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Abstract

Using a macroeconomic perspective, we examine the effect of uncertainty arising

from policy-shock volatility on yield-curve dynamics. Many macro-finance models

assume that policy shocks are homoskedastic, while observed policy shock processes

are significantly time varying and persistent. We allow for this key feature by

constructing a no-arbitrage GARCH affine term structure model, in which monetary

policy uncertainty is modeled as the conditional volatility of the error term in a

Taylor rule. We find that monetary policy uncertainty increases the medium- and

longer-term spreads in a model that incorporates macroeconomic dynamics.
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1 Introduction

The growing macro-finance literature has yet to examine the links between yield curves

and the volatility of factors that explain yield curves. In particular, prevailing macro-

finance no-arbitrage affine term structure models (ATSMs) are mostly homoskedastic. A

body of empirical evidence, however, indicates that homoskedasticity is disputable (e.g.,

Brenner, Harjes, and Kroner 1996). Moreover, time-varying volatility per se may have

important macroeconomic implications: if the short-term interest rate follows a mone-

tary policy rule such as a Taylor rule, then its conditional volatility captures monetary

policy uncertainty as perceived by market participants. In line with this widely ac-

knowledged idea, some authors (Rudebusch 2002, Rudebusch, Swanson, and Wu, 2006)

have suggested investigating the role of uncertainty factors in explaining yield curve

dynamics. However, though little formal analysis has followed. In order to fill this gap,

this paper examines the role of uncertainty arising from the heteroskedastic policy shock

process in accounting for yield curve dynamics.

In general, policy uncertainty may at times be large and long-lived, while at other

times relatively small and short-lived. At a time of unusual distress–for example the

Volcker shock in the early 1980s, 9/11 in 2001, and the Lehman shock in 2008–the

Fed undertook extraordinary action deviating from any known simple policy rule. As a

result, uncertainty in the federal funds (FF) and other financial markets has increased.

On the other hand, there are indications that FF market volatility has declined since

the Federal Open Market Committee (FOMC) began publicly announcing the target FF

rate in 1995 (Favero and Mosca, 2001). In a somewhat similar vein, in 2004, the FOMC

explicitly signaled that its future course of monetary policy would be less volatile and

more predictable for market participants.1

On these grounds, it may be more reasonable to assume that the policy shock process

consists of large occasional shocks. Once the size of deviation changes, it lasts for a

reasonably long period of time, as uncertainty in financial markets, once present, cannot

easily be eliminated. One way to accommodate this type of shock process is to apply a

generalized autoregressive conditional heteroskedasticity (GARCH) process that allows

1For example, the FOMC made explicit policy commitments with statements such as, “Policy accom-

modation can be maintained for a considerable period” (August 2003) and “Accommodative monetary

policy stance will be removed at a measured pace" (June 2004).
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for serial correlation in the conditional volatility.2 To this end we construct a discrete-

time macro-finance GARCH term structure model.3 Specifically, we extend Heston and

Nandi’s (2003) multivariate GARCH “ATSM”4 with a richer macro structure. The main

difference between Heston and Nandi’s (2003) model and other GARCH term-structure

models is that the yield equation in their model can be written as an affine function of

state variables. This allows for greater tractability and generates a closed-form solution

for term rates with any maturity as well as option pricing.

With the existing macro-finance ATSMs having performed broadly successfully,5 we

take Ang and Piazzesi (2003) as a point of departure and generalize their model in three

directions. First, we allow the short-term rate to follow a GARCH-type process with

the conditional volatility of the error term following an autoregressive moving average

process. Second, we allow the dynamics of macro variables6 to depend on the lagged

short rate as well as their own lagged variables, in a spirit similar to Ang, Piazzesi, and

Wei (2006) and Hőrdahl, Tristani, and Vestin (2006). Thus, the policy interest rate can

directly influence future macro variables, and vice versa. Third, to enhance the link be-

tween financial econometrics and macroeconomics, we include no latent variables, which

are commonly used in many term structure models to improve empirical performance,

2Previously developed “pure finance” ATSMs (e.g., Dai and Singleton 2000) are compatible with

stochastic volatility, and they typically assume a square-root process for factor heterosckedasticity–for

example, in a single-factor ATSM, where the short rate is the only factor explaining yield curves, the

factor variance is the level of short rate itself. However, the square-root models tend to overstate the

sensitivity of volatility to levels (Brenner et al., 1996), and to date no consensus has been reached on

how one should model the short-rate volatility.
3Evidence of time-varying conditional volatility can be provided by single-equation GARCH estima-

tion. A regression of the FF rate on a constant, its first lag, 12-month inflation, 12-month change in

unemployment (in percent), where the conditional variance of the FF rate follows the autoregressive

moving average process, generates statistically significant GARCH and ARCH terms.
4"ATSM" in the sense that model-implied yields can be expressed as an affine function of state

variables. Because the continuous version of the GARCH equation reduces to an ordinary differential

equation rather than an affine diffusion process, our model lies outside the continuous ATSM framework

formally defined by Dai and Singleton (2000).
5For example, Ang and Piazzesi (2003), using a discrete-time version of the affine class introduced by

Duffie and Kan (1996), found that macro factors explain up to 85 perceent of movements in the short

and middle parts of yield curves, and around 40 percent at the long end.
6 In the baseline model, we assume homoskedasity for the dynamics of inflation and real activity. We

can extend our model to allow heteroskedasticity for the macro dynamics, though such heteroskedasticity

is less evidently confirmed when the sample period is short.
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because they alone cannot outfit any macroeconomic interpretations. We show that the

inclusion of economically interpretable conditional volatility can significantly improve

the empirical fit of the ATSMs, effectively replacing uninterpretable latent factors.

The model-implied conditional volatility is significantly time varying and persistent–

it soared in the early 1980s and tapered off during the period of the “Great Moderation.”

The gradual decline halted in the early 2000s, when the Fed undertook expansionary

policy deviating from the Taylor rule (Taylor 2009), but resumed its decline after the

FOMC began making explicit policy announcements.

Our model-estimated results indicate that the conditional volatility of the short

rate–monetary policy uncertainty–plays a significant role in determining the shape of

yield curves in the presence of the Taylor rule and endogenous macro dynamics. The

uncertainty factor increases term spreads by lifting the middle and longer-end parts of

the yield curves. In addition, we focus on a new aspect of policy shock process–policy

shock volatility–in explaining yield curves, whereas the existing literature focuses on

the policy shock itself, assuming that policy shocks are i.i.d. normal, presumably for

tractability. For example, Evans and Marshall (2001), using VARs with yields of various

maturities and macro variables, find that positive monetary policy shocks would bear-

flatten a yield curve.

To exemplify how our model performs on real data, we set forth a case study, high-

lighting the so-called Greenspan conundrum period of 2004-06, on the grounds that

monetary policy uncertainty declined during this period (for example, see Figure 1).

Our model with the estimated parameters replicates well the actual bear-flattening of

the yield curve.7 It also suggests that the greater predictability in monetary policy

in this period partially reined in the risk premiums. Meanwhile, it offsets the upward

pressures from the rising short rate and the expanding economic activity.

The paper is organized as follows. The next section describes our macro-finance

GARCH term-structure model. Section 3 sets out our estimation strategy, and Section

4 discusses estimated results and a case study on the conundrum period of 2004-06

7 In the run-up to the 2008 global financial crisis, US yield curves continued to bearflatten, despite

the consecutive hikes in the FF rate and the expanding economic activity.
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during which monetary policy uncertainty declined. Section 5 concludes.

 

Figure 1. Monetary policy uncertainty (in basis points). Following the methodology of Kuttner (2001), this 

figure reports recent developments in monetary policy uncertainty; unanticipated policy changes are estimated 

by differences between the spot-month futures rates before and after each FOMC meeting; 

anticipated changes are the actual minus the estimated unanticipated changes). During the tightening period of  

2004—2007, as can be seen from the figure, the interest rate hikes were mostly well anticipated by investors. 
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2 The Model

The basic setup of our model essentially builds on the prevailing discrete macro-finance

no-arbitrage term structure model, where the stochastic process of the short-term inter-

est rate is driven by a Taylor-type (1993) monetary policy rule. With no-arbitrage bond

pricing restrictions, term rates for any maturity can be expressed as an affine function

of factors such as the short rate and macro variables.

2.1 Short-term rate and macro-variable dynamics

We employ a few variants of the standard Taylor rule that includes the lagged short-

term rate and expected inflation rate (rather than the concurrent inflation rate). This

specification including the expected inflation may be labeled a forward-looking version

of the Taylor rule as proposed by Clarida et al. (2000). The baseline dynamics of
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short-term and macro variables are given by

rt+1 = μ0
1×1

+ μ1
1×1
rt + μ2

1×2
Xt+1 +

p
ht+1zt+1 (1)

Xt+1 = δ0
2×1

+ δ1
2×1
rt + Φ

2×2
Xt + Σ

2×2
εt+1 (2)

ht+1 = β0
1×1

+ β1
1×2
ht + α

1×1
z2t (3)

Xt = [πt yt]
0, ht = [ht ht−1]0, (4)

where rt denotes the short-term rate (FF rate). Xt is a 2× 1 macro-variable vector of

inflation (π), and real activity (y) measures following an autoregressive (AR) process.

Σ is an upper triangular matrix, while ht is the conditional variance of the short-term

rate. A scalar random shock z and a 2 × 1 random shock vector ε are assumed to be

independent and jointly normal.

We take Ang and Piazzesi (2003) as a point of departure and generalize their model in

two directions. First, we allow the short-term rate to follow a GARCH-type process with

the conditional volatility of the error term following an autoregressive moving average

process given by equation (3). Note that ht+1 is included in the information set in period

t by (3). The
p
ht+1zt+1 term in the short-rate equation (1) could be interpreted as

discretionary changes in the FF rate deviated from the Taylor rule. In some preceding

macro-finance models as well as in broader monetary policy-related works, the “policy

shock” is broadly assumed to be a random shock following i.i.d. normal distribution on

account of tractability rather than empirical plausibility. As discussed in the previous

section, empirical evidence supports that the policy shock has time-varying (conditional)

variance as opposed to the homoskedasticity frequently assumed in most of the early

macro-finance studies.

Second, we allow the dynamics of macro variables to depend on the lagged short

rate as well as their own lagged variables, in a spirit similar to Ang, Piazzesi, and Wei

(2006) and Hőrdahl, Tristani, and Vestin (2006). Thus, the policy interest rate can

directly influence future macro variables. In the next model-estimation section, we will

explain that the inclusion of the lagged short rate requires us to modify the Ang and

Piazzesi-type specification of the system of equations.

Third, our model has no latent variables, which are commonly used in term structure

models to explain the yield curve dynamics, because they alone cannot provide any
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macroeconomic interpretations. Instead, we treat the conditional volatility of the short

rate as an additional factor that explains the yield curves. We then jointly estimate this

unobservable variable via maximum likelihood estimation.

Substituting (2) into (1), we obtain

rt+1 = μ0 + μrrt + μXXt+1 +
p
ht+1zt+1

= μ0 + μ1rt + μ2 (δ0 + δ1rt +ΦXt +Σεt+1) +
p
ht+1zt+1

= (μ0 + μ2δ0)| {z }
μ0

+ (μ1 + μ2δ1)| {z }
μ1

rt + (μ2Φ)| {z }
μ2

Xt +
p
ht+1zt+1 + μ2Σεt+1 (5)

where μ̄0 = μ0 + μ2δ0, μ̄1 = μ1 + μ2δ1, μ̄2 = μ2Φ. (6)

The above short-term rate and macro-variable dynamics can be rewritten in a more

concise form:⎛⎝ rt+1

Xt+1

⎞⎠ =

⎛⎝ μ0

δ0

⎞⎠+
⎛⎝ μ1

δ1

⎞⎠ rt +
⎛⎝ μ2

Φ

⎞⎠Xt +
⎛⎝ p

ht+1 μ2Σ

0 Σ

⎞⎠
| {z }

≡Σt+1

⎛⎝ zt+1

εt+1

⎞⎠
| {z }
≡et+1

ht+1 = β0 + β1ht + αz2t .

2.2 Pricing kernel and the price of risk

We define a time-dependent 1 × 3 price of risk vector Ωt and assume that the price of
risk takes a certain affine form in state variables, as handled in many existing affine term

structure models.

Ω
0
t ≡ (ωr,t ωπ,t ωy,t)⎡⎢⎢⎢⎣

ω0r

ω0π

ω0y

⎤⎥⎥⎥⎦
| {z }

Ω0

+

⎡⎢⎢⎢⎣
0 0 0

ω21 ω22 ω23

ω31 ω32 ω33

⎤⎥⎥⎥⎦
| {z }

Ω1

⎡⎢⎢⎢⎣
rt

πt

yt

⎤⎥⎥⎥⎦ . (7)

ω0 ≡ [ω0π ω0y]
0 ω1 ≡ [ω21 ω31]0 Ω̃1 ≡

⎡⎣ ω22 ω23

ω32 ω33

⎤⎦ ,
where Ω0 is a 3× 1 constant vector, and Ω1 is a 3× 3 constant matrix where we impose
some zero restrictions.8 Note that with the zero restriction, ωr,t = ω0r.

8The first row in Ωjs must be zero, as this is a critical condition to ensure that the model lies within

the affine framework (in the sense that yield equations can be written as a linear function of factors).
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Now suppose that the pricing kernel (m)9 is given by

mt+1 ≡ exp(−rt +ΩtΣt+1et+1 − 1
2
ΩtΣt+1Σ

0
t+1Ω

0
t).

Then the log price of n-period bond follows the following affine form (see Appendix B

for the derivation):

pnt = exp(Ān + B̄nrt + C̄nht+1 + D̄nXt),

where Ān+1 = Ān + B̄nμ0 + C̄ns1β0 + D̄nδ0 +
1

2
HnΣΣH

0
n (8)

−1
2
log(1− 2C̄ns1α) + ω0rμ2ΣΣ

0H 0
n +HnΣΣ

0ω0

B̄n+1 = B̄nμ1 + D̄nδ1 +HnΣΣ
0ω1 − 1 (9)

C̄n+1 = C̄n (s1β1 + S) + B̄nωrs
0
1 +

1

2
B̄2ns

0
1 (10)

D̄n+1 = D̄nΦ+B̄nμ2 +HnΣΣ
0Ω̃1 (11)

μ1 = μ1 + μ2δ1 , μ2 = μ2Φ, Hn = B̄nμ2 +Dn, s1 =

⎡⎣ 1
0

⎤⎦ , S =
⎡⎣ 0 0

1 0

⎤⎦ .
Note that according to basic asset pricing theory, the n-period bond yield is given by

ynt = An +Bnrt +Cnht+1 +DnXt,

where An = −Ān/n, Bn = −B̄n/n, Cn = −C̄n/n, Dn = −D̄n/n.

3 Model Estimation

For our estimation, we use monthly data on interest rates and macro variables that

capture inflation and real activity from July 1954 to December 2006.10 We assume that

the policy reaction function remains fully stable throughout the period.11 The summary

9For the pricing kernel expressed in terms of risk-neutral probabilities, see Appendix A.
10Our sample period starts from July 1954 because the FF rate data are available from that month.
11We have also estimated the model with a shorter sample period from January 1988 to December

2006, i.e., the period that covers Alan Greenspan’s tenure as Fed chairman. The main results did not

change, although the convergence of maximum likelihood estimators became less smooth.
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statistics and data sources are provided in Appendix C.

 

 

Figure 2. Bond yields and macro principal components. The top panel plots the monthly 
FF rate and zero-coupon bond yields of  maturity 3 months, 12 months, 36 months, and 60 
months at an annualized rate in percent. The bottom panel plots employment and CPI in 
year-on-year percentage change, representing real activity and inflation, respectively. The sample 
period is July 1954 to December 2006. 
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We use the FF rates for the short rate and zero-coupon bond yields of 3-, 12-, 36-, and

60-month maturities (Figure 2, top panel); the FF rates are obtained from the Fed. The

bond yields are from the CRSP US Treasury Database (the Fama-Bliss Discount Bond

Files for 12-, 36-, and 60-month data and from the Risk-Free Rate Files for 3-month

data). All bond yields are continuously compounded and expressed at annualized rates in

percentages. Regarding inflation and real activity measures, we use the consumer price

index (CPI) and employment data (Figure 2, bottom panel). These macro variables are

expressed in the year-on-year difference in logs of the original series.

As explained in the previous section, our model dynamics consist of macro and yield

dynamics. The macro dynamics are summarized by equation (2) and the yield dynamics
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are given by

Rt = A+Brt + Cht+1 +DXt +Σ
mεmt+1,

where Rt =
£
r3t , r

12
t , r

36
t , r

60
t

¤0
is a 4 × 1 vector of bond yields with maturities correspond-

ing to the superscript numbers (in months). The yield dynamics are an affine function

of the state variables with the coefficient vectors of A,B,C, and D corresponding to (i)

the constant term, (ii) the short-rate term, (iii) the conditional variance term, and (iv)

the macro-variable term, respectively. These vectors are time-invariant 4 × 1 vectors

with maturities corresponding to the subscript numbers (i.e., A = [A3, A12, A36, A60]
0

B = [B3, B12, B36, B60]
0 C = [C3, C12, C36, C60]

0 D = [D3,D12,D36,D60]
0). Their el-

ements are derived from the recursive equations; in other words, the model implicitly

imposes cross-equation restrictions reducing the number of parameters to be estimated.

Measurement errors εm are assumed to have constant variance and Σm is a diagonal

matrix.

We can summarize the system of equations to be estimated as follows:

⎛⎜⎜⎜⎝
rt+1

Xt+1

Rt

⎞⎟⎟⎟⎠
| {z }

≡Yt+1

=

⎛⎜⎜⎜⎝
μ0

δ0

A

⎞⎟⎟⎟⎠+
⎛⎜⎜⎜⎝

μ1

δ1

B

⎞⎟⎟⎟⎠ rt +
⎛⎜⎜⎜⎝
0

0

C

⎞⎟⎟⎟⎠ht+1 (12)

+

⎛⎜⎜⎜⎝
μ2

Φ

D

⎞⎟⎟⎟⎠Xt +
⎛⎜⎜⎜⎝
p
ht+1 μ2Σ 0

0 Σ 0

0 0 Σm

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
zt+1

εt+1

εmt+1

⎞⎟⎟⎟⎠
ht+1 = λ+ β1(ht − λ) + α(z2t − 1)

ht = [ht ht−1], β1 = [β11 β12], (13)

where z, ε, and εm are jointly normal and independent. Note that because εmt+1 is

the vector of the measurement errors, it is independent of the current and past Y 0s

(i.e., Yt, Yt−1, ...), even though it is observable in period t. We set the lag of Xt at

one and that of ht at two.
12 λ is the unconditional variance of the short rate given by

(α+β0)/(1−β11−β12). We estimate this system using the maximum likelihood method
(for details, see the Appendix D). A cursory glance at the model-implied yields (Figure

12We tried other lag lengths, but the corresponding coefficients were insignificant.
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3) indicates a good fit to the data. The parameter estimates of our model are reported

in Table 1.

Figure 3: Model-implied yields (in annualized rate in percent). These figures plot model-implied yields for 

the indicated maturities in annualized rate in percent. The dotted-lines show one-period-ahead in-sample 

forecasting, and the solid lines show the actual data. 
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Table 1. Estimated coefficients. This table reports estimated coefficients in our 
macro-finance GARCH term-structure model. Numbers in italic indicate standard 
errors. 
 

Short-rate dynamics

0.156 0.897 0.107 0.134
0.016 0.003 0.000 0.005

5.130E-02 6.000E-04 0.732 0.256
4.5E-03 3.3E-05 0.046 0.045

Dynamics of macro variables

0.009 -8.00E-04 0.987 0.045 0.129 -0.0028
1.090E-02 0.0021 0.0059 0.0061 0.0034 0.0042

0.196 -0.004 -0.0514 0.9298 --- 0.137
0.0109 0.0020 0.0061 0.0071 --- 0.0001

0 1 2

  1

0 1  

11



 
Table 1 (continued). we set insignificant prices-o- risk parameters to zero. 
 

Prices of risk

Inflation Real activity
Inflation 1.984 -3.300 -7.296

0.902 0.591 0.981
Real activity 6.17E-05 1.61E-04 9.87E-05

1.0E-04 1.0E-04 1.0E-04

FF 7.6227
0.0262

Measurement error

3 months 12 months 36 months 60 months

1.785 3.020 0.676 1.404
0.1078 0.2184 0.0338 0.1173

1

~


0

The estimated dynamics of real activity and inflation are robust to different model

specifications: they are comparable to on those based on a multivariate GARCH model

(Appendix E). The estimated Taylor rule coefficients are statistically significant, and

their signs and magnitudes are in line with those previously estimated in the macro-

finance literature (e.g., Ang and Piazzesi, 2003). The GARCH and ARCH coefficients

in the GARCH equation (3) are statistically significant as well.

4 Estimated Results

4.1 Estimation summary

The key results are as follows. First, our model-implied conditional volatility is con-

siderably time varying and persistent. Figure 4 reports the dynamics of conditional

variance13 and shows that the model-implied conditional standard deviation increased

notably in the wake of the Volcker shock in the early 1980s (left panel) and tapered off

during the “Great Moderation.” The gradual decline halted in the early 2000s when the

Fed undertook expansionary policy deviating from the Taylor rule (Taylor 2009) but re-

sumed its decline when the FOMC made explicit policy announcements with statements

such as, “policy accommodation can be maintained for a considerable period” (August

13This GARCH process is stationary, as the absolute values of the corresponding polynomial roots

are all greater than one.
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2003) and “accommodative monetary policy stance will be removed at a measured pace”

(June 2004) (right panel).

Figure 4: Model-implied conditional standard deviation of  the short rate (at an annualized rate in 

percent). The left panel shows the dynamics of  the conditional standard deviation of  the short rate for the 

entire sample period. The right panel enlarges the dynamics in recent years. 
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Figure 5. Factor weights against maturity. This figure plots the coefficients of  the yield equation against 

maturity. A(n), B(n), C(n), and D(n) correspond to the constant term, the short-rate term, the 

conditional-variance term, and macro-variable term, respectively.  
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Second, our results confirm that the conditional volatility of the short rate plays a

significant role in determining yield curves in the presence of endogenous macro dynam-

ics. Figure 5 shows how the yield-equation coefficients change against maturity. The

upward-sloping of An represents the shape of average yield curves, while the downward

slope of Bn implies that an increase in the short rate has a more positive impact on the

shorter-end of yield curves, thereby reducing term spreads. The shape of Cn implies

that the conditional volatility increases the term spreads by lifting the middle parts

and longer-end of yield curves. The curves of Dn appear similar to the corresponding

dynamics in the existing macro-finance literature, and capture the positive impact of

13



macro variables on yield curves.

Third, the model broadly supports the practitioner’s view that the term premium

is negatively associated with economic expansion. Simple correlation between the term

premium and employment changes is -0.12. We define the term premium as the n-

period yield term premium (TPn), i.e., TPnt = R
n
t − 1

n

Pn−1
j=0 Et(rt+j), where R

n
t is the

n-period bond yield, and 1
n

Pn−1
j=0 Et(rt+j) is the average of expected future short rates

or the yields under the expectations hypothesis. We can calculate Rnt from the affine

yield equation and 1
n

Pn−1
j=0 Et(rt+j) from the short-rate dynamics.14

Fourth, in the absence of heteroskedasticity, the model performance deteriorates con-

siderably. Note that we can obtain the homoskedastic version of the model by simply

setting the coefficients of the ARCH term (α) and GARCH term (β1) in the GARCH

equation equal to zero and re-maximizing the log-likelihood function. Clearly, this ho-

moskedastic model with no other latent variables turns out to be overly inflexible to

provide a reasonable fit to the data, notably at the longer-end of yield curves as shown

in Figure 6.

Figure 6: Model-implied yields without heteroskedasticity. With no other latent variables, the model has a 

poor and unreasonable fit to the data, notably at the longer-end of yield curves. 
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14We can calculate 1
n

n−1
j=0 Et(rt+j) with the following equation:

1
n

n−1
j=0 Et(rt+j) =

1
n
rt + [1 0

0]

(1−G1)−1(1−Gj1)G0 +Gj1qt


, where qt = [rt Xt]

0 and G1 is a 3 × 3 matrix in which the first row

is given by μ1,μ2, and the second and third rows together are given by δ1 and Φ as implied by the model

estimates.
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4.2 A case study: Around the time of the conundrum period

In the runup to the 2008 global financial crisis, US yield curves continued to bear-flatten,

despite the consecutive hikes in the FF rate and expanding economic activity. This

development, labeled a “conundrum” by then-Fed Chairman Alan Greenspan, poses a

challenge to the existing macro-finance models, because they tend to perform poorly

in explaining this period unless the term premiums fell beyond the range predicted by

these models.

In our paper, on the other hand, the model-implied yield curves (Figure 7) suc-

cessfully generate the continued bear-flattening of yield curves between 2004-06. To

facilitate understanding of the mechanism behind this bear-flattening, Figure 8 reports

factor dynamics around this period: they are characterized by a decline in conditional

variance while the short rate was rising and economic activity was expanding. Keeping

in mind the factor weights discussed in the previous paragraph, we originally conjectured

that it must have been the volatility channel that put downward pressure on the longer

rate during this period. The contribution of each term to the model-implied yields, how-

ever, only partially confirms this conjecture (Figure 9, bottom left panel), as there was

a significant decline in model residuals with respect to longer-maturity yield equations,

particularly in 2002 (Figure 10). This suggests that there are still unexplained factors

accounting for the conundrum. In particular, a demand shift caused by the increased

demand for the long-maturity bonds by foreign central banks and institutions might be

an important underlying factor.

 

Figure 7. Model-implied yield curves (at an annualized rate in percent) The implied yield curves 

continued to bear-flatten during the low-yield period. 
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Figure 8. Factor dynamics around the conundrum. These figures plot the dynamics of state variables (i.e., 

the short rate, the conditional volatility of  the short rate, and macro variables between January 2002 and 

December 2006. 
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Figure 9. Contributions to the model-implied yields (in annualized rate in percent). These figures 

demonstrate the contribution to the model-implied yields by each term in the yield equation. Note that the sum 

of  each factor contribution is equal to the model-implied yields. 
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Figure 10. Model residuals for the yield equations (at an annualized rate in percent). The model residuals 

of  longer-maturity yield equations dropped in 2002 and remained more negative than the shorter-maturity 

counterparts. 
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5 Conclusion

We analyzed a new aspect of monetary policy effects–the role of the policy shock

volatility or policy uncertainty–rather than the policy shock itself (i.e., its level or the

first moment, in contrast to our focus; the second moment), in accounting for yield curve

dynamics. Our estimation results confirmed that the newly included uncertainty factor

improved the empirical performance of our ATSM remarkably, greatly reducing the

unexplained portion or residuals. Furthermore, the results indicate that the time-varying

and persistent policy shocks increase term spreads as they lift the middle-part or longer-

end of the yield curves. There may be, however, other factors not yet included that could

further reveal the unexplained portion of term premium dynamics or model residuals.

For example, at a time of unusual distress, if the Fed were to undertake extraordinary

policy actions, investors might lose their risk appetite, collectively switching to treasury

bonds or other risk-free assets. This sort of “flight to quality” driven by a demand shift

could fully offset the upward pressure on the interest rates arising from the elevated

uncertainty as discussed in this paper. Looking ahead, the impact of demand-side shifts

(i.e., investors’ preference) on yield curves could be stressed more in the future research,

particularly focusing on the crisis experience.
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A Pricing kernel and the Risk-Neutral Measure

Assume the existence of an equivalent martingale measure (or risk-neutral measure) Q,

such that the price of any asset pt with no dividends at time t + 1 satisfies

pt = E
Q
t (exp(−rt)pt+1) ' EQt

µ
pt+1

1 + rt

¶
,

where expectation is taken under the measure Q and −log(1+rt) = log(1+rt)−1 ' −rt.
Let the Radon-Nikodym derivative, which converts the risk-neutral measure to the data-

generating measure exploiting the Girsanov theorem, be denoted by ζt+1. Then, for any

random variable Zt+1, we have

E
Q
t Zt+1 = Et

µ
ζt+1
ζt
Zt+1

¶
. (14)
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Condition 1 Assume ζt+1 follows the process described as,

ζt+1 = ζt exp

µ
ΩΣt+1et+1 − 1

2
ΩΣt+1Σ

0
t+1Ω

0
¶

EtΣt+1 = Σt+1,

where et is a vector of random variables that jointly follows N(0, 1) distribution and Σt+1

denotes a lower or upper triangular standard deviation matrix. Σt+1 can vary depending

on t while it needs to be known at period t.

Under the condition, we define the pricing kernel mt+1 as,

mt+1 ≡ exp(−rt)×
ζt+1
ζt
.

Using the kernel, the price of an asset without any dividend can be written as,

pt = Et (mt+1pt+1)

= Et

∙
exp(−rt)×

µ
ζt+1
ζt

¶
× pt+1

¸
= exp(−rt)EQ (pt+1) .

This clarifies the relationship between the pricing kernel and the risk-neutral measure.

As shown here, the pricing kernel effectively adjusts the measure in addition to the

discount effect arising from exp(−rt).

B Recursive Bond Prices

We can confirm that the n-period bond pricing formula in

pn+1t = Et
¡
mt+1p

n
t+1

¢
= Et

⎡⎣ exp(−rt +ΩtΣt+1et+1 − 1
2
ΩtΣt+1Σ

0
t+1Ω

0
t)

× exp(Ān + B̄nrt+1 + C̄nht+2 + D̄nXt+1)

⎤⎦
= exp(−rt + Ān − 1

2
ΩtΣt+1Σ

0
t+1Ω

0
t)

×Et
£
exp(ΩtΣt+1et+1 + B̄nrt+1 + C̄nht+2 + D̄nXt+1)

¤
.

Plugging in the dynamics of Xt+1, rt+1, and ht+2 into the above gives
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pn+1t = exp(−rt + Ān − 1
2
ΩtΣt+1Σ

0
t+1Ω

0
t)

×Et

⎡⎣exp
⎛⎝ ΩtΣt+1et+1 + B̄n

³
μ0 + μ1rt + μ2Xt +

p
ht+1zt+1 + μ2Σεt+1

´
+C̄nht+2 + D̄n (δ0 + δ1rt +ΦXt +Σεt+1)

⎞⎠⎤⎦
= exp

⎛⎝ −rt + Ān − 1
2
ΩtΣt+1Σ

0
t+1Ω

0
t + B̄n (μ0 + μ1rt + μ2Xt)

+D̄n (δ0 + δ1rt +ΦXt)

⎞⎠
×Et

⎡⎣exp
⎛⎝ ΩtΣt+1et+1 + B̄n

³p
ht+1zt+1 + μ2Σεt+1

´
+C̄nht+2 + D̄n (Σεt+1)

⎞⎠⎤⎦ .
At this point, we can spell out the C̄n(.) and ht+2(.) terms in the above as:

C̄nht+2 = C̄n

⎡⎣ β0 + β1ht+1 + αz2t+1

ht+1

⎤⎦
= β0C̄n

⎡⎣ 1
0

⎤⎦+ C̄n
⎡⎣ 1
0

⎤⎦β1ht+1 + C̄n
⎡⎣ 0 0

1 0

⎤⎦ht+1 + C̄n
⎡⎣ 1
0

⎤⎦αz2t+1
= β0C̄ns1 + C̄ns1β1ht+1 + C̄nSht+1 + C̄ns1αz

2
t+1

where s1 ≡
⎡⎣ 1
0

⎤⎦ , S ≡
⎡⎣ 0 0

1 0

⎤⎦ ,
where s1 and S are the selection vector and matrix, respectively. In the expectations

operator, rearranging the terms leaves:

⎡⎢⎢⎢⎢⎢⎢⎣exp
⎛⎜⎜⎜⎜⎜⎜⎝

ΩtΣt+1et+1

+B̄n

³p
ht+1zt+1 + μ2Σεt+1

´
+C̄nht+2

+D̄n (Σεt+1)

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΩtΣt+1et+1

+B̄n
p
ht+1zt+1

+
¡
B̄nμ2 + D̄n

¢
Σεt+1

+β0C̄ns1

+
¡
C̄ns1β1 + C̄nS

¢
ht+1

+C̄ns1αz
2
t+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Putting this back into the bond pricing formula leaves
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pn+1t = Et
¡
mt+1p

n
t+1

¢
= exp

⎛⎜⎜⎜⎝
−rt + Ān − 1

2
ΩtΣt+1Σ

0
t+1Ω

0
t + B̄n (μ0 + μ1rt + μ2Xt)

+D̄n (δ0 + δ1rt +ΦXt)

+β0C̄ns1 +
¡
C̄ns1β1 + C̄nS

¢
ht+1

⎞⎟⎟⎟⎠

×Et

⎛⎜⎜⎜⎜⎜⎝exp
⎛⎜⎜⎜⎜⎜⎝

ΩtΣt+1et+1

+B̄n
p
ht+1zt+1 +

¡
B̄nμ2 + D̄n

¢| {z }
≡Hn

Σεt+1

+C̄ns1αz
2
t+1

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

= exp

⎛⎜⎜⎜⎝
−rt + Ān − 1

2
ΩtΣt+1Σ

0
t+1Ω

0
t + B̄n (μ0 + μ1rt + μ2Xt)

+D̄n (δ0 + δ1rt +ΦXt)

+β0C̄ns1 +
¡
C̄ns1β1 + C̄nS

¢
ht+1

⎞⎟⎟⎟⎠

×Et

⎛⎜⎜⎝exp
⎛⎜⎜⎝
⎡⎢⎢⎣ΩtΣt+1 + ³B̄npht+1 HnΣ´| {z }

≡Jn

⎤⎥⎥⎦ et+1 + C̄ns1αz2t+1
⎞⎟⎟⎠
⎞⎟⎟⎠ .

Now with the aid of proposition used in Heston and Nandi (2003), i.e., Et exp (azt+1) =

exp(a21/2), and Et exp
h
k (zt+1 − a)2

i
= exp

³
ka2

1−2k − 1
2
log (1− 2k)

´
, where z is i.i.d

standard normal, all t + 1 variables (zt+1, εt+1, z
2
t+1) can be taken out from the expec-

tations operators:

Et [exp ([ΩtΣt+1 + Jn] et+1)] = exp

∙
1

2

¡
ΩtΣt+1Σ

0
t+1Ω

0
t + JnJ

0
n + 2ΩtΣt+1J

0
n

¢¸

= exp

⎡⎢⎢⎢⎢⎢⎢⎣
1

2

⎛⎜⎜⎜⎜⎜⎜⎝
ΩtΣt+1Σ

0
t+1Ω

0
t + B̄

2
ns1ht+1 +HnΣΣ

0H 0
n

+2

⎛⎜⎜⎜⎝
ω0rB̄ns1ht+1 + ω0rμ2ΣΣ

0H 0
n

+HnΣΣ
0ω0 +HnΣΣ

0ω1rt

+HnΣΣ
0Ω̃1Xt

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦
Et
£
C̄ns1αz

2
t+1

¤
= exp

∙
−1
2
log
¡
1− 2C̄ns1α

¢¸
.

The bond price equation can finally be rewritten as
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pn+1t = Et
¡
mt+1p

n
t+1

¢

= exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+Ān + B̄nμ0 + β0C̄ns1 + D̄nδ0

+1
2
HnΣΣ

0H 0
n − 1

2
log
¡
1− 2C̄ns1α

¢
+ω0rμ2ΣΣ

0H 0
n +HnΣΣ

0ω0

+
¡
B̄nμ1 + D̄nδ1 − 1 +HnΣΣ0ω1

¢
rt

+
¡
C̄ns1β1 + C̄nS +

1
2
B̄2ns1 + ω0rB̄ns1

¢
ht+1

+
³
B̄nμ2 + D̄nΦ+HnΣΣ

0Ω̃1
´
Xt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

corresponding to equations (8) - (11).

C Data

Table AC-1. Summary Statistics of the Data

Mean Stdev Skew Kurt Lag 1 Lag 2 Lag 3
FF rate 5.703 3.3544 1.2273 5.0431 0.9865 0.9627 0.9387
3-month 5.303 2.8486 1.087 4.6614 0.9839 0.9634 0.9447
12-month 5.698 2.8388 0.8936 3.9897 0.9849 0.9658 0.949
36-month 6.076 2.705 0.8848 3.7083 0.989 0.9752 0.9631
60-month 6.282 2.6353 0.8752 3.5146 0.9905 0.9795 0.9698

CPI 1.666 1.200 1.384 4.796 0.993 0.982 0.969
Employment 0.834 0.846 -0.676 3.150 0.983 0.951 0.901

Note: Normal distribution has skewness of zero and kurtosis of 3.

AutocorrelationsCentral moments

Table AC-2. Data sources

Variable Source

Federal funds rate Fed

zero coupon bond yields (3, 12, 36, 60
month) 1/

CRSP US Treasury Database

Consumer Price Index Bureau of Labor Statistics

Employment Bureau of Labor Statistics

1/ CRSP currently does not provide zero-coupon bond yield data longer than five years.
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D The Log-Likelihood Function

We estimate the model dynamics (equation (12)) by numerically maximizing the follow-

ing log-likelihood function:

L(θ) = −1
2

TX
t=1

log(det(Ht))− 1
2

TX
t=1

u0tH
−1
t ut,

where θ is the vector of parameters to be estimated;

θ =
h
δ0, δ1,Φ,λ,β1,α,Σ,μ0,μ1,μ2,Σ

m,Ω0,ω1, Ω̃1

i
.

H is the covariance-variance matrix,

Ht =

⎡⎢⎢⎢⎣
ht + μ2Σ(μ2Σ)

0 μ2ΣΣ
0 0

Σ(μ2Σ)
0 ΣΣ 0

0 0 ΣmΣm0

⎤⎥⎥⎥⎦ ,
where the initial value of h is calculated by the sum of squared residuals of the short-rate

dynamics based on the low-inflation period of the 1950s, and u is the error term in the

modeldefined by

ut = Yt −AY −BY rt−1 −CY ht −DYXt−1,

where

Yt =

⎛⎜⎜⎜⎝
rt

Xt

Rt−1

⎞⎟⎟⎟⎠ , AY =
⎛⎜⎜⎜⎝

μ0

δ0

A

⎞⎟⎟⎟⎠ , BY =
⎛⎜⎜⎜⎝

μ1

δ1

B

⎞⎟⎟⎟⎠ , CY =
⎛⎜⎜⎜⎝
0

0

C

⎞⎟⎟⎟⎠ , DY =
⎛⎜⎜⎜⎝

μ2

Φ

D

⎞⎟⎟⎟⎠ .

E Estimating Macro Dynamics Without the Term Struc-

ture of Interest Rates

To see if our estimated parameters for macro dynamics lie within a reasonable range,

we estimate the macro dynamics given by (2) and report the estimated results. The
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only difference between (2) and our macro-finance GARCH ATSM is that the former

excludes the term structure.

The log-likelihood function is given by

L(θ̃) = −1
2

TX
t=1

log(det(H̃t))− 1
2

TX
t=1

ε0tH̃
−1
t εt,

where θ is the vector of parameters to be estimated;

θ̃ = [δ0, δ1,Φ,β0,β1,α,Σ,μ0,μ1,μ2,μ2Σ] .

H is the covariance-variance matrix

H̃t =

⎡⎣ ht + μ2Σ(μ2Σ)
0 μ2ΣΣ

0

Σ(μ2Σ)
0 ΣΣ0

⎤⎦ ,
and ε is the error term in the model defined by:

εt+1 =

⎛⎝ rt+1

Xt+1

⎞⎠−
⎛⎝ μ0

δ0

⎞⎠−
⎛⎝ μ1

δ1

⎞⎠ rt −
⎛⎝ μ2

Φ

⎞⎠Xt.
The estimation results are reported in Table AE.

Table AE. Estimation Results: A Multivariate GARCH Model

Short-rate dynamics

0.028 0.962 0.032 0.128
0.023 0.007 0.016 0.016

2.390E-02 6.360E-02 0.764 -0.003
7.4E-02 1.4E-02 0.029 0.065

Dynamics of macro variables

-0.028 -7.00E-04 0.994 0.052 0.136 0.0002
1.160E-02 0.0026 0.0073 0.0067 0.0039 0.0061

0.077 -4.00E-04 -0.0303 0.9739 --- 0.151
0.0130 0.0029 0.0081 0.0075 --- 0.0044

0 1 2

  1

0 1  
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