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Abstract

In this paper, we apply the ARFIMA-GARCH model to the realized volatility and the con-
tinuous sample path variations constructed from high-frequency Nikkei 225 data. While the ho-
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realized S&P 500 futures volatility. An ARFIMA model augmented by a GARCH(1,1) speci�-
cation for the error term largely captures this and substantially improves the �t to the data. In
a multi-day forecasting setting, we also �nd some evidence of predictable time variation in the
volatility of the Nikkei 225 volatility captured by the ARFIMA-GARCH model.
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1 Introduction

Volatility plays key roles in the theory and applications of asset pricing, optimal portfolio allocation,
and risk management. This fact, together with the development of econometric tools for volatility
analysis and empirical evidence for the predictability of the volatility of numerous �nancial markets,
spurred the phenomenal growth of the volatility literature as well as the birth of an entire �nancial risk
management industry during the last quarter century. It is well-documented by now that time-variation
in �nancial market volatility is highly predictable but stochastic, hence volatility itself is volatile. This
paper empirically investigates whether the volatility of the Japanese stock market volatility is pre-
dictably time-varying. The obtained empirical results indicate that it is indeed time-varying with some
predictable component.

The pace of progress at the frontier of volatility research has had at least four notable upsurges.
The �rst followed the invention of the ARCH model by Engle (1982) and led to the development
of the �rst set of econometric procedures for the empirical analysis of time-varying volatility (see,
e.g., Bollerslev et al. 1994), and our deeper understanding of the empirical properties, e.g., volatility
clustering, leverage effects in volatility, and fat-tails, of many �nancial time series. The second wave
centered around the stochastic volatility (SV) modeling, which capitalized on and often contributed in
turn to the concurrent development in the Bayesian statistical analysis using the Markov chain Monte
Carlo procedure (see, e.g., Shephard 2005). This paper mainly concerns modeling and forecasting of
the volatility of the realized volatility, and is part of the currently continuing third upsurge involving
realized volatility measures, which was ignited by the recent availability of intraday �nancial data
collected near or at the tick-by-tick frequency and the need to harness such high-frequency data fraught
with microstructure noise and apparent short-term seasonalities before the rich information contained
can be tapped into. The seminal paper by Andersen and Bollerslev (1998) de�ned the sum of squared
intraday returns as the realized volatility (RV) for the day, and proposed to use it as a proxy for the
ex post realization of the daily volatility. The squared daily return, typically used as a measure of the
ex-post daily volatility in earlier volatility prediction studies, is a very noisy, albeit unbiased, proxy for
the conditional variance. On the other hand, under ideal conditions in the absence of microstructure
effects, the RV not only is an unbiased and much less noisy measure of the conditional variance but
also converges in probability to the integrated variance over the measurement period as the sampling
frequency increases to in�nity if the asset price follows a diffusion process. Hence, RV may be
considered an almost observable measure of volatility. A further case for the RV can be made based
on the work of Hansen and Lunde (2006) and Patton (2005), who showed how the use of noisy proxies
for the ex-post volatility such as the squared daily return may lead to a choice of an inferior volatility
prediction model.

In a milestone paper, Andersen et al. (2003) used a Gaussian fractional VAR model, i.e., vector-
ARFIMA model with MA order zero, for directly modeling and forecasting several exchange rate RV
series, building on earlier empirical investigations that had found long-range dependence and approxi-
mate normality of the daily log RV time series constructed from high-frequency intraday data of stock
prices (e.g., Andersen et al. 2001a) and exchange rates (e.g., Andersen et al. 2001a). They pro-
vided compelling empirical evidence for the superiority in predictive accuracy of this direct daily RV
modeling approach over the daily returns approach with short- or long-memory GARCH-type models.
Earlier papers including Andersen et al. (1999), Blair et al. (2001) and Martens (2001) that explored
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how to take advantage of intraday data within the GARCH framework also underlie the shift of the
focus of the volatility literature to this approach. Ebens (1999) was also among the �rst to apply
the ARFIMA model directly to RV time series. His ARFIMAX model for the RV of the DJIA in-
dex portfolio returns incorporated terms to capture the leverage effect, a well-documented stylized fact
about equity returns. Koopman et al. (2005) conducted an extensive forecast performance compar-
ison study of the ARFIMA model for the RV series of the S&P 100 stock index and the unobserved
components RV (UC-RV) model of Barndorff-Nielsen and Shephard (2002) as well as more traditional
GARCH-type and SV models based on daily returns and their implied-volatility-augmented versions,
and reported that the ARFIMA model outperformed the other models although the performance of the
UC-RV model was nearly as good.

Corsi (2004) proposed the heterogeneous autoregressive (HAR) model for the RV as an alternative
to the ARFIMA model. The HAR-RV model employs a few predictor terms that are past daily RVs
averaged over different horizons (typically a day, a week, and a month), and is capable of producing
slow-decay patterns in autocorrelations exhibited by many RV series. Because of the ease in estima-
tion and extendability of the baseline model, the HAR model has quickly become popular for modeling
the dynamics of RV and other related volatility measures. Corsi et al. (2005), after �nding strong
conditional heteroskedasticity and non-Gaussianity in the ARFIMA and HAR residuals of the RV of
the S&P 500 futures, introduced the HAR-GARCH-NIG model, which augments the basic HAR model
with a GARCH volatility dynamic structure and NIG (normal inverse Gaussian) distributed standard-
ized innovations. Subsequent papers by Bollerslev et al. (2005), Andersen et al. (2007a) among others
also formulated the HAR errors as a GARCH process. Note that when the time series being modeled
measures volatility, its volatility is related to the volatility of volatility of the primitive price process.
The volatility of volatility of an asset price process is an important determinant of the tail property of
the distribution of the asset's return, precise modeling of which is crucial, for example, for managing
the extreme risk of a portfolio involving the asset, or pricing and hedging of out-of-the-money options
written on the asset. Furthermore, a suite of volatility options and futures at the Chicago Board of
Options Exchange (CBOE) and the CBOE Futures Exchange (CFE) written on U.S. equity market
volatility indices, as well as a variety of over-the-counter volatility derivatives on major indices around
the world, have been traded actively in recent years. For each of these products, the underlying is
itself some measure of market volatility. As far as these volatility derivative products are concerned,
the volatility of volatility is a second-moment property, rather than a fourth-moment property, of each
of the respective underlying processes, and hence potential payoffs to accurate volatility-of-volatility
modeling may be substantial.

In this paper, we use the ARFIMA model with the GARCH(1,1) speci�cation for the error term
(ARFIMA-GARCH), to empirically investigate the dynamic behavior of the daily RV of the Nikkei
225 index, with a particular focus on the conditional variance of the RV. The Nikkei 225 is the most
widely watched indicator of the overall moves of the Japanese stock market, one of the largest in
the world in terms of capitalization and trading volume. Shibata (2004, 2008), Shibata and Watanabe
(2004), Watanabe (2005), Watanabe and Sasaki (2006), Watanabe and Yamaguchi (2006) among others
studied the RV of the Nikkei 225 index or index futures, and reported empirical �ndings similar to those
obtained for other major markets. Although neither a volatility index calculated and disseminated on
a real-time basis by a major �nancial organization nor an exchange-traded volatility derivative has
been introduced for any of the Japanese equity indices, Japanese-equity-related volatility derivatives
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have recently been traded actively over-the-counter. Several papers applied the ARFIMA-GARCH
model to lower frequency macroeconomic and �nancial time series (e.g., Baillie et al. 1996b, Ling
and Li 1997, Ooms and Doornik 1999), and a large number of papers in the RV literature employ
the ARFIMA model without a conditionally heteroskedastic error speci�cation to �t daily RV series
(e.g., Oomen 2001, Giot and Laurent 2004 as well as those already referenced above). To the author's
knowledge, this paper is the �rst to apply the ARFIMA-GARCH model to RV time series. Although
several recent RV studies used the HAR-GARCH in place of the ARFIMA-GARCH model primarily
for ease of estimation, it is not dif�cult to estimate a low-order ARFIMA or ARFIMA-GARCH(1,1)
model by the maximum likelihood estimator. One advantage of the ARFIMA model is that it has
the fractional integration parameter explicitly incorporated into the model, allowing one to estimate
it jointly with the other parameters, a feature not shared by the HAR model, which is not formally a
long-memry model.

Another notable recent development in the RV literature is the approach due to Barndorff-Nielsen
and Shephard (2004, 2006) of decomposing the RV into the contribution of continuous sample path
variation and that of jumps. Extending the theory of quadratic variation of semimartingales, Barndorff-
Nielsen et al. (2006) provided an asymptotic statistical foundation for this decomposition procedure
under very general conditions. Andersen et al. (2007a) used the HAR framework to study the roles of
these two distinct components in RV prediction while Andersen et al. (2007b) documented improve-
ments in the RV forecasting accuracy achieved by modeling these components separately. In light of
these results, we estimate and remove the jump contributions from the daily Nikkei 225 RV using the
Barndorff-Nielsen procedure modi�ed by Andersen et al. (2007a), and study the continuous sample
path variation. We �nd strong empirical evidence of conditional heteroskedasticity in the ARFIMA
errors, and some evidence of predictability of the time variation in the volatility of the Nikkei 225
realized volatility.

The remainder of the paper is organized as follows. Section 2 brie�y reviews the results from the
theory of bipower variation and jump component extraction, Section 3 describes the data and summary
statistics, Section 4 reviews the ARFIMA-GARCH model and resents the estimation results, and Sec-
tion 5 reports the results of the RV and the variance of RV prediction exercises. Section 6 concludes.

2 Realized variance, realized bipower variation, and jump component
extraction

The starting point of the realized volatility research is the recognition of the well-known result in the
theory of continuous-time stochastic processes that the volatility of a process would be completely
known if we observed a continuous record of the sample path of the process. Although in reality
we do not obtain a continuous record and only observe the realized sample path of the process at
discrete points in time, the sum of squared increments of the process approaches the integrated variance
as the return measurement intervals shrink to zero. More precisely, if the process is a continuous
semimartingale, under mild regularity conditions,

RVt :=

1=�X
j=1

jrt+j�;�j2
p!
Z t+1

t
�2sds as � # 0 (1)
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where rt+j�;� is the increment over the interval [t+ (j � 1)�; t+ j�] (in our context, the process
is the log of the Nikkei 225 index level process so that rt+j�;� is the log return), �t is the diffusion
coef�cient (instantaneous volatility) of the process, time t has a daily unit so that RVt is the tth day
realized variance1. We will hereafter use the terms realized volatility or realized variance interchange-
ably, or their common abbreviation RV, to refer to RVt de�ned in (1) and more loosely to other related
measures such as

p
RVt or the realized bipower variation de�ned below. If the process is a semi-

martingale with �nite-activity jumps, i.e., only a �nite number of jumps occurring in any �nite time
interval, such as Poisson jumps, then the realized variance converges to the quadratic variation, which
can be decomposed into the integrated variance (the continuous sample path variation) and the sum of
squared jump sizes:

RVt
p!
Z t+1

t
�2sds+

X
t<s�t+1

�2s as � # 0 (2)

where �s is the size of the jump occurring at time s. Barndorff-Nielsen and Shephard (2004, 2006)
showed that even in the presence of jumps the realized bipower variation

BVt :=
�

2

1=�X
j=2

jrt+j�;�j
��rt+(j�1)�;��� p!

Z t+1

t
�2sds (3)

holds under mild conditions, and proposed to use

RVt �BVt
p!

X
t<s�t+1

�2s (4)

or
J�t := (RVt �BVt)

+ (5)

as an estimator for the sum of realized squared jumps
P
t<s�t+1 �

2
s . J�t is known to take non-zero,

small values very frequently due to measurement errors and due possibly to the presence of jumps of
in�nite-activity types. Based on the asymptotic distributional theory for these quantities developed by
Barndorff-Nielsen and Shephard (2004, 2006) and Barndorff-Nielsen et al. (2006) and an extensive
simulation study by Huang & Tauchen (2005), Andersen et al. (2007a) introduced what they call a
shrinkage estimator for the jump contribution

Jt := I (Zt > �a) � (RVt �BVt) (6)

where I is an indicator function, Zt :=
(RVt�BVt)RV �1tq

((�=2)2+��5)max(1;TQtBV �2t )�
is asymptotically standard

normally distributed under the null of no jumps, �1 :=
p
2=�; �a := � (a) is the standard normal

distribution function, and the (standardized) realized tripower variation

TQt := �
�14�1�3=2�

�
7

6

��3 1=�X
j=3

jrt+j�;�j4=3
��rt+(j�1)�;���4=3 ��rt+(j�2)�;���4=3 p!

Z t+1

t
�4sds as � # 0

(7)

1Time t here is loosely used in two different ways: RVt refers to the tth day RV and [t; t + 1] the trading hours (or just
either the morning or the afternoon session) of the tth day. Our notation here also glosses over the existence of a lunch break.
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The last convergence result holds even in the presence of jumps. a is usually set to values such as .999
so that Jt picks up only �signi�cant� jumps. With Jt; another estimator of the continuous sample path
variation:

Ct := RVt � Jt (8)

may be used in place of BVt.

In this paper, we use the microstructure-noise-robust versions of BVt and TQt; due also to Ander-
sen et al. (2007a). In these versions, the summands are respectively (1� 2�)�1 jrt+j�;�j

��rt+(j�2)�;���
and (1� 4�)�1 jrt+j�;�j4=3

��rt+(j�2)�;���4=3 ��rt+(j�4)�;���4=3, skipping an interval of length � in
sampling short-period returns. The de�nitions of Jt and Ct are modi�ed accordingly as well.

3 Data and summary statistics

3.1 Calculation of �ve-minute returns from minute-by-minute Nikkei 225 data and RV
measures

Nihon Keizai Shinbun, Inc. (Nikkei) computes and disseminates the Nikkei 225 index once every
minute during the trading hours of the Tokyo Stock Exchange (TSE) (9:00-15:00 with a 11:00-12:30
lunch break). In this paper, we use minute-by-minute Nikkei 225 index data provided directly by
Nikkei and maintained by the Center for Advanced Research in Finance at the University of Tokyo. The
sample period spans March 11, 1996 through August 31, 2007. From the minute-by-minute data, we
construct a series of �ve-minute log differences multiplied by one hundred, which we call ��ve-minute
(percentage) returns.� This choice is made to strike a balance between alleviating the microstructure-
related noise and increasing the precision of volatility measurement, following the standard practice
of the RV literature in handling high-frequency intraday data from highly liquid markets. Andersen
et al. (2000) and the other empirical papers dealing with the RV of the Nikkei 225 cash index or
futures referenced in the introduction also used �ve-minute returns. For further discussions of the
miscrostructure-related issues, see Hansen and Lunde (2005) and references therein.

The of�cial minutely Nikkei 225 index starts at 9:01 for the morning session, and the �rst �ve-
minute return in a given day that we calculate is for the 9:05-9:10 interval as in Andersen et al. (2000).
Removal of the �rst four observations partially alleviates possible effects of the sluggish response of
the Nikkei 225 to the information accumulated overnight (or over a weekend or holiday) on volatility
measurement. Given the TSE trading rules, the 9:05 index value is unlikely to have fully impounded
all overnight information in it when overnight domestic and overseas events move the overall Japanese
stock market up or down by a large amount relative to the previous close2, and again our choice here is
an attempt for a balance between higher precision and lower bias. For the afternoon session, the index

2The TSE trading rules do not allow the price of each individual stock to immediately move to a level outside of the range
set according to either the last transaction or the �special quote� price. When there are buy (sell) orders remaining at the
upper (lower) limit of the range, the TSE announces it as a "special quote" and wait for �ve minutes before shifting the range
upward (downward). The special quotes of the constituent individual stocks, if there are any, are used in place of the more
stale last transaction prices in the calculation of the Nikkei 225 index.
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starts at 12:31. Since the effect of the TSE trading rules hampering the Nikkei 225 index from quickly
re�ecting the information accrued over a lunch break is likely to be much milder, the 12:31-12:35
interval is retained and used in our calculation of the �rst afternoon �ve-minute return.

For the end price of the last �ve-minute return calculation of each session, we use the closing price
of the session. Due to such factors as delayed arrival of individual stock price data from the TSE and
the real-time nature of the Nikkei 225 calculation and dissemination, the �nal few observations of each
session are occasionally marked by time stamps up to several minutes later than 15:00 (or 11:00). For
sessions with such observations as well, we use the last recorded observation of the session for closing
the last �ve-minute interval. In total, there are 53 �ve-minute returns for a typical trading day, 23 from
the morning session and 30 from the afternoon session. We exclude sessions from half trading days
including the �rst and last trading days of each year from our sample, retaining 2,802 trading days.

Since there is intervening lunch break, RVt; BVt, TQt; Jt; and Ct are calculated for the morning
and afternoon sessions separately and the two components (denoted with subscripts am and pm respec-
tively) for each variable are added for the day, e.g.,RVt = RVam;t+RVpm;t. RV �t := RVt+R

2
n;t+R

2
l;t

may be used to de�ne the RV for the day, where Rn;t is the previous-day-close-to-open (15:00-9:05)
overnight return and Rl;t is the lunch break (11:00-12:30) return. Since the TSE is open only 4.5
hours a day, however, it would be a stretch to treat RV �t as an observed realization of the volatility
for the whole day. We therefore concentrate on the trading-hour RV measures in this paper, and leave
the analysis of the other components and their impacts on the trading-hour RV measures for future
research.

3.2 Properties of the realized volatility and related measures

Summary statistics for various returns and RV measures are presented on Tables 1. In addition to the
sample skewness and kurtosis, the Jarque-Bera (JB) statistic for testing normality3 is presented for each
series. For checking temporal dependence, the �rst-order sample autocorrelation and the Ljung-Box
statistics of orders 5, 10, and 22 (corresponding to roughly one week, two weeks, and a month) for no
serial correlations up to their respective orders are shown for each series. Since the usual Bartlett's
standard error, T�1=2 = 0:01 9; is biased under heteroskedasticity, the heteroskedasticity-adjusted
standard error for the �rst-order autocorrelation and Ljung-Box statistics due to Diebold (1988) are
also presented. Previous empirical studies have documented that daily volatility measures such as
the daily return squared, the absolute daily return, and various daily RV measures of �nancial time
series appear to have long-memory properties. For long memory processes, the in�uence of shocks
does not last forever unlike in the case of integrated processes, but decays very slowly relative to the
geometrically fast decay for short-memory processes. Formally, there are several de�nitions of long
memory. The usual de�nition of long memory for a covariance stationary time series, which we adopt

3It is designed to jointly measure the deviations of the sample skewness and kurtosis from their respective population
values, zero and three, under normality. For an i:i:d: normal series, it is asymptotically distributed �2 (2) (two degrees of
freedom). The simulation work of Thomakos and Wang (2003) has shown, however, that it grossly overrejects the null of
normality if the data are a sample path of a long-memory process. Hence, it presented here as an informal statistic.
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in this paper, is that
1X

k=�1
j (k)j =1 (9)

holds where  (k) is the kth order autocovariance. Another de�nition of long memory for a covariance
stationary process is that  (k) decays hyperbolically, i.e.,

 (k) � k2d�1l (k) (10)

as k ! 1, where l (�) is some slowly varying function and d 2 (0; 1=2) is called the long-memory
parameter. If the process is a covariance stationary one satisfying some regularity conditions, (10)
implies (9). For a review of alternative de�nitions and their relations to each other, see, e.g., Palma
(2007).

Before estimating the ARFIMA and the ARFIMA-GARCH models for the RV series, we estimate
the long-memory parameter d for our various series via two popular semiparametric estimators bdGPH ;bdRobinson, due respectively to Geweke-Porter-Hudak (1983) (GPH) and Robinson (1995a), with the
bandwidth parameterm set atm = T :7 where T is the sample size. The asymptotic standard errors forbdGPH and bdRobinson are respectively �=p24m and 1= (2

p
m), and hence the latter is asymptotically

more ef�cient for a given m. d is equal to the fractional differencing parameter if the process is a
fractionally integrated one, reviewed in the next section. The de�nition of the fractional differencing
parameter can be extended to the nonstationary region d � 1=2. The region of the true d over
which bdGPH and bdRobinson are consistent and asymptotically normal extends beyond 1=2. For these
properties, neither bdGPH nor bdRobinson requires Gaussianity, and the latter does not require conditional
homoskedasticity. See Robinson (1995b), Velasco (1999), Deo and Hurvich (2001), and Robinson and
Henry (1999).

Looking at the summary statistics for RVt = RVam;t + RVpm;t; the unconditional distribution
seems to be highly nonnormal with very large positive values of sample skewness and kurtosis. The
LB statistics indicate that it is highly signi�cantly serially correlated. The value of the �rst-order
sample autocorrelation, .544, is at a medium-persistent level and well below one, but the values ofbdGPH (.470 with standard error .040) and bdRobinson (.468 with standard error .0311) are signi�cantly
positive but below the stationary/nonstationary border of 1/2, indicating that autocorrelations decay
slowly. Note, however, that bdGPH and bdRobinson are within two standard errors from 1/2.
Deviations from normality seem to be vastly reduced by the square-root transformation, but remain

large. The log transformation brings down the sample skewness and kurtosis values for each series even
further and close to zero (-.130 for RVt) and three (3.234 for RVt) respectively. After transformation,
the �rst-order sample autocorrelation increases to .663 (

p
RVt) and .713 (lnRVt), and bdGPH ; bdRobinson

increase to values in excess of 1/2 (.557, .524 for
p
RVt and .584, .533 for lnRVt). Other than our

point estimates of d being in the nonstationary region, these results are roughly in line with earlier
empirical �ndings about RV measures constructed from high-frequency intraday exchange rate and
stock returns data, which led to the popularity of the Gaussian ARFIMA model; See, e.g., Andersen et
al. (2003).

Turning next to the Barndorff-Nielsen decomposition ofRVt into the contribution of squared jumps
and that of continuous sample path variation, we set a = :999 in (6). Summary statistics of the

8



square-root and logarithmic transformed ( ln (1 + Jt) for Jt) transformed series are also presented on
Table 1. The sample mean of It := max (I (Zam;t > �a) ; I (Zpm;t > �a)) ; which is an estimate
of the unconditional jump probability over the trading hours of a day, is .150, implying a little more
than one jump occurrences per week4. On average, the jump contribution Jt comprises about 4%
(= :045=1:087) of RVt over trading hours. Similarly to the results of previous studies on the S&P
500 futures and other �nancial time series (e.g., Andersen et al. 2007a, Andersen et al. 2007b), Jt
and its transformations seems distinctly less persistent although this does not rule out the possibility of
the unobserved conditional jump probability series (as opposed to the realized jump series Jt) being
more persistent. And the standard deviation of Jt (.154) is not negligible relative to that of Ct (1.03).
Hence, usingCt; purged of the jump component with a different dynamic behavior, may reveal a higher-
resolution picture of the dependence structure of Ct although Ct and RVt exhibit quite similar features
as summarized by the statistics on Table 1. For our analysis via the ARFIMA-GARCH model, we use
Ct
5.

4 Modeling and forecasting the conditional mean and the conditional
variance of the RV with the ARFIMA-GARCH model

4.1 The ARFIMA-GARCH model and its estimation

The ARFIMA model, introduced by Granger and Joyeux (1980), and Hosking (1981), is a natural
extension of the ARIMA model for parsimoniously modeling time series with long memory. An
ARFIMA(p; d; q) process fYtg may be de�ned as a causal solution to

� (L) (1� L)d (Yt � �) =  (L) "t (11)

where � 2 R, � (L) = 1 � �1L � � � �� �pL
p;  (L) = 1 +  1L + � � �+  qL

q are respectively the
AR and MA operators, sharing no common roots, (1� L)d is the fractional differencing operator, and
f"tg � WN

�
0; �2

�
; 0 < �2 < 1. If all roots of � (z) and  (z) lie outside of the unit disk and

d 2 (�1; 1=2) holds, then there is a unique covariance stationary solution, which is invertible6. For
d 2 (0; 1=2), the autocovariance function of this solution satis�es limk!1  (k) =[ck1�2d]! 1 where
c is a constant, and hence the process possesses long memory and the fractional integration parameter
d corresponds to the long-memory parameter d in (10). Also of note is that an ARFIMA process
with d � 1=2 is nonstationary but still mean-reverting as long as d < 1 (See Baillie 1996, p.21). If
d 2 [1=2; 1) ; we may interpret fYtg as a process, starting from some �nite past and satisfying (11),
which becomes a stationary ARFIMA(p; d� 1; q) process after being differenced once.

4Using a less stringent value a = :99, the estimated jump probability becomes .302, or once per 3.3 trading days on
average.

5It turns out that the ARFIMA-GARCH estimation results for Ct are similar to those for RVt: Details of the results
obtained for RVt are available upon request.

6Bondon and Palma (2007) recently proved invertibility for d > �1, relaxing the condition d > �1=2 often cited in the
literature.
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Following Ding et al. (1993) that found extremely slow decay patterns in the sample autocorrelation
functions of daily volatility measures such as absolute returns, features meant to capture the long-range
dependence in volatility have been incorporated into GARCH-type models (e.g., the FIGARCHmodel)
and stochastic volatility models; see, e.g., Baillie et al. (1996a), Bollerslev and Mikkelsen (1996),
Breidt et al. (1998), Deo and Hurvich (2003). Since daily RV time series including our Nikkei 225 RV
are series of observed quantities which appear to have long-memory properties, the ARFIMA model is
a natural modeling choice. The ARFIMA process (11) may take negative values, and hence it is strictly
speaking defective as a model for Yt = Ct or

p
Ct although we do not encounter negative forecasts

in our empirical application. Negativity is not an issue for lnCt: Also of note is that the class of
continuous-time processes discussed in Section 2 in general does not give rise to (11) exactly, let alone
the ARFIMA process with f"tg � i:i:d:N

�
0; �2

�
:

Baillie et al. (1996b) extended the ARFIMA model to include a GARCH speci�cation for condi-
tional heteroskedasticity and used it to analyze the in�ation rate time series from the G7 and three other
high in�ation countries, and Koopman et al. (2007) applied a model they called the periodic seasonal
Reg-ARFIMA-GARCH to the daily time series of spot electricity prices. In this paper, we apply the
ARFIMA-GARCH(1,1) model in which ht := Et�1

�
"2t
�
; the conditional variance of "t with respect

to the sigma-�eld � (Yt�1; Yt�2; � � � ) ; is given the following formulation:

ht = ! + �ht�1 + �"
2
t�1 (12)

For the stationary ARFIMA model with Gaussian homoskedastic errors, Sowell's (1992) algorithm
for exact maximum likelihood estimation is available. For the ARFIMA-GARCH model, however, no
closed-form expression for the exact likelihood function is available. Hence, we employ the conditional
sum of squares (CSS) estimator: b� := argmax

�
L (�) (13)

where � :=
�
�; �01

�0
; �1 :=

�
�1; � � � ; �p;  1; � � � ;  q; d; !; �; �

�0 and
L (�) := �1

2

TX
t=1

�
lnht (�) + Zt (�)

2
�

(14)

Zt (�) := "t (�) =
p
ht (�)

"t (�) :=  (L)�1 � (L) (1� L)d (Yt � �)
ht (�) = ! + �ht�1 (�) + �"t�1 (�)

2 (15)

with the presample values of Yt � �; t = 0;�1;�2; � � � set to zero and h1 (�) set to some initial
value. If d � 1=2, Yt does not have an unconditional mean and � cannot be interpreted as such.
For this case, (1� L)d (Yt � �) = (1� L)d�1�Yt where �Yt := Yt � Yt�1; but note that �Y1 =
Y1 � Y0 = Y1 � � under our choice of the presample values so that � does not disappear. We equate
h1 (�) to the value of the sample variance as is often done in the estimation of GARCH-type models.
In estimation, we do not impose d < 1=2 for stationarity. Neither do we impose � + � < 1 for the
GARCH speci�cation. We estimate the ARFIMA with a homoskedastic speci�cation, i.e., ! = �2;

� = � = 0; by the CSS estimator as well for comparability of results across homoskedastic and
GARCH speci�cations. The objective function maximized by the CSS estimator is essentially the
Gaussian maximum likelihood (without the constant�T

2 ln (2�) ) for the AR(1) representation of the
ARFIMA-GARCH model with the conditional distribution of "t speci�ed as N (0; ht), conditional on
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the presample values and h1. Hence, the CSS estimator for the ARFIMA-GARCH model is a long-
memory analogue of what we usually refer to as the quasi-maximum likelihood estimator, QMLE, in
the short-memory ARMA-GARCH setting. Extending the results of Beran (2004) for the ARFIMA
model, Ling and Li (1997) showed that the CSS estimator is

p
T -consistent and asymptotically normal

for the ARFIMA (p; d; q)-GARCH(P;Q) model. Their results are also valid for the nonstationary
case in which the true value of d is larger than 1/2. This is a desirable property particularly because
d estimates are found to be near or greater than 1/2 in our semiparametric estimation as well as other
studies of �nancial time series data, and is another justi�cation for using the CSS estimator. Ling and
Li (1997) derived

p
T -consistency for b�1 assuming that � is known. To our knowledge, their results

have not been rigorously veri�ed to be applicable to b�: However, it seems reasonable to expect that�
T 1=2�db�; T 1=2b�01�0 has a Gaussian limiting distribution as long as the other conditions of Ling and
Li (1997) are satis�ed and d < 1=2 7. Another caveat is that the asymptotic results of Ling and Li
(1997) are based on the assumption E

�
"4t
�
< 1. If f"tg follows a GARCH(1,1) process and the

standardized error sequence
n
Zt := "th

�1=2
t

o
is i:i:d: with � := E

�
Z4t
�
<1; this condition amounts

to ��2+2��+�2 < 1. Our estimation results indicate that a covariance stationarity condition �+� <
1; let alone the more stringent condition E

�
"4t
�
<1, may not be satis�ed by our untransformed series

Ct. However, this is not likely to invalidate estimation and inference based on Ling and Li (1997). Lee
and Hansen (1994) established (local) consistency and asymptotic normality of the Gaussian QMLE
for the GARCH(1,1) model when the true values of �; � may not be in the covariance stationary region
� + � < 1 but are in the strict stationary region satisfying E

�
ln
�
� + �Z2t

��
< 0. Jensen and

Rahbek (2004), focusing on the estimation of (�; �) and working with a different set of assumptions
on fZtg proven that the consistency and asymptotic normality extend to the case of conditional variance
explosion E

�
ln
�
� + �Z2t

��
> 08.

Given the strong evidence to be reported shortly against conditional normality of the standard-
ized error Zt except when Yt is lnCt, we also present the robust standard errors of Bollerselv and
Wooldridge (1992) (BW) interpreting our estimator as a QMLE. For the models with the GARCH
speci�cation, the BW standard errors are robust to distributional misspeci�cation of Zt under correct
speci�cation of the conditional mean and variance and regularity conditions. We use the BIC9 as our
model selection criteria and con�ne our search for the best model to a total of 64 models: The full
ARFIMA(2,d,2)-GARCH(1,1) model and its 63 restricted versions (at least one of the ARFIMA para-
meters, �1; �2;  1;  2; d; is �xed at zero and/or no conditional heteroskedasticity (�; �) = 0). Let us
denote, for example, the ARFIMA(2,d,0) model with the �rst-order AR coef�cient restricted to be zero
as the ARFIMA({2},d; 0). We denote the other models with second-order terms similarly.

7For the case of d � 1=2; Ling and Li (1997) considered estimating the parameters in
� (L) (1� L)d�m ((1� L)m Yt � �) =  (L) "t with � 6= 0 unknown and estimated separately from the other
paramters, where m is the smallest positive integer such that d �m < 1=2. If m = 1; this implies that fYtg has a linear
time trend, which is counterintuitive in our case where Yt is a measure of volatility.

8Unlike in our case, however, they both assumed Yt = � + "t with either � a constant to be estimated jointly with the
other parameters (Lee and Hansen 1994) or � = 0 known (Jensen and Rahbek 2004). To our knowledge, rigorous asymptotic
theory for the ARFIMA-GARCH model with �+ � � 1 is not yet available in the literature.

9BIC = �2L�
�b��+N lnT whereN is the number of parameters, L�

�b�� is the value of the maximized log likelihood
function L�

�b�� = L
�b��� T ln (2�) ; and L (�) is as de�ned in (14).
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When modeling a time series of daily currency or stock returns, the conditional mean is small
relative to the variance so that setting it to zero or a constant instead of �tting a more elaborate model
usually does not much affect the estimation of the volatility process. Since the RV is highly persistent,
it is essential to adequately model the conditional mean part of the RV even if one's primary interest
is in the conditional variance of the RV. Otherwise, misspeci�cation in the mean may masquerade as
conditional heteroskedasticity. See Diebold and Nason (1990) for a study focusing on this issue.

4.2 ARFIMA-GARCH estimation results

We �rst use the entire sample (2802 daily observations) available to us to estimate the full ARFIMA(2,d,2)-
GARCH(1,1) model and 63 restricted versions. For order selection, we employ the BIC. In applying
the ARFIMA-GARCH model, we work with transformed series lnCt and

p
Ct as well as the orig-

inal series Ct: It should be emphasized that, although the results for all three series are presented
and discussed together and some comparisons in terms of model adequacy are made across different
transformations, each series is being investigated on its own right, and that the BIC values and other
speci�cation test statistics and forecast performance measures are not directly comparable across the
three series. We should also keep in mind that the square-root and log transformations alter the nature
of conditional heteroskedasticity10. It is beyond the scope of this article to address the issue of which
series should be used as the LHS variable of the ARFIMA-GARCH model in a forecast exercise with
a particular loss function11 although our results contain information relevant to this issue. Table 3
summarizes the parameter estimation results with Hessian-based and BW standard errors in parenthe-
ses. For brevity, only the results for the best short-memory model, the best homoskedastic model and
its GARCH(1,1) counterpart, and the best overall model and its homoskedastic counterpart. Table 4
presents summary statistics and some speci�cation test statistics for the residuals of these models.

4.2.1 Estimation results for the ARFIMA model with the constant error variance speci�cation

In this subsection, we discuss our empirical results for the ARFIMAmodel with the constant error vari-
ance speci�cation and various order restrictions. The results are similar to those previously reported
in the literature for the RVs of the Nikkei 225 cash index and index futures and other �nancial time
series. The order selected by the BIC is the ARFIMA(0,d,1) for all series. The estimated values of d
in the BIC-selected homoskedastic ARFIMA models are 0.494 (Ct), 0.516

�p
Ct
�
, 0.509 (lnCt). At

usual levels, all of these are signi�cantly higher than zero, but none are signi�cantly different from the
nonstationarity boundary of 1/2.

Table 4 presents some residual diagnostic statistics. The �rst-order sample serial correlations (the

10This can be most easily seen in the related context of a continuous-time CEV diffusion process for the instantaneous
variance Vt per unit time. After the square-root or log transformation, the diffusion coef�cient (volatility of variance) of the
original process, �V � where �; � 2 R+; becomes respectively 1

2
�V ��1=2 or �V ��1.

11Suppose, for example, that our goal is to minimize the mean squared errors in forecasting RVt one-step-ahead. Since
exp (Et�1 [lnRVt]) 6= Et�1 [RVt] by Jensen's inequality, we need to speci�y more than the �rst two condtional moments
of lnRVt to produce an optimal forecast for RVt if we are to work with flnRVtg instead of directly with fRVtg :
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Bartlett's standard error is T�1=2 = 0:019 and the heteroskedasticity-adjusted standard errors are given
in parentheses) in the residuals are all smaller than 0.01 in absolute magnitude and insigni�cant at usual
levels. Judging by the values of the heteroskedasticity-adjusted LB statistics due to Diebold (1988)
(the �rst line) of orders from one through 5, 10, or 22 for the residuals, serial correlations in Ct,

p
Ct,

and lnCt are adequately �ltered out by the best homoskedastic ARFIMA models12.

The heteroskedasticity-adjusted LB statistics for the residuals of the BIC-selected short-memory
models are only marginally signi�cant for the raw series Ct and insigni�cant for the two transformed
series. The best short-memory ARMA model for each series mobilizes three to four out of the four
ARMA terms allowed and, in the case of

p
Ct or lnCt, seem to �t the linear dependence structure as

successfully as the best homoskedastic ARFIMAmodel13. However, the estimates of the long-memory
parameter d; when not restricted to be zero, are signi�cantly greater than zero and the BIC also favors
the long-memory models.

The very large values of sample skewness and kurtosis of the residuals from the raw series Ct
shown on Table 4 suggest that the unconditional distribution of the error term is highly nonnormal.
The square-root transformation of Ct vastly reduces the values of these measures of nonnormality, but
still far above those of a normal distribution. The log transformation brings the residual distributions
closer to normality, but the sample kurtosis values are still nearly 4.

In sum, it appears that parsimonious ARFIMA models are reasonably successful in removing serial
correlations although some evidence of remaining serial correlations is found for the residuals of the
models of the raw series Ct.

The discrepancies between the values of the unadjusted LB statistics and those of the heteroskedasticity-
adjusted ones already indicate the presence of conditional heteroskedasticity in the form of serial corre-
lations in "2t : Next we directly test the null of no serial correlations in "2t by calculating the Ljung-Box
statistics of b"2t , which in this context are often called the McLeod-Li (ML) statistics14. The ML statis-
tics for the squared residuals from the selected models are all very large, cleanly rejecting the null of
no serial correlations of orders up to 5, 10, and 22 at usual levels. With this evidence, we now turn
to modeling conditional heteroskedasticity with the ARFIMA model augmented by the GARCH(1,1)
speci�cation for the error term.

12The original LB stastistics, shown on the second line, apparently indicate that, for the raw series Ct, there is remaining
serial correlations. In the presence of conditional heteroskedasticity, however, the Bartlett's standard error is not a consistent
estimator of the standard deviations of the sample serial correlations. In particular, if the squared series is positively autocor-
related, the Bartlett's standard error overestimates the estimation precision of sample autocorrelations and as a result the LB
statistics overreject the null. See Diebold (1988).

13To save space, only the results for the best models selected from among all short-memory models are shown. The best
short-memory model happens to include the GARCH speci�cation for all three series. Similar results are obtained, however,
when the best models are selected from among the homoskedastic models.

14McLeod and Li (1983) showed that under the null of a homoskedastic ARMA model the asymptotic distribution of the
ML statistic for no serial correlations in "2t , constructed using sample serial correlations of k different orders in the squared
residuals b"2t , is �2 (k) ; unaffected by paramter estimation. This contrasts the case of the LB statistic applied to b"t; which is
�2 (k � p� q), where p+ q is the number of the ARMA coef�cients estimated.
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4.2.2 Estimation results for the ARFIMA-GARCH(1,1) model

We next compare all 64 versions of the ARFIMA(2,d,2)-GARCH(1,1) model including those without
the constant error variance restriction � = � = 0. For each of the three series, the BIC selects a
model with the GARCH(1,1) speci�cation, more speci�cally, the ARFIMA(f2g,d,1)-GARCH(1,1) for
Ct and the ARFIMA(0,d,1)-GARCH(1,1) for

p
Ct and lnCt. The estimation results for the selected

model and its homoskedastic version for each series are shown on Table 3. As expected from the
LB statistics for the squared residuals from the conditionally homoskedastic models, the improvement
in the log likelihood value achieved by giving the GARCH(1,1) speci�cation for the error process is
substantial for each series. The addition of the GARCH speci�cation to the homoskedastic model of
the same ARFIMA order does not alter the ARFIMA parameter estimates very much, and consequently
the distributions of the residuals b"t := "t

�b�� remain similarly nonnormal.
The point estimate of the volatility-of-the-RV persistence measure �+ � in the best model for the

raw series Ct is well in excess of the covariance stationarity threshold of one although not signi�cantly
so. The BW standard errors of the GARCH parameters are rather large, in fact several times larger than
the Hessian-based ones and renders even b� = 0:263 insigni�cantly different from zero. The values
of the sample skewness and kurtosis and the JB normality test statistic of the standardized residualsbZt := b"t=bh�1=2t where bht = ht

�b�� (shown on Table 4) indicate very high degrees of conditional non-
normality of the error terms of the models for the raw series Ct15. This at least partially explains the
large discrepancies between the BW and the Hessian-based standard errors and suggest that substantial
ef�ciency gains may be obtained by adopting a non-Gaussian QMLE, but non-Gaussian QMLE re-
quires additional conditions for ensuring consistency under distributional misspeci�cation; See Newey
and Steigerwald (1997). As a check of the GARCH(1,1) speci�cation, we calculate the LB statistics
for no correlations in the squared standardized residuals (Table 3). The values of the LB statistics are
greatly reduced by standardization although they are still high enough to reject the null whether the
degrees-of-freedom adjustment is applied or not16.

As for the best models for
p
Ct and lnCt, both � and � are estimated to be signi�cantly above

zero, but the estimates of � + � do not exceed one, although for lnCt, it is very close to one. For
lnCt, the � estimate is rather small, which together with � + � estimated to be nearly one implies a
slowly varying conditional mean process as shown; See Figure. Again, the values of the LB statistics
for the squared residuals are substantially reduced by standardization of the residuals by bh1=2t , but are
still large enough to reject the null of no serial correlations. For

p
Ct; the degree of nonnormality in

the residuals is hugely reduced but not to near normal levels. For lnCt; the effects of standardization

15Kulperger and Yu (2005) proved that the asymptotic distribution of the Jarque-Bera-type moment-based distributional
test statistic based on bZt rather than Zt is �2 (2) ; unaffected by parameter estimation if the conditional variance is correctly
speci�ed and fZtg is an i.i.d. sequence. One of their additional assumptions is that the conditional mean of the observed
variable Yt is zero, which is not satis�ed by our ARFIMA-GARCH case.

16Unlike in the case of the McLeod-Li test statistics for no serial correlations in the squared raw residuals, parameter esti-
mation does affect the asymptotic distribution in this case. Bollerslev and Mikkelson (1996) suggested a heuristic adjustment
of reducing the degrees of freedom of the �2 distribution by the number of estimated parameters. (When the number of lag
orders is 5, this adjustment obviously cannot be applied). Li and Mak (1994) proposed a more elaborate test that correctly
accounts for the impact of parameter estimation.
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are not as large, but the raw residuals are not highly nonnormal to begin with. Consistent with near
normality, the discrepancies between the BW and the Hessian-based standard errors are not very large
for lnCt. However, the value of the JB statistic still rejects the null of normality easily.

All in all, the addition of the GARCH(1,1) speci�cation for the ARFIMA error term helps to capture
much of the serial correlations in the squared residuals though not completely.

4.3 Further speci�cation tests

The LB statistics are for testing the null of no remaining serial correlations in fZtg and
�
Z2t
	
, and are

not designed to detect more general forms of temporal dependence. In this paper, we only attempt to
model the �rst two conditional moments by the ARFIMA-GARCH model. By estimating them using
the Gaussian QMLE, we take a stand on neither the higher-order dependence structure nor the shape of
the conditional distribution (beyond the zero-mean and unit-variance property) of fZtg : Nevertheless,
it is of interest to run a battery of tests for detecting violations of the assumption of fZtg � i:i:d. or
fZtg � i:i:d. N (0; 1) as a speci�cation check17.

The �rst columns of Table 4 show the values of the BDS nonlinearity test statistics due to Brock
et al. (1996), which test the null of fZtg � i:i:d. All different pairs of two consecutive segments
of a �xed length k are taken from an observed time series and the number of cases in which the dis-
tance (using a particular measure) between the two segments in a pair is shorter than a preset value
� is counted. After normalization, this number becomes the BDS statistic with (k; �), which is as-
ymptotically distributed N (0; 1) under the null of fZtg � i:i:d. De Lima (1996) showed that, under
some conditions (including a mixing condition and

p
T -consistency of the estimator), the BDS test

applied to ln bZ2t , where bZt is the standardized residual of an ARCH model, is asymptotically free of
the in�uence of parameter estimation, or �nuisance-parameter-free�18. Note that if fZtg � i:i:d:; then�
lnZ2t

	
� i:i:d holds as well. We apply the BDS test to the log standardized residuals ln bZ2t . Fol-

lowing Chen and Kuan (2005), we set � equal to 0:75 times the sample standard deviation of ln bZ2t , and
for normalization use the bootstrap standard deviation of the raw statistic based on the 1,000 resamples
from the empirical distribution of bZt. The results for k = 2; � � � ; 5 are presented (the �rst lines).
We also present the BDS statistics calculated with bZt (the second lines)19. There is strong evidence

17To our knowledge, for all of our diagnostic statistics, asymptotic theory available in the literature assumes some form
of mixing for fYtg and/or

p
T -consistency of the parameter estimator for establishing the invariance of the asymptotic test

statistic distribution in the presence of parameter estimation or justifying the adjustment when invariance does not hold.p
T -consistency of b� and mixing properties cannot be expected to hold for long memory processes. In fact, Gaussian long-

memory ARFIMA processes are known to be non-strong-mixing (Viano et al. 1995). Strictly speaking, the diagnostic tests
in this subsection as well as the more traditional ones used in the previous subsections therefore remain somewhat informal.

18Caporal et al. (2005) investigated by Monte Carlo simulations the �nite-sample size properties of the BSD test statistics
under GARCH(1,1) DGPs with various combinations of true parameter values (estimated by the Gaussian QMLE) and dis-
tributions of Zt not necessarily satisfying De Lima's (1996) suf�ciency conditions and reported that they are well-behaved
for T � 1000.

19One of De Lima's (1996) suf�cient conditions for invariance is violated in this case. The impact of parameter estimation
on the variance of the statistic, however, is accounted for by the bootstrap although we still presume that the asymptotic
normality of the BSD statistics extends to this case.
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for nonlinear dependence for the homoskedastic models, in particular for the raw series Ct; but when
we allow the GARCH speci�cation to be chosen, evidence for nonlinear dependence becomes much
weaker. In particular for the best model for lnCt; the BDS statistics are all insigni�cant except for the
one with k = 5 for bZt20.
We next conduct a test of time reversibility due to Chen et al. (2000) (CCK). fZtg � i:i:d:

implies time reversibility, which in turn implies that the unconditional distribution of Zt � Zt�k is
symmetric around the origin. The CCK statistic tests this symmetry and is calculated as �k=b�k; where
�k := (T � k)�1=2

PT
t=k+1 � (Zt) and b�k is a consistent estimator for the standard deviation of �k:

There are a variety of functions that can be chosen as � (�). Following Chen and Kuan (2005), we
use � (Zt) := Zt=

�
1 + 2Z2t

�
; replace Zt with bZt, calculate b�k by bootstrap similarly to the case

of the BDS statistics21, and present the results for k = 1; 2; 3 and  = 0:5; 1 on Table 4. A general
tendency is that the values of the CCK statistics decrease after square-root transformation and become
insigni�cantly or only marginally signi�cant for lnCt.

For testing the correctness of the speci�cation of the joint distribution of the series in its entirety,
we may use the nuisance-parameter-free Hong-Li statistics, which formalize the popular graphical ap-
proach of Diebold et al. (1998). In our Gaussian ARFIMA-GARCH case, the test is equivalent to
jointly testing the independence and standard normality of fZtg (as opposed to the JB statistic that
tests the normality under the maintained hypothesis of independence). The Hong-Li statistics are
based on the observation that, under the null of correct model speci�cation in its entirety (as opposed
to just the �rst two conditional moments), the probability integral transformed series fUtg implied
by the model is a sequence of i:i:d: uniform [0; 1] random variables, and in particular the joint den-
sity of (Ut; Ut�k) should be f (u1; u2) = 1 over [0; 1] � [0; 1]. Hong and Li (2005) showed that,
under the null, a properly normalized measure of the distance (call it the Hong-Li statistic of order
k; QHL (k)) between f (u1; u2) = 1 and bf (u1; u2), a nonparametric estimate of f (u1; u2) con-
structed using

nbUto (the probability integral transformed series implied by the estimated model), is
asymptotically distributed N (0; 1)22. Furthermore, they showed that the asymptotic distribution of
(QHL (1) ; � � � ; QHL (K)) is standard multivariate normal and hence that of a portmanteau statistic
WHL (K) :=

p
K
PK
k=1QHL (K) isN (0; 1) under the null. Noting that negative values ofQHL (K)

occur only under the null if the sample size is suf�ciently large23, they suggest using the upper-tailed

20As discussed in the previous subsection, the LB statistics detected serial correlations in the squared residuals of the best
model for lnCt: The BDS statistics, however, keep a wider watch on various types of misspeci�cation and may be less
powerful than other specialized tests in �nding speci�c forms of misspeci�cation.

21Chen and Kuan (2005) showed that, unlike in the case of the BDS statistic, the impact of parameter estimation on the
CCK statistic is of the same stochastic order as the CCK statistic calculated from the true fZtg provided that the parameter
estimator is

p
T -consistent. Hence, correcting the asymptotic variance is crucial here, and boostrap b�k serves the purpose.

A caveat is that it might turn out to be the case that using the ARFIMA-GARCH standardized residuals, the effect of the error
in estimating � asymptotically dominates the other terms.

22For the choice of the kernel function and the bandwidth parameter involved in nonparametric density estimation, we
follow Hong and Li (2005). Their expression of QHL (K) has a typo, which is corrected in Egorov et al. (2006, Footnote
11).

23For this reason, the portmanteau statistic is designed as a scaled sum rather than a scaled sum of squares that would yield
a �2 (K) statistic.
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critical values for individual QHL (K)'s and WHL (K) . QHL (1) ; WHL (5) ; WHL (10), WHL (22)

are shown on Table 4. The overall pattern across the series and the models is similar to the case of
the JB statistics for the standardized residuals, and as expected, the null of i:i:d. normality is very
strongly rejected for Ct and

p
Ct. However, the Hong-Li statistics values are much reduced for lnCt;

and QHL (1) only marginally rejects the null for lnCt at the 5% level (Note that the upper-tailed 5%
critical value is 1.645)24.

Overall, the results of the above tests suggest that the addition of the GARCH(1,1) speci�cation
to the ARFIMA model goes a long way toward accounting for temporal dependence in the RV. In
particular for lnCt, the Gaussian ARFIMA-GARCH(1,1) model appears to be a reasonably good ap-
proximation of the dynamic and distributional structures of the data generating process. However, the
�separate inference� statistics, a set of nuisance-parameter-free statistics for detecting possible sources
of misspeci�cation, also proposed by Hong and Li (2005), do reveal some strong evidence of remaining
higher-order dependence even for lnCt: For givenm and l; we �rst calculate cross-correlations of all
orders j � 1 (up to a truncation point, which we set to be j = 44) in bUmt and bU jt�j and take a weighted
average of the squares of them, which after normalization becomes the Hong-Li separate inference sta-
tisticM (m; l), asymptotically distributed N (0; 1) under the null of correct speci�cation of the entire
joint density of the series. Table 4 showsM (m; l) for (m; l) = (1; 1) ; (2; 2) ; (3; 3) ; (4; 4) ; (1; 2) ;
and (2; 1), meant to detect autocorrelations in level, volatility, skewness, kurtosis, ARCH-in-mean, and
leverage in Ut respectively. As expected, the GARCH speci�cation substantially reduces the value of
M (2; 2) in every case. But it is rather surprising, for example, to �nd the very high value ofM (4; 4),
28.74, for the best model of lnCt with nearly normal bZt.
5 Forecasting the RV and the variance of the RV

5.1 RV

For one-step prediction of the RV measures, we use

bYt+1jt := b�+ tX
s=1

b�s (Yt+1�s � b�) (16)

where b� is the CSS estimate of the unconditional mean and b�s are the coef�cients in the AR(1)
expansion of the ARFIMA model, implied by the ARFIMA parameter estimates25. We also evaluate
the performance of the selected model for each of the RV series in forecasting the k-days-ahead RV,

24As discussed earlier, the JB statistic rejects the normality of Zt even for lnCt. However, recall that the JB statistic
tests the normality under the maintained hypothesis of fZtg � i:i:d:, whereas the Hong-Li statistics in our context test the
independence and standard normality jointly. If the i:i:d: assumption does not hold as indicated by the LB statistics for the
squared standardized residuals, the JB statistic may overreject the null.

25While the Durbin-Levinson algorithm may be applied to calculate the best linear one-step predictor based on the �nite
past, the formula (16) is more in line with our CSS estimator.
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Yt+s. For this, we use bYt+sjt as our k-days-ahead forecast where
bYt+kjt := b�+ k�1X

s=1

b�s �bYt+sjt � b��+ t�1X
s=0

b�k+s (Yt�s � b�) (17)

For evaluating predictive accuracy, we mainly look at R2 from the Mincer-Zarnowitz regression of the
realization of the target variable on the prediction.

The results of the in-sample RV prediction exercise for horizons k = 1; 5; 10; and 22 days in which
the model parameters are estimated once using the entire sample are summarized on the left half of
Table 5. In conformance with the previously reported results for the RVs of the Nikkei 225 index and
other �nancial time series, the RV is highly predictable. For example, R2 is nearly 60% when the
target is the one-step-ahead lnCt: Although R2 tapers off as the horizon increases, predictability of
the 22-days-ahead daily RV is still substantial (nearly 30% for lnCt). For

p
Ct and lnCt, the estimates

of the Mincer-Zarnowitz regression intercept and coef�cient are close to zero and one respectively, and
the Wald test statistics do not reject the null of forecast unbiasedness, i.e., the intercept being zero and
the coef�cient being one, for any of the investigated horizons. Excellent performance of the ARFIMA-
GARCH model can be visually con�rmed for each series by the time series plot of the ARFIMA-
GARCH �t; See the left panels of Figure. The results of �out-of-sample� forecasting in which the
�rst 1,500 daily observations of the sample are used for a one-shot estimation of the parameters of the
ARFIMA-GARCH model and the remaining 1,302 observations are used for forecast evaluation are on
the right half of Table 526. Again, the results indicate that the RV is highly predictable, and, for

p
Ct

and lnCt, there is little evidence of forecast bias.

5.2 Variance of the RV

We next evaluate the performance of the ARFIMA-GARCH model selected for each of the three series
in predicting the volatility of the RV. For one-step-ahead forecasting, we use bht+1 as the volatility-of-
the-RV forecast and b"2t+1 = �Yt+1 � bYt+1�2 as the proxy for the target. Our ARFIMA-GARCH esti-
mation results indicate that the variability ofb"2t+1 is much higher than that of V art (Yt+1) = Et

�
"2t+1

�
,

which would lead to an apparently low R2 value of the Mincer-Zarnowitz regression even if the time-
variation in Et

�
"2t+1

�
could be well approximated by the ARFIMA-GARCH model. This paral-

lels the resolution by Andersen and Bollerslev (1998) of a puzzle regarding the low R2 phenomenon
prevalent in earlier volatility prediction studies based on data sampled at daily or lower frequencies.
The introduction of the RV measures in empirical �nance has rendered �nancial volatility nearly ob-
servable, but here we are back in the unobservability realm. What makes the problem even more
complicated in our context is that the RV is highly predictable unlike daily asset returns and that
V ar (Et [Yt+1]) =V ar (Yt+1) seems to be large and hence the effect of the deviation of bYt+1 from
the true Et [Yt+1] due to possible model misspeci�cation, parameter estimation errors and other factors
on the Mincer-Zarnowitz R2 is potentially more serious for volatility-of-volatility prediction than for
equity or currency return volatility prediction based on daily return observations. For forecasting the

26The model selection is based on the full sample because there is a concern that use of a poor RV forecasting model may
cause spurious predictability of the volatility of the RV. Hence, our forecasting exercise is not truely out-of-sample.
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multi-day volatility of the RV, we use k�1
Pk
s=1

bht+sjt; where bht+sjt is the s-periods-ahead single-day
conditional variance of the RV implied by the ARFIMA-GARCH, as our forecast, and the daily squared
errors averaged over the horizon,

�t (k) := k�1
kX
s=1

�
Yt+s � bYt+sjt�2 (18)

as a proxy for the target.

The left half of Table 6 summarizes the in-sample forecasting performance evaluation results for
k = 1; 5; 10; and 22. As expected, R2's are in fact low, but not negligible. Multi-day-ahead single-
day volatility-of-the-RV predictability does seem to increase as we attempt to forecast further into the
future (For brevity, details are not reported on the table). In spite of this, the R2 values are higher for
multi-day average forecasts than for a one-day ahead forecast. This is not surprising because our target
proxy �t (k) ; being squared forecast errors aggregated over forecast horizons of a week to several
weeks, is a sort of realized volatility (of the RV), albeit on a coarser frequency. A noise reduction
effect akin to that of the daily RV in daily volatility forecasting studies seem to start to kick in as the
forecast horizon increases. For Ct;

p
Ct, the R2 values are 3.55% (k = 1), 7.60% (5), 6.50% (10),

5.27% (22). Presumably, the effect of decreasing multiperiods-ahead single-day predictability begins
to outweigh the noise reduction effect at around a weekly horizon. For lnCt; the R2 values are 3.31%
(k = 1), 7.29% (5), 9.30% (10), and 12.50% (22). Evidence for out-of-sample predictability appears
to be much weaker, but the out-of-sample R2 is still 9.09% for lnCt; k = 22 (the right half of Table
6)27:

6 Concluding remarks

In this paper, we investigated the volatility of the daily Nikkei 225 futures realized volatility. Although
much of the recent advances in volatility research has been due to the recognition that high-frequency
intraday data make daily volatility essentially observable in the form of the realized volatility and
related measures, we are back to the condition of unobservability when we move one order higher in
terms of the moments from volatility to volatility of volatility. This makes evaluation of models such
as the ARFIMA-GARCH for forecasting the volatility of the RV a dif�cult task. Nevertheless, the
GARCH speci�cation for the conditional variance of the RV added to the ARFIMA speci�cation for
the conditional mean of the RV seems to capture much of the persistent time variation in the conditional
variance of the Nikkei 225 RV regardless of whether we use the raw, square-root- or log-transformed
series. We may explore augmenting the ARFIMAmodel with higher-order GARCH or other GARCH-
type or stochastic volatility speci�cations that have proven successful in improving the GARCH(1,1)
�t in more traditional volatility (rather than the volatility-of-the-RV) prediction contexts. Although we
focused on the trading-hour continuous sample path variation in this paper, modeling of the dynamics
of the day-time jump component series and the overnight and lunch-break returns of the Nikkei 225

27For the unrestricted ARFIMA(2,d,2)-GARCH(1,1) model for lnCt rather than the BIC-selected ARFIMA(0,d,1)-
GARCH(1,1), the out-of-sample R2 is as high as 17.84% (the details are not shown on Table 6).
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futures, for example, along the lines of the approach developed by Andersen et al. (2007b), is also
important for completing the prediction of the daily RV. We leave such attempts for future research.
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GPH Robinson

R -0.007 1.423 -0.064 4.962 -7.234 7.660 451.13 -0.041 ( 0.022 ) 19.207 13.251 23.805 16.598 37.588 26.732 -0.018 -0.011
R n 0.039 0.631 0.009 3.480 -3.186 3.849 26.89 0.036 ( 0.020 ) 12.112 10.265 14.545 12.334 33.345 29.016 0.054 0.044
R am -0.025 0.802 -0.242 7.700 -7.394 5.078 2,606.19 -0.033 ( 0.022 ) 9.678 6.342 11.876 7.938 23.167 15.856 -0.048 -0.031
R l -0.026 0.164 0.015 4.905 -0.736 0.786 423.62 0.026 ( 0.024 ) 16.083 10.712 22.007 15.017 57.635 40.153 0.071 0.113
R pm 0.005 0.774 0.103 5.818 -3.675 4.881 932.38 -0.099 ( 0.025 ) 53.107 33.121 60.194 37.744 80.960 53.633 -0.107 -0.060
RV am 0.573 0.622 5.970 78.350 0.011 12.748 679,502.99 0.429 ( 0.060 ) 2,253.238 223.283 3,635.044 442.419 5,801.812 809.331 0.460 0.454
RV pm 0.514 0.595 12.096 335.024 0.015 18.941 12,938,877.08 0.355 ( 0.059 ) 1,298.273 168.714 1,981.101 390.580 2,873.448 822.065 0.364 0.376
RV = RV am + RV pm 1.087 1.030 5.336 67.840 0.065 20.493 504,141.92 0.540 ( 0.071 ) 3,237.586 250.406 4,970.638 529.470 7,586.328 1,004.412 0.470 0.468

  RV 1/2 0.968 0.388 1.459 8.520 0.255 4.527 4,551.03 0.663 ( 0.097 ) 4,997.214 211.504 8,342.521 402.196 13,887.091 793.872 0.557 0.524
  ln RV -0.214 0.778 -0.130 3.234 -2.733 3.020 14.25 0.713 ( 0.030 ) 5,927.105 2,427.793 10,322.146 4,474.032 18,365.815 8,625.484 0.584 0.533
R n

2 0.399 0.628 8.937 168.634 0.000 14.812 3,240,305.54 0.062 ( 0.017 ) 88.876 81.982 159.721 133.651 241.634 221.775 0.197 0.202
R l

2 0.028 0.054 4.178 26.776 0.000 0.618 74,150.20 0.145 ( 0.033 ) 241.331 93.607 396.055 161.320 793.223 308.027 0.278 0.255
RV +R n

2+R l
2 1.514 1.321 4.040 37.141 0.082 21.151 143,704.07 0.461 ( 0.059 ) 2,475.549 257.636 3,928.348 521.401 6,076.282 980.450 0.451 0.458

  (RV +R n
2+R l

2)1/2 1.149 0.440 1.283 6.990 0.286 4.599 2,626.47 0.563 ( 0.090 ) 3701.681 179.179 6248.175 337.833 10273.433 651.265 0.542 0.502
  ln (RV +R n

2+R l
2) 0.139 0.752 -0.174 3.327 -2.506 3.052 26.58 0.603 ( 0.026 ) 4291.539 2415.713 7482.022 4,479.544 12918.003 8,479.105 0.571 0.505

I am 0.054 0.227 3.936 16.492 0.000 1.000 28,485.68 0.082 ( 0.030 ) 40.003 18.276 66.501 30.686 171.483 77.806 0.102 0.148
I pm 0.105 0.306 2.585 7.680 0.000 1.000 5,676.54 0.063 ( 0.024 ) 66.480 37.339 113.491 65.899 191.848 114.649 0.137 0.189
I = max (I am , I pm ) 0.150 0.357 1.965 4.863 0.000 1.000 2,209.40 0.086 ( 0.024 ) 122.378 67.857 201.622 117.207 382.053 229.039 0.198 0.215
J am 0.018 0.111 12.378 254.404 0.000 3.126 7,450,609.97 0.024 ( 0.022 ) 23.634 4.842 24.062 5.409 35.036 45.902 0.115 0.094
J pm 0.027 0.108 6.936 72.084 0.000 1.819 579,666.63 -0.009 ( 0.008 ) 22.952 11.622 34.800 17.749 78.481 37.759 0.108 0.137
J = J am + J pm 0.045 0.154 6.750 82.923 0.000 3.126 767,042.11 0.099 ( 0.087 ) 82.202 15.450 95.866 22.705 150.284 53.468 0.152 0.156

  J 1/2 0.076 0.198 2.834 11.464 0.000 1.768 12,114.74 0.063 ( 0.030 ) 80.413 36.245 114.470 59.428 226.672 124.609 0.177 0.184
  ln (1+J ) 0.037 0.112 4.232 26.939 0.000 1.417 75,267.00 0.067 ( 0.046 ) 71.425 21.879 90.850 33.287 172.347 75.446 0.165 0.168
C am 0.554 0.617 6.094 81.196 0.011 12.748 731,228.51 0.429 ( 0.060 ) 2,210.926 215.305 3,526.428 431.947 5,639.629 789.466 0.426 0.446
C pm 0.488 0.592 12.327 343.571 0.012 18.941 13,612,657.54 0.349 ( 0.059 ) 1,247.790 188.381 1,891.862 415.115 2,714.858 825.181 0.368 0.373
C = C am + C pm 1.042 1.021 5.426 70.160 0.056 20.493 540,350.80 0.537 ( 0.070 ) 3,177.375 250.504 4,859.086 527.560 7,371.936 995.301 0.477 0.464

  C 1/2 0.943 0.391 1.449 8.415 0.237 4.527 4,403.37 0.658 ( 0.094 ) 4,880.797 218.977 8,129.868 416.252 13,491.335 821.386 0.549 0.518
  ln C -0.278 0.811 -0.161 3.183 -2.879 3.020 16.02 0.703 ( 0.031 ) 5,698.077 2,265.783 9,909.682 4,165.279 17,598.452 7,995.639 0.577 0.523

Table 1: Summary statistics: Nikkei 225 daily returns, realized variance and related measures       

Series Mean Std.
Dev.

Skew. Kurt. Min. Max. Jarque-Bera S.E.(ρ 1)

The sample period is from March 11, 1996, through August 31, 2007 (2802 observations). 　ρ 1 and S.E.(ρ 1)  in parentheses are respectively the first-order sample autocorrelations and heteroskedasticity-robust
standard errors (the usual Bartlett's standard errors are T -1/2 = 0.018).  LB (k) are the Ljeung-Box statistics of orders up to k  and DLB (k) are their heteroskedasticity adjusted versions.  The 5% critical values for χ 2(k )
are 5.991 (k =2), 11.070 (5), 18.307 (10), 33.924 (22).  The standard errors of the GPH and Robinson estimators for the long-memory parameter d  are 0.034 and 0.031 respectively.

ρ 1 LB (10) DLB (10) Long-memory dDLB (22)DLB (5) LB (22)LB (5)



Table 2: ARFIMA-GARCH estimation results
LL

μ d φ 1 φ 2 ψ 1 ψ 2 σ 2, ω β α BIC
Best short-memory 0.7155 0.3404 0.6116 -0.4749 0.0134 0.7857 0.2595 -2,365.42
  memory (0.0932) (0.0245) (0.0267) (0.0296) (0.0023) (0.0223) (0.0320) 4,786.40
(2,0,{2})-G (0.1343) (0.0361) (0.0425) (0.0396) (0.0110) (0.0932) (0.1325) 
Best homoskedastic 0.7893 0.4941 -0.2216 0.6329 -3,335.09
(0,d ,1) (0.3326) (0.0322) (0.0394) (0.0169) 6,701.93

(0.2169) (0.0869) (0.1086) (0.1367) 
GARCH ver. of 0.4635 0.5661 -0.2375 0.0120 0.7993 0.2423 -2,366.79
  best homosked. (0.2665) (0.0500) (0.0626) (0.0018) (0.0184) (0.0274) 4,781.21
(0,d ,1)-G (0.2163) (0.1022) (0.1301) (0.0084) (0.0730) (0.1083) 
Homoskedastic ver. 0.7704 0.5163 -0.0321 -0.2371 0.6324 -3,333.97
  of best overall model (0.7140) (0.0342) (0.0211) (0.0383) (0.0168) 6,707.64
({2},d ,1) (0.8760) (0.0978) (0.0504) (0.1010) (0.1344) 
Best overall 0.5185 0.6251 -0.0966 -0.2753 0.0120 0.7966 0.2457 -2,360.72
({2},d ,1)-G (0.3330) (0.0467) (0.0267) (0.0527) (0.0019) (0.0191) (0.0284) 4,777.00

(0.2393) (0.0843) (0.0450) (0.0879) (0.0084) (0.0732) (0.1099) 
Best short-memory 0.6985 1.8988 -0.8990 -1.5908 0.5965 0.0029 0.8630 0.0982 -47.29
  memory (0.0872) (0.0175) (0.0174) (0.0298) (0.0287) (0.0007) (0.0198) (0.0138) 158.08
(2,0,2)-G (0.0661) (0.0188) (0.0188) (0.0354) (0.0342) (0.0015) (0.0415) (0.0271) 
Best homoskedastic 0.8151 0.5160 -0.1847 0.0723 -295.10
(0,d ,1) (0.1152) (0.0305) (0.0393) (0.0019) 621.94

(0.0811) (0.0515) (0.0681) (0.0050) 
GARCH ver. of 0.7145 0.4990 -0.1633 0.0027 0.8714 0.0926 -50.53
  best homosked. (0.1177) (0.0297) (0.0373) (0.0006) (0.0179) (0.0126) 148.68
(0,d ,1)-G (0.1107) (0.0306) (0.0397) (0.0013) (0.0370) (0.0248) 
Homoskedastic ver. 0.8151 0.5160 -0.1847 0.0723 -295.10
  of best overall model (0.1152) (0.0305) (0.0393) (0.0019) 621.94
(0,d ,1) (0.0811) (0.0515) (0.0681) (0.0050) 
Best overall 0.7145 0.4990 -0.1633 0.0027 0.8714 0.0926 -50.53
(0,d ,1)-G (0.1177) (0.0297) (0.0373) (0.0006) (0.0179) (0.0126) 148.68

(0.1107) (0.0306) (0.0397) (0.0013) (0.0370) (0.0248) 
Best short-memory -0.2637 1.1508 -0.1685 -0.7792 0.0002 0.9894 0.0102 -2,100.31
  memory (0.1042) (0.0322) (0.0298) (0.0240) (0.0002) (0.0032) (0.0028) 4,256.19
(2,0,1)-G (0.0945) (0.0368) (0.0337) (0.0289) (0.0003) (0.0040) (0.0036) 
Best homoskedastic -0.5282 0.5089 -0.1641 0.2731 -2,157.44
(0,d ,1) (0.3443) (0.0283) (0.0374) (0.0073) 4,346.63

(0.4589) (0.0330) (0.0465) (0.0088) 
GARCH ver. of -0.5293 0.5030 -0.1452 0.0002 0.9889 0.0105 -2,095.63
  best homosked. (0.2520) (0.0273) (0.0362) (0.0002) (0.0034) (0.0030) 4,238.89
(0,d ,1)-G (0.1958) (0.0286) (0.0398) (0.0003) (0.0046) (0.0039) 
Homoskedastic ver. -0.5282 0.5089 -0.1641 0.2731 -2,157.44
  of best overall model (0.3443) (0.0283) (0.0374) (0.0073) 4,346.63
(0,d ,1) (0.4589) (0.0330) (0.0465) (0.0088) 
Best overall -0.5293 0.5030 -0.1452 0.0002 0.9889 0.0105 -2,095.63
(0,d ,1)-G (0.2520) (0.0273) (0.0362) (0.0002) (0.0034) (0.0030) 4,238.89

(0.1958) (0.0286) (0.0398) (0.0003) (0.0046) (0.0039) 

C

The sample period is from March 11, 1996, through August 31, 2007 (2802 observations).  For each of  the three series, the
parameter estimates for the best short-memory model (top), the best homoskedastic model and its GARCH version with the
same ARFIMA order, the homoskedastic version of the best model, and the best model (bottom), selected by the BIC from
the 64 restricted versions of the ARFIMA(2,d ,2)-GARCH(1,1) model, are shown with the Hessian-based (on the first line
beneath the parameter estimates) and the Bollerslev-Wooldridge (on the second line) standard errors in parentheses, the log
likelihood (LL) and BIC values.  The ARFIMA(2,d,1)-GARCH(1,1) model with the first-order AR coefficient restricted to
be zero, for example, is denoted as ({2},d,1)-G.  For C 1/2 and lnC , the best homooskedastic model and the best model have
a common ARFIMA order, resulting in duplications on Table 2.

C 1/2

lnC

ARFIMA parameters GARCH paramters
Var. Model



Table 3:  Residual Diagnostic Statistics

mean std. skew. kurt. JB ρ 1 LB (5) LB (10) LB (22) ρ 1 LB (5) LB (10) LB (22) mean std. skew. kurt. JB ρ 1 LB (5) LB (10) LB (22)
Short-mem. 0.030 0.801 6.472 122.420 1,684,532.807 -0.061 32.707 61.594 109.406 0.112 83.031 85.197 98.084 0.071 0.997 3.295 25.344 63,358.309 -0.002 31.719 33.070 36.102
(2,0,{2})-G (0.072) 5.340 17.063 30.983
Homosked. 0.003 0.796 7.167 131.645 1,956,131.830 0.003 13.625 22.272 62.813 0.070 52.801 54.189 64.745 0.004 1.000 7.167 131.645 1,956,131.830
(0,d ,1) (0.060) 2.237 6.465 19.133
+ GARCH 0.007 0.798 6.740 127.021 1,816,978.170 -0.049 23.326 34.366 77.775 0.101 70.518 72.028 83.001 0.026 0.999 3.403 27.339 74,569.180 -0.002 32.466 33.766 36.753
(0,d ,1)-G (0.070) 3.848 9.357 23.242
Homosk..ver.of best 0.003 0.795 7.098 130.267 1,914,529.203 -0.003 9.912 20.051 61.243 0.074 55.928 57.387 68.599 0.004 1.000 7.098 130.267 1,914,529.203
({2},d ,1) (0.061) 1.619 6.422 19.014
Best overall 0.004 0.799 6.483 122.088 1,675,364.830 -0.071 24.334 40.853 88.084 0.117 86.038 87.770 101.463 0.027 0.999 3.360 26.619 70,401.910 -0.002 32.707 34.055 36.937
({2},d ,1)-G (0.073) 3.563 11.070 25.013
Short-mem. 0.009 0.269 1.726 14.521 16,888.778 0.028 6.392 9.984 31.365 0.135 182.378 217.176 273.101 0.028 1.000 1.310 7.685 3,363.966 0.013 28.953 32.971 37.029
(2,0,2)-G (0.032) 3.167 5.574 18.568
Homosked. 0.001 0.269 1.712 14.590 17,050.511 0.005 7.183 11.215 28.938 0.137 179.276 214.392 268.211 0.004 1.000 1.712 14.590 17,050.511
(0,d ,1) (0.032) 3.859 6.519 17.750
Best overall 0.004 0.269 1.730 14.660 17,270.139 0.001 7.538 12.025 30.246 0.138 177.706 211.891 265.939 0.009 1.000 1.332 7.801 3,518.869 0.011 34.676 38.197 42.318
(0,d ,1)-G (0.032) 3.882 6.803 18.233
Short-mem. -0.001 0.524 0.196 3.897 111.742 -0.016 5.457 10.085 19.664 0.099 68.566 133.160 171.932 -0.003 0.987 0.250 3.636 76.444 0.033 24.887 30.485 38.184
(2,0,1)-G (0.021) 4.502 8.199 17.053
Homosked. 0.002 0.523 0.219 3.908 118.640 0.006 5.708 8.300 16.803 0.112 78.223 140.330 175.775 0.004 1.000 0.219 3.908 118.640
(0,d ,1) (0.022) 5.056 7.264 15.227
Best overall 0.002 0.523 0.221 3.908 119.116 -0.007 6.063 8.751 17.454 0.112 77.339 140.100 176.198 0.000 0.988 0.250 3.666 80.957 0.041 26.919 33.700 41.156
(0,d ,1)-G (0.022) 5.367 7.664 15.808

ln C

Squared residuals  εt
2

Var. Model

JB, ρ 1, and LB (k ) stand respectively for the Jarque-Bera statistic for nonnormality, first-order sample autocorrelation, and the Ljung-Box statistic for no serial correlations of orders up to k   (LB  for the squared residuals ε t
2 are also called the McLeod-Li

statistics).  For the residuals ε t  , the heteroskedasticity-consistent standard errors for ρ 1 are given in parentheses (the usual Bartlett's standard error is T -1/2 = 0.018) and both the usual LB  (upper lines) and the heteroskedasticity-adjusted LB  (lower lines) are
shown.  The 5% critical values for χ2(k ) are 5.991 (k =2), 7.815 (3), 9.488 (4), 11.070 (5), 12.592 (6), 14.067 (7), 15.507 (8), 16.919 (9), 18.307 (10), 19.675 (11), 21.026 (12), 22.262 (13), 23.685 (14), 24.996 (15), 26.296 (16), 27.587 (17), 28.869 (18),
30.144 (19), 31.410 (20), 32.671 (21), 33.924 (22).

Squared standardizd residuals Z t
2

C

C 1/2

Residuals  εt Standardized residuals  Z t



Table 4:  Further specification tests

  (m ,l ) (1,2) (2,1)
k = 2 3 4 5 k = 1 2 3 k = 1 2 3  = (1,1) ARCH-m Leverage

Short-mem. 1.296 1.085 0.881 -1.896 4.547 5.571 1.925 2.155 3.095 3.478 135.709 296.375 412.433 602.941 -0.188 0.690 0.117 3.569 3.368 0.896
(2,0,{2})-G 1.511 2.004 3.174 4.439
Homosked. 12.201 13.217 14.048 -2.592 5.179 4.923 4.328 4.281 4.953 4.424 342.874 740.090 1,011.522 1,441.198 4.639 13.205 22.458 8.789 -2.623 -3.358
(0,d ,1) 18.880 22.370 25.656 29.452
+ GARCH 1.947 2.557 3.709 5.024 4.290 5.353 3.055 3.098 2.163 2.664 137.079 297.039 414.158 605.267 -0.619 0.854 0.138 3.689 3.008 0.419
(0,d ,1)-G 0.913 1.159 1.304 -1.792
Homosk.. ver. of best 12.651 13.742 14.481 -2.846 5.242 5.071 3.835 3.833 5.168 4.649 341.469 735.879 1,006.099 1,433.161 4.110 14.516 22.997 9.529 -2.598 -3.352
({2},d ,1) 18.891 22.310 25.595 29.404
Best overall 1.079 1.352 1.333 -2.360 4.895 5.854 1.373 1.621 2.758 3.228 134.695 288.186 402.269 589.806 -1.831 0.251 0.233 3.754 3.202 0.737
({2},d ,1)-G 1.861 2.245 3.274 4.589
Short-mem. 0.550 0.259 0.026 -1.182 1.694 2.362 0.894 0.500 1.425 1.725 30.906 68.276 95.601 139.663 -0.358 -0.240 1.551 3.768 7.181 8.302
(2,0,2)-G 0.818 0.912 1.846 2.922
Homosked. 2.712 2.868 2.915 -1.253 2.498 2.800 1.340 1.038 2.215 2.206 52.669 116.046 158.849 226.107 0.624 1.522 23.293 45.588 5.783 0.825
(0,d ,1) 9.168 11.606 14.520 17.888
Best overall 0.351 0.288 0.094 -0.889 2.097 2.663 0.828 0.334 1.102 1.423 33.284 73.196 102.143 149.058 -1.010 0.334 1.985 4.840 10.672 13.526
(0,d ,1)-G 0.967 1.171 2.278 3.456
Short-mem. -0.249 -0.338 -0.515 -0.154 -1.229 -0.422 -2.242 -2.538 -0.341 -0.084 0.489 2.636 3.312 4.350 -0.494 2.941 -0.128 3.731 8.468 27.987
(2,0,1)-G 0.802 0.874 1.373 2.197
Homosked. 0.248 0.342 0.382 -0.153 -1.531 -0.737 -2.347 -2.481 -0.202 -0.094 3.677 8.651 11.500 15.658 -0.755 5.292 1.415 28.678 6.514 21.892
(0,d ,1) 3.291 4.015 5.097 6.344
Best overall 0.376 0.391 0.451 -0.184 -1.536 -0.754 -2.099 -2.407 -0.430 -0.215 1.725 3.017 3.681 5.178 -0.846 2.767 -0.144 4.459 10.056 28.736
(0,d ,1)-G 1.155 1.192 1.675 2.476

Each test statistic is asymptotically distributed as N (0,1) under its respective null.   The null is Z t ~i.i.d. for the BDS and CCK statistics and  Z t ~i.i.d.N (0,1) for the Hong-Li statistics and Hong-Li separate inference sta
 

Hong-Li separate inference
γ = 0.5 γ = 1.0Var. Model W HL (10) (2,2) (3,3)       Line 2:    Z t (4,4)

BDS     Line 1:   ln Z t
2

C 1/2

Q HL (1)

Hong-LiCCK

ln C

C

W HL (20)W HL (5)



Table 5:  RV forecast performance evaluation

Int. Coef. R 2 Wald Int. Coef. R 2 Wald

1 0.7986 0.1063 0.9014 0.3933 7.074 0.4417 -0.0629 1.0662 0.4691 8.382
(0.0433) (0.0484) (0.029) (0.0235) (0.0356) (0.015) 

C 5 0.9006 0.2224 0.7930 0.2397 17.408 0.4991 -0.0459 1.0343 0.3217 1.974
({2},d ,1)-G (0.0534) (0.0565) (0.000) (0.0388) (0.0503) (0.373) 

10 0.9450 0.2934 0.7273 0.1701 31.865 0.5170 -0.0575 1.0428 0.2751 1.504
(0.0523) (0.0534) (0.000) (0.0576) (0.0700) (0.471) 

22 1.0052 0.4571 0.5727 0.0835 36.492 0.5376 -0.0685 1.0485 0.2222 0.948
(0.0816) (0.0715) (0.000) (0.0951) (0.1097) (0.623) 

1 0.2689 0.0086 0.9951 0.5269 1.042 0.2038 -0.0352 1.0314 0.5770 6.209
(0.0198) (0.0230) (0.594) (0.0188) (0.0240) (0.045) 

C 1/2 5 0.3090 0.0271 0.9800 0.3764 1.997 0.2359 -0.0328 1.0182 0.4349 3.935
(0,d ,1)-G (0.0319) (0.0364) (0.369) (0.0340) (0.0397) (0.140) 

10 0.3294 0.0592 0.9490 0.2932 3.004 0.2486 -0.0434 1.0232 0.3770 3.831
(0.0437) (0.0489) (0.223) (0.0518) (0.0584) (0.147) 

22 0.3548 0.1491 0.8573 0.1866 4.487 0.2645 -0.0466 1.0156 0.3034 3.507
(0.0723) (0.0750) (0.106) (0.0859) (0.0938) (0.173) 

1 0.5226 0.0015 0.9979 0.5843 0.063 0.4676 -0.0098 1.0202 0.6425 2.995
(0.0106) (0.0163) (0.969) (0.0162) (0.0209) (0.224) 

lnC 5 0.5996 0.0070 1.0080 0.4534 0.170 0.5482 -0.0317 1.0203 0.5110 3.701
(0,d ,1)-G (0.0175) (0.0311) (0.918) (0.0247) (0.0408) (0.157) 

10 0.6386 0.0072 1.0031 0.3808 0.094 0.5867 -0.0488 1.0207 0.4437 4.106
(0.0240) (0.0462) (0.954) (0.0324) (0.0618) (0.128) 

22 0.6885 -0.0011 0.9656 0.2813 0.224 0.6384 -0.0860 0.9997 0.3505 4.585
(0.0319) (0.0750) (0.894) (0.0459) (0.0971) (0.101) 

The target variable is C , C 1/2, or lnC (one-day-ahead, or multi-days-ahead single-day).  The Newey-West standard errors
(allowing for serial correlations of orders up to 5, 10, 20, and 44 respectively for horizons 1, 5, 10, and 22 days) for the OLS
estimates of the regression intercept and the coefficient are given in parentheses.   The Wald test statistic with p -value in
parentheses is for testing the joint hypothesis of the intercept being zero and the coefficient being one (distributed as χ 2(2)
under the null).

Mincer-Zarnowits Regression
In-sample Out-of-sampleVariable /

Selected
Model

Horizon
: Day (s) RMSE

Mincer-Zarnowits Regression
RMSE



Table 6:  Variance-of-RV forecast performance evaluation

Int. Coef. R 2 Wald Int. Coef. R 2 Wald 
1 7.3971 0.4192 0.2631 0.0159 156.044 1.0938 0.1520 0.1220 0.0031 184.469

(0.1091) (0.0676) (0.000) (0.0398) (0.0712) (0.000) 
C 5 4.3643 0.5073 0.2544 0.0547 277.402 0.7122 0.1653 0.1386 0.0125 194.109
({2},d ,1)-G (0.0976) (0.0488) (0.000) (0.0477) (0.0823) (0.000) 

10 4.0076 0.6141 0.2062 0.0517 590.623 0.6767 0.1879 0.1001 0.0095 478.750
(0.1195) (0.0329) (0.000) (0.0494) (0.0600) (0.000) 

22 3.6497 0.7351 0.1543 0.0503 856.786 0.7624 0.1660 0.1120 0.0190 862.298
(0.1407) (0.0277) (0.000) (0.0577) (0.0494) (0.000) 

1 0.2641 0.0197 0.7190 0.0355 4.728 0.1123 0.0195 0.3499 0.0068 72.171
(0.0093) (0.1630) (0.094) (0.0080) (0.1211) (0.000) 

C 1/2 5 0.1706 0.0306 0.7422 0.0760 17.726 0.0724 0.0226 0.4023 0.0168 45.994
(0,d ,1)-G (0.0081) (0.1272) (0.000) (0.0112) (0.1597) (0.000) 

10 0.1634 0.0425 0.7081 0.0650 20.623 0.0626 0.0289 0.3575 0.0129 50.369
(0.0096) (0.1148) (0.000) (0.0121) (0.1527) (0.000) 

22 0.1498 0.0561 0.6952 0.0527 18.422 0.0487 0.0095 0.6281 0.0347 30.278
(0.0149) (0.1611) (0.000) (0.0148) (0.1841) (0.000) 

1 0.4585 0.0176 0.9062 0.0331 1.083 0.3512 0.0831 0.5885 0.0048 4.576
(0.0305) (0.1204) (0.582) (0.0468) (0.2077) (0.101) 

lnC 5 0.3142 0.0584 0.9345 0.0729 21.464 0.2433 0.0618 0.8841 0.0220 12.812
(0,d ,1)-G (0.0315) (0.1198) (0.000) (0.0493) (0.2149) (0.002) 

10 0.2987 0.0761 0.9912 0.0930 43.871 0.2284 0.0368 1.1279 0.0418 32.289
(0.0369) (0.1354) (0.000) (0.0557) (0.2372) (0.000) 

22 0.3006 0.0897 1.1124 0.1250 69.770 0.2226 -0.0170 1.5349 0.0909 54.646
(0.0468) (0.1730) (0.000) (0.0692) (0.2983) (0.000) 

The proxy for the target is the squared prediction errors (one-day-ahead or multi-day average) from the selected model for each
of the six series.  The Newey-West standard errors (allowing for serial correlations of orders up to 5, 10, 20, and 44 respectively
for horizons 1, 5, 10, and 22 days) for the OLS estimates of the regression intercept and the coefficient are given in parentheses.
The Wald test statistic with p -value in parentheses is for testing the joint hypothesis of the intercept being zero and the
coefficient being one (distributed as χ 2(2) under the null).

Variable /
Selected
Model

Horizon
: Day (s)

In-sample Out-of-sample

RMSE
Mincer-Zarnowits Regression

RMSE
Mincer-Zarnowits Regression



One-day-ahead prediction of   C One-day-ahead prediction of the variance of   C Prediction of the 22-day average variance of   C

One-day-ahead prediction of   C 1/2 One-day-ahead prediction of the variance of   C 1/2 Prediction of the 22-day average variance of   C 1/2

One-day-ahead prediction of ln  C One-day-ahead prediction of the variance of   ln  C Prediction of the 22-day average variance of ln  C

Figure:  The left panels plot the daily continuous sample path variation time series and its square-root and log transformations of the Nikkei 225 index (dotted lines) along with the corresponding in-sample one-day-ahead ARFIMA-GARCH forecasts
(solid lines).  The center panels plot the squared residuals (dotted lines) along with the corresponding in-sample one-day-ahead conditional variance estimate (solid lines) from the ARFIMA-GARCH model.   The right panels plot squared residuals
(dotted lines) and 22-day-average conditional variance estimates (solid lines) from the ARFIMA-GARCH model.
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