |x0)

=
1

(2n− 1)2 [
X

xi−γ/2≤x00i≤xi+γ/2,xi−γ/2≤x000i ≤xi+γ/2
fXi|θ,n(x

00
i |x0)fXi|θ,n(x

000
i |x0)

−
X

xi−γ/2≤x00i≤xi+γ/2,xi−γ/2≤x000i ≤xi+γ/2
fXi|θ,n(x

00
i |x0)fXi|θ,n(x

000
i |x0)]

=
1

(2n− 1)2
X

xi−γ/2≤x00i≤xi+γ/2,xi−γ/2≤x000i ≤xi+γ/2
x00i=x−γ/2+n/γ,x000i =x−γ/2+m/γ for some n,m

[fXi|θ,n(x
00
i |x0)fXi|θ,n(x000i |x0)−fXi|θ,n(x00i |x0)fXi|θ,n(x000i |x0)]

=
1

(2n− 1)2
X

xi−γ/2≤x00i≤xi+γ/2,xi−γ/2≤x000i ≤xi+γ/2

x00i=x−γ/2+n/γ,x000i =x−γ/2+m/γ for some n,m

(258)

[fXi|θ(x−γ/2+n/γ|x0)fXi|θ(x−γ/2+m/γ|x0)−fXi|θ(x−γ/2+n/γ|x0)fXi|θ(x−γ/2+m/γ|x0)](259)

≥ 0

It follows from (256) and (257). By letting n→∞ that fγ satisfies Assumption 4(d).
It follows that there exists a nontrivial monotone pure strategy β∗∆,n,γ of the game
G(γ,fγ,∆,n).

244. Construction of a Bayesian-Nash equilibrium of G(f ,∆,n). Let β∗∆,n be
a limit of a sequence of a nontrivial Bayesian-Nash equilibrium strategy profile β∗∆,n,γ
of the game G(γ,fγ,∆,n) as γ → 0. We need to show that β∗∆,n is an equilibrium of
G(f ,∆,n). That is, for each i, for each β∆,n,i,

πn,i(β
∗
∆,n,i, β

∗
∆,n,−i)− πn,i(β∆,n,i, β

∗
∆,n,−i) ≥ 0. (260)
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Let β∆,n,γ be a strategy of the game G(γ,fγ,∆,n) such that

β∆,n,γ → β∆,n weakly
5 (262)

It follows from the fact that β∗∆,n,γ is an equilibrium that, for each i and for each
β∆,i,n,γ,

πn,i(β
∗
∆,n,γ,i, β

∗
∆,n,γ,−i)− πi,n(β∆,n,γ,i, β

∗
∆,n,γ,−i) ≥ 0. (263)

We now need to show that

πn,i(β
∗
∆,n,γ,i, β

∗
∆,n,γ,−i)→ πn,i(β

∗
∆,n,i, β

∗
∆,n,−i) (264)

and
πn,i(β∆,n,γ,i, β

∗
∆,n,γ,−i)→ πn,i(β∆,n,i, β

∗
∆,n,−i) as γ → 0. (265)

We show (264). The argument for (265) is similar.
πn,i(β∆,n,γ,i, β∆,n,γ,−i) (266)

=
X

B∆×X
Un,i(xi, bi, β∆,n,γ,−i)h∆,n,γ,i(bi, xi)

=
X

B∆×X
[(

X
B∆ × ...×B∆| {z }

n−1

×X ...×X| {z }
n−1

ui(x0, xi, p(bi, b−i), q(bi, b−i))

h∆,n,γ,−i(b−i|x−i)fθ,X−i|Xi,γ(x0, x−i|xi)]h∆,n,γ,i(bi|xi)fXi,γ(xi)

→
X

B∆×X
[(

X
B∆ × ...×B∆| {z }

n−1

×X ...×X| {z }
n−1

ui(x0, xi, p(bi, b−i), q(bi, b−i))

h,∆,n,γ,−i(b−i|x−i)fθ,X−i|Xi
(x0, x−i|xi)]h∆,n,γ,i(bi|xi)fXi

(xi)

because h∆,n,γ,−i(b−i|x−i)→ h∆,n,γ,−i(b−i|x−i) by (261),
fθ,X−i|Xi,γ(x0, x−i|xi)→ fθ,X−i|Xi

(x0, x−i|xi)
h∆,n,γ,i(bi|xi)→ h∆,n,i(bi|xi) by (261)
and fXi,γ(xi)→ fXi

(xi) by (261)
Therefore, (264) holds. Similarly, (265) holds. Thus (260) holds.

We now show that the important property of an equilibrium, monotonicity of sup-
ports, also holds for β∗∆,n since β

∗
∆,n,γ converges to β

∗
∆,n.

245. Monotonicity of supports of a Bayesian-Nash equilibrium as γ → ∞.
For each i, let xi > xi and let bi be a minimum of the support of β∗∆,n,i(xi) and let bi
be the maximum of the support of β∗∆,n,i(xi). Then we claim that bi ≥ bi.
That is, a Bayesian Nash equilibrium of the double auction game in the large finite
economy with a continuous set of signals satisfies the monotone support property.

246. Proof. We first consider the case that there exists some γ such that both xi and
xi are contained in Bγ. Then, by the construction of Xγ, for every γ >γ, xi and xi are
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contained in Xγ. Let bγ,i be the minimum of the support of the distribution of bids
according to β∗∆,n,γ,i(xi) and bγ,i be the maximum of the support of the distribution of
bids according to β∗∆,n,i,γ(xi). Then the previous lemma implies that bγ,i > bγ,i.

By definition β∗∆,n,γ,i → β∗∆,n,i. This implies that, since the set of possible bids is
finite, for each xi and xi, for each bi ∈ B∆, the probability that β

∗
∆,n,i,γ chooses a

bid bi converges to the probability that β
∗
∆,n,i chooses a bid bi. That is, therefore, the

supports of β∗∆,n,γ,i under xi and xi converge to the supports of β
∗
∆,n,i under xi and xi.

Therefore, it has to be that bi ≥ bi.

It remains to consider the case where either xi and xi are not contained in Xγ for
any γ.In this case, since {Xγ}γ is dense in [0,1], there exists a sequence of signals
{xi,γ} and {xi,γ}which will be contained in some γ, such that xi,γ → xi and xi,γ → xi.
Since the set of possible bids is finite and the payoff function is continuous in xi in the
mixed extension, the equilibrium strategies under {xi,γ} and {xi,γ}also converges to
equilibrium strategies under {xi} and {xi} by the maximum theorem. Since bi,γ ≥ bi,γ
holds for each γ, bi ≥ bi follows.

The above result implies that the supports of equilibrium strategies β∗∆,n,γ,i have
supports increasing in the signal, and separating except at the boundary of the support.
Since the set of possible bids is finite and the set of possible signals is continuous, it has
to be that the support of the equilibrium strategies β∗∆,n,γ,i has to be singleton except
for a finite number of signals. It implies that β∗∆,n,γ,i is monotone and pure almost
everywhere.

9. PROOF OF PROPOSITION 1(D)

9.1. Lemma 5.1

Lemma. There exists n< ∞ such that for each n >n, there exists a nontrivial
monotone pure strategy equilibrium β∗n of the double auction game in the finite market
G(f ,n).

Proof.

248.Introduction. We first construct a strategy profile β∗∆ from a sequence of a
monotone pure strategy profile {β∗∆,n}. If the probability that a tie occurs among
players in the β∗∆ is zero, then an expected payoff of a player under β

∗
∆,n converges to

an expected payoff under β∗∆, therefore β
∗
∆ is an equilibrium. Therefore, we need to

consider whether a tie occurs among players in β∗∆. Contrary suppose that there are
players with distinct signals who will choose the same bid with a positive probability.
It implies that, for sufficiently large finite game n, their bids are sufficiently close to
each other. This implies two conditions. A player with a high signal does not want to
extend the distance between two bids by increasing the bid and a player with a low
signal does not want to extend the distance between two bids by lowering the bid. But
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a player with a low signal. But the winner’s curse effect implies that a player with a
higher signal prefers to increase the bid sufficiently higher than a player with a lower
signal. These conditions imply that players with distinct signals will bid distinct bids.

In contrast to a previous lemma, we need to show that players with distinct bids will
place distinct bids with some distance. It is possible because the strict private value
element and a uniform lower bound on the rate of increase in the value as a function
of signals provides a lower bound of the increase in the expected value of the good.
Consequently, when the distance between two bids is smaller than this lower bound, a
player with a higher signal prefers to increase the bid further.

249.Construction of a limit strategy profile. From the previous lemma, there
exists a monotone pure strategy equilibrium {β∗∆,n} of the double auction game in the
large finite market G(f ,∆,n) for sufficiently small ∆ and sufficiently large n. Consider
a sequence of a monotone pure strategy equilibrium β∗∆,n for ∆ → 0. Since every bid
in β∗∆,n is bounded above by b and bounded below by b, by Helly selection theorem,
it is without loss of generality to assume that there exists a monotone pure strategy
profile β∗ such that β∗n → β∗ almost everywhere.

We now argue that β∗ is a monotone pure strategy equilibrium.

250.Conditions for β∗ to be an equilibrium. We note that β∗ is an equilibrium if
for every β∗,

U(β∗i , β
∗
−i) ≥ U(β0i, β

∗
−i).

On the other hand, If there are no ties in β∗∆, it follows from an argument similar to
the previous lemma, that β∗∆ is an equilibrium of the double auction game in the large
finite market G(f ,∆). Thus it now remains to show that β∗∆ does not involve a tie.

251. Suppose, in order to derive contradiction, that β∗∆ involves a tie with a positive
probability. Then, there exists two distinct signal xi and xi and a bid bi such that
players with signal xi and xi choose a bid bi under β

∗
∆.

It follows that, for every d > 0, there exists ∆ such that, for every ∆ < ∆, there
exists two bids b∆,i and b∆,i such that (a) a player with signal xi chooses a bid b∆,i,(b)
a player with signal xi chooses a bid b∆,i, and (c) b∆,i and b∆,i are less than d apart.
Since β∗∆,n is a monotone pure strategy equilibrium, it implies that

252.First order conditions for a player with signal xi. A consequence of the
above condition is that a player with a signal xi does not prefer to bid above b∆,i,
otherwise the distance between two bids will be strictly more than d apart.
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It follows that, similar to (189)Z
{x0:W−i,n=bi,∆+∆}

(v(x0, xi)− pn(bi,∆ +∆, b−i)) (267)

qn(bi,∆ +∆,W−i,n(β
∗
∆,n,−i(X−i) = bi,∆ +∆|x0)fθ|Xi

(x0|xi)dx0 +
+
Z
{x0:W−i,n=bi,∆}

(v(x0, xi)− pn(bi,∆, b−i))

(1− qn(bi,∆,W−i,n(β
∗
∆,n,−i(X−i)) = bi,∆|x0))fθ|Xi

(x0|xi)dx0<0.
The first term deals with the case where a new bid bi,∆+∆ will win when the marginal
bid by other players is bi,∆+∆. The second term deals withe the case where a new bid
bi,∆ +∆ will win and an old bid of bi,∆ will not win when the marginal bid by other
players is bi,∆. The first order condition says that it is not preferable for a player with
a signal xi to increase the bid from bi,∆ to bi,∆ +∆.

253.The first order conditions of a player with a signal xi for sufficiently
small ∆. In (167), we have seen that it has to be that the expected payoff from losing at
the lower price has to be nonpositive in the double auction game in the large economy
G(γ,f ,∆). We will show that the same conclusion holds for G(f ,∆,n). That is,Z

{x0:W−i,n=bi,∆}
(v(x0, xi)− pn(bi,∆, b−i)) (268)

(1− qn(bi,∆,W−i,n(β
∗
∆,n,−i(X−i)) = bi,∆|x0))fθ|Xi

(x0|xi)dx0 ≤ 0.
In other words,

E[v(θ,Xi)− bi,∆|Xi = xi,Wn,−i(β
∗
∆,n,−i(X−i)) = bi,∆, bi,∆loses at the tie](269)

≤ 0.

254. Proof of the claim

To see this, suppose that, contrary to (268),Z
{x0:W−i,n=bi,∆}

(v(x0, xi)− pn(bi,∆, b−i)) (270)

(1− qn(bi,∆,W−i,n(β
∗
∆,n,−i(X−i)) = bi,∆|x0))fθ|Xi

(x0|xi)dx0 > 0.
This implies that,Z

{x0:W−i,n=bi,∆}
(v(x0, xi)− pn(bi,∆, b−i))(1− qn(bi,∆,W−i,n(β

∗
∆,n,−i(X−i)) = bi,∆|x0))(271)

fθ|Xi
(x0|xi)dx0 > 0.

Then, since players use a monotone strategy, the event that a player wins a tie when
the marginal bid by other players is bi,∆ +∆ is a good news compared with the event
that a player lose a tie when the marginal bid by other players is bi,∆. Therefore, it
follows thatZ

{x0:W−i,n=bi,∆+∆}
(v(x0, xi)− pn(bi,∆, b−i)) (272)

qn(bi,∆ +∆,W−i,n(β
∗
∆,n,−i(X−i) = bi,∆ +∆)fθ|Xi

(x0|xi)dx0 > 0.
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Also, from the pricing rule of k double auctions, it follows that

pn(bi,∆ +∆, b−i)− pn(bi,∆, b−i) ≤ ∆. (273)

Therefore, for sufficiently small ∆, it follows thatZ
{x0:W−i,n=bi,∆+∆}

(v(x0, xi)− pn(bi,∆ +∆, b−i)) (274)

qn(bi,∆ +∆,W−i,n(β
∗
∆,n,−i(X−i) = bi,∆ +∆)fθ|Xi

(x0|xi)dx0 > 0.
Now, (270) and (274) imply that, it is strictly preferable for a player with signal xi to
increase a bid from bi,∆ to bi,∆ +∆. It is a contradiction to the first order condition
(267).Therefore, it is not the case that (270) holds.

255.The first order conditions of a player with a signal xi for sufficiently
small ∆. We can run a similar argument for a player with signal xi where it is not
preferable for a player with signal xi to decrease a bid from b∆,i to b∆,i − ∆. This
implies that, similar to (268)

E[v(θ,Xi)− bi,∆|Xi = xi,W (β
∗
∆,n,−i(X−i) = bi,∆, bi,∆wins at the tie] ≥ 0. (275)

That is, it is preferable for a player with signal xi to win the good when the marginal
bid by other players is bi,∆. Otherwise, if it is not preferable for a player with signal xi
to win the good when the marginal bid by other players is bi,∆, for sufficiently small
∆, it is not preferable to win the good with a slightly lower price of bi,∆ −∆ even by
winning the tie lost by a smaller bid, thus the player will want to decrease the bid to
bi,∆ −∆.

256.Winner’s curse. We have seen that, in the double auction game in the large
economy G(γ,f ,∆) that a winner’s curse holds in the sense that losing a tie is a good
news compared with winning a tie when players use monotone strategies. In the similar
argument, we have,

E[v(θ,Xi)− bi,∆|Xi = xi,Wn,−i(β
∗
∆,n,−i(X−i)) = bi,∆, bi,∆loses at the tie](276)

> E[v(θ,Xi)− bi,∆|Xi = xi,W (β
∗
∆,n,−i(X−i) = bi,∆, bi,∆ wins at the tie]

Intuitively, when other players use a monotone strategy, conditional on that the mar-
ginal bid by other players is bi,∆, a bid bi,∆ is more likely win when the number of
competing bids is smaller, and it is the case when the state is lower. Since this in-
ference relation holds whether it is a large economy or a finite economy, the winner’s
curse relation holds.

257.Moving from xi to xi. It follows that, since Xi,X−i and θ are affiliated, v(x0,xi)
is strictly increasing in xi with a uniform lower bound of the rate of increase λ, and it
follows that

E[v(θ,Xi)− bi,∆|Xi = xi,W (β
∗
∆,n,−i(X−i) = bi,∆, bi,∆ wins at the tie](277)

> E[v(θ,Xi)− bi,∆|Xi = xi,W (β
∗
∆,n,−i(X−i) = bi,∆, bi,∆ wins at the tie]

+λ(xi − xi).
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Therefore, for sufficiently small d, since bi,∆ − bi,∆ < d, from (277),

E[v(θ,Xi)− bi,∆|Xi = xi,W (β
∗
∆,n,−i(X−i) = bi,∆, bi,∆ wins at the tie](278)

> E[v(θ,Xi)− bi,∆|Xi = x,W (β∗∆,n,−i(X−i) = bi,∆, bi,∆ wins at the tie].

258.Putting it all together. It now follows from (269), (276), and (278) that,

0 ≥ E[v(θ,Xi)− bi,∆|Xi = xi,Wn,−i(β
∗
∆,n,−i(X−i)) = bi,∆, bi,∆loses at the tie]

> E[v(θ,Xi)− bi,∆|Xi = xi,W (β
∗
∆,n,−i(X−i) = bi,∆, bi,∆ wins at the tie]

> E[v(θ,Xi)− bi,∆|Xi = x,W (β∗∆,n,−i(X−i) = bi,∆, bi,∆ wins at the tie]

≥ 0.

It is a contradiction, therefore, it cannot be that xi and xi and a bid bi such that players
with signal xi and xi choose a bid bi under β

∗
∆. It follows that β

∗
∆ is a monotone pure

strategy equilibrium.

9.2. Lemma 5.2

Lemma. A nontrivial monotone pure strategy equilibrium β∗n in the double auction
game G(f ,n) is asymptotically equivalent to a fully revealing rational expectation equi-
librium.

Proof.

258. Introduction. We proceed in two steps. First, we show that there exists a
monotone pure strategy equilibrium β∗ of a limit strategy profile β∗ of the double
auction game in the large economy G(f). Second, we show that β∗ is outcome equivalent
to the fully revealing rational expectation equilibrium.

First we construct the limit strategy profile β∗.

259. Definition of a limit strategy profile β∗. From Proposition 1(c), there exists
a nontrivial monotone pure strategy equilibrium β∗n of the double auction game in the
large finite economy G(f ,n). Let {β∗n}n be a sequence of pure strategy equilibria of
G(f ,n). Since for every bid in β∗n is bounded above by b and bounded below by b, by
Helly’s selection theorem, it is without loss of generality to assume that there exists a
monotone pure strategy profile β∗ such that β∗n → β∗.

We now argue that β∗ is a monotone pure strategy equilibrium of G(f).

260. Conditions for β∗ to be an equilibrium. We not that β∗ is an equilibrium of
G(f) if

U(β∗i , β
∗
−i) ≥ U(βi, β

∗
−i) (279)

for every strategy βi. Let {βn,i}n be a sequence of strategies which will converge to βi.
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Since β∗n is an equilibrium of G(f ,n), it follows that

Un(β
∗
n,i, β

∗
n.−i) ≥ Un(βn,i, β

∗
n,−i) (280)

for every strategy βn,i. We first show that

Un(β
∗
n,i, β

∗
n.−i)→ U(β∗i , β

∗
−i) (281)

261. Conditions for (281). We note
Un(β

∗
n,i, β

∗
n.−i)− U(β∗i , β

∗
−i) (282)

=
h
Un(β

∗
n,i, β

∗
n.−i)− Un(β

∗
i , β
∗
−i)

i
+
h
Un(β

∗
i , β
∗
−i)− U(β∗i , β

∗
−i)

i
That is, Un(β

∗
n,i,β

∗
n.−i) − U(β∗i ,β

∗
−i) is expressed as the sum of the two terms where

the first term Un(β
∗
n,i,β

∗
n.−i)−Un(β

∗
i ,β
∗
−i) deals with the change in the strategies from

β∗n,i to β∗i while keeping the size of the economy n constant, and the second term
Un(β

∗
i ,β
∗
−i) − U(β∗i ,β

∗
−i) deals with the change in the size of the economy n while

keeping the strategy profile β∗i constant.

262. Convergence of Un(β
∗
n,i,β

∗
n.−i)−Un(β

∗
i ,β
∗
−i). Since the discontinuity in payoffs

takes place only when ties occur with positive probabilities, and since β∗n does not
involve ties, it is suffice to show that the limit strategy profile β∗ does not involve ties.
For that purpose, we can apply the argument of the previous lemma to β∗. The
previous lemma shows that the limit strategy β∗n obtained as a limit of a sequence
of equilibrium strategies β∗n,∆ as ∆ → 0 profile does not involve ties since a player.
Similarly, we can show that the limit strategy β∗ does not involve ties, since a player
with two distinct signals will place distinct bids.
Therefore, we have

Un(β
∗
n,i, β

∗
n.−i)− Un(β

∗
i , β
∗
−i)→ 0 as n→∞. (283)

263. Convergence of Un(β
∗
i ,β
∗
−i)−U(β∗i ,β∗−i). We have seen from above that β∗ does

not involve ties. Then, following an argument similar to that of the previous lemma,
since the empirical distribution of bids generated by β∗ converges in distribution to
the distribution of bids generated by β∗ and payoffs are continuous at β∗, we have

Un(β
∗
i , β
∗
−i)− U(β∗i , β

∗
−i)→ 0 as n→∞. (284)

It follows from (283) and (284) that (281) holds. We now consider the relation
between Un(βn,i,β

∗
n,−i) and Un(βi,β

∗
−i).We consider three cases.

264. Cases for (βi,β
∗
−i). We can consider two cases:

(a) (βi,β
∗
−i) does not involve a tie with positive probability.
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(b) (βi,β
∗
−i) involves a tie with a positive probability

We first consider the first possibility.

265. Convergence of Un(βn,i,β
∗
n,−i)→ U(βi,β

∗
−i) when (βi,β

∗
−i) does not involve

a tie. Suppose player i is a buyer (a case where player i is a seller is similar.) Suppose
(βi,β

∗
−i) does not involve a tie. Then, even if (βn,i,β

∗
n,−i) involves a tie, there exists

another sequence of strategies {β 0

n,i}n such that β
0

n,i → βi as n→∞ and (β
0

n,i,β
∗
n,−i)

does not involve a tie. Then, we can show that

Un(βn,i, β
∗
n,−i)→ U(βi, β

∗
−i). (285)

Therefore, from (280) and (285), we have

U(β∗i , β
∗
−i) ≥ U(βi, β

∗
−i). (286)

We now consider the second case.

266. Case (βi,β
∗
−i) involves a tie with a positive probability. Suppose a player

i is a buyer. Let xi be a signal such that player i with signal xi will bid βi(xi) which
will involve a tie with β−i(xi) with a positive probability.
We first construct an alternative strategy which does not involve a tie with β−i(xi)
and still does at least equally well with β−i(xi) as βi(xi). Suppose that player i with
signal xi has a nonnegative expected payoff from winning a tie at a bid βi(xi). Then,
winner’s curse argument shows that it is preferable to increase a bid a little bit from
βi(xi) to win the tie. Therefore, there exists a bid β

0
i(xi) such that a player with signal

xi prefers over βi(xi). Similarly, when player i with signal xi has a negative payoff from
winning a tie at a bid βi(xi), there exists a bid β0i(xi), which decrease a bid a little
bit from βi(xi) to lose a nonprofitable tie. Thus we can define a strategy

eβi(xi) such
that eβi(xi) is equal to βi(xi) when βi(xi) does not involve a tie with β∗−i and equal to
β0i(xi) when βi(xi) involves a tie with β∗−i with positive probability. Then

U(eβi, β−i) ≥ U(βi, β−i). (287)

It follows that there exists a sequence of strategies {eβn,i}n such that (a) eβn,i(xi) →eβi(xi) for each xi and (b)
eβn,i(xi) does not involve β∗n,−i(xi) with positive probability.

Then, the equilibrium condition for β∗n implies that

Un(β
∗
n,i, β

∗
n,−i) ≥ U(eβn,i, βn,−i) (288)

It follows from (281) and applying the argument used to establish (281) to eβn,i that
U(β∗i , β

∗
−i) ≥ U(eβi, β∗−i) (289)
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It now follows from (287) and (288) that

U(β∗i , β
∗
−i) ≥ U(βi, β−i). (290)

We have now shown that β∗ is an equilibrium strategy. We now argue that β∗ is
outcome equivalent to the fully revealing rational expectation equilibrium.

267. First order conditions for xi at β
∗(xi). We consider the first order condition

for xi that a player with signal xi does not prefer to increase a bid to β∗(xi) + ∆ or
decrease a bid to β∗(xi)−∆. The first condition isZ

(v(x0, xi)− β∗(xi))(1− q(β∗(xi),W (x0) = β∗(xi)|x0)) (291)

f(x0|xi)dx0dx−i +Z
(v(x0, xi)− β∗(xi))q(β

∗(xi) +∆,W (x0) = β∗(xi) +∆|x0))
f(x0|xi)dx0dx−i

≤ 0.
Here the first term represents the expected payoff of winning the tie that a bid β∗(xi)
used to lose, and the second term represents the expected payoff from winning the tie
when the market clearing price is β∗(xi) +∆.
The second condition isZ

(v(x0, xi)− β∗(xi))(1− q(β∗(xi)−∆,W (x0) = β∗(xi)−∆|x0)) (292)

f(x0|xi)dx0dx−i +Z
(v(x0, xi)− β∗(xi))q(β

∗(xi),W (x0) = β∗(xi)|x0))
f(x0|xi)dx0dx−i

≥ 0.

Here the first term represents the expected payoff of winning the tie that a bid
β∗(xi) − ∆ used to lose, and the second term represents the expected payoff from
winning the tie when the market clearing price is β∗(xi).
268. The limit of the first order condition as ∆ → 0. It follows from the above
argument that the distribution of bids according to β∗(xi) does not involve a tie with
positive probability. It follows that

q(β∗(xi) +∆,W (x0) = β∗(xi) +∆|x0)) (293)

→ q(β∗(xi),W (x0) = β∗(xi)|x0) as ∆→ 0.
It follows from (291) and (292) thatZ

x0:W (x0)=β
∗(xi)

(v(x0, xi)− β∗(xi))f(x0|xi)dx0dx−i = 0. (294)

That is,
β∗(xi) = E[v(x0, xi)|xi,W (x0) = β∗(xi)] (295)
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269. Outcome equivalence to the fully revealing rational expectation equi-
librium. It now follows from an argument used in the previous lemma that

β∗(xi) = v(x0(xi), xi) (296)

and the outcome is equivalent to the fully revealing rational expectation equilibrium.

9.3. Lemma 5.3

Lemma. Let Pn(β
∗
n) be a price of a Bayesian Nash equilibrium β∗n of the double auction

game in the large finite economy G(f ,n). Then,√
n(Pn(β

∗
n)− v(x0, xi(x0)) (297)

p→ N(0,
α(1− α)

f2Xi|θ(xi(x0))

(
∂v(x0, xi(x0))

∂x0

∂x0(xi(x0))

∂xi
+

∂v(x0, xi(x0))

∂xi
)2)

Proof.

270. Overview of the proof. We begin by noting that√
n(Pn(β

∗
n)− v(x0, xi(x0)) (298)

=
√
n(Pn(x0)− v(x0, xi(x0)))

+
√
n(Pn(β

∗
n)− Pn(x0))

where Pn(x0) is the price formed from the bids when every player i ∈ Nn bids
v(x0(xi),xi). The first term deals with the sample size effect. The second term deals
with the strategic effect which considers misrepresentation from the price taking behav-

ior. The proof proceeds in two steps. First we show that
√
n(Pn(x0)− v(x0,xi(x0)))

d→
N(0, α(1−α)

f2Xi|θ(xi(x0))
(∂v(x0,xi(x0))∂x0

∂x0(xi(x0))
∂xi

+∂v(x0,xi(x0))
∂xi

)2) and second we show that
√
n(Pn(β

∗
n)−

Pn(x0))
p→ 0.

We show them in case of k = 1 in the double auction pricing rule. The case for
k = 0 is similar. Then we can extend the result for a general k ∈ (0,1) by sandwiching
arguments.

271. Evaluation of the sample size effect. By definition

Pn(x0) = v(x0(Xn:nS), Xn:nS) (299)

That is, Pn(x0) is the expected value of the good conditional being on the margin by
a player with signal Xn:nS .
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We recall, from David and Nagaraja (2004, Theorem 10.3) that, for each x0,

√
n(XnS;n − xi(x0))→d N

⎛⎜⎝0, α(1− α)

f2Xi|θ(xi(x0))

⎞⎟⎠ (300)

From Assumption 4, x0(Xn:nS) is well-defined and x00(Xn:nS) ≥ 0.
Thus, we are now able to apply the delta method. According to van der Varrt (2000),

Theorem 3.1, when φ is differentiable at x, and
√
n(Tn−θ) d→ N(0,σ2), then

√
n(φ(Tn)−

φ(θ))
d→ N(0,φ(θ)2σ2). In the statement of the delta method, we set

φ(Xn:nS) = v(x0(Xn:nS), Xn:nS). (301)

Then,

φ0(Xn:nS) =
∂v(x0(Xn:nS), Xn:nS)

∂x0

∂x0(Xn:nS)

∂Xn:nS
(302)

+
∂v(x0(Xn:nS), Xn:nS)

∂Xn:nS
It follows that

φ0(xi(x0)) =
∂v(x0, xi(x0))

∂x0

∂x0(xi(x0))

∂xi
(303)

+
∂v(x0, xi(x0))

∂xi
Thus, √

n(v(x0(Xn:nS), Xn:nS)− v(x0, xi(x0))
d→ (304)

N

⎛⎜⎝0, α(1− α)

f2Xi|θ(xi(x0))
(
∂v(x0, xi(x0))

∂x0

∂x0(xi(x0))

∂xi
+

∂v(x0, xi(x0))

∂xi
)2

⎞⎟⎠ .
We now show the second assertion. We proceed as follows. First we consider the suffi-
cient conditions for the distribution of bidsH∗n(bi) under Pn(β

∗
n) such that

√
n(Pn(β

∗
n)−

Pn(x0))
p→ 0. Then we show that indeed H∗n(bi) satisfies the condition.

272. Conditions for
√
n(Pn(β

∗
n)− Pn(x0))

p→ 0.
We note that

√
n(Pn(x0)− Pn(x0))→p 0 is equivalent to, for each a,

Pr(
√
n(Pn(β

∗
n)− v(x0, xi(x0)) ≤ a) (305)

−Pr(
√
n(Pn(x0)− v(x0, xi(x0)) ≤ a)→ 0 as n→∞.

It is equivalent to
ηn(a) (306)

≡ Pr(Pn(β
∗
n) ≤ v(x0, xi(x0)) +

a√
n
)−

Pr(Pn(x0) ≤ v(x0, xi(x0)) +
a√
n
)

→ 0 as n→∞.
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We recall that, from David and Nagaraja (2004, equation 2.1.6)
Pr(Xi:n ≤ x) (307)

=
nX

j=1

⎛⎝ n
j

⎞⎠F (x)j(1− F (x))n−j

=
1

Beta(i, n− i+ 1)

Z F (x)

0
ti−1(1− t)n−idt.

In order to derive the condition, assume, first, hypothetically, that each player uses
an equilibrium strategy of a buyer β∗n,b(xi). Under this assumption, each player’s bid
is iid from the distribution Hn,b(bi). It follows from (306) and (307) that

ηn(a) =
1

Beta(n− nS, nS + 1)

Z Hn,b(v(x0,xi(x0))+
a√
n
)

Hn(v(x0,xi(x0))+
a√
n
)

tn−nS−1(1− t)nSdt (308)

where H∗n(bi) is the distribution function of bids when every player bids according to
the strategy v(x0(xi),xi).
As a next step, we now evaluate Beta(n− nS,nS + 1). We let

α =
n− nS

n
(309)

Then, from (308) and (309) that

Beta(n− nS, nS + 1) = Beta(αn, n− αn+ 1) (310)

We recall a standard result of

Beta(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(311)

where Γ(x) is a Gamma function. It follows from (311) that

1

Beta(αn, n− αn+ 1)
=

Γ(n+ 1)

Γ(αn)Γ(n− αn+ 1)
(312)

We now recall Stirling’s formula for Gamma function:

Γ(x) =

vuut2π
x
(
x

e
)x(1 +O(

1

x
)) ≈

vuut2π
x
(
x

e
)x. (313)

By substituting (313) into (312), we get
1

Beta(αn, n− αn+ 1)
(314)

≈

r
2π
n+1(

n+1
e )

n+1r
2π
αn(

αn
e )

αn
r

2π
n−αn+1(

n−αn+1
e )n−αn+1

=
(n+ 1)n+1/2√

2π(αn)αn−1/2(n− αn+ 1)n−αn+1/2

=
(n+ 1)n(n+ 1)1/2√

2πnnααn−1/2(1− α+ 1
n)

n−αn+1/2



A STRATEGIC THEORY OF A MARKET 121

We now evaluate

Z H∗n(v(x0,xi(x0))+
a√
n
)

Hn(v(x0,xi(x0))+
a√
n
)
tn−nS−1(1− t)nSdt.

In order to get the maximum of the integrand, we now maximize

g(t) = tαn−1(1− t)
n−αn

(315)

Then, by taking the logarithm,

log g(t) = (αn− 1) log t+ (n− αn) log(1− t) (316)

The first order condition is

t

αn− 1 =
1− t

n− αn
(317)

Rewriting,

(n− αn)t = (αn− 1)(1− t) (318)

Then,

t(n+ 1) = αn− 1 (319)

It follows from (319) that

t =
αn− 1
n+ 1

≈ α− 1
n

(320)

and

1− t ≈ 1− α+
1

n
(321)

Then, by substituting into (315),

g(t) ≤ (α− 1
n
)αn−1(1− α+

1

n
)n−αn (322)
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Thus we now have, by combining (314) and (322),

ηn(a) ≤
(n+ 1)n(n+ 1)1/2√

2πnnααn−1/2(1− α+ 1
n)

n−αn+1/2 (323)

·(α− 1
n
)αn−1(1− α+

1

n
)n−αn

·[Hn,b(v(x0, xi(x0)) +
a√
n
)−Hn(v(x0, xi(x0)) +

a√
n
)]

≈ 1√
2π
(1 +

1

n
)|Nn|(n+ 1)1/2

·(α−
1
n)

αn−1(1− α+ 1
n)

n−αn

ααn−1/2(1− α+ 1
n)

n−αn+1/2 (324)

·[Hn,b(v(x0, xi(x0)) +
a√
n
)−Hn(v(x0, xi(x0)) +

a√
n
)]

≈ 1√
2π
(1 +

1

n
)n(n+ 1)1/2

1q
α(1− α)

[Hn,b(v(x0, xi(x0)) +
a√
n
)−Hn(v(x0, xi(x0)) +

a√
n
)]

' 1√
2π

e
1q

α(1− α)
(325)

(n+ 1)1/2[Hn,b(v(x0, xi(x0)) +
a√
n
)−Hn(v(x0, xi(x0)) +

a√
n
)].(326)

It follows that

√
n

⎛⎝H∗n,b(v(x0, xi(x0)) + a√
n
)−Hn(v(x0, xi(x0)) +

a√
n
)

⎞⎠→ 0. (327)

is suffice for √
n(Pn(β

∗
n,b)− Pn(x0))

p→ 0

Similarly, we have

√
n

⎛⎝H∗n,s(v(x0, xi(x0)) + a√
n
)−Hn(v(x0, xi(x0)) +

a√
n
)

⎞⎠→ 0 (328)

is suffice for √
n(Pn(β

∗
n,s)− Pn(x0))

p→ 0

It follows that, when (327) and ( 328) are satisfied,

√
n(max(Hn,b(v(x0, xi(x0)) +

a√
n
), Hn,s(v(x0, xi(x0)) +

a√
n
)− Pn(x0))→ 0 (329)

and
√
n(min(Hn,b(v(x0, xi(x0)) +

a√
n
), Hn,s(v(x0, xi(x0)) +

a√
n
)− Pn(x0))→ 0 (330)
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Then, since Hn is sandwiched between max(H
BNE
n,b ,HBNE

n,s ) and min(HBNE
n,b ,HBNE

n,s ),
it follows that √

n(Pn(β
∗
n)− Pn(x0))→ 0. (331)

It follows that (327) and (328) are sufficient conditions.

We have now derived that both buyers and sellers bids converge at the rate faster
than O( 1√

n
) are sufficient. We now derive the rate of convergence of buyers and sellers

bids.

273. Rate of convergence. We first note that it is suffice to show that, ,for each
signal xi, the distance between v(x0(xi),xi) and the bids β

∗
n,s and β∗n,b vanishes at the

rate faster than O( 1√
n
). Because, if it is so, the distribution of bids at bi according

to each of β∗n,s and β∗n,b,which is bounded above by Hn(bi + O( 1√
n
)), will converge to

Hn(bi) at the rate of O(
1√
n
).

To show the rate of convergence of buyers’ and sellers’ bids, we first derive the first
order condition for buyers and sellers.

274. First order conditions. We now derive the first order condition of a buyer
following Rustichini, Satterthwaite, and Williams (1994). Suppose a buyer i increases
a bid from bi to bi +∆bi

6. This change in bids can change the outcome of the auction
for buyer i in three cases:

• If a bid bi is between nS-1st highest bid and nSth highest bid out of nB − 2 buyers
and nS sellers, and if there is a buy bid between bi and bi +∆bi, then a bid of bi
will not win, but increasing the bid to bi +∆ will win the good by surpassing the
bid by the buyer.

• If a bid bi is between nS-1st highest bid and nSth highest bid out of nB − 1 buyers
and nS−1 sellers, and if there is a sell bid between bi and bi+∆bi, then a bid of bi
will not win, but increasing the bid to bi +∆ will win the good by surpassing the
bid by the seller.

• If a bid bi is between the nS − 1 st highest bid and the nSth highest bid out of
nB − 1 buyers and nS sellers, then a bid of bi will win and increasing the bid to
bi +∆ will increase the payment by k∆.

We now define the following notations.

Let

A = the event that bi is between |Nn,S|-1 st highest bid and |Nn,S|th highest bid out of
|Nn,B|-2 buyers andnSsellers, and there is a buy bid between bi and bi +∆bi,

B = the event that bi is between |Nn,S|-1 st highest bid and |Nn,S|th highest bid out of
|Nn,B|-1 buyers andnS-1 sellers, and there is a sell bid between bi and bi +∆bi,

6Here ∆ represents a miniscule amount of the increase in bid in the model with a continuous set of bids.
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and

C = biis between thenS − 1st highest bid and thenSth highest bid out of
nB − 1buyers and nSsellers

Let us consider the first case. The payoff change from this case is

( En[v(x0, xi)|xi, A] − bi) · Prn (A|xi) (332)

The payoff change from the second case is

( En[v(x0, xi)|xi, B] − bi) · Prn (B|xi) (333)

The payoff change from the third case is

k∆ · Pr
n
(C|xi) (334)

Therefore, the first order condition is, from (332), (333), and (334)

(En[v(x0, xi)|xi, A] − bi) · Prn (A|xi) + (En[v(x0, xi)|xi, B]− bi) · Prn (B|xi)(335)

−k∆ · Pr
n
(C|xi) = 0

A preliminary result. As a step for deriving the rate of convergence of bidding strategies,
we now evaluate the first order condition (335).

It follows from (335) that

³
En[v(x0, xi)|xi, A] − bi

´
· Pr
n
(A|xi)− k∆ · Pr

n
(C|xi) ≤ 0. (336)

Therefore, it follows from (336) that

((En[v(x0, xi)|xi, A)− bi,n) (337)

≤ k∆
Prn (C|xi)
Prn (A|xi)

We now evaluate the right hand side of (337). We note that,
Prn (C|xi)
Prn (A|xi)

(338)

=

Z
Prn (C|x0) fθ|Xi

(x0|xi)dx0R
Prn (A|x0) fθ|Xi

(x0|xi)dx0
by conditioning and by the property that xi is redundant after conditioning on x0

=

Z
Prn (C|x0) fθ|Xi

(x0|xi)dx0R
Prn (A|x0) Prn(there is a buy bid between bi and bi +∆bi)fθ|Xi

(x0|xi)dx0
(339)

by conditional independence. (340)
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In order to evaluate (338), we recall, from Lemma 5 in Milgrom (1979), that if there
is C > 0 such that ai

bi
≤ C for every i, then

P
i aiP
i bi
≤ C. (341)

Then it follows that, if we have, or each x0,

Prn (C|x0)
Prn (A|x0)

→ O(1) (342)

and

Pr
n
(there is a buy bid between bi and bi +∆bi)→ O(n) (343)

Then we have
Prn (C|xi)
Prn (A|xi)

= O(
1

n
) (344)

Thus now we need to show (342) and (343). We first show (342).

275. Show (342). We note, given x0, each player’s signal is independently and identi-
cally distributed with the distribution FXi|θ(xi|x0). Given this independence structure,
we can

• Prn (C|x0) corresponds to the probability MnS:nB in Rustichini, Satterthwaite, and
Williams (1994), page 1060 where the distribution of types in Rustichini, Satterth-
waite, and Williams (1994) is now FXi|θ(xi|x0).

• Prn (A|x0) corresponds to the probability LnS:nB in Rustichini, Satterthwaite, and
Williams (1994), page 1060.

It follows from Rustichini, Satterthwaite, and Williams (1994), equation (3.12), that
Prn (C|x0)
Prn (A|x0)

(345)

≤ 2F (x0i|x0)(1 +
nB
nS
)

≤ O(1)

Intuition is as follows: Both numerator and denominator calculate the probability that
bi will fall in the interval between adjacent order statistics of bids. In the numerator,
there are nB+nS−1 bids and in the denominator there are nB+nS−2. This implies,
on one hand, there are more bids in the event in the numerator to fall in the interval.
But on the other hand, the length of the interval of the adjacent order statistics will
decrease at the rate of O(1/n). As a result of these two balances, the ratio does not
grow and decline even if n changes.

276. Show (343). We note, from Rustichini, Satterthwaite, and Williams (1994), (3.1)
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that

Pr
n
(there is a buy bid between bi and bi +∆bi out of nB − 1 buyers) (346)

= (nB − 1)h∗n,b(bi)
= O(n)

An intuition is as follows. We are now considering a possibility that there will be a bid
hitting a fixed length of an interval. This probability increases at the order O(n) since
any one of nB − 1 buyers can hit the interval.
It now follows from (337) and (344) that

En[v(x0, xi)|xi, A ]− bi,n → 0 at the rate O(
1

n
) (347)

We can now derive the rate of convergence of bidding strategies building on the
preliminary result

277. Characterization of the rate of convergence of bidding strategies. In the
previous calculation, we obtained a bound on

En[v(x0, xi)|xi, A] − bi,n → 0

by omitting terms for En[v(x0, xi)|xi, B] − bi
We can now, by omitting the first term instead, following a similar procedure used
to derive (347), that

En[v(x0, xi)|xi, B] − bi,n → 0 at the rate O(
1

n
) (348)

It now follows from (347) and (348) that

En[v(x0, xi)|xi, A] → En[v(x0, xi)|xi, B] at the rate O(
1

n
) (349)

We note that these two conditioning events are only different by switching one buyer
and one seller. Since (349) holds for every xi, it follows that the distributions of bids
by a buyer and a seller converge at the rate O( 1n). Since the distribution of signals
is symmetric between a buyer and a seller, it has to be that the bidding strategies
converge. That is,

β∗n,b(xi)→ β∗n,s(xi) at rate O(
1

n
) (350)

This in turn implies that, since the buyer’s and seller’s strategies are getting symmetric,

bi → En[v(x0, xi)|xi, A] (351)

→ En[v(x0, xi)|xi, B]
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at the rate O( 1n). Since this holds for every n, it implies that asymptotically the equilib-
rium bidding strategies are symmetric across n. Thus, for each x0, by Glivenko-Cantelli
theorem, En[v(x0,xi)|xi,A] converges to v(x0(xi),xi) at the rate O( 1n) as n→∞.
Thus (327) and (328) follow.
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