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Abstract 

 

We investigate the moral hazard problem in which a principal delegates multiple tasks to 

multiple workers. The principal imperfectly monitors their action choices by observing the 

public signals that are correlated with each other through a macro shock. He divides the workers 

into two groups and makes them compete with each other. We show that when the number of 

tasks is sufficiently large, relative performance evaluation between the groups accompanied 

with absolute performance evaluation results in eliminating unwanted equilibria. In this case, 

any approximate Nash equilibrium nearly induces the first-best allocation. 
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1. Introduction 

 

We investigate the agency problem in which a principal delegates multiple tasks to 

multiple workers. The principal is faced with a moral hazard problem as he is unable to 

directly observe the workers’ action choices. He can only imperfectly monitor them by 

observing the public signal for each task that is drawn randomly and is dependent on the 

action choice for this task. The public signals are correlated with each other through a 

randomly drawn macro shock; this shock is realized neither by the workers nor by the 

principal. Moreover, the public signals depend not only on this common macro shock 

but also on their respective private shocks; these shocks, too, are observed neither by 

the workers nor by the principal. We assume conditional independence in that given the 

occurrence of a macro shock, the public signals are drawn randomly and independently. 

In order to incentivize the workers to make desirable action choices, the principal 

divides them into two groups and makes these groups compete with each other. We 

assume that the members of each group agree to jointly make their action choices within 

this group and maximize the sum of their expected payoffs. The principal regards these 

groups, and not the individual workers, as the agents with whom he makes contracts. 

This paper shows that it is easier to incentivize groups rather than make contracts with 

individual workers; the establishment of competing groups is an effective method that 

enables the principal to resolve the moral hazard problem. 

We specify a contract based on a combination of the concepts of relative and 

absolute performance evaluations, which is dependent on observed public signals as a 

punishment rule for each group. Each group’s performance is measured by the 

proportion of its tasks for which “good” public signals are observed. If a group’s 

performance is unsatisfactory as compared with that of the other group, the principal 

will fine the former based on relative performance evaluation. If the group’s 

performance is almost identical to that of the other group but not sufficiently 

satisfactory in the absolute sense, the principal will fine this group based on absolute 

performance evaluation. In this case, it is important to note that even though a group’s 

performance is unsatisfactory in the absolute sense, the principal will not fine this group 

if it performs sufficiently better than the other group. 
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The relative and absolute performance evaluation concepts are used in combination, 

particularly when the number of tasks is sufficiently large. According to the law of large 

numbers, private shocks for tasks delegated to a group can be cancelled out. Thus, if no 

macro shocks exist, the principal can determine if a group has deviated from the 

desirable action choices just by evaluating its performance in an absolute sense 

independently. However, if an unobservable macro shock exists, the principal needs to 

evaluate performances in a relative sense through intergroup comparison. On the basis 

of relative performance evaluation, the principal can detect, almost perfectly, if a group 

has deviated from desirable action choices, as long as the other group makes such 

choices. Thus, the groups are incentivized to make the desirable action choices as an 

approximate Nash equilibrium, where each group’s gains from deviation are either 

negligible or less than zero. 

Significantly, the establishment of competing groups in this manner makes it easy to 

eliminate unwanted equilibria. Suppose that both groups deviate from the desirable 

action choices for a non-negligible number of tasks. In this case, each group has an 

incentive to perform slightly better than the other group; the group can almost certainly 

escape punishment based on absolute performance evaluation. Crucially, this property 

relies on the fact that, unlike in the case of an individual worker with a single task, a 

group with a sufficient number of tasks can clearly inform the principal of its better 

performance merely by completing a slightly greater proportion of tasks with desirable 

action choices than the other group. Consequently, a group can help the principal to 

detect the other agent’s deviation. This implies that unique implementation is virtually 

possible; that is, any approximate Nash equilibrium would induce the groups to make 

desirable action choices in almost all tasks. 

Several previous works, such as Holmstrom (1982), Lazear and Rosen (1981), 

Green and Stokey (1983), and Nalebuff and Stiglitz (1983), have studied relative 

performance evaluation in the context of the moral hazard problem. These studies 

generally investigated cases in which each agent is delegated a single task.3 They 

showed that, in comparison with independent absolute evaluation, relative performance 

evaluation provides for better risk sharing when there exists an unobservable macro 

                                                 
3 An exception is Franckx, D’Amato, and Brose (2004), which extended Lazear and Rosen (1981) 
to a multitask setting. See also Battaglini (2005). 
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shock. However, the presence of private shocks in addition to the macro shock generally 

prevents relative performance evaluation from approximately achieving the first-best 

allocation. In contrast, this paper shows that relative performance evaluation can nearly 

achieve the first-best allocation as an approximate Nash equilibrium when the number 

of tasks is sufficiently large; this is because private checks can be cancelled out. This 

result is robust with respect to limited liability constraints; whenever the upper bound of 

the monetary fine is large enough to incentivize the agents such that the principal can 

perfectly monitor their action choices, then the principal can generally incentivize them 

even when faced with monitoring imperfection.4 

Several works such as Mookherjee (1984), Demski and Sappington (1984), Ma 

(1988), and Battaglini (2006 have investigated the uniqueness in implementation with a 

moral hazard; when each agent is delegated only a single task, relative performance 

evaluation accompanied with absolute performance evaluation does not necessarily 

function for unique implementation; these papers demonstrated alternative concepts of 

mechanism design to eliminate unwanted equilibria.5 In contrast, this paper shows that 

if an agent (as a collection of many workers) is delegated a sufficient number of tasks, 

relative performance evaluation can compel each agent to blow the whistle with regard 

to the other agent’s deviation in exchange for an exemption from punishment based on 

absolute performance evaluation. Thus, this can be the driving force behind relative and 

absolute performance evaluations and would enable the principal to eliminate any 

unwanted equilibria. 

In agency literature, several studies such as Varian (1990), Holmstrom and Milgrom 

(1990), and Itoh (1993) have analyzed cases in which there exist multiple workers and 

have demonstrated the superiority of group decisions over individual decisions. In these 

studies, it is assumed that the members of each group mutually observe their action 

choices and design a side contract contingent on these choices; this contract is 

enforceable through non-judicial channels such as word of honor. Tirole (1992) 

                                                 
4 Legros and Matsushima (1991) investigated the moral hazard problem in general partnerships with 
limited liability. 
5 Some of these works are related to the concepts of mechanism design, explored in the adverse 
selection literature on the implementation of social choice functions. See Abreu and Matsushima 
(1992), Moore (1992), Palfrey (1992), Osborne and Rubinstein (1994, Chapter 10), and Maskin and 
Sjöström (2002). 
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explains the manner in which hidden side-contracting technology can be specified. 

Generally, these works studied only the behavior of a single group that includes all 

workers; nevertheless, if a macro shock occurs, even this group would have an incentive 

to deviate. In contrast, this paper examines a case in which there exist two separate 

groups that compete with each other; herein, the method of relative and absolute 

performance evaluations serves well, particularly when a macro shock occurs. 

We also refer to previous works on multitask incentives that used the law of large 

numbers to cancel out private shocks. Bundling of goods by a monopolist (Armstrong, 

1999), multimarket contacts (Matsushima, 2001), and linking mechanisms (Jackson and 

Sonnenschein, 2007 Matsushima, Miyazaki, and Yagi, 2010) are some examples. 

 This paper is organized as follows. Section 2 presents the model, and section 3 

specifies the punishment rule. While section 4 presents the main theorem and its logical 

core, section 5 provides the complete proof of the theorem. 

 

2. Model 

 

A principal hires two agents (agents 1 and 2) and delegates 1n   number of tasks, 

that is, tasks ( ,1)i , ( ,2)i , …, ( , )i n , to each agent {1,2}i , where we regard each 

agent as a collection of n  individual workers (i.e., a group), as will be explained later. 

Each agent {1,2}i  selects a strategy , 1( )n
i i h ha a  , where ,i ha  implies the action for 

task ( , )i h . Let , {0,1}i hA   denote the set of all actions for task ( , )i h . With regard to 

task ( , )i h , , 1i ha   implies the desirable action, whereas , 0i ha   implies the 

undesirable action. Let ,
{1,..., }

i i h
h n

A A


   denote the set of all strategies for agent i . Let 

1 2A A A   denote the set of all strategy profiles. Let 1 2( , )na a a a A    denote a 

strategy profile. The desirable strategy profile is defined as * * * *
1 2( , )na a a a A   , 

where 

   *
, 1i ha   for all {1,2}i  and all {1,..., }h n . 

The principal is faced with a moral hazard problem in which he cannot observe the 

action choices but can only imperfectly monitor them by observing the public signal 
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,i h  for each task ( , )i h . Let , {0,1}i h   denote the set of possible public signals for 

task ( , )i h . The public signal , ,i h i h   for each task ( , )i h  is randomly drawn after 

the agents make their action choices, the realization of which is dependent on the action 

choice ,i ha  for this task; , 1i h   implies the good signal, whereas , 0i h   implies 

the bad signal. Let ,
{1,..., }

i i h
h n

     denote the set of possible public signal profiles for 

agent 'i s  tasks. Let 1 2     denote the set of possible public signal profiles. 

The public signals are imperfectly correlated across all tasks; there exists a macro 

shock   that is observed by neither the agents nor the principal. It is randomly drawn 

according to the probability density distribution ( )f   in the interval [0,1] , where 

( ) 0f    for all [0,1]   and 
1

0

( ) 1f d


 


 . We assume that there exist a real 

number 1   and an increasing and continuous function : [0,1 ] [0,1]p    such 

that for each ( , ) {1,2} {1,..., }i h n  , ,( )i hp a   is the probability that the good 

signal , 1i h   for task ( , )i h  will be observed, provided the macro shock   occurs 

and agent i  selects action ,i ha  for this task. Hence, the public signals are correlated 

with each other through this macro shock. Since p  is increasing with respect to  , it 

follows that the stronger the macro shock  , the better it is for each task in the 

business. Since (1 ) ( )p p    for all [0,1]  , it follows that when a desirable 

action is chosen the probability of occurrence of a good signal for the task would be 

greater than if an undesirable action were chosen. Since the principal is unable to 

observe the occurred macro shock and the chosen strategy profile, he is unable to verify 

whether the occurrence of good signals for the tasks was due to the agent’s choice of 

desirable actions or the occurrence of a strong macro shock.6 We assume conditional 

independence in that given the occurrence of a macro shock the public signals are drawn 

randomly and independently of each other. This implicitly assumes that there exists 

some private shock for each task that is drawn randomly and independently of each 
                                                 

6 The assumption of 1   makes the incentive problem of this paper non-trivial. If 1  , then 
for every [0,1]  , there exists no [0,1]   such that (1 ) ( )p p   ; the principal can 

detect whether or not an agent deviated just by verifying the probability that the good signal will 
occur. This makes the incentive problem much easier to solve. 
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other and that influences the realization of the public signal. 

 This paper examines the case in which the principal delegates a large number of 

tasks to each agent; in order that desirable action choices are made for all the tasks, the 

principal hires 2n  workers, divides them into two groups with the same number of 

workers, and regards each group as an agent with which he makes a contract. In this 

case, the members of each group enter into a binding agreement to jointly make action 

choices for the n  tasks that the principal delegates and to jointly maximize the sum of 

their expected payoffs. On the basis of this setting, the payoff for each agent {1,2}i  

when this agent selects a strategy i ia A  and receives a monetary transfer it R  is 

given by 

   ,
1

1
( )

n

i i h
h

u t a
n 

  , 

where :u R R  is an increasing function, and ,

1
i ha

n
 implies the cost of selecting the 

action for task ( , )i h ; the desirable action choice is costlier than the undesirable action 

choice. Without loss of generality, we assume that 

   (0) 0iu   for each {1,2}i . 

In order to incentivize the agents to select the desirable strategy profile *a , the 

principal will make a contract with each agent {1,2}i  as a punishment rule 

: [ ,0]ix H  , where 0H   implies the upper bound of the monetary fine; agent i  

is fined a monetary amount ( ) [0, ]ix H   when the public signal profile   

occurs. Given that a strategy profile a A  is selected, the expected payoff for agent i  

is defined by 

   ,
1

1
( ; ) ( ( )) ( | )

n

i i i i i h
h

v a x u x p a a
n

 
 

   , 

where ( | )p a  denotes the probability that a public signal profile   occurs when a 

strategy profile a  is chosen; thus, 

  

,

1

,
( , ) {1,2} {1,..., }:0

0

( | ) {1 ( )}

i h

i h
i h n

p a p a




 
 



  
,

,
( , ) {1,2} {1,..., }:

1

( ) ( )

i h

i h
i h n

p a f d



  
 



 . 

Let 1 2( , )x x x  denote a punishment rule profile. 
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 The solution concept used in this paper is the approximate Nash equilibrium; for 

each positive real number 0  , a strategy profile a A  is said to be an  Nash 

equilibrium for a punishment rule profile x  if, for every {1,2}i  and every ia A , 

( ; ) ( , ; )i i i i j iv a x v a a x   , 

where j i ; for each agent, the gain from deviating from an  Nash equilibrium is 

less than or equal to  , provided the other agent follows this  Nash equilibrium. 

 This paper aims to design a punishment rule profile for which the desirable 

strategy profile *a  is an approximate Nash equilibrium. We also show the 

uniqueness-like property such that every approximate Nash equilibrium induces the 

desirable action choices for almost all tasks and rarely fines the agents. 

 

3. Relative and Absolute Performance Evaluations 

 

Arbitrarily fix a positive integer n  and a positive integer ( ) {1,..., }n n   . 

According to a combined concept of relative and absolute performance evaluations, we 

specify a punishment rule profile 1 2( , )nx x x x   as follows; for every {1,2}i , 

(1)   ( )ix H     if , ,
1 1

n n

i h j h
h h

  
 

   , 

(2)   ( )ix H     if , ,
1 1

n n

i h j h
h h

  
 

    and ,
1

(1)
n

i h
h

np


 , 

and 

(3)   ( ) 0ix     otherwise, 

where j i . If the absolute value of difference between the numbers of good signals 

for agent 'i s  and agent 'j s  tasks is greater than or equal to  , that is, 

   1, 2,
1 1

n n

h h
h h

  
 

   , 

then the principal will assess each agent’s performance by relative performance 

evaluation; if the good signals for agent 'i s  tasks are fewer than those for agent 'j s  

tasks such that 
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, ,
1 1

n n

j h i h
h h

  
 

   , 

then agent i , but not agent j , is fined a monetary amount H . 

If the absolute value of difference between the number of good signals for agent 

'i s  tasks and that of agent 'j s  tasks is less than  , that is, 

1, 2,
1 1

n n

h h
h h

  
 

   , 

then the principal will evaluate each agent’s performance by absolute performance 

evaluation; consider (1)np  as the threshold to determine whether an agent should be 

fined or not in the absolute sense, where (1)p  implies the probability that good signal 

will occur for a task, provided the desirable action is chosen and the weakest macro 

shock 0   occurs. If the number of good signals for agent 'i s  tasks is less than or 

equal to this threshold, that is, 

(4)   ,
1

(1)
n

i h
h

np


 , 

then agent i  is fined a monetary amount H ; if the number of good signals for agent 

'i s  tasks is greater than this threshold, he is not fined. It is important to note that 

although the inequality of (4) holds, agent i  is never fined if the number of his tasks 

that send good signals is relatively larger than the corresponding number pertaining to 

agent j , that is, 

, ,
1 1

n n

i h j h
h h

  
 

   . 

 

4. Theorem 

 

We assume that *

1

1
( ) (0)

n

i
i

u H u a
n 

    . That is, 

(5)   ( ) 1u H   . 

Clearly, the assumption of (5) is a necessary condition for the principal to resolve the 

incentive problem. For instance, let us consider a situation in which the principal can 

monitor the agents’ action choices almost perfectly, and he will fine any agent a 
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monetary amount H  if he detects the agent making undesirable action choices for all 

the tasks. In this case, in order to incentivize them, it is necessary to require that the 

payoff induced by desirable action choices for all the tasks with no fines (i.e., 

*

1

1
(0)

n

i
i

u a
n 

  ) be greater than the payoff induced by the undesirable action choices for 

all the tasks with a fine of H , that is, ( )u H . This implies the inequality of (5). 

The following theorem shows that the assumption of (5) is not only necessary but 

also sufficient for unique implementation. 

Theorem: With the assumption of (5), there exists an infinite sequence of positive 

integers 1( ( ))nn 
  that satisfies the following properties: 

(i)  ( ) {1,..., }n n   for all 1n  ; 

(ii)  For every 0  , there exists n  such that for every n n  and every 

{1,2}i , whenever *na  is selected, the probability of ( )n
ix H    is less 

than  ; 

(iii)  For every 0  , there exists n  such that for every n n , *na  is a 

 Nash equilibrium for nx ; 

(iv) For every 0  , there exist 0   and n  such that for every n n , there 

exists no  Nash equilibrium na a  for nx  that satisfies 

   ,
1

1
1

n

i h
h

a
n




   for some {1,2}i . 

 The theorem states that if the number of tasks is sufficiently large, then *a  is an 

approximate Nash equilibrium; moreover, every approximate Nash equilibrium induces 

agents to make desirable action choices for almost all tasks and rarely fines them. Hence, 

the principal succeeds in achieving desirable action choices for all tasks. 

 Although the complete proof of this theorem is presented in the next section, a 

brief outline is presented here. Consider a sufficiently large n . The law of large 

numbers implies that when each agent {1,2}i  selects *
ia , it is almost certain that 

irrespective of  , the average of the signals relevant to agent i  (i.e., ,
1

1 n

i h
hn



 ) is 

approximated by (1 )p  ; when the agents select *a , it is almost certain that 
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1,
1

1 n

h
hn



  and 2,

1

1 n

h
hn



  are nearly the same. Hence, it is almost certain that these 

agents will not be fined according to relative performance evaluation. Moreover, it is 

almost certain that ,
1

1 n

i h
hn



  is greater than (1)p  for each {1,2}i ; given that 

1
( )n

n
  is close to zero, the agents will not be fined according to absolute performance 

evaluation, either. Hence, with a sufficiently large n , * *na a  almost certainly 

induces ( ) 0ix    for each {1,2}i ; that is, property (ii) holds. 

 Let us arbitrarily fix (0,1)  . When each agent {1,2}i  selects the undesirable 

action 0 for approximately n  tasks, it is almost certain that irrespective of  , 

,
1

1 n

i h
hn



  is close to the value of (1 ) { (1 ) ( )}p p p       , which is less than 

(1 )p   by the positive value { (1 ) ( )}p p    . Hence, relative performance 

evaluation almost certainly detects agent 'i s  deviation, as long as the other agent 

j i  adopts *
ja . Based on this observation, along with the inequality of (5), we can 

show that *a  is an approximate Nash equilibrium; that is, property (iii) holds. 

 Property (iv) is the main contribution of this paper. Let us consider any strategy 

profile a , according to which an agent selects undesirable actions for a non-negligible 

number of tasks. If a sufficiently weak macro shock occurs, it is almost certain that 

   ,
1

(1)
n

i h
h

np


 . 

Hence, some agents are fined on the basis of absolute performance evaluation with a 

positive probability. On the other hand, the law of large numbers implies that if an agent 

can alter the proportion of desirable action tasks performed by the agent so that such 

tasks slightly outnumber similar tasks by the other agent, then the former can almost 

certainly avoid being fined on the basis of absolute performance evaluation. This 

contradicts the approximate Nash equilibrium concept. Hence, we can show that any 

approximate Nash equilibrium induces agents to make desirable action choices for 

almost all tasks, and they are rarely fined. This is property (iv). 

 This paper did not consider the possibility that agents overwork. However, it is 
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easy to resolve this issue by modifying the specification of the punishment rule profile 

such that each agent is fined whenever the proportion of his tasks for which good public 

signals occur is sufficiently greater than (1 )p  . Moreover, we must note that the 

theorem depends on the implicit assumption that the range of possible macro shocks   

has an upper bound. In this case, for any macro shock   that is close to the upper 

bound, there exists no    such that (1 ) ( )p p   . The proof of the theorem 

does use this property. 

 

5. Proof of the Theorem 

 

The law of large numbers implies that irrespective of  , with a sufficiently large 

n , it is almost certain that for each {1,2}i , the average of the signals for agent 'i s  

tasks, (i.e., ,
1

1 n

i h
hn



 ) is approximated by 

, ,
1 1

1
{ (1 ) ( )( )}

n n

i h i h
h h

p a p n a
n

 
 

    , 

provided agent i  selects ia  and macro shock   occurs. Hence, it is almost certain 

that the difference between the numbers of good signals for agent 'i s  and agent 'j s  

tasks (i.e., , ,
1 1

1 1n n

i h j h
h hn n
 

 
  ) is approximated by 

, ,
1 1

1
{ (1 ) ( )}( )

n n

i h j h
h h

p p a a
n

 
 

    , 

provided the agents select a  and macro shock   occurs. Hence, we can select 

1( ( ))nn 
  that satisfies property (i) and the following properties. 

(iv)  
1

lim ( ) 0
n

n
n



 , and 

(v)  the probability of 1, 2,
1 1

( )
n n

h h
h h

n  
 

    when the agents select *na  

converges to unity as n  increases. 

Moreover, for each {1,2}i , 
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(vi) the probability of ,
1

(1)
n

i h
h

np


  when agent i  selects *n
ia  converges to 

unity as n  increases. 

Property (v) implies that it is almost certain that agents are never fined according to 

relative performance evaluation. Property (vi) implies that it is almost certain that 

agents are never fined according to absolute performance evaluation, either. Hence, for 

a sufficiently large n , *na  almost certainly induces ( ) 0ix    for each {1,2}i ; 

that is, property (ii) holds. 

 Let us arbitrarily fix 0  . We prove property (iii) as follows. Suppose that there 

exists *
i ia a  such that 

(6)   * *( , ) ( )i i j iv a a v a   . 

In this case, the number of tasks for which agent i  makes undesirable action choices 

must be greater than n ; that is, 

,
1

n

i h
h

n a n


  . 

Hence, irrespective of  , it is almost certain that , ,
1 1

1 1n n

j h i h
h hn n
 

 
   is approximated 

by 

,
1

1
{ (1 ) ( )}( )

n

i h
h

p p n a
n

 


   , 

which is greater than 

{ (1 ) ( )} 0p p     . 

This, along with the fact that 
1

( )n
n
  is close to zero, implies that it is almost certain 

that 

   , ,
1 1

1 1 1
( )

n n

j h i h
h h

n
n n n

  
 

   , 

and, therefore, agent i  is almost certainly fined according to relative performance 

evaluation. Hence, * *( , ) ( )i i j iu a a u a  is approximated by 

   ,
1

1
( ) { (0) 1}

n

i i h i
h

u H a u
n 

    , 
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which is negative, because of inequality (5). This contradicts (6). Hence, we have 

proved that with a sufficiently large n , *na  is an  Nash equilibrium. 

 We prove property (iv) as follows. Since 1   and ( )p   are continuous and 

increasing, it follows that for every 0  , there exists *( ) 0     such that 

   (1) ( ) (1 ) (1 )p p p       . 

Let us arbitrarily fix 0  . From the inequality of (5), we can select 0   such that 

(7)   *min[ ( ) ( ( )), ( ) 1] 3i iu H F u H        , 

where we denote 
0

( ) ( )F f d




  


  . For each {1,2}i , let us consider any strategy 

profile a  such that 

,
1

1
1

n

i h
h

a
n




   and , ,
1 1

n n

i h j h
h h

a a
 

  . 

From the definition of *( )  , it follows that when a macro shock weaker than *( )   

occurs, it is almost certain that, for a sufficiently large n , 

, ,
1 1

min (1), ( )
n n

i h j h
h h

np n  
 

    
  . 

This implies that the probability of agent i  being fined is greater than *( ( ))F    in 

approximation. 

Suppose that 

, ,
1 1

0
n n

j h i h
h h

a a n
 

    . 

When agent i  selects another strategy i ia a  such that , ,
1 1

1
( )

n n

i h i h
h h

a a
n  

   is 

approximated by 2 , for a sufficiently large n , it is almost certain that 

, ,
1 1

( )
n n

i h j h
h h

n  
 

   ; therefore, agent i  is almost certainly never fined. Hence, 

( , ) ( )i i j iu a a u a  is at least approximated by 

*( ) ( ( )) 2iu H F      , 

which is greater than  , because of inequality (7). This implies that a  is not an 

 Nash equilibrium. 
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 Next, suppose that 

, ,
1 1

n n

j h i h
h h

a a n
 

   . 

Irrespective of  , for a sufficiently large n , it is almost certain that 

, ,
1 1

1 1n n

j h i h
h hn n
 

 
   is at least approximated by 

{ (1 ) ( )}p p    , 

which is a positive value. This, along with property (i), implies that it is almost certain 

that , ,
1 1

1 1
( )

n n

i h j h
h h

n
n n

  
 

    ; therefore, agent i  is almost certainly fined. When 

agent i  selects *
ia  instead of ia , for a sufficiently large n , it is almost certain that he 

is never fined. Hence, *( , ) ( )i i j iv a a v a  is approximated by ,
1

1
( ) 1

n

i i h
h

u H a
n 

     , 

where 

,
1

1
( ) 1 ( ) 1

n

i i h i
h

u H a u H
n 

        , 

which is greater than   because of inequality (7). This implies that a  is not an 

 Nash equilibrium. Hence, we have proved that with a sufficiently large n , there 

exists no  Nash equilibrium a  such that ,
1

1
1

n

i h
h

a
n




  ; that is, property (iv) 

holds. 

Q.E.D. 
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