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Abstract 
 
We investigate the adverse selection problem where a principal delegates multiple 

tasks to an agent. We characterize the virtually implementable social choice functions 
by using the linking mechanism proposed by Jackson and Sonnenschein (2007) that 
restricts the message spaces. The principal does not require any incentive wage schemes 
and can therefore avoid any information rent and welfare loss. We show the 
resemblance between the functioning of this message space restriction and that of 
incentive wage schemes. We also extend the results of the single-agent model to the 
multi-agent model. 
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1. Introduction 
 

This paper investigates the adverse selection problem in which a principal hires a 

single agent and delegates different tasks to him; these tasks are assumed to be 

independent of each other and homogeneous. The hired agent observes the private 

signals relevant to his respective tasks; however, the principal cannot observe these 

signals. Therefore, the principal will attempt to incentivize the agent to announce his 

true private signals by designing a well-behaved mechanism or a contract.  

The standard approach in the informational economics literature is that the 

principal is sufficient to design an individual wage scheme for each task since each task 

is independent and identical. The scheme bases a wage payment on the agent’s 

announcement. However, this approach has the following drawback. If the lower bound 

of the wage payment such as non-negativity exists, each agent can earn a positive 

information rent and the principal fails to extract the full surplus in a non-negligible 

manner. 

This paper presents an alternative approach to solve the adverse selection problem 

and suggests a means to overcome the above mentioned drawback. By using a whole 

incentive scheme, which depends on all independent tasks, the principal is not required 

to design an inconstant wage scheme and succeeds in extracting the full surplus without 

suffering any non-negligible welfare distortion. More precisely, this paper will show 

that when the number of tasks is sufficiently large, a social choice function is virtually 

implementable by the whole incentive scheme without side payments if and only if such 

a function is exactly implementable by the individual wage scheme with unbounded 

side payment. Thus, the class of implementable social choice functions is almost the 

same in both cases. 

In order to prove this, we apply the concept of a linking mechanism as a whole 

incentive scheme, which was proposed by Jackson and Sonnenschein (2007). As in the 

case of the standard direct mechanism, the principal requires the agent to make an 

announcement for each task about the observed private signal. The main difference 

between the linking mechanism and the direct mechanism is that the principal restricts 

the message space in advance by directing the agent to ensure that the proportion of the 

tasks for which the agent announces a private signal is approximately equal to the 
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probability of this signal being observed for a single task. Since the total number of the 

tasks is sufficiently large, it is almost certain, based on the law of large numbers, that 

the realized proportion of the tasks for which each private signal is observed is almost 

the same as the probability of this signal being observed for a single task. Therefore, 

truth-telling, which induces the value of the social choice function for all tasks, is 

almost compatible with this message space restriction. 

The essential finding of this paper is the clear resemblance between the functioning 

of this message space restriction and that of the incentive wage schemes in the standard 

approach. This resemblance can be elucidated using the following case in which the 

principal designs the wage schemes for the agent in order to incentivize him to tell the 

truth. Let us suppose that the agent adopts a dishonest strategy that causes the frequency 

of announcing each signal to be different from the probability of this signal being 

observed. In such a case, a well-designed wage scheme can detect this dishonesty and 

the agent will be fined a large expected amount. In this sense, the functioning of the 

incentive wage scheme parallels that of message space restriction. On the other hand, if 

the agent adopts a dishonest strategy that causes the frequency of announcing each 

signal to be equal to the probability of this signal being observed, no wage scheme will 

detect this dishonesty. Therefore, we merely need to examine whether, in the absence of 

an incentive device, the agent has an incentive to adopt a dishonest strategy that causes 

the frequency of announcing each signal to be equal to the probability of this signal 

being observed. This implies that the necessary and sufficient condition for 

implementability is generally the same for both the individual wage scheme case with 

wage payment devices and the whole incentive case with no such devices. Therefore, 

we can conclude that applying a linking mechanism is far more advantageous than 

designing an incentive wage scheme; this is because a linking mechanism enables us to 

avoid positive information rents and welfare distortions without narrowing the class of 

implementable social choice functions. 

We can extend our arguments to the case of multiple agents who are in conflict 

with each other. Jackson and Sonnenschein (2007) showed that the linking mechanism 

functions effectively with private values, and independent signals across the agents if 

the social choice function satisfies the ex ante efficiency. Contrary to Jackson and 

Sonnenschein (2007), we consider more general environment, where we do not require 
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the private values assumption. In the general environment, we characterize the class of 

social choice functions that are virtually implemented by the linking mechanisms if we 

consider weak implementation with  -Nash equilibrium. 1  We also present an 

alternative sufficient condition, i.e., supermodularity, and also investigate the correlated 

signals case. 

In the economics theory literature, we find that some papers have presented 

concepts related to linking mechanisms before the study by Jackson and Sonnenschein 

(2007). For instance, bundling goods by a monopolist (Armstrong (1999)), storable 

votes (Casella (2005) and Casella, Gelman, and Palfrey (2006)), and multimarket 

contact (Bernheim and Whinston (1990) and Matsushima (2001)). For more recent 

studies, see Eliaz, Ray, and Razin (2007) and Fang and Norman (2003, 2006). It is 

important to conduct laboratory experiments to show whether the linking mechanism 

functions effectively and the extent to what it does so. As Fehr and Falk (2002), Fehr 

and Gächter (2002), and Fehr, Gächter, and Kirschsteiger (1997) have shown through 

laboratory experiments, the incentive device of monetary rewards and punishments 

results in a decline in the reciprocal motives of real individuals. We conjecture that the 

incentive device of a linking mechanism is more compatible with this reciprocal motive 

than is that of monetary rewards and punishments.2 

This paper is organized as follows. Section 2 describes the single agent model. 

Section 3 presents the necessary condition for the virtual implementation of a social 

choice function. Section 4 introduces the linking mechanism and characterizes the class 

of social choice functions that it virtually implements. Section 5 characterizes the class 

of the social choice functions that are exactly implemented by inconstant wage schemes 

and shows the resemblance between the functioning of incentive wage schemes and that 

of the linking mechanism. Section 6 extends our results to the case of multiple agents. 

 
                                                 
1 Note that Jackson and Sonnenschein (2007) consider a sufficient condition for full implementation 
with Bayesian Nash equilibrium in the sense that all exact equilibria secure the efficiency. For 
characterization of virtual implementation in more general environment, we relax the notion of 
equilibrium and focus one equilibrium even if there are multiple equilibria. 
 
2 Engelmann and Grimm (2008) presents experimental research on linking mechanisms. They 
reported that linking mechanisms function effectively in laboratories. Moreover, the experiments 
conducted by Casella, Gelman, and Palfrey (2006) on storable votes closely related to linking 
mechanisms reported that the storable votes performed very well. 
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2. The Model 
 

We investigate the following situation in which a principal delegates K  distinct 

tasks to a single agent, i.e., the agent is required to choose a profile of K  alternatives 

1 1 1( ,..., ) ( )K K
K k k k ka a a A   , where for each {1,..., }k K , kA  denotes the finite set of 

alternatives for the k-th task, and k ka A . The agent observes a profile of K  private 

signals 1 1 1( ,..., ) ( )K K
K k k k k       , where k  denotes the finite set of private 

signals for the k-th task, and k k  . This paper focuses on symmetric models in that 

kA A  and k    for all {1,..., }k K . Let I    . For each {1,..., }k K , 

the agent observes a private signal k   for the k-th task with positive probability 

( ) 0kp   , where the private signals are independently drawn according to the 

probability function : (0,1]p  . 

The principal is unaware of the profile of private signals and therefore requires the 

agent to announce a message on the basis of the mechanism given by 

( ) ( , ( , ))K M g t    . Here, M  is the finite set of messages for the agent, 

( )Kg M A   ,3 and :t M R . When the agent announces a message m M , the 

principal compels him to choose any profile of alternatives 1( ,..., ) K
Ka a A  with 

probability 1( )( ,..., )Kg m a a 4 ; the principal himself chooses the side payment 

( )t t m R  . When the agent observes k  and chooses ka  for each task 

{1,..., }k K , and the principal chooses t , the agent’s payoff is given by 

1

1 ( , )
K

k k
k

u a t
K




 , where :u A R , and additive separability is assumed We also 

assume expected utility. 

A strategy for the agent is defined as the function K M   . We denote the set 

of strategies by  . Let 

                                                 
3 For every set  , the set of simple lotteries over   is denoted by ( )  . 
4 In order to focus on the adverse selection problem, we assume that the probabilistic alternative 
choices are verifiable by the court. 
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1

1( , ) [ ( , ) | , ]
K

k k
k

v E u a t
K

  


     

denote the expected payoff induced by a strategy    in  .5 A strategy    is 

said to be a best response in   if 

( , ) ( , )v v      for all   . 

A social choice function is defined as :f A . Irrespective of {1,..., }k K , 

( )kf A   is regarded as the desirable alternative choice for the k-th task when the 

agent observes k .6 A social choice function f  is said to be exactly implementable 

with respect to K  if there exist a mechanism ( )K  and a best response    in 

( )K  such that 

(1)   1 1( ( ,..., ))( ( ),..., ( )) 1K Kg f f       for all 1( )K K
k k   . 

An infinite sequence of mechanisms 1( ( ))KK 
  is said to virtually implement a social 

choice function f  if for every 0  , there exists K  such that for every K K , 

there is a best response    in ( )K  that satisfies 

(2)   { {1 } ( )} , ( ) 1k kk K a f
E K

K

           

 . 

 

3. Necessary Condition for Virtual Implementation 
  

This section shows that the following condition is necessary for virtual 

implementation. The condition requires that truth-telling is better than any lying in the 

sense of permutation. 

 

Condition 1: For every {2 }L I    and every ( (1) ( )) LL    , if 

( ) ( )l l    for all {1 … }l L    and all {1 … }\{ }l L l   , 

then 
                                                 
5 Here, E      denotes the expectation operator given a condition  . 
6 Generally, a social choice function is defined as * : K Kf A  . In this paper, we restrict 
symmetric separable social choice functions, as in Jackson and Sonnenschein (2007). This restriction 
enables us to tract the model conveniently when we increase the number of tasks. 
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(3)   
1 1

( ( ( )) ( )) ( ( ( 1)) ( ))
L L

l l

u f l l u f l l   
 

     , 

where ( )l   for all {1 … }l L   , and 1 1L   .7 8 

 

It might be difficult for the principal to detect any deviant if this deviant keeps the 

relative frequency of announcing each signal unchanged by lying according to any 

permutation over the private signals with the same probability across the tasks. 

Condition 1 implies that if an agent lies in this way, his payoff never improves. That is, 

for every permutation over the tasks {1 } {1 }K K        , the agent’s payoff never 

improves by announcing ( )k  instead of k  for each task k  with the same 

probability across the tasks, i.e., 

( ) ( )
1 1

( ( ) ) ( ( ) )
K K

k k k k
k k

u f u f     
 

    . 

The following theorem shows that this condition is necessary for virtual 

implementation. 

 

Theorem 1: If there exists an infinite sequence of mechanisms 1( ( ))KK 
  that virtually 

implement f , then Condition 1 holds. 

 

Proof: Suppose that Condition 1 does not hold, i.e., there exists {2 }L I    and 

( (1) ( ))L    such that ( ) ( )l l    for all {1 … }l L    and all {1 … }\{ }l L l   , 

and 
1 1

( ( ( )) ( )) ( ( ( 1)) ( ))
L L

l l

u f l l u f l l   
 

     . Further, suppose that 1( ( ))KK 
  

virtually implements f . By the revelation principle,9 we can assume without loss of 

generality that for every K , ( ) ( , , )K M g t   is a direct mechanism where KM   ; 

                                                 
7 Condition 1 is our original condition. However, it is related with Theorem 1 of Fan(1956). We will 
discuss the detail about that in Section 5. 
8 For example, if { , , }H M L  , the Condition 1 implies that 

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )u f H H u f M M u f L L u f M H u f L M u f H L           , 
( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )u f H H u f L L u f L H u f H L       , 

and so on. 
9 See Myerson (1979) and Fudenberg and Tirole (1993, Chapter 7). 
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the truthful strategy ˆ ˆ ( )K  , defined by 1 1ˆ ( ,..., ) ( ,..., )K K      for all 

1( )K K
k k   , is a best response; and 

(4)   { {1 } ( )} ˆlim ( ), ( ) 1k k

K

k K a f
E K K

K

 


        
 . 

Let 1
K
k kM M  , kM   , 1( )Km m m M    , and k km M . We denote 

1 1 1( ,..., ) ( ( ,..., ))K
K k K k       , where 1( ,..., )k K    . According to Appendix A, 

we can assume without loss of generality that for every K , ( ) ( , , )K M g t   is 

symmetric in that for every m M , every 1( ,..., ) K
Ka a A , and every permutation 

{1 } {1 }K K        , 

1 1( )( ,..., ) ( )( ,..., )K Kg m a a g m a a   , 

where 1( ,..., )Km m m M    , ( )k km m
  , and ( )k ka a

  . 

For any 0  , let 

1
{ {1 } }( ) ( ) ( )K K K k

k k

k K
p for all

K

     


     
       

 

 , 

which is the set of signal profiles such that the proportion of each signal   is 

approximated by the probability ( )p  . The law of large numbers implies that 

*
1 1( ) ( )

lim { ( )} 1
K K

k k

K

k
K k

p
 




 

   for all 0  . Therefore, there is an infinite sequence of 

positive real numbers 1( )K K 
  such that lim 0K

K



  and 

(5)   
*

1 1( ) ( )
lim { ( )} 1

K K
k k K

K

k
K k

p
 




 

  . 

Assume a sufficiently large K . From (4) and (5), it follows that there exists 

1( ) ( )K K
k k K 

   such that 

(6)   1 1( ,..., )( ( ),..., ( ))K
K Kg f f        is close to 1. 

We specify a strategy    as follows. 

(i) For every {1 }l L   , the number of {1 }k K    satisfying that ( )k l   

and 1( ,..., ) ( 1)k K l        is set equal to 
{1 }
min { {1 } ( )}k

l L
k K l 

  
    


 . 

(ii) For every {1 }k K   , either 1( ,..., )k K k       , or 
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( )k l   and 1( ,..., ) ( 1)k K l        for some {1 }l L   . 

(iii) For every 1 1( ,..., ) ( ,..., )K K      , 

1 1( ,..., ) ( ,..., )K K       . 

Note that there exists a permutation   on {1,..., }K  such that 

1 1( ,..., ) ( ,..., )K K
          , 

(7)   ( )
1 1

( ( ) ) ( ( ) )
K K

k k k k
k k

u f u f    
 

       , and 

(8)   1 1( ( ,...., ))( ( ,...., ))K Kg f            is approximated by 1, 

where ( )k k

   . From (6), (7), and (8), it follows that 

1
1

ˆ( , ) , ( ), ( )
K

K
k k k k

k

E u a K   


   
   1

1
( , ) , ( ), ( )

K
K

k k k k
k

E u a K   


    
   . 

Since ( )K  is symmetric, it follows that 

1
1

1 ˆ( , ) , ( ), ( )
K

K
k k k k

k

E u a t K
K

   


    
   1

1

1 ( , ) , ( ), ( )
K

K
k k k k

k

E u a t K
K

   


     
   , 

which contradicts the fact that ̂  is a best response in ( )K .             Q.E.D. 

 

 4. Linking Mechanisms 
 

This section shows that Condition 1 is also sufficient for virtual implementation. 

The proof of this statement is constructive, which shows not only this sufficiency but 

also that we do not need any side payment devices. Based on Jackson and Sonnenschein 

(2007), we define the linking mechanism * *( ) ( ( , ))K M g t      as follows, which 

uses only constant side payments. We specify ( , ) : {0,..., }B B K K    such that 

( )B K





 , 

and for every : {0,..., }b K , 

(9)   ( ) ( )( ) ( )B b
p p

K K 

  
 

     whenever ( )b K





 . 

Note that ( )B

K

  is approximated by ( )p   for a sufficiently large K , i.e., 
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(10)   ( )lim ( )
K

B K
p

K

 



  for all  . 

Let kM    for all {1,..., }k K . We specify M  as a subset of K  defined by 

(11)     {1 } ( )K
kM m k K m B for all           . 

For every m M , let 

   1( )( ( ),..., ( )) 1Kg m f m f m   and ( )t m z  for some z R . 

According to the linking mechanism, the agent has to announce each   

exactly ( )B   times. This along with (10) implies that for a sufficiently large K , the 

proportion of the tasks for which the agent announces   is almost the same as the 

probability ( )p   of   occurring. The payment z  is adjusted to satisfy the agent’s 

ex ante participation constraint. Since we do not incentivize the agent with side payment, 

the linking mechanism is free from the failure of the principal to extract the full surplus 

owing to the agent’s positive information rent.10 

The following theorem shows that Condition 1 is sufficient for the linking 

mechanisms to virtually implement the social choice function. 

 

Theorem 2: Under Condition 1, *
1( ( ))KK 
  virtually implements f . 

 

Proof: Suppose that there exists 0   such that for every K , there exists K K  

that satisfies that for every best response    in *( )K , 

(12)   *{ {1 } ( )} , ( )k kk K a f
E K

K

          
 . 

As in the proof of Theorem 1, we can choose an infinite sequence of positive real 

numbers 1( )K K 
  satisfying (5) and lim 0KK




 . From (5) and (10), it follows that for 

every sufficiently large K , every 1( ) ( )K K
k k K 

  , and every  , 

                                                 
10  If the agent’s reservation utility is 0 , then the principal can set 

*

1

1 ( , ) ,
K

k k
k

z E u a
K

 


     
  to extract full surplus, where   is a best response in * . Note 

that our concept of full surplus extraction is in an ex ante sense as in Jackson and Sonnenschein 
(2007). Crèmer and McLean (1988) consider a stronger concept, interim full surplus extraction. 
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(13)   { {1 } }kk K

K

       is approximated by ( , )B K

K

 . 

Consider a best response    in *( )K  satisfying that for every best response 

   in *( )K , 

(14)   *1{ {1 } ( ,..., ) } , ( )k K kk K
E K

K

           
  

*1{ {1 } ( ,..., ) } , ( )k K kk K
E K

K

            
  .. 

The left-hand side of (12) is rewritten as 

   
1

1

1( )

{ {1 } ( ,..., ) }( )
K K

k k

K
k K k

k
k

k K
p

K

   
 

    
    

*
1

1

1( ) ( )

{ {1 } ( ,..., ) }( )
K K

k k K

K
k K k

k
k

k K
p

K 

   
 

    
     

*
1

1

1( ) ( )

{ {1 } ( ,..., ) }( )
K K

k k K

K
k K k

k
k

k K
p

K 

   
 

    
    . 

For every sufficiently large K , the last term is close to zero; therefore, the left-hand 

side of (12) is approximated by 

   
*

1

1

1( ) ( )

{ {1 } ( ,..., ) }( )
K K

k k K

K
k K k

k
k

k K
p

K 

   
 

    
   , 

which implies that there exists 1ˆ( ) ( )K K
k k K 

   such that 

(15)   1ˆ ˆ ˆ{ {1 } ( ,..., ) }k K kk K

K

        


 . 

A strategy    is said to be cyclic for 1( )K K
k k    if there exist 

{1 }S K    and a one-to-one function {1,..., # }S S    such that 2 S K  , 

s s    for all s S  and \{ }s S s , and 

( ) 1 ( 1)( ,..., )l K l       for all {1,..., # }l S , where 1 1S   . 

If   is not cyclic for 1ˆ( )K
k k  , then the proportion of the tasks for which the agent 

announces incorrect private signals, i.e., 1ˆ ˆ ˆ{ {1 } ( ,..., ) }k K kk K

K

        , is less 

than or equal to 
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(16)   { {1 } } ( )ˆ kk K B

K K

 


    
  , 

which is close to zero because of (13). This contradicts (12). Hence,   must be cyclic 

for 1ˆ( )K
k k  , i.e., there exist {1 }S K    and a one-to-one function {1,..., # }S S    

such that 2 S K  , 

ˆ ˆs s    for all s S  and \{ }s S s , and 

( ) 1 ( 1)ˆ ˆ ˆ( ,..., )l K l       for all {1,..., # }l S . 

We specify a strategy    by 

   1ˆ ˆ( ,..., ) ˆs sK    for all s S , 

   1 1ˆ ˆ ˆ ˆ( ,..., ) ( ,..., )s K s K       for all s S , and 

   1 1( ,..., ) ( ,..., )K K       for all 1 1ˆ( ) ( )K K
k k k k   . 

Note that the expected number of the tasks for which the agent lies according to   is 

less than that according to  , i.e., 

*1{ {1 } ( ,..., ) } , ( )k K kk K
E K

K

           

   

*1{ {1 } ( ,..., ) } , ( )k K kk K
E K

K

            
 . 

From Condition 1 and the fact that   is a best response in *( )K , it follows that   

is another best response in *( )K . This contradicts (14).          Q.E.D. 

 

Theorems 1 and 2 imply that Condition 1 is necessary and sufficient for virtual 

implementation. These theorems also imply that whenever a sufficiently large number 

of tasks are delegated to the agent, all that is required for virtual implementation is to 

check whether the linking mechanism functions or not. This implies that side payment 

devices are irrelevant to virtual implementation. 

The following proposition shows that we can replace Condition 1 with a more 

intuitive condition termed as supermodularity.11 This along with Theorem 2 implies 

that supermodularity is sufficient for the linking mechanisms to virtually implement the 

                                                 
11 See Topkis (1979) and Fudenberg and Tirole (1993, Chapter 12) for supermodularity and its 
related concepts. 
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social choice function. 

 

Condition 2 (Supermodularity):   is an ordered set with  , and for every 

         ,  

( ( ) ) ( ( ) )u f u f        ( ( ) ) ( ( ) )u f u f                    , 

where max{ }        and min{ }       . 

 

Proposition 3: Condition 2 implies Condition 1. 

 

Proof: Consider any {2 }L I    and ( (1) ( )) LL     such that 

( ) ( 1)l l    for all {1 1}l L    . 

From Condition 2, it follows that the right-hand side of (3) is rewritten as 

   
1

2
( ( (2)) (1)) ( ( (1)) ( )) ( ( ( 1)) ( ))

L

l

u f u f L u f l l     




       

1

2
( ( (1)) (1)) ( ( (2)) ( )) ( ( ( 1)) ( ))

L

l

u f u f L u f l l     




      
 ( ( (1)) (1)) ( ( (2)) ( )) ( ( (3)) (2))u f u f L u f            

 
1

3
( ( ( 1)) ( ))

L

l

u f l l 




  

 ( ( (1)) (1)) ( ( (2)) (2)) ( ( (3)) ( ))u f u f u f L          

 
1

3
( ( ( 1)) ( ))

L

l

u f l l 




  
1

( ( ( )) ( ))
L

l

u f l l 


     , 

which implies Condition 1.                                        Q.E.D. 

 

 5. Exact Implementation 
 

This section investigates exact implementation that requires the value of a social 

choice function to be realized with certainty, irrespective of which private signal profile 

the agent observes. The following proposition shows that Condition 1 is necessary and 

sufficient for exact implementation irrespective of K ; therefore, the necessary and 

sufficient condition is the same for both virtual and exact implementation. 
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In contrast with virtual implementation, in order to exactly implement a nontrivial 

social choice function, we have to use inconstant side payment devices. If we confine 

our analysis to mechanisms with constant side payments, the exactly implementable 

social choice functions f  are the only trivial ones such that 

   ( ( ), ) ( ( ), )u f u f     for all   and all  . 

Needless to say, linking mechanisms do not function effectively when we require, not 

only virtual, but also exact, implementation. 

 

Proposition 4: A social choice function f  is exactly implementable with respect to 

K  if and only if Condition 1 holds.12 

 

Proof: We can apply Theorem 1 proposed by Fan (1956) in the same manner as it was 

used in D’Aspremont and Gèrard-Varet (1979, Theorem 7). For the complete proof, see 

Appendix B. 

 

 Since Condition 1 does not depend on K , the set of exactly implementable social 

choice functions is the same irrespective of the number of tasks. From Theorem 1 

presented in Fan (1956), it follows that a necessary and sufficient condition for exact 

implementation is that for every 2 {0}R    , if  ( ) ( ) 0 
 

     
 

   


   

for all  , then 

 ( ( ) ) ( ( ) ) ( ) 0u f u f
  

      
  

     


  . 

Without loss of generality, we can focus only on the set of functions 2 {0}R     

such that ( , ) 1


  


   for all  , i.e., the set of mixed strategies in the direct 

mechanism, where ( , )    is the probability that the agent announces   given that 

he observes  . The above condition is equivalent to the condition that for every mixed 

strategy   in the direct mechanism, if the frequencies of announcing private signals 

                                                 
12 The sufficiency part of Proposition 4 and the definition of virtual implementation imply that the 
Condition 1 is a sufficient condition for virtual implementation with side payments. Note that 
Theorem 2 states that the Condition 1 is a sufficient condition for virtual implementation without 
side payments. 
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are the same as the probabilities of these signals being observed, i.e., 

   ( | ) ( , ) ( ) ( )p p p


      


     for all  , 

the ex ante expected payoff with no side payments induced by the dishonest mixed 

strategy is not greater than that induced by the honest strategy, i.e., 

   ( ( ) ) ( ) ( ) ( ( ) ) ( )u f p u f p
  

        
  

     


  . 

Based on the law of large numbers, this inequality implies that the requirement of 

truth-telling being a best response is almost satisfied when the number of the tasks K  

is sufficiently large. Hence, the functioning of the message space restriction in the 

linking mechanism as a whole incentive scheme parallels that of the incentive payment 

scheme in the direct mechanism for each task. 

 

6. Multiple Agents 
 

This section generalizes the previous results to a case in which multiple n  agents 

who observe their respective private signals are in conflict with each other over their 

own interests. 

 

6.1. The Model 
 

The following multiple agent model is a direct extension of the single agent model 

in Section 2. Each agent {1,..., }i n  chooses a profile of K  alternatives 

[ ],1 [ ], 1 [ ],( ,..., ) K
i i K k i ka a A , where [ ],i kA  denotes the finite set of agent 'i s  alternatives 

for the k-th task, and [ ], [ ],i k i ka A . Agent i  observes a profile of K  private signals 

[ ],1 [ ], 1 [ ],( ,..., ) K
i i K k i k    , where [ ],i k  denotes the finite set of agent 'i s  private 

signals for the k-th task, and [ ], [ ],i k i k  . Assume that [ ], [ ]i k iA A  and [ ], [ ]i k i    

for all {1,..., }k K  and all {1,..., }i n . Let [ ]i iI    , 1 [ ]
n
i iA A  , 1 [ ]

n
i i    , 

[1], [ ],( ,..., )k k n ka a a A  , [1] [ ]( ,..., )n    , and [1], [ ],( ,..., )k k n k    . 

A mechanism is defined as ( ) ( ,( , ))K M g t    , where 1 [ ]
n
i iM M  , [ ]iM  is 
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the finite set of messages for agent i , [ ] 1( )n
i it t  , and [ ]it M R  . When the agents 

observe 1( )K K
k k    and choose 1( )K K

k ka A   and the principal chooses [ ] 1( )n
i it t  , 

agent i s  payoff is given by [ ] [ ]
1

1 ( , )
K

i k k i
k

u a t
K




 , where [ ] :iu A R . 

A strategy for agent i  is defined as [ ] [ ] [ ]
K

i i iM   . Let [ ]i  denote the set of 

strategies for agent i . Let [ ]
1

n

i
i

    and [ ] 1( )K
i i    . Let 

[ ] [ ] [ ]
1

1( , ) [ ( , ) | , ]
K

i i k k i
k

v E u a t
K

  


     

denote the expected payoff for agent i  induced by a strategy profile    in  . A 

strategy profile    is said to be a Nash equilibrium in   if for every {1,..., }i n  

and every [ ] [ ]i i   , 

[ ] [ ] [ ] [ ]( , ) ( , , )i i i iv v     . 

A social choice function f  is said to be exactly implementable with respect to K  in 

terms of Nash equilibrium if there exists a mechanism ( )K  and a Nash equilibrium 

   in ( )K  such that 

1 1( ( ,..., ))( ( ),..., ( )) 1K Kg f f       for all 1( )K K
k k   . 

In this section, we require only the weak sense of implementation, i.e., do not 

require the uniqueness of Nash equilibrium outcomes. Moreover, we weaken the Nash 

equilibrium concept as follows. For each 0  , a strategy profile    is said to be 

a  Nash equilibrium in ( )K  if for every {1,..., }i n  and every [ ] [ ]i i   , 

[ ] [ ] [ ] [ ]( , ) ( , , )i i i iv v       . 

By using this weakened concept, we define virtual implementation for the multiple 

agent case as follows. An infinite sequence of mechanisms 1( ( ))KK 
  is said to 

virtually implement a social choice function f  if for every 0   and every 0  , 

there exists K  such that for every K K , there is a  Nash equilibrium    in 

( )K  satisfying 
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{ {1 } ( )} , ( ) 1k kk K a f
E K

K

           
 .13 

Let 
[ ] [ ]

[ ] [ ]( ) ( )
i i

i ip p


 
 

  . As a natural extension of Section 4, we define the 

linking mechanism *( ) ( ( , ))K M g t    as follows. We specify 

[ ] [ ] [ ]( , ) : {0,..., }i i iB B K K     such that 
[ ] [ ]

[ ]( , )
i i

i iB K K





 , and for every 

[ ] [ ]: {0,..., }i ib K  , 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

( ) ( )
( ) ( )

i i i i

i i i i
i i i i

B b
p p

K K 

 
 

 
     if 

[ ] [ ]

[ ] [ ]( )
i i

i ib K





 . 

For every {1,..., }i n , let 

[ ], [ ]i k iM    for all {1,..., }k K , 

  [ ] [ ], 1 [ ] [ ], [ ], [ ] [ ] [ ]( ) {1 } ( )K K
i i k k i i k i k i i i iM m k K m B for all           , 

[ ], [ ],i k i km M , and [1], [ ],( ,..., )k k n km m m  . 

For every m M , let 

1( )( ( ),..., ( )) 1Kg m f m f m   and [ ]( ) 0it m   for all {1,..., }i n . 

 

6.2 Results 
  

The following Condition is a direct extension of Condition 1, where each agent is 

required to satisfy slightly modified versions of the inequalities (3) in which the payoff 

( ( ) )u f    is replaced with the conditional expected value [ ] [ ] [ ]( ( ) )i i iE u f      . 

 

Condition 3: For every {1,..., }i n , every {2 }L I   , and every 

[ ] [ ] [ ]( (1) ( )) L
i i iL    , if 

[ ] [ ]( ) ( )i il l    for all {1 … }l L    and {1 … }\{ }l L l   , 

                                                 
13 In the single agent model, weak implementation secures the same utility level of the agent. In the 
multi-agent model, our weaker notion of virtual implementation with  -Bayesian Nash equilibrium 
does not secure the same utility level for agents. 
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then 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
1

( ( ( ), ) ( ), ) ( )
L

i i i i i i i
l

E u f l l l     


  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
1

( ( ( 1), ) ( ), ) ( )
L

i i i i i i i
l

E u f l l l     


     . 

 

 The following condition is also a direct extension of Condition 2, where each agent 

is required to satisfy slightly modified version of supermodularity in which the payoff 

( ( ) )u f    is replaced with the conditional expected value [ ] [ ] [ ]( ( ) )i i iE u f      . 

 

Condition 4 (Supermodularity): For every {1,..., }i n , [ ]i  is an ordered set with 

 , and for every [ ] [ ] [ ] [ ] [ ]i i i i i         , 

   [ ] [ ] [ ] [ ] [ ] [ ] [ ]( ( , ) , )i i i i i i iE u f           

[ ] [ ] [ ] [ ] [ ] [ ] [ ]( ( , ) , )i i i i i i iE u f             

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( ( , ) , )i i i i i i i i i iE u f                     

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( ( , ) , )i i i i i i i i i iE u f                    . 

 
 In the same way as in the previous sections, we can show the following theorem. 

 

Theorem 5: Suppose that the agents’ private signals for each task are independent of 

each other, i.e., [ ] [ ]
1

( ) ( )
n

i i
i

p p 


  for all  . Then, the following four properties 

hold. 

Property 1: If there exists an infinite sequence of mechanisms 1( ( ))KK 
  that 

virtually implement a social choice function f , then Condition 3 holds. 

Property 2: Under Condition 3, *
1( ( ))KK 
  virtually implements f . 

Property 3: Condition 4 implies Condition 3. 

Property 4: A social choice function f  is exactly implementable with respect to K  
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if and only if Condition 3 holds. 

 

 Properties 3 and 4 are easy to prove because we can directly apply the proofs of 

Propositions 3 and 4. Note that the definition of virtual implementation in this section is 

different from that in the single agent case presented in Section 2. This is because we do 

not require the agents to play their best responses in the exact sense. However, even if 

we replace the original definition in Section 2 with that provided in this section, we can 

prove Property 1, i.e., the necessity of Condition 3 for virtual implementation, in exactly 

the same manner as in the proof of Theorem 1. Based on this, we can extend the 

necessity result obtained in the single agent case to Property 1 for the multiple agent 

case by simply applying the same logic as that used in the former case. 

 We need to provide detailed explanations in order to prove Property 2. Let us 

assume any positive real number 0   sufficiently close to zero and consider a 

sufficiently large K . Let [ ] [ ]( , )i iK    denote the set of agent i s  strategies [ ]i  

such that the expected value of the proportion of the tasks for which the agent 

announces incorrect private signals is less than  , i.e., 

[ ], [ ], *
[ ]

{ {1 } }
, ( )i k i k

i

k K m
E K

K


 

     
  

 


. 

As in Theorem 2, we can observe that [ ] [ ]( , )i iK    is nonempty for a sufficiently 

large K . Define 

[ ]( , )i K 
[ ] [ ] [ ] [ ]

*
[ ] [ ]( , ) 1

1max max ( , ) , ( )
i i i i

K

i k k i
K

k

E v a t K
K  

 
  



       
  

[ ] [ ]

*
[ ] [ ]( , ) 1

1max ( , ) ( ),
i i

K

i k k i
K

k

E u a t K
K 

 




      
 . 

Note that [ ] ( , )i K   approximates the maximum of agent 'i s  gain from deviation. 

Clearly, there exists a [ ]{1,..., }
max ( , )i

i n
K 


Nash equilibrium in *( )K . As in the proof of 

Theorem 2, we can observe that there exists a best response for agent i  such that the 

expected value of the proportion of the tasks for which the agent announces incorrect 
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private signals is close to zero.14 This implies that we can choose a strategy for agent i  

in [ ]( , )i K  that is nearly a best response and, therefore, we can choose [ ]( , )i K   

close to zero. In fact, by choosing   as close to zero and then choosing a sufficiently 

large K , we can obtain [ ]( , )i K   as close to zero as possible. Thus, we have proved 

Property 2. 

 

6.3. Remarks 
 

From Property 4, it follows as in Appendix B that we can replace Condition 3 with 

the condition that for every {1,..., }i n , there exists [ ] [ ]:i ir R   such that for every 

[ ] [ ]i i   and every [ ] [ ]i i  , 

[ ] [ ] [ ] [ ] [ ]( ( ) ) ( )i i i i iE u f r       [ ] [ ] [ ] [ ] [ ] [ ] [ ]( ( , ) ) ( )i i i i i i iE u f r          . 

By assuming [ ] [ ]( ) 0i ir    for all {1,..., }i n , we can verify that for Condition 3, it is 

sufficient that for every {1,..., }i n , every [ ] [ ]i i  , and every [ ] [ ]i i  , 

[ ] [ ] [ ]( ( ) )i i iE u f      [ ] [ ] [ ] [ ] [ ]( ( , ) )i i i i iE u f        . 

This condition is the same as the ex ante efficiency that was introduced by Jackson and 

Sonnenschein (2007) as the sufficient condition for implementation. In contrast with the 

present paper, Jackson and Sonnenschein (2007) assumed private values and showed 

full implementation in that for a sufficiently large K , every Nash equilibrium in the 

linking mechanism virtually induces the value of the ex ante efficient social choice 

function. 

 In Theorem 5, we have supposed that the agents’ private signals are independent of 

each other. Even in the case of correlated private signals across all the agents, we can 

prove that Properties 1, 2, 3, and the sufficient part of Property 4. However, if the 

agents’ signals are correlated to each other, the class of exactly implementable social 

choice functions is wider than the class of social choice functions that are virtually 

                                                 
14 This does not imply that the expected value of the proportion of the tasks for which the agent 
announces incorrect private signals is less than  . This is why we cannot use the exact Nash 
equilibrium in place of   Nash equilibrium in the case of multiple agents. 
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implementable by linking mechanisms. In fact, any social choice function is exactly 

implementable whenever the probability distribution of the other agents’ signal profile 

conditional on each agent’s private signal varies across her signals, i.e., 

   [ ] [ ] [ ] [ ]( | ) ( | )i i i ip p     for all [ ] [ ]i i   and all [ ] [ ] [ ]\ { }i i i   , 

where 

[ ] [ ]

[ ] [ ] [ ]
[ ] [ ]

( )( | )
( , )

i i

i i i
i i

p
p

p


 
 

 




 




. Needless to say, this sufficient condition is 

extremely weak. See Crèmer and McLean (1985, 1988), Matsushima (1990, 2007), 

Aoyagi (1998), Chung (1999), and others. In this case, the incentive wage scheme for 

each agent depends on the other agents’ announcements as well as on his own 

announcement. This implies that whether each agent should be punished or rewarded is 

crucially dependent on the whistle-blowing of the other agents. Thus, even though the 

linking mechanism is a potentially powerful tool to incentivize agents in the case of 

correlated private signals, the drawback of this mechanism as compared with incentive 

wage schemes is that whistle-blowing is never effective without side payments. 

 

6.4. Macro Shock 
  

Throughout this paper, we have assumed that the private signals were drawn 

independently across all the tasks. However, by just adding a prior message stage in a 

simple way, the linking mechanism does function effectively even if the private signals 

are correlated across all the tasks.15 

Consider a situation in which there exist three or more agents. Suppose that there 

exists a macro shock    on which the probability distribution of k  for each task 

{1,..., }h K  and the social choice function are dependent. We denote ( ) ( | )p p   , 

[ ] [ ] [ ] [ ]( ) ( | )i i i ip p   , and ( ) ( , )f f   . Here, we assume that   is a finite set, 

and for every {1,..., }i n , every   , and every \ { }  , 

(17)   [ ] [ ]( | ) ( | )i ip p     . 

                                                 
15 This section handles with a special case of correlation, i.e., the signals are correlated through an 
unobservable macro shock. We figure out how the linking mechanism works in this special case 
here.   
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In order to be able to apply the appropriate linking mechanism, the principal needs to 

know the true macro shock  . However, the principal and the agents both cannot 

observe this shock. 

As we have already known, with a sufficiently large K , it is almost certain, based 

on the law of large numbers, that the realized proportion of the tasks for which an agent 

observes each private signal is almost the same as the probability of his observing this 

signal for a single task. This along with (17) implies that almost certainly each agent can 

infer the macro shock correctly from the observed private signals for all the tasks. 

With three or more agents, the principal can incentivize the agents to tell of what 

they know about the macro shock to the best of their abilities as follows. The principal 

requires each agent to announce about the macro shock. If more than a half of the agents 

announce the same macro shock   , the principal will apply the linking mechanism 

associated with ( ) ( | )p p      and ( ) ( , )f f    . If there is no such  , the 

principal will apply some fixed mechanism. Hence, announcing about the macro shock 

honestly is nearly a best response for each agent if the other agents announce honestly, 

because his announcement does not much influence which mechanism the principal will 

apply. This implies that truth-telling about the macro shock is described as an 

epsilon-Nash equilibrium strategy. 
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Appendix A 
 

We will show that in the proof of Theorem 1, we can assume without loss of 

generality that ( )K  is symmetric. Suppose that ( )K  is not symmetric. For each 

permutation   on {1,..., }K , we define g  and t  in ways that for each m M , 

1 1( )( ,..., ) ( )( ,..., ) K Kg m a a g m a a      for all 1( )K K
k ka A  , and 

( ) ( ) t m t m   . 

Let ( , , )M g t    . We define    by 1( ,..., )K m       , where we denote 

1( ,..., )Km    . Note that for every    and every 1( )K K
k k   , 

1
1

1 ( , ) , , ( )
K

K
k k k k

k

E u a t
K

   


    
 1

1

1 ( , ) , , ( )
K

K
k k k k

k

E u a t
K

     


     
 . 

Since the truthful strategy ̂  is a best response in   and ˆ ˆ  , it follows from (4) 

that ̂  is a best response in  , and 

{ {1 } ( )} ˆlim , 1k k

K

k K a f
E

K
  



        
 . 

We define a symmetric mechanism ( , , )M g t   by 

1
g g

K





  and 1
t t

K





 , 

where   denotes the set of permutations on {1,..., }K . Clearly, ̂  is a best response 

in  , and 
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{ {1 } ( )} ˆlim , 1k k

K

k K a f
E

K

 


        
 . 

Hence, we can assume without loss of generality that ( )K  is symmetric. 

 

Appendix B 
 

We show the complete proof of Proposition 4. Choose K  arbitrarily. Suppose that 

f  is exactly implementable with respect to K , i.e., there exist ( )K  and a best 

response     in ( )K  such that 

(B-1)  1 1( ( ,..., ))( ( ),..., ( )) 1K Kg f f       for all K K  . 

Consider any K   such that K yK z    for some positive integer y  and some 

integer {0,..., 1}z K  . By using ( )K  in a set of y  for the first yK  tasks, we 

can construct a mechanism ( )K   such that there exists a best response that induces 

the values of f  for the first yK  tasks. This implies that there exists an infinite 

sequence of mechanisms that virtually implements f . This along with Theorem 1 

implies that Condition 1 is necessary for exact implementation. 

Next, we will prove the sufficiency. We merely need to show that Condition 1 is 

sufficient in the case of 1K  , because if this is true, we can exactly implement the 

social choice function irrespective of K  by simply using (1)  in a set of K  for all 

tasks. Thus, it is sufficient to verify whether or not there exists a side payment function 

:r R  such that 

( ( ) ) ( ) ( ( ) ) ( )u f r u f r            for all   and all  . 

Using Theorem 1 proposed by Fan (1956) as it is used in D’Aspremont and 

Gèrard-Varet (1979, Theorem 7), we can show that a necessary and sufficient condition 

for the existence of such an r  is that for every 2 {0}R    , if 

(B-2)   ( ) ( ) 0 
 

     
 

   


   for all  , 

then 

(B-3)   ( ( ) ) ( ( ) ) ( ) 0u f u f
  

      
  

     


  . 
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For every {2 … }L I   , an L-tuple of private signals ( (1) … ( )) LL     is said to 

be a cycle if ( ( ) ( 1)) 0l l      and ( ) ( )l l    for all {1 … }l L    and all 
 {1 … } \ { }l L l    . 

Suppose Condition 1 that for every {2 }L I    and every ( (1) ( ))L   , if 

( ) ( )l l     for all {1 … }l L    and all  {1 … } \ { }l L l    , then 

(B-4)  
1 1

( ( ( )) ( )) ( ( ( 1)) ( ))
L L

l l

u f l l u f l l   
 

     . 

Evidently, we can choose 2(1) {0}R      , (1)  , and (2) \ { (1)}   

satisfying (B-2) and ( (1) (2)) 0    . If ( (2) (1)) 0     holds, then ( (1) (2))   

is a cycle. If ( (2) (1)) 0    , it follows from (B-2) that we can choose a private 

signal (3) \ { (1) (2)}     such that ( (2) (3)) 0    . 

Choose a positive integer l  arbitrarily. Suppose that ( (1) ..., ( 1))l    satisfies 

( ) ( )l l    for all {1 … 1}l l     and {1 … 1} \ { }l l l     , 

( ( ) ( 1)) 0l l       for all {1 … 2}l l    , and 

( ( ) ( )) 0l l      for all  {2 … 2}l l      and {1 … 1}l l     . 

If there exists  {1 … 2}l l      such that ( ( 1) ( )) 0l l      , then 

( ( ) ..., ( 1))l l     is a cycle. If there exists no such l , it follows from (B-2) that we 

can choose a private signal ( ) \ { (1) ..., ( 1)}l l      such that 

( ( 1) ( )) 0l l     . 

Since I   is finite, by continuing the above step, we can determine 

{2,..., }l I  and {1,...., 1}l l   such that ( ( ) ..., ( ))l l    is a cycle. By replacing l  

and l  with 1  and L , respectively, we denote this cycle by (1) ( (1) … ( ))C L    . 

Let 
{1 … }

(1) min ( ( ) ( 1))
l L

l l   
  

   . Specify 2(1) : R    such that 

(1)( ( ) ( 1)) (1)l l       for all {1,..., }l L , 

and for every 2( )   , if there exists no {1,..., }l L  such that 

( ) ( ( ), ( 1))l l      , then (1)( ) 0    . From (B-4), it follows that 

 
2( , )

( ( ) ) ( ( ) ) (1)( , ) 0u f u f
 

      
 

     . 
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We define 2(2) R    by (2) (1) (1)    . From (B-2) and the definition 

of (1) , it follows that 

   (2)( ) 0     for all   and all  , and 

 (2)( ) (2)( ) 0
 

     
 

   


   for all  . 

If (2)( ) 0     for all   and all \ { }  , the inequality (B-3) holds for 

(2)  , i.e., 

 ( ( ) ) ( ( ) ) (2)( ) 0u f u f
  

      
  

     


  . 

If (2)( ) 0     for some   and some \ { }  , we can construct a cycle 

(2)C  and (3)  as we did in (1)C  and (2) . 

By continuing the above step, we can determine a positive integer q , 
2( ) : {0}q R      for each {1,..., 1}q q  , and 2( ) : {0}q R     such that 

 
\{ }

( ( ) ) ( ( ) ) ( )( ) 0u f u f q
  

      
 

     


  , 

for every {1,..., 1}q q  , 

 
2( , )

( ( ) ) ( ( ) ) ( )( , ) 0u f u f q
 

      
 

      and 
1

1
( ) ( )

q

q

q q  




  . 

These imply (B-3). Thus, we have proved Proposition 4. 

 

 

 

 




