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Abstract

Many business and policy problems, such as allocation of spec-
trum rights and financial assets, involve allocation of heterogeneous
objects among players with superadditive values. This paper uses lab-
oratory experiments to study core-selecting auctions (clock-proxy auc-
tions of Ausubel, Cramton, and Milgrom (2004)) recently proposed as
a solution to this problem. Our experimental design involves three
factors. The first factor is the auction design and we consider gener-
alized Vickrey auctions, simultaneous ascending auctions, and clock-
proxy auctions. The second factor is the value structure of agents.
In addition to a benchmark case of additive values, we considered su-
peradditive value structures which feature the exposure problem and
the coordination problem. The third factor is subject characteristics.
We ran experiments with professional traders and university students.
We found that clock-proxy auctions outperformed generalized Vickrey
auctions. Clock-proxy auctions outperformed simultaneous ascending
auctions with the exposure problem value structure, and did statisti-
cally equally well with the additive and the coordination problem value
structure. The result suggests a trade-off between effi ciency improve-
ments and complexity in package bidding. An ANOVA of outcomes
demonstrated that auction designs were significant, and the interaction

∗The first draft: November 2005. This draft: August 2010. I thank Larry Ausubel,
Susan Athey, Peter Cramton, Jacob Goeree, Evan Kwerel, Preston McAfee, Paul Milgrom,
Muriel Niederle, Charles Plott, Robert Wilson, and Peter Wurman for their discussions
and help. I would like to thank the audiences of the workshops at the Univerisity of
Tokyo, Stanford GSB, Caltech, and the Society of Advancement of Economic Theory. This
project is supported by the Center for Advanced Research in Finance in the University
of Tokyo, the Frontier project of the Information Processing Agency of the Ministry of
Trade, Industry, and Economy (070131), the Grant-in-Aid for Scientific Research by the
Japan Society of Promotion of Sciences (208032, 228026, and 20530266), and the Nomura
Foundation for Academy and Sciences. The software used for this experiment is available
at http://www.carf.e.u-tokyo.ac.jp/research/t-tree/t-tree_intro.html.
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terms were often significant. We estimated the effect of auction design
on effi ciency and revenue and found that its magnitude depended on
the valuation structure and subject characteristics. The result suggests
that market design is not one-size-fits-all and a successful design builds
on an understanding of fine details of the problem environments.

1 Introduction

The goal of market design is to define trading procedures which improve
effi ciency and other performance goals. Formally, the problem is

maximize f(x : t) subject to x ∈ X (1)

where x is a trading procedure, X is the design space of the possible trading
procedures, t is the characteristics of agents, and f(x, t) is the performance,
such as effi ciency or revnue, desired by the designer. The task of the market
design is to characterize the mechanism x∗(t) that maximixes the perfor-
mance goal f(x, t).

In this paper, we an experimental approach to evaluate performances
of trading procedures. In this experimental approach, a researcher starts
with the experimental design where a researcher controls the levels of fac-
tors which may affect performance. Then, a researcher randomly assigns
these treatments to experimental units and then observes agents’behavior
and performance. An empirical strategy is ‘experimentalist’: that is, a re-
searcher estimates the causal effect of underlying factors on performance.
This approach complements other theoretical and empirical approaches by
getting the data from the reaction of actual human beings while controlling
various other factors that might affect the behavior of agents and perfor-
mance of mechanisms especially when data are not readily available.

The specific problem we consider is the problem of designing of trading
procedures in an environment where multiple heterogeneous and indivisible
objects are going to be allocated among agents with superaddtive values.
Here, heterogeneous objects imply that these goods have different charac-
teristics so agents can have different values for different objects. With super-
additive values, the value of a package of objects can be more than the sum
of the values of the objects in the package. These superadditive values occur
in many problems such as spectrum allocations and sales of companies.

In a simpler problem of allocation of a single object, ascending auc-
tions are reasonable candidates among symmetric risk-neutral agents. First,
they satisfy incentive compatibility: ascending auctions are truthful. Sec-
ond, a truthful equilibrium in ascending auctions is effi cient. Third, by a
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revenue equivalence theorem, the seller expected revenue will be the same
other standard auction mechanisms. Fourth, ascending auctions are simple
to work with. Communication complexity is low since the decision prob-
lem is solely to decide a bid or the drop out price. Furthermore, cognitive
complexity is also low since the price to be paid is transparent. Indeed, in
experiments (Kagel, Harstad, and Levin (1987)), the bids at the first price
auctions were well above the equilibrium predictions. In 80% of the second
price auctions, prices exceeded the dominant strategy price by more than
one minimum increment. In contrast, in 70% of the ascending auctions,
the difference between the actual and the predicted price was less than one
minimum increment.

But we do not yet know the answer in the problem of allocation of
heterogeneous objects. There are three reasons.

• One reason to prefer acending auctions is the exposure problem. Con-
sider an agent who is interested in a package. In order to win the
package, the agent needs to outbid other agents who are only inter-
ested in the subsets. If package bidding is allowed, then the agent can
directly express valuations following the procedure. Otherwise, the
agent needs to compete for each object. The agent may be exposed to
a loss if the superadditive values are not realized. Given this risk, the
agent might bid lower, causing ineffi ciencies. In other words, without
package bidding, package prices may not be discovered correctly.

• But on the other hand, there is another issue that may work against
ascending auctions. This problem is called the coordination problem
(or the threshold problem). Consider agents who are interested only in
smaller packages. If there is no package bidding procedure, then it is
suffi cient that these agents can express their valuations in an auction
for each object. But if a package bidding procedure is allowed, there
might be some other agents who use the procedure to bid for the whole
package. Here, agents interested in smaller packages have an incentive
to bid low in order to free-ride the bids by other bidders to decrease
the payment. Consequently, with package bidding, agents may fail to
coordinate to beat a package bid. That is, object prices may not be
discovered correctly.

• Furthermore, in case of allocation of heterogeous objects, communica-
tion complexity becomes an issue. When there are N objects, there are
2N − 1 possible packages, and potentially agents need to report values
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of these objects to the designer and the designer needs to handle all
of these information to determine desirable allocations and payments.

As a result, the theoretical research has not yet successfully identified
a mechanism which can deal with these issues. This is the reason that we
adopt an experimental approach here. Specifically, we rewrite (1) as

maximize f(x : t1, t2) subject to x ∈ X

where x is the auction design, t1 is the value profile of agents, and t2 is the
subject characteristics. That is, we consider three factors in our experiments:

• For the first factor, we consider three representative auction mecha-
nisms: generalized Vickrey auctions, simultaneous ascending auctions,
and clock-proxy auctions.

—The first mechanism is generalized Vickrey auctions, in which
each agent bids not only on objects but also on packages. Then
the auctioneer selects the value-maximizing allocation. Each agent
then pays the amount which is equal to the minimum amount re-
quired to win the package. Notably, generalized Vickrey auctions
are sealed-bid auctions. Generalized Vickrey auctions satisfy in-
centive compatibility. First, they are truthful: it is always for the
agent’s benefit to report the true valuations. Furthermore, any
effi cient mechanism where sincere bidding is a dominant strategy
and losers have zero payoffs is payoff-equivalent to generalized
Vickrey auctions. However, Generalized Vickrey auctions suffer
from complexity issues, since each agent is required to report the
values for all possible packages.

—The second mechanism is simultaneous ascending auctions. Si-
multaneous ascending auctions have been used in U.S. spectrum
auctions since 1994. Simultaneous ascending auctions proceed in
rounds. At the beginning of each round, the auctioneer sets the
current standing price. Then, each agent bids on objects. In
simultaneous ascending auctions, there are no package bidding
procedures. At the end of the round, the auctioneer chooses the
new standing high bid. The auction ends when there are no new
bids on any auction. The agent with the standing high bid wins
the object. In contrast to generalized Vickrey auctions, simulta-
neous ascending auctions ensure that the market clears for each
object.Simultaneous ascending auctions are simple. Each agent
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needs to bid only on individual objects. The agents are always
clear about whether a bid is winning and its price. Secondly,
the simultaneous ascending auction works well when objects are
substitutes, as straightforward bidding will lead to a competi-
tive equilibrium. However, simultaneous ascending auctions suf-
fer from the exposure problem whenever values are superadditive.

—The third mechanism is the clock-proxy auction (Ausubel, Cram-
ton, and Milgrom (2004)). Clock-proxy auctions are a two-stage
mechanism consisting of clock auctions and proxy auctions. In
a first stage clock auction, the auctioneer sets the price for each
object. Each agent responds by choosing to stay or to drop out.
The auctioneer increases the price for any objects having excess
demand. An auction ends when the market clears for each object.
In the second stage of proxy auctions, each agent sends their val-
ues to a proxy agent. Then proxy agents bid straightforwardly in
hypothetical ascending auctions. Straightforward bidding means
bidding for the package which is most profitable at the current
price. The auctioneer then chooses the value-maximizing alloca-
tion based on submitted bids. An economic rational for clock-
proxy auctions is that the clock stage will lead to a better price
discovery and the outcome of an ascending package auction is
primarily driven by the reported bids.

• As the second factor of the experiment, we consider the value struc-
ture of agents. In our experiment, there are 16 objects arranged in a
rectangle. Five agents are depicted in such a rectangle as in Figure 1.
Each agent has a ’base value’for each object.

１６１５１４１３

１２１１１０９

８７６５

４３２１ Agent 1 Agent 2

Agent 3

Agent 4 Agent 5
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Figure 1: A Geometric Representation of Objects and Agents

— In the benchmark case, each agent has an additive value function.
That is, for each agent, the value of the package is simply the sum
of the values of the individual contained in the package.

—The second case focuses on the exposure problem. In this case,
each agent has a high level of interest for those objects closest to
their location. For example, agent 1 has the strongest interest in
objects 1, 2, 5, and 6. Moreover, Agent 1 has a higher interest in
objects 1, 2, and 5 than in object 6. In this case, the effi cient allo-
cation is that Agent 3 is going to win the objects 6, 7, 10, and 11,
since these objects are closer to agent 3 than to any other agent.
But, agent 3 is going to face the exposure problem: without a
package bidding procedure, it might be diffi cult for agent 3 to
beat each of the other agents, even though their interest in these
objects is weaker. Thus this second case is going to measure the
impact of these exposure problems on the performance of auction
mechanisms.

— In the third case, we consider the coordination problem, where
the level of interest is identical among objects close to an agent.
Consequently, in an effi cient allocation, agent 3 is not going to
win any objects, and it will be agents 1, 2, 4, and 5 who will face
the coordination problem.

Lastly, we examine the impact of subject characteristics. In standard
experiments, the subjects of the experiments are university students. But
there have been concerns since these students are less knowledgeable and
experienced than actual participants in the market. That is, university
students may not be representative of the targeted population. If true, it
may bias the estimate. To investigate this issue, we ran one session with
professional traders who make their living in stock trading and internet
auctions.

Given the experimental data, we move to the next step of empirically
investigating the optimization problem (2). There are four results

• Clock-proxy auctions did better than generalized Vickrey auctions
with the full sample. We find two reasons.

—The first issue is coordination of bids among agents. In package
auctions, the market clears not object-by-object, but as a whole.

6



Therefore, a bid needs to find ’partner packages’with which they
cover all the objects to win. But in package auctions, the number
of possible packages is quite large. Given bid submission costs,
each agent submits only a limited number of bids. Thus, avoiding
conflicts and forming winning combinations are not trivial tasks
for agents. In generalized Vickrey auctions, since it is sealed-bid
simultaneous, each agent does not have any information about
the behavior of other agents. On the other hand, in clock-proxy
auctions, agents can observe the bids by other agents in the first
stage of clock auctions. Thus this information can help the coor-
dination among agents. Naturally, this problem is most severe in
additive value cases where there are no ’focal bids’.

—The second issue is a low revenue equilibrium in generalized Vick-
rey auctions, where agents can engage in a low revenue equilib-
rium strategy by engaging in a demand reduction. In contrast,
in clock-proxy auctions, agents have an opportunity to bid for
objects, which makes a low revenue equilibrium harder to realize.

• Clock-proxy auctions did significantly better than simultaneous as-
cending auctions with exposure problems, and rankings with additive
values and coordination problems are ambiguous. Simultaneous as-
cending auctions yielded higher revenues than clock-proxy auctions.
An explanation for the first result is incentive problems pointed out
in previous research. The second explanation is that exposure prob-
lems in simultaneous ascending auctions sometimes lead agents to bid
too aggressively, causing a loss ex post. This ’naive’bidding behavior
contributed to a high revenue in simultaneous ascending auctions.

• Complexities of trading procedures affect the performance. Large scale
package auctions are diffi cult to grasp, and they involve various dimen-
sions of complexities such as communication complexities and cogni-
tive complexities. We compare the performance of two cases: with
and without time limits. Removing time limits improved effi ciencies,
but still the outcome did not reach full effi ciency because of cognitive
costs and package coordination problems.

• Subject characteristics affect the performance of trading procedures.
We found that with professional traders, agents’payoffs were signifi-
cantly higher. The differences were the biggest with generalized Vick-
rey auctions. One reason is that professional traders frequently engage
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in ’package demand reduction.’This is equivalent to demand reduction
in multi-unit auctions as discussed in Ausubel and Cramton (2000).
In multi-unit auctions, agents reduce bids for later units in order to
reduce the market clearing price. In auctions of heterogeneous objects
with package bidding procedures, reducing the bids for some packages
can still affect the market clearing price. We found that professional
traders engaged in demand reduction more often than students did.
In these package demand reduction equilibria, the allocation is close
to effi cient, but the payment is very small.

• An ANOVA analysis showed that auction designs have significant im-
pact on effi ciencies and seller revenue. The subject characteristics were
not significant for the determination of effi ciencies, but were significant
for the determination of the auctioneer revenue. This result is consis-
tent with the above explanation of strategic package demand reduction
by professional traders. Furthermore, we found that the interaction
terms among factors were often significant. This result suggests that
the magnitude change as a result of change in trading procedures can
depend on factors levels.

Let us briefly summarize four contributions of this paper.

• Clock-proxy auctions have not been previously studied; this is the first
experimental evaluation of clock-proxy auctions. Furthermore, this ex-
periments adopts a large scale setting. Previous studies such as Led-
yard, Porter, and Rangel (1997) and Banks, Olson, Porter, Rassenti,
and Smith (2002) involved only a small number of objects or one di-
mensional superadditivity. On the other hand, our setting introduces
a two-dimensional superadditivity, which will allow the evaluation of
complexity issues.

• We provide experimental evidence of various theoretical hypotheses
concerning package auctions and simultaneous ascending auctions. We
found that generalized Vickrey auctions suffered from low revenue
equilibria, as suggested by Ausubel and Milgrom (2004). Addition-
ally, we found that exposure problems deterred the performance of si-
multaneous ascending auctions, and coordination problems made the
comparison between package auctions and simultaneous ascending auc-
tions inconclusive.

• It is one of the first studies which documents the effect of complexities
on the performance of trading procedure. Because of these bid sub-
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mission costs and complexities, agents chose to focus on some limited
number of objects and packages rather than spreading their efforts
among many objects and packages. Furthermore, we found that re-
moving the time limit of the round - thus decreasing the cost of bid
submission - increased effi ciency and revenue, but not suffi ciently to
realize full effi ciency.

• This is one of the first studies that documents the effect of subject
characteristics on the outcome of the experiments. The result that
subject characteristics significantly affects the performance, especially
regarding seller revenue, suggests that previously proposed estimates
based on university student experiments can be potentially biased.

The rest of the paper is organized as follows. Section 2 defines the
economic environments and auction mechanisms used in this experiment.
Section 3 describes the experimental design. Section 4 explains our find-
ings for pairwise comparison among treatment groups. Section 5 considers
ANOVA and estimation of auction design. Section 6 concludes.

1.1 Previous Studies

Our research builds on previous experimental contributions.
Banks, Ledyard, and Porter (1989) compared object-wise double auc-

tions, administrative process, iterative VCG mechanisms and combinator-
ial ascending bid mechanisms (Adaptive User Selection Mechanisms). Our
results are consistent with their results: combinatorial mechanism can be
effective in the presence of superadditivity.

Ledyard, Porter, and Rangel (1997) compared the performances of se-
quential ascending auctions, simultaneous ascending auctions, and the AUSM
mechanisms. There were unit demand restrictions, three objects, or restric-
tion to the number of packages the agents have interests in. When objects
were substitutes, package bidding did not have a significant effect on perfor-
mance. When there were exposure problems, AUSM led to a significantly
higher effi ciency but the coordination problems did not have significant im-
pacts. Our results on the comparison between clock-proxy auctions and
simultaneous ascending auctions are consistent with their results. A differ-
ence is that our setting is of much larger scale. Thus, complexity of package
bidding trading procedures has an impact on performance.

Recently, Morgan (2002) conducted experiments comparing the perfor-
mance of generalized Vickrey auctions and simultaneous ascending auctions
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in the environment of three objects and 15 agents. Little difference was
found among the performance of these mechanisms. A difference between
our setting and his setting is the scale of the auctions: our setting involved 16
objects. Complexity due to a large number of objects explains the difference
in results.

Banks, Olson, Porter, Rassenti, and Smith (2002) considered experi-
ments comparing the performance of simultaneous multi-round auctions,
with ascending auctions having package bidding. They found that ascend-
ing auctions with package bidding achieved higher effi ciencies with comple-
mentary value functions. Their results are consistent with our results. Our
experimental design introduces specific value structures and subject charac-
teristics.

Finally, let us emphasize the issues in our research which the previous
research did not deal with. First, we consider a large-scale setting with a
two-dimensional formulation of superadditivity. Second, we consider fac-
tor design which specifically focuses on exposure problems and coordination
problems. Third, we examine the impact of complexity of trading proce-
dures. Finally, we conduct analysis of subject characteristics.

2 Economic Environments and AuctionMechanisms

In this section we formulate the economic environment and define the auction
mechanisms.

2.1 Economic Environments

We consider a complete information private value environment.
We begin with the definition of objects and packages. Suppose there

are N ∈ N++(heterogeneous) objects. A package is z = (z1, ..., zN )with
zn ∈ {0, 1}̇for each n. Let Zbe the set of all packages.

There are L ∈ N++agents. Let agent l’s value function be vl : Z → R+.
Agent l′s payoff from acquiring a package z and paying bl(z)is vl(z) −

bl(z).
The value function of agent lis additive if for any z,

vl(z) =
∑

zm:
∑
zm=z

vl(zm)

where zm = (0, ..., 1, ..., 0)︸ ︷︷ ︸
m th element

. That is, the value of a package is equal to the
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sum of the values of objects comprising the package. The value function of
agent lis superadditive if for any z,vl(z) ≥

∑
zm:

∑
zm=z

vl(zm)and there is
some zsuch that a strict inequality holds.

2.2 Auction Mechanisms

We now introduce auction mechanisms.

2.2.1 Generalized Vickrey Auctions

A generalized Vickrey auction (Vickrey (1961), Clarke (1971), and Groves
(1973)) consists of three procedures. First, agents l = 1, ..., L simultaneously
place bids. Package bidding is allowed. Let v′l : Z → R+ be a bid by agent
l. Given incentive constraints, v′lmay well be different from vl. Second,
the auctioneer chooses the value-maximizing allocation according to the re-
ported valuation. Let {z∗l } = arg max{zl}

∑
l v
′
l(zl)subject to 0 ≤

∑
l zl ≤

1, 0 ≤ zl ≤ 1,∀l. Third, each agent pays the externality imposed upon other
agents. In order to compute the payment, the auctioneer first computes
the values other agents get when the agent is absent from the auction. Let
αl = max

∑
m 6=l v

′
m(zm)subject to 0 ≤

∑
m 6=l zm ≤ 1, 0 ≤ zm ≤ 1,∀m. Then,

using this amount al, the payment is defined by pl = αl −
∑

m6=l v
′
m(z∗m).

2.2.2 Simultaneous Ascending Auctions

The second auction mechanism is the simultaneous ascending auction, which
proceeds in rounds. At the beginning of each round, the auctioneer sets,
for each object, the provisional winner and the price p(zn), n = 1, ..., N .
For each object, any agent can submit a bid that is at least equal to the
provisional price plus the minimum price increment. Package bidding is not
allowed. At the end of the round, the auctioneer determines the provisional
winner and price of each object. The provisional winner is the agent with
the highest bid for that object. The auction ends at the round when no
auction has any new bids. During the auction, each agent is fully informed
of all bids and bidder identities.

In order to isolate the effect of package bidding, our implementation of
simultaneous ascending auctions is simpler than the actual FCC auctions.
For example, we do not impose eligibility rules, activity rules, or bid with-
drawal; agents are not subject to any quantity cap; minimum bid increments
are fixed throughout the auction.
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2.2.3 Clock-Proxy Auctions

The third mechanism is clock-proxy auctions proposed by Ausubel, Cram-
ton, and Milgrom (2004). The clock-proxy auction consists of two stages:
clock auctions followed by proxy auctions. The clock proxy auctions are
’demand-query’mechanisms, and they implement the Walrasian auction-
eer. First, at the beginning of each round, the auctioneer sets the price
p(zn), n = 1, ..., N . The prices are usually those from the previous round
plus some increments (for more details, see Ausubel, Cramton, and Milgrom
(2004)). Second, each agent decides whether to stay in or drop out from the
auction (i.e., demand query). Third, the whole auction closes when there
are no active auctions remaining. Bids at the clock auction will be used as
a package bid in a proxy auction.

The proxy auctions are a version of ascending proxy auctions defined
in Ausubel and Milgrom (2002). First, each agent chooses and sends their
values to a proxy agent. Second, proxy agents participate in an ascending
auction by bidding straightforwardly. At each round of the ascending auc-
tion, provisionally winning bidders don’t do anything in this round.Third,
each provisionally losing bidder (proxy) computes the current surplus for
each package (valuation - standing highest bid) and chooses one package
with the highest surplus. If the surplus is higher than the bid increment,
he places a bid for this package: standing highest bid plus a bid increment.
If more than one proxy choose to bid for the same package, only one of
them will be awarded this bid. Fourth, at the end of each round, after all
agents have made their bids, the auctioneer selects the combination of non-
conflicting bids that maximizes their values and chooses the start values for
the next round. Fifth, the auction ends when there are no new bids from
proxy agents.

The first stage of clock auctions is similar to simultaneous ascending
auctions in that they allow only object-by-object bidding. However, clock
auctions are distinct in that the price increases are driven by the clock set
by the auctioneer. The decision problem of each agent is whether or not to
drop out. The second stage of the ascending proxy auction is similar to the
Vickrey auction in that it includes the package bidding procedure. However,
the ascending package auction is distinct in that each agent provides a value
profile to their proxy agent, and the proxy agent bids straightforwardly
according to the reported value profile.
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2.3 Review of Theory and Hypothesis

In this subsection, we summarize the hypothesis to be experimentally tested.

2.3.1 Substitute Case

We first consider the case where objects are substitutes. Recall that objects
are substitutes if for each objectm, the demand for objectmis nondecreasing
in the price pj , j 6= m. That is, the demand for each good is nondecreasing
in the prices of other goods. Equivalently, we can define substitutes in terms
of isonotinicity of the rejected set in the set of available contracts. An exam-
ple is the case where the value functions are additive. When the packages
have superadditive values, this substitute relationship does not necessarily
hold since the demand for object mmay come from the package value that
includes object j. It is intuitive that an increase in the set of available con-
tracts corresponds to price decreases. A key result in case of substitutes
(Gul and Stacchetti (1999) and Milgrom (2000), for example) is that a com-
petitive equilibrium exists in this case. An intuitive argument: Consider
prices and allocations obtained at the end of the process of straightforward
bidding according to the true value function. At the end when there are no
new bids, each bidder’s allocation maximizes the payoff, given prices by the
straightforward bidding. That is, it suffi ces for the mechanism to discover
the market clearing price for each object.

Since it is suffi cient to discover the prices for each object, and prices for
the packages need not be discovered, it is conjectured that package bidding
procedures will have little impact. Indeed, when goods are substitutes, there
exists a dominant strategy equilibrium in ascending proxy auctions which
will lead to Vickrey payoffs (Ausubel and Milgrom (2002)). An intuitive ar-
gument: With sincere bidding, if the payoff is less than Vickrey payoffs, then
there is a blocking coalition adding that bidder because of bidder submodu-
larity. Thus the payoff is that of Vickrey payoffs, thus a dominant strategy.
These observations can be summarized in the following hypothesis:

Hypothesis 1. When the objects are substitutes, there will be little per-
formance differences among generalized Vickrey auctions, simultaneous as-
cending auctions, and clock-proxy auctions.

2.3.2 Superadditive Values: Exposure problem

But when objects are complements, the equivalence no longer holds. Com-
petitive equilibrium may fail to exist. The mechanism may need to discover
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both object and package prices. Generalized Vickrey auctions are still truth-
ful. But an agent needs to report the value for all possible 2N − 1packages.
Ascending auctions will suffer from two strategic incentive problems: expo-
sure problems and coordination problems. Recall that exposure problems
are defined as follows: when an agent has superadditive values, the value
of a package is higher than the values of the objects consisting a package.
If package bidding is not allowed, then the exposure problem can lead to
ineffi ciencies. Thus, the hypothesis about exposure problems:

Hypothesis 2. When exposure problems are present, introducing package
bidding procedures will improve effi ciency.

2.3.3 Coordination Problem

On the other hand, package bidding procedures will introduce a coordina-
tion problem among agents against a package bidder. Recall a coordination
problems applies to agents who are interested in individual objects but need
to beat a package bidder. If package bidding is allowed, then coordination
failure can lead to ineffi ciencies. This leads to the following hypothesis:

Hypothesis 3. When there are coordination problems, introducing package
bidding procedures may not improve effi ciency.

3 The Experimental Design

In the previous section, we defined three auction mechanisms and reviewed
the main hypothesis of this paper. In this section, we define the experimental
design and remaining two factors.

We begin with the formulation of objects and values used in the experi-
ment. There are 16 objects and 5 agents. Each agent has a value vl (zn)for
each of 16 objects. This value is fixed in all three treatments. (The values
of the packages are how these treatments will differ.) We show an example
of the object values by agent 1. The detailed values for other agents are in
Appendix B.
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Figure 2: An Example of Base Values of an Agent

3.1 The Valuation Structure

After auction design, valuation structure of agents is the second factor in
this experiment. Specifically, we will consider three cases: the additive value
case, the exposure problem case, and the coordination problem case. The
first case is where the value of the package is given by the sum of values
of the individual object composing the package. That is, for each package
B, vl(B) =

∑
zn:the nth element of Bn is 1 vi(zn)̇. Evidently, the additive value

function satisfies the substitute condition. The figure below explains the
value-maximizing allocation.

Bidder 5 Bidder 2 Bidder 4

Bidder 1 Bidder 2 Bidder 2 Bidder 4

Bidder 1 Bidder 5 Bidder 4 Bidder 5

Bidder 5 Bidder 4 Bidder 5 Bidder 5

Bidder 1

Figure 3: Effi cient Allocation for The Additive Value Case

In the following two cases, we will consider superadditive values. Before
going into the details, we first define the functional form of value functions
common to these two cases. Specifically, the value of a package zfor agent
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i, vi(z)is given by

vi(z) =
∑

zk:kth element of z is 1

vi(zk)

+0.01
∑

zl,m:l,mth element of z is 1 and l,m are in the area of special interest

µi(l)µi(m)vi(zl)vi(zm).

The first term adds up the values of the individual objects contained in
the package. The second term describes the superadditive values. These
parameters µldenote intensities of superadditive values.

In this paper, we consider a following distribution of µfor each agent.Let
Ai = {k : µi(k) > 0}be the set of objects that agent iis especially interested
in. We assume A1 = {1, 2, 5, 6}, A2 = {3, 4, 7, 8}, A3 = {6, 7, 10.11},A4 =
{9, 10, 13, 14},and A5 = {11, 12, 15, 16}. An economic interpretation is that
each agent is interested in the objects close to its location. The following
table explains the distribution of Ais’for agent 1-5. These distributions of
Ai are common in all treatments. The only difference in two cases comes
from the different values of µ. There are conflicts on objects 6, 7, 10, 11,
since there are two agents who have special interest in these objects. This
conflict causes coordination problems or exposure problems depending on
the parameter values of µ.

Agent 1 Agent 2

Agent 3

Agent 4 Agent 5

Figure 4: Areas of Interest

Let us compare this formulation with that of Banks. Olson, Porter, and
Rassenti (2002). Their formulation is

Vi(z) =
∑

k∈B(z)
vi(zk) + λi(

∑
j

q)βii +4i(
∑
j∈X

∑
k∈∪A

δj(k))αi
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with the parameter values of λ ∈ {78, 150, 175}, β ∈ {1, 1, .65}, 4 ∈
{120, 229, 230},and α ∈ {1.65, 1.65.2.05}. Their interpretation is that the
second term refers to superadditivity coming from the scale economy (qis
the population) and the third term concerns superadditivity coming from
being adjacent to each other. First, they arrange the objects in a circle so
that δj = 1if and only if objects are adjacent to each other. Furthermore,
the set of objects on which the agents have superadditivity is limited to the
five identical objects out of the 10 (the sets Φand Ψ). Given their value of
β, the superadditivity comes mostly from geographically adjacent licenses.
This point is similar to ours, where superadditivity comes from the adja-
cency to the agent location. A first difference is that their formulation of
superadditivity is based on the objects’topology forming a one dimensional
structure (circle), while our formulation has a richer two dimensional struc-
ture. Second, in their formulation, the set on which superadditiviy is defined
is common to all the agents, while in our case, different agents have different
areas of interest which vary by location. Two implications of this difference
are that package coordination among agents is more important in our model,
and that our formulation allows a distinct formulation of exposure problems
and coordination problems.

3.1.1 The Exposure Problem

In the second case, we consider a parameterization which focuses on the
exposure problem. Specifically, we assume

µR1 (1) = µR1 (2) = µR1 (5) = 0.3, µR1 (6) = 0.1

µR2 (4) = µR2 (3) = µR2 (8) = 0.3, µR2 (7) = 0.1

µR3 (6) = µR3 (7) = µR3 (10) = µR3 (11) = 0.3,

µR4 (13) = µR4 (9) = µR4 (14) = 0.3, µR4 (10) = 0.1,

µR5 (16) = µR5 (12) = µR5 (15) = 0.3, µR5 (11) = 0.1.

That is, the weight of an object for an agent decreases as the distance

between the agent and the center of the object increases. In this setting,
we focus on the exposure problem of agent 3. In this setup, the effi cient
allocation is that agent 3 aggregates the objects {6, 7, 10, 11}, as shown in
Figure 5.
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Bidder 1 Bidder 2 Bidder 2

Bidder 1 Bidder 3 Bidder 3 Bidder 2

Bidder 4 Bidder 3 Bidder 3 Bidder 5

Bidder 4 Bidder 4 Bidder 5 Bidder 5

Bidder 1

Figure 5: Effi cient Allocation for Exposure Values Case

But agent 3 faces the exposure problem of having to beat other agents in
auctions for objects 6, 7, 10, and 11. For each object, agent 3 is not the one
with the highest valuation. If agent 3 ends up winning only one object, then
agent 3 will face the risk of losing money.

Object 6 7 10 11
agent 1 400 400 500 400
agent 2 700 600 300 300
agent 3 300 500 600 600
agent 4 200 400 500 700
agent 5 200 300 700 500

Table 1: Exposure Problem

Furthermore, a competitive equilibrium does not exist here. To show
this, suppose there exists a competitive equilibrium price {pl}l=1,...,16. Now
consider agent 1. In an equilibrium, agent 1 wins objects 1, 2, and 5 but not
each of 1, 2, 5, 6. This implies that the competitive prices must be such that
agent 1 finds it profitable to buy objects 1, 2, and 5 while passing on object 6.
This implies the following inequalities: p1+p2+p5 ≤ 2400, p1+p2+p5+p6 ≥
3591→ p6 ≥ 1191. Using a similar calculation, we obtain the following lower
bounds for the prices for the package {6, 7, 10, 11}: p6 + p7 + p10 + p11 ≥
1191 + 942 + 770 + 799 = 3632. But agent 3’s valuation for the package,
which is 3324, is less than the price. Thus competitive equilibrium prices do
not exist.

3.1.2 The Coordination Problem

The next case focuses on the coordination problem, which tests the ability
of trading procedures to coordinate agents to achieve an effi cient allocation
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against package bids. First, we consider the following weights:

µR1 (1) = µR1 (2) = µR1 (5) = µR1 (6) = 0.2

µR2 (4) = µR2 (3) = µR2 (8) = µR2 (7) = 0.2

µR3 (6) = µR3 (7) = µR3 (10) = µR3 (11) = 0.2

µR4 (13) = µR4 (9) = µR4 (14) = µR4 (10) = 0.2

µR5 (16) = µR5 (12) = µR5 (15) = µR5 (11) = 0.2.

A graphical representation of the weights for agent 1 is given in the following
table.

0.2 0 0

0.2 0.20.2 00 0

0 00 00 0

0 0 0 0

0.2

Bidder 1

Bidder 4 Bidder 5

Bidder 3

Figure 6: Weights for Agents

This case exhibits a coordination problem for agent 3 as follows. Effi cient
allocation would imply that agent 1 wins object 6, agent 2 wins 7, agent 4
wins 10, and agent 5 wins 11. In this case, agents 1, 2, 4, and 5 have to
coordinate their bids against agent 3 who is interested in the package.

Bidder 1 Bidder 2 Bidder 2

Bidder 1 Bidder 1 Bidder 2 Bidder 2

Bidder 4 Bidder 4 Bidder 5 Bidder 5

Bidder 4 Bidder 4 Bidder 5 Bidder 5

Bidder 1

Figure 7: Effi cient Allocation for Coordination Problems Case

Let us take a closer look at the valuations. Agent 3 has the valuation of
2588 for the package of 6, 7, 10, and 11. In the table below, we computed
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the value of the package {6, 7, 10, 11} for agents 1, 2, 4, and 5. It becomes
evident that none of these agents can act alone and still beat agent 3.

Agent 1: 1800 Agent 2: 1900
Agent 4: 1500 Agent 5: 1700

Table 2: Coordination Problem.

3.2 Subject Characteristics

The last factor we consider is subject characteristics. In order to test the
effect of subject characteristics on performance, we conducted experiments
with university students as well as financial or ecommerce industry profes-
sionals.

3.3 The Treatment Structure

In summary, this experiment has the following 18 possible treatment com-
binations, as seen in Table 2. They have fixed effects since the same levels
were used for repeated experiments.

3.4 Experimental Procedures

In this section, we report the experimental procedures.
The subject pools of the experiment are Caltech students, students from

other schools, and professional traders in ecommerce and financial markets.
The subjects were recruited using email and postings at [recruiting web site
URL]. Professional traders are defined to be ones who make or made their
living through trading in securities markets or eBay markets. We asked
subjects to submit their resumes to verify these qualifications. Copies of
these resumes are available upon request, provided that subjects consent.

We have implemented the auction algorithms on a server at [the auction
web site URL] and conducted experiments on computer networks at Cal-
tech and Stanford University. Prior to the experiments, we distributed the
instructions that are posted at the above website. We went through simple
examples and asked questions before experiments started. No deceptions
are involved in this experiment.

In this experiment, an experimental unit is an individual auction with
each agent having a specific value structure. We had multiple observation
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Treatment No. Auction Factor Value Factor Subject Factor
1 VCG Additive Students
2 VCG Additive Traders
3 VCG Exposure Students
4 VCG Exposure Traders
5 VCG Coordination Students
6 VCG Coordination Traders
7 SAA Additive Students
8 SAA Additive Traders
9 SAA Exposure Students
10 SAA Exposure Traders
11 SAA Coordination Students
12 SAA Coordination Traders
13 Clock-Proxy Additive Students
14 Clock-Proxy Additive Traders
15 Clock-Proxy Exposure Students
16 Clock-Proxy Exposure Traders
17 Clock-Proxy Coordination Students
18 Clock-Proxy Coordination Traders

Table 3: Experimental Design

units for each cell. Specifically, we implemented the following experimental
unit structure. The order of experiment is randomized among treatments
to average out the effect of drift and learning. Each subject is randomly
assigned a role of one of agents 1-5 at the beginning of the session. The
subjects then played three auctions, after which the agent assignments were
changed. For example, if a subject starts as agent 1 and plays these three
auctions, the subject would then play the role of agent 2, followed by agent
3, agent 4, and agent 5. Five subjects participated in a session. The length
of session varied from three to three and one-half hours. This experimental
unit design implies that we took repeated measurements to improve the
power to detect effect of factors.

In total, we ran 100 auctions. The breakdown is 30 experiments each for
generalized Vickrey and simultaneous ascending auctions, and 40 for clock-
proxy auctions. We ran 30 clock-proxy auctions with the same round limit as
the generalized Vickrey auctions and the simultaneous ascending auctions.
The remaining 10 clock-proxy auctions were run without time limit. The
last are excluded from the pairwise comparison of mechanisms, because they
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are intended only for comparison with the clock-proxy auctions that use a
time limit. For a list of all experiments, see Appendix A.

4 Pairwise Comparisons

Now that we have the data from the experiments, we analyze this data to
empirically study the market design problem (1). The empirical problem
is simpler than the standard ’natural experiment’types of models in eco-
nomics (see Angrist and Krueger (1995) for a survey), since a researcher can
control the variation in the explanatory variables and the interaction among
selection and treatment.

We start with a pairwise comparison of performances among treatment
groups. Pairwise comparison is attractive because it entails fewer assump-
tions about the data generating process than would ANOVA or other linear
models have.

Since we have implemented balanced design, there are same number of
observations for each treatment. (The ratio of students/traders is constant
- conditional on values - and each auction design has the same number of
treatments for each value structure.) Thus we can compare the performance
of the mechanisms, conditional on the choice of designs. We first conduct a
standard t-test on the null hypothesis that performance is the same for the
two treatments. To test the robustness, we consider a difference-in-difference
estimator (with pretest values equal to zero) with the other factors (values,
subject characteristics, a sequence in a session, and a session) fixed. This
estimator will remove biases associated with common learning effects and
session-level heterogeneity which might be correlated with performance. We
then conduct a t-test to test the null hypothesis of zero difference. Fur-
thermore, we consider a nonparametric Wilcoxon test to remove underlying
distributional assumptions.

4.1 Dependent Variables

We measure the performance of the mechanism in terms of its effi ciency and
revenue. The first metric is allocation effi ciency. Let z = (z1, ..., zL) be an
allocation. In this case, a relative effi ciency is defined in terms of the effi cient
allocation. Let z∗ be that effi cient allocation. Then

Effi ciency (Relative) =
∑
l

vl(zl)/
∑
l

vl(z
∗
l ).
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Let bl(zl) be the payment by agent l for a package zl. In this case, the
auctioneer revenue is

Revenue =
∑
l

bl(zl).

A relative revenue is defined to be

Revenue (Relative) =
∑
l

bl(zl)/
∑
l

vl(z
∗
l ).

Given allocation {zi} and payment {bi(zi)}, agent i’s payoff is ui(zi, bi) =
vi(zi)− bi(zi). Then, the aggregate payoff is defined by

Aggregate Payoff=
∑
l

ul(zl, bi).

A relative aggregate payoff is defined by

Aggregate Payoff (Relative) =
∑
l

ul(zl, bi)/
∑
l

vl(z
∗
l ).

4.2 Vickrey Auctions Versus Clock-Proxy Auctions

We first present the results for the pairwise comparison between clock-proxy
auctions and generalized Vickrey auctions.

4.2.1 The Full Sample

We first compare the performance taking the whole sample. Because of
balanced design, this comparison is valid.
Result 1. Clock-proxy auctions produced significantly higher effi ciency lev-
els than generalized Vickrey auctions did.

Obs REffi ciency RRevenue RProfit
Clock-Proxy 28 0.8564 0.4277 0.3372
Generalized Vickrey 30 0.7439 0.3772 0.2521
Difference 0.113 0.051 0.082

Table 4: Summary Statistics of Clock-Proxy Auctions and Generalized Vickrey
Auctions: the Full Sample
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Figure 8: Box Plots of Effi ciencies and Revenues

Effi ciency Revenue Profit
T Test with Unequal Variance 2.20 (0.0323) 1.01 (0.3183) 0.87 (0.3903)
T Test for a Difference 2.44 (0.0177) 1.01 (0.3154) 0.88 (0.3837)
Wilcoxon for a Difference 2.53 (0.0057) 1.95 (0.0254) 0.48 (0.3150)

Table 5: Statitical Tests of the Hypothesis of Equal Performances between
Clock-Proxy Auctions and Generalized Vickrey Auctions: the Full Sample

These results imply that clock-proxy auctions outperformed generalized
Vickrey auctions in our experiments. In terms of relative effi ciency, the
null hypothesis is rejected at the 5% level. Clock-proxy auctions have a
higher seller relative revenue according to a nonparametric Wilcoxon test.
An implication of this result is that hypothesis 1 - performances are the
same with substitutes - does not hold for generalized Vickrey auctions and
clock-proxy auctions.

A reason for this effi ciency difference is the package coordination prob-
lem. In package auctions, the market clears as a whole, not individually.
A bid needs ’partner bids’to cover the whole allocation. For example, in
order for a bid {1,2,5,6} to win, it is necessary to have package bids which
cover exactly {3,4,7,8,9,10,11,12,13,14,15,16}. In an idealized world where
bid submission costs are all zero, agents could feasibly submit bids for all
possible packages, thus coordination would not be an issue. But in a realistic
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situation where there are bid submission costs and agents submit bids only
for a subset of all possible packages, coordination becomes an issue. For ex-
ample, in generalized Vickrey auctions, which are sealed and simultaneous,
agents are in the dark about bids made by other agents. By contrast, in
clock-proxy auctions, agents can observe the first stage clock bids and use
that information to ease these coordination problems. This coordination is
hardest when there are no obvious packages to bid, that is, in a case without
superadditivity.

Another reason for revenue difference is a low-revenue equilibrium in
generalized Vickrey auctions. In addition to a truth-telling equilibrium,
there are additional equilibria that imply low revenue for the auctioneer. As
we will see, although student subjects were unlikely to achieve a low revenue
equilibrium, professional traders often played a low revenue equilibrium. (Of
course, the number of auctions participated in by students and traders is
identical between two treatments.) One form of a bidding pattern is that each
agent bids exactly for the package that is a part of an effi cient allocation,
and does not bid at all for any other package. In this setting, removing an
agent does not cause externalities on other agents. Therefore, the payment
by each agent is equal to zero. This results in zero revenue for the auctioneer.
For example, in auction ADD-VCG-09, agents achieved an effi ciency level
of 8400 but the auctioneer revenue was 0. In this auction, agent 1 placed
only one bid, agent 2 placed only five bids, agent 3 placed only one bid,
agent 4 placed only four bids, and agent 5 placed only one bid. As a result,
the allocation with the second highest value is zero for every agent. An
equilibrium of that extreme level was not observed in clock-proxy auctions
where there was a clock stage. In the first stage of clock-proxy auctions,
agents have an opportunity to bid for a single object, which can upset the
low-revenue equilibrium.

4.2.2 Additive Values

We then compare the performance in additive value cases. The null hypoth-
esis of equal relative effi ciency is rejected.

Result 2. In the additive value case, clock-proxy auctions achieved higher
effi ciencies. In both auctions, full effi ciency was not achieved.

Even with additive values, clock-proxy auctions and generalized Vickrey
auctions did not achieve full effi ciency. A standard result suggests that each
agent may engage in straightforward bidding to achieve full effi ciency in these
auctions. Nevertheless, in the experiments, agents with bid submission costs
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Obs Effi ciency Revenue Profit
Clock-Proxy 8 0.6789 0.4797 0.1992
Generalized Vickrey 10 0.5368 0.3713 0.1654
Difference 0.142 0.108 0.034

Table 6: Summary Statisticsn of Clock-Proxy Auctions and Generalized Vickrey
Auctions: Additive Values

engage in strategic bidding or do not enter a suffi cient number of bids to
realize full effi ciency. For example, in ADD-VCG-02, user 4 submitted a
bid for the whole package 1-16. Other agents, submitting only several bids,
could not form a coalition to upset this bid.
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Figure 9: Box Plots of Effi ciencies and Revenues

Effi ciency Revenue Profit
T Test (Unequal Variance) 2.01 (0.0619) 1.23 (0.2383) 0.28 (0.7838)
T Test for a Difference 1.50 (0.1546) 1.09 (0.2934) 0.51 (0.6144)
Wilcoxon for a Difference 1.74 (0.0409) 1.73 (0.0410) 0.84 (0.2021)

Table 7: Test Statistics of the Hypothesis of Equal Performances between
Clock-Proxy Auctions and Genearlized Vickrey Auctions: Additive Values

26



4.2.3 The Exposure Problem

Next we consider the exposure problem case. In this case, clock-proxy auc-
tions have higher effi ciency levels, but the differences are not statistically
significant.

Obs Effi ciency Revenue Profit
Clock-Proxy 10 0.9828 0.4061 0.5767
Generalized Vickrey 10 0.8968 0.4566 0.4402
Difference 0.086 -0.505 0.136

Table 8: Summary Statistics of Clock-Proxy Auctions and Genearlized Vickrey
Auctions: the Exposure Problem
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Figure 10: Effi ciencies and Revenues

Effi ciency Revenue Profit
T Tests 1.81 (0.1023) -0.75 (0.4682) 1.26 (0.4682)
T Tests for a Difference 1.68 (0.1092) -0.64 (0.5298) 1.10 (0.2852)
Wilcoxon for a Difference 1.29 (0.0992)

Table 9: Test Statistics of Clock-Proxy Auctions and Generalized Vickrey
Auctions: the Exposure Problem

Result 3. In the Exposure problems case, clock-proxy auctions achieved
higher effi ciency levels, but the difference was not statistically significant.
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Thus, in an environment with exposure problems, clock-proxy auctions
achieved similar results in terms of effi ciency. A difference from the additive
case is that with superadditive values, each agent tends to bid with packages
with higher values. This eased coordination among agents. Thus, both
auctions achieved a very high level of effi ciency, compared with other cases.

4.2.4 The Coordination Problem

Finally, we move to the case of coordination problems. The results are
similar to the coordination problem case.

Obs Effi ciency Revenue Profit
Clock-Proxy 10 0.872 0.4079 0.4642
Generalized Vickrey 10 0.7981 0.3038 0.4943
Difference 0.074 0.104 0.0301

Table 10: Summary Statistics of Clock-Proxy Auctions and Generalized Vickrey
Auctions: the Coordination Problem
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Figure 11: Box Plots of Effi ciencies and Revenues

Result 4. In the coordination problems treatment, clock-proxy auctions
achieved higher effi ciency levels than generalized Vickrey auctions did, but
the differences were not statistically significant.
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Effi ciency Revenue Profit
T Tests 0.99 (0.3428) 1.03 (0.3184) -0.32 (0.7548)
T Tests for a Difference 1.12 (0.2759) 1.50 (0.1498) -0.35 (0.7320)
Wilcoxon for a Difference 1.19 (0.1151) 1.57 (0.0575)

Table 11: Hypothesis Testing of Equal Performances between Clock-Proxy
Auctions and Generalized Vickrey Auctions: the Coordination Problem

4.3 Clock-Proxy Auctions vs. Simultaneous Ascending Auc-
tions

The previous subsection compared clock-proxy auctions with generalized
Vickrey auctions. This subsection compares clock-proxy auctions with si-
multaneous ascending auctions.

4.3.1 The Full Sample

We start with a comparison between two auctions at the aggregate level.

Clock-Proxy auctions outperformed SAA in the Wilcoxson test, while the
two other tests are inconclusive. On the other hand, auction revenues are
unambiguously higher for simultaneous ascending auctions.

Obs Effi ciency Revenue Profit
Clock-Proxy 28 0.8564 0.4277 0.4287
SAA 30 0.8284 0.6725 0.1559
Difference 0.028 -0.2447 0.173

Table 12: Summary Statistics for Clock-Proxy Auctions and Simultaneous
Ascending Auctions: the Full Sample
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Figure 12: Box Plots of Effi ciencys and Revenues

Effi ciency Revenue Profit
T Tests 0.78 (0.4381) -7.12 (<.0001) 5.39 (<.0001)
T Tests for a Difference 1.17 (0.2479) -4.89 (<.0001) 4.41 (<.0001)
Wilcoxon for a Difference 2.21 (0.0133) -4.41 (<.0001) 4.41 (<.0001)

Table 13: Hypothesis Testing of the Equal Performances Between Clock-Proxy
Auctions and Simultaneous Ascending Auctions: the Full Sample

Result 5. In all treatments, clock-proxy auctions achieved higher effi ciency
levels than simultaneous ascending auctions did, but the differences were
not statistically significant. The simultaneous ascending auctions achieved
significantly higher revenues.

Effi ciency comparison between clock-proxy auctions and simultaneous
ascending auctions depends on the setup. Indeed, clock-proxy auctions out-
performed in the case of exposure problems, but simultaneous ascending
auctions outperformed in the case of additive values and coordination prob-
lems. A difference from Ledyard, Porter, and Rangel (1997) is that we
consider a large-scale 16-object setting in contrast to their 3-object setting.
The number of possible package combinations is far larger in our setting,
which makes complexity issues significant. These complexities make agent
coordination harder in package auctions.

Simultaneous ascending auctions achieved a significantly higher auction-
eer revenue. This result is consistent with previous results in Banks, Ol-
son, Porter, Rassenti, and Smith (2002). One explanation is overbidding in
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exposure problem structure. Another observation is that in simultaneous
ascending auctions, the structure of competitions was clear to the agents
and led to more aggressive bidding behavior.

4.3.2 Additive Values

We begin with the case of additive value functions.

Obs Effi ciency Revenue Profit
Clock-Proxy 8 0.6789 0.4797 0.1992
SAA 10 0.7624 0.6505 0.1119
Difference -0.0835 -0.1708 0.087

Table 14: Summary Statistics of Clock-Proxy and Simultaneous Ascending
Auctions: Additive Values
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Figure 13: Box Plots

Effi ciency Revenue Profit
T Tests -1.36 (0.2060) -2.99 (0.0114) 0.98 (0.3525)
T Tests for a Difference -0.59 (0.5653) -2.09 (0.0545) 1.20 (0.2481)
Wilcoxon for a Difference -1.73 (0.0410)

Table 15: Hypothesis Testing of Equal Performances between Clock-Proxy
Auctions and Simultaneous Ascending Auctions: Additive Values
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Result 6. Simultaneous ascending auctions fared better than clock-proxy
auctions in the additive case, but the difference was statistically insignificant.

Ledyard, Porter, and Rangel (1997) found that effi ciency of simultane-
ous ascending auctions with additive values is close to full effi ciency. The
difference between our results and their results is due to the larger scale of
our auctions. Agents often chose to concentrate on a subset of the objects,
and this leads to a lower effi ciency.

4.3.3 The Exposure Problem

We now compare the performance in the case of exposure problems. Clock-
proxy auctions outperformed simultaneous ascending auctions: the null hy-
pothesis of equal level of relative effi ciency was rejected.

Obs Effi ciency Revenue Profit
Clock-Proxy 10 0.9828 0.4061 0.5767
SAA 10 0.8925 0.6862 0.2063
Difference 0.09 -0.2801 0.37

Table 16: Summary Statistics of Clock-Proxy Auctions and SImultaneous
Ascending Auctions: the Exposure Problem
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Figure 14: Box Plots of Effi ciencies and Revenues

Result 7. Clock-proxy auctions did better than simultaneous ascending auc-
tions in the Exposure problems case.
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Effi ciency Revenue Profit
T Tests 3.20 (0.0099) -5.37 (<.0001) 6.87 (<.0001)
T Tests for a Difference 2.88 (0.0096) -3.04 (0.0067) 3.59 (0.0020)
Wilcoxon for a Difference 3.68 (0.0001) -2.38 (0.0086) 3.99 (<.0001)

Table 17: Hypothesis Testing of Equal Performances between Clock-Proxy
Auctions and Simultaneous Ascending Auctions: the Exposure Problem

This result is consistent with hypothesis 2 (concerning standard exposure
problems). It is harder to aggregate objects without package bidding, since
an agent would incur the possibility of loss. On the other hand, clock-proxy
auctions can aggregate packages through package bidding.

4.3.4 The Coordination Problem

Finally we consider coordination problem value structures. Clock-proxy
auctions did slightly better than simultaneous ascending auctions, but the
difference is statistically insignificant.

Obs Effi ciency Revenue Profit
Clock-Proxy 10 0.872 0.4079 0.4642
SAA 10 0.8301 0.2729 0.1494
Difference 0.042 -0.1494 0.315

Table 18: Summary Statistics of Clock-Proxy Auctions and Simultaneous
Ascending Auctions: the Coordination Problem
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Figure 15: Box Plots.

Effi ciency Revenue Profit
T Tests 0.92 (0.3675) -3.90 (0.0011) 4.04 (0.0009)
T Tests for a Difference 0.87 (0.3954) -3.15 (0.0052) 2.57 (0.0151)
Wilcoxon for a Difference 1.57 (0.00576) -3.19 (0.0007)

Table 19: Hypothesis Testing of Equal Performances between Clock-Proxy
Auctions and Simultaneous Ascending Auctions: the Coordination Problem

Result 8. In Coordination Problems, Clock-proxy auctions and simultaneous
ascending auctions did statistically equally well

The results are consistent with hypothesis 3 (which predicts that because
of coordination problems, package bidding procedures will not improve effi -
ciency that much).

4.4 Subject Characteristics

We now compare the performance between professional traders and students
in regard to coordination. The table below shows that professional traders
achieved much higher payoffs. Interestingly, effi ciencies were unaffected.
This was due to the package demand reduction problem: professional traders
reduced demand for packages, thus reducing the market clearing price. This
demand reduction does not affect effi ciencies in a single unit auction.

Obs Effi ciency Revenue Profit
Traders 25 0.7445 0.3566 0.3879
Students 25 0.8006 0.5887 0.2118
Difference -0.056 -0.2321 0.176

Table 20: Summary Staistics of Auctions with Professional Traders and Students
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Figure 16: Box Plots.

Effi ciency Revenue Profit
T tests -1.13 (0.2626) -3.86 (0.0003) 2.57 (0.0135)
T Tests for a Difference -1.22 (0.2330) -4.61 (0.0001) 3.11 (0.0049)
Wilcoxon for a Difference -0.80 (0.2112) -3.74 (<.0001) 3.21 (0.0013)

Table 21: Hypothesis Testing of Equal Performances between Professional Traders
and Students

Result 9. Subject characteristics significantly affected seller revenues, but
not effi ciencies.

We now focus on the case of Vickrey auctions. Here, traders obtained
significantly higher profits. This result confirms conjectures in Ausubel and
Milgrom (2004) that a low revenue equilibrium is a serious problem in gen-
eralized Vickrey auctions.

Obs Effi ciency Revenue Profit
Traders 9 0.6188 0.1098 0.509
Students 9 0.7563 0.5548 0.2016
Difference -0.056 -0.4449 0.307

Table 22: Summary Statistics of Auctions with Professional Traders and
Students: Generalized Vickrey Auctions
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Figure 17: Box Plots.

Effi ciency Revenue Profit
T test -1.30 (0.2109) -6.87 (<.0001) 2.42 (0.0281)
T Test for a Difference -1.35 (0.2187) -8.82 (<.0001) 2.18 (0.0066)
Wilcoxon for a Difference -1.82 (0.0341) -3.69 (.0001) 1.82(0.0341)

Table 23: Hypothesis Testing of Equal Performances between Professional Traders
and Students: Generalized Vickrey Auctions

4.5 Time Limit

One of the hypotheses we advance in this paper is that complexity of package
bidding rules can cause package coordination problems. In order to test the
hypothesis, we compare the performance of clock-proxy auctions with two
treatments: with and without a time limit to input the bid.

This sub-experiment might also address whether removing the time limit
leads to full effi ciency. Specifically, in the exposure value treatment, the op-
timal allocation is that agent 3 wins a package {6,7,10,11}. But in order
for this allocation to take place, agents 1-4 need to submit supporting pack-
ages of {1,2,5}, {3,4,8}, etc., which are not ’intuitive’ to submit. On the
other hand, the second best allocation has agents 1-4 submitting packages of
{1,2,5,6}, {3,4,7,8}, and others, and these packages are ’intuitive’given the
areas of influence. So we hypothesize that when there is no time limit to sub-
mit bids and the only problem is communication complexity, agents might
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be able to coordinate on effi cient allocation, but when there are time limits,
agents might not be able to coordinate on effi cient allocation. Moreover, if
there are cognitive complexity and package coordination problems involved
(with or without a time limit), agents might not be able to coordinate on
effi cient allocation.

Efficient Allocation A More ‘Intuitive’ Allocation

Figure 18: Effi cient Allocation and A More ’Intuitive’Allocation

Removing the time limit improved effi ciency and the auctioneer revenue,
but the effects are not statistically significant. Even removing the time limit
did not lead to full effi ciency. Only 2 out of 10 cases without time limit led
to full effi ciency. A preliminary conclusion:

Result 10. Communication complexity and cognitive complexity affect auc-
tion performance.

5 Characterizing the Properties of the Performance
Function

5.1 ANOVA Analysis

5.1.1 Effi ciency

In the previous section, we have studied a pairwise comparison among treat-
ment groups. In this section, we will conduct analysis of variance to under-
stand interaction among multiple factors. Since an equilibrium analysis of
these package auctions is not yet fully developed, we will not conduct struc-
tural analysis. Instead, we will conduct an ANOVA analysis to test the
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main effect of these factors and the magnitude of interaction effects. The
standard ANOVA statistical model is given by

REffi ciencyijk
= Auctioni +Valuej + Subjectk

+Auctioni ×Valuej +Auctionj × Subjectk +Valuej × Subjectk
+Auctioni ×Valuej × Subjectk + εijk

In this model, the differences in outcome are explained by (1) the main
effect of auction design, value structure, and subject characteristics, and (2)
the interaction effect between factors. Notably, the interaction term does
not imply multiplication among factors. First we estimate with dependent
variables to be effi ciencies. The estimation results are given below.

Relative Effi ciency DF Sum of Squares Mean Square F Value Pr > F
Model 19 1.59206 0.1137 7.57 <.0001
Error 73 1.0969 0.015
Correlated Total 92 2.690

Table 24: ANOVA Full Tests for Effi ciency

Relative Effi ciency DF Type I SS Mean Square F Value Pr > F
Value 2 1.9902 0.9951 26.12 <.0001
Mechanism 2 3.1873 0.4553 11.95 <.0001
Subject 1 0.0335 0.0335 0.88 0.3515
Value*Mechanism 4 0.4097 0.1024 2.69 0.0377
Value*Subject 1 0.1886 0.3484 9.14 0.0034
Mechanism*Subject 2 0.1436 0.0717 1.88 0.1593
Value*Mechanism*Subject 2 0.0256 0.0128 0.34 0.7155

Table 25: ANOVA Effect Tests for Effi ciency

These results support the null hypothesis that auction design has signif-
icant impact on effi ciencies. Interestingly, for type I and III tests, subject
characteristics did not have a significant effect. This result is consistent
with a pairwise comparison in the previous section and the package demand
reduction hypothesis explained in previous subsections.

Another result is that interaction terms are often significant. This im-
plies that the impact of auction design depends significantly on the un-
derlying value structure (Value × Mechanism) and subject characteristics
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Relative Effi ciency DF Type I SS Mean Square F Value Pr > F
Mechanism 7 1.0868 0.1552 10.53 <.0001
Value 2 1.0277 0.5139 34.86 <.0001
Subject 1 0.0142 0.0142 0.96 0.3295
Value*Mechanism 4 0.1634 0.0408 2.77 0.0334
Value*Subject 1 0.2012 0.2012 13.66 0.0004
Mechanism*Subject 2 0.0534 0.0267 1.81 0.1703
Value*Mechanism*Subject 2 0.0132 0.0066 0.45 0.6416

Table 26: Robustness Check: ANOVA Effect Tests for LR Effi ciency

(Mechanism × Subject). The first term represents that the performance
of package auction rules depends on the underlying value structure, as pre-
dicted in previous theoretical results. The second interaction term represents
that subject sophistication affects the performance of the auctions, which is
interpreted as a measure of complexities. The result is robust to reformula-
tion of the model that takes the logarithm of relative effi ciency.

5.1.2 Seller Revenue

Then we conduct an ANOVA analysis of seller revenue.

Relative Revenue DF Sum of Squares Mean Square F Value Pr > F
Model 14 2.7984 0.1999 10.92 <.0001
Error 73 1.3367 0.0183

Correlated Total 92 4.1340

Table 27: Main Tests for Revenue

Relative Effi ciency DF Type I SS Mean Square F Value Pr > F
Mechanism 7 1.5067 0.7533 41.14 <.0001
Value 2 0.0354 0.0177 0.97 0.3181
Mechanism *Value 2 0.1268 0.0317 1.73 0.1901
Subject 1 0.6932 0.6932 37.86 <.0001
Mechanism*Subject 4 0.3159 0.1579 8.80 0.0004
Value*Subject 1 0.1026 0.1026 5.72 0.0194
Mechanism*Value*Subject 2 0.0177 0.0088 0.50 0.6114

Table 28: Effect Tests for Revenue
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We find that auction design has significant impact on seller revenues.
Interestingly, the value structures are insignificant and subject characteris-
tics have a very high F Value. This result is consistent with the previous
pairwise comparison.

5.2 Estimating the Effect of Alternative Auction Designs

We now move to the estimation of impact of auction design on performance,
specifically effi ciency and seller revenue.

5.2.1 Effi ciency

We start our analysis with effi ciency. The previous results show that the
relationship between these factors and effi ciencies are nonlinear. Given the
previous ANOVA results, we estimate the following model of performance
functions f(x; t) to estimate the effect of auction design with the baseline the
generalized Vickrey auctions with additive valuation structure. This model
is obtained from dropping StudentDummy and Student*Value*Mechanism
which were not significant, and approximating the interaction term by us-
ing multiplied terms. We compare the result of estimation from the linear
models with that of nonlinear models. The estimation results are given
below.

Dependent Variables REffi ciency REffi ciency
Intercept 0.5819 (14.63) 0.5367 (2.43)
ExposureDummy 0.2444 (6.41) 0.3600 (6.02)
CoordinationDummy 0.1774 (4.90) 0.2613 (4.37)
SAADummy 0.0844 (2.40) 0.2332 (3.33)
CPDummy 0.0919 (2.56) 0.1541 (1.91)
SAADummy*ExposureDummy -.2248 (-2.56)
CPDummy*ExposureDummy -.0773 (0.39)
SAADummy*CoordinationDummy -.1948 (-2.30)
CPDummy*CoordinationDummy -.0722 (-0.81)
StudentDummy 0.0305 (0.83)
SAADummy*StudentDummy -.3328 (-4.35)
CPDummy*StudentDummy -.2345 (-2.93)

Table 29: Regression Results for Effi ciency

This linear model shows that both simultaneous ascending auctions and

40



clock-proxy auctions have similar effects, which contradicts the results from
pairwise comparisons.

The quadratic model shows that both simultaneous ascending auctions
and clock-proxy auctions provide significant effi ciency improvements over
generalized Vickrey auctions. Moreover, the estimation result shows that
comparisons of effi ciency improvement between simultaneous ascending auc-
tions and clock-proxy auctions depend on the underlying valuation structure.
In the additive value case, simultaneous ascending auctions provided 7%
effi ciency improvements. However, in the case of exposure problems, clock-
proxy auctions will have 7% better effi ciency over simultaneous ascending
auctions, due to interaction terms. In coordination problems, the level is
4%. These quantitative levels are consistent with the theory. Moreover,
these negative interaction terms are significant only for simultaneous as-
cending auctions, not for clock-proxy auctions. The result suggests that an
effi ciency impact of auction design depends on underlying valuation struc-
ture.

5.2.2 Revenue

We now consider similar estimation for revenues.

Dependent Variables RRevenue RRevenue
Intercept 0.2404 (5.44) 0.1098 (2.43)
ExposureDummy -.0661 (-1.56)
CoordinationDummy -.0001 (-0.00)
SAADummy 0.2952 (7.56) 0.5281 (8.26)
CPDummy 0.0357 (0.90) 0.2023 (2.96)
StudentDummy 0.2270 (5.59) 0.3824 (6.33)
SAADummy*StudentDummy -.3328 (-4.35)
CPDummy*StudentDummy -.2345 (-2.93)
ExposureDummy*StudentDummy -.03508 (-0.87)
CoordinationDummy*StudentDummy 0.0682 (1.44)

Table 30: Regression Results for Revenue

Estimation results are consistent with the previous pairwise comparisons.
Subject characteristics - rather than value structures - play a significant
role in the determination of revenue. In addition, simultaneous ascending
auctions have significant positive impact on revenue.
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6 Conclusion

In this paper we have studied the design of auction mechanisms to allocate
heterogeneous objects using experimental comparison among Generalized
Vickrey auctions, simultaneous ascending auctions, and clock-proxy auc-
tions. We found that clock-proxy auctions are unambiguously more effi cient
than generalized Vickrey auctions; but its comparison with simultaneous
ascending auctions is ambiguous. We found that a large scale setting leads
to higher complexity, which in package auctions tends to frustrate agent-
coordinating behavior. There were multiple dimensions of complexity, such
as communication complexity and cognitive complexity. The results sug-
gest the importance of dealing with these complexities in the design of the
trading rules. Finally agent characteristics have a significant impact on the
performance of the experiments. We found the experimental approach to
gain insight over the standard structural approach, the latter being limited
by lack of data and/or its rationality assumptions. Our further agenda along
this line of problems includes further examination of individual bidding be-
haviors in these package auctions. Our preliminary results and analysis
(Kazumori (2005)) find that agents boundedly rational bidding behavior
reinforces the arguments for asceding proxy auctions over Vickrey auctions.
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7 Appendix A: Experimental Design

Additive Environment Treatment

Name Value Treatment Date Location Subjects
ADD-VCG-1 ADD VCG 01/22/05 Stanford Students
ADD-VCG-2 ADD VCG 01/22/05 Stanford Students
ADD-VCG-3 ADD VCG 01/22/05 Stanford Students
ADD-VCG-4 ADD VCG 01/22/05 Stanford Students
ADD-VCG-5 ADD VCG 01/22/05 Stanford Students
ADD-VCG-6 ADD VCG 01/22/05 Stanford Students
ADD-VCG-7 ADD VCG 01/22/05 Stanford Traders
ADD-VCG-8 ADD VCG 01/22/05 Stanford Traders
ADD-VCG-9 ADD VCG 01/22/05 Stanford Traders
ADD-VCG-10 ADD VCG 01/22/05 Stanford Traders
ADD-SAA-1 ADD SAA 01/22/05 Stanford Students
ADD-SAA-2 ADD SAA 01/22/05 Stanford Students
ADD-SAA-3 ADD SAA 01/22/05 Stanford Students
ADD-SAA-4 ADD SAA 01/22/05 Stanford Students
ADD-SAA-5 ADD SAA 01/22/05 Stanford Students
ADD-SAA-6 ADD SAA 01/22/05 Stanford Students
ADD-SAA-7 ADD SAA 01/22/05 Stanford Traders
ADD-SAA-8 ADD SAA 01/22/05 Stanford Traders
ADD-SAA-9 ADD SAA 01/22/05 Stanford Traders
ADD-SAA-10 ADD SAA 01/22/05 Stanford Traders
ADD-CP-1 ADD CP 01/22/05 Stanford Students
ADD-CP-2 ADD CP 01/22/05 Stanford Students
ADD-CP-3 ADD CP 01/22/05 Stanford Students
ADD-CP-4 ADD CP 01/22/05 Stanford Students
ADD-CP-5 ADD CP 01/22/05 Stanford Students
ADD-CP-6 ADD CP 01/22/05 Stanford Students
ADD-CP-8 ADD CP 01/22/05 Stanford Traders
ADD-CP-9 ADD CP 01/22/05 Stanford Traders
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Exposure Problem Treatment

CUN-VCG-1 CUN VCG 01/22/05 Stanford Traders
CUN-VCG-2 CUN VCG 01/22/05 Stanford Traders
CUN-VCG-3 CUN VCG 01/22/05 Stanford Traders
CUN-VCG-4 CUN VCG 01/22/05 Stanford Traders
CUN-VCG-5 CUN VCG 01/22/05 Stanford Traders
CUN-VCG-6 CUN VCG 01/23/05 Caltech Students
CUN-VCG-7 CUN VCG 01/23/05 Caltech Students
CUN-VCG-8 CUN VCG 01/23/05 Caltech Students
CUN-VCG-9 CUN VCG 01/23/05 Caltech Students
CUN-VCG-10 CUN VCG 01/23/05 Caltech Students
CUN-SAA-1 CUN SAA 01/22/05 Stanford Traders
CUN-SAA-2 CUN SAA 01/22/05 Stanford Traders
CUN-SAA-3 CUN SAA 01/22/05 Stanford Traders
CUN-SAA-4 CUN SAA 01/22/05 Stanford Traders
CUN-SAA-5 CUN SAA 01/22/05 Stanford Traders
CUN—SAA-6 CUN SAA 01/23/05 Caltech Students
CUN-SAA-7 CUN SAA 01/23/05 Caltech Students
CUN-SAA-8 CUN SAA 01/23/05 Caltech Students
CUN-SAA-9 CUN SAA 01/23/05 Caltech Students
CUN-SAA-10 CUN SAA 01/23/05 Caltech Students
CUN-CP-1 CUN CP 01/22/05 Stanford Traders
CUN-CP-2 CUN CP 01/22/05 Stanford Traders
CUN-CP-3 CUN CP 01/22/05 Stanford Traders
CUN-CP-4 CUN CP 01/22/05 Stanford Traders
CUN-CP-5 CUN CP 01/22/05 Stanford Traders
CUN-CP-6 CUN CP 01/23/05 Caltech Students
CUN-CP-7 CUN CP 01/23/05 Caltech Students
CUN-CP-8 CUN CP 01/23/05 Caltech Students
CUN-CP-9 CUN CP 01/23/05 Caltech Students
CUN-CP-10 CUN CP 01/23/05 Caltech Students
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Coordination Problem Treatment

CRN-VCG-1 CRN VCG 01/09/05 Caltech Students
CRN-VCG-2 CRN VCG 01/09/05 Caltech Students
CRN-VCG-3 CRN VCG 01/09/05 Caltech Students
CRN-VCG-4 CRN VCG 01/09/05 Caltech Students
CRN-VCG-5 CRN VCG 01/09/05 Caltech Students
CRN-VCG-6 CRN VCG 01/09/05 Caltech Students
CRN-VCG-7 CRN VCG 01/09/05 Caltech Students
CRN-VCG-8 CRN VCG 01/09/05 Caltech Students
CRN-VCG-9 CRN VCG 01/09/05 Caltech Students
CRN-VCG-10 CRN VCG 01/09/05 Caltech Students
CRN-SAA-1 CRN SAA 01/09/05 Caltech Students
CRN-SAA-2 CRN SAA 01/09/05 Caltech Students
CRN-SAA-3 CRN SAA 01/09/05 Caltech Students
CRN-SAA-4 CRN SAA 01/09/05 Caltech Students
CRN-SAA-5 CRN SAA 01/09/05 Caltech Students
CRN—SAA-6 CRN SAA 01/09/05 Caltech Students
CRN-SAA-7 CRN SAA 01/09/05 Caltech Students
CRN-SAA-8 CRN SAA 01/09/05 Caltech Students
CRN-SAA-9 CRN SAA 01/09/05 Caltech Students
CRN-SAA-10 CRN SAA 01/09/05 Caltech Students
CRN-CP-1 CRN CP 01/09/05 Caltech Students
CRN-CP-2 CRN CP 01/09/05 Caltech Students
CRN-CP-3 CRN CP 01/09/05 Caltech Students
CRN-CP-4 CRN CP 01/09/05 Caltech Students
CRN-CP-5 CRN CP 01/09/05 Caltech Students
CRN-CP-6 CRN CP 01/09/05 Caltech Students
CRN-CP-7 CRN CP 01/09/05 Caltech Students
CRN-CP-8 CRN CP 01/09/05 Caltech Students
CRN-CP-9 CRN CP 01/09/05 Caltech Students
CRN-CP-10 CRN CP 01/09/05 Caltech Students
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Treatment Without Time Limit

CRN-CP-1* CRN CP 01/23/05 Caltech Students
CRN-CP-2* CRN CP 01/23/05 Caltech Students
CRN-CP-3* CRN CP 01/23/05 Caltech Students
CRN-CP-4* CRN CP 01/23/05 Caltech Students
CRN-CP-5* CRN CP 01/23/05 Caltech Students
CRN-CP-6* CRN CP 01/23/05 Caltech Students
CRN-CP-7* CRN CP 01/23/05 Caltech Students
CRN-CP-8* CRN CP 01/23/05 Caltech Students
CRN-CP-9* CRN CP 01/23/05 Caltech Students
CRN-CP-10* CRN CP 01/23/05 Caltech Students
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8 Appendix B: Object Values for Each Agent
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9 Appendix C: Instructions

9.1 The Goals of the Project

The goal of this project is to experimentally study the individual decision
behavior in a strategic environment with the purpose of applying the in-
sights to the design of allocation mechanisms to improve social effi ciency.
Specifically we study the allocation mechanisms of multiple, heterogeneous,
and indivisible objects when the value structure exhibits superadditivity.

Some motivations for this study are following: (1) the design of an allo-
cation mechanism when the objects are indivisible and when the preferences
involve superadditivity has been an interesting question in theory and prac-
tice (e.g. FCC spectrum auctions), (2) understanding of the actual behavior
of agents in a situation where the standard assumption of unbounded compu-
tation and communication complexity is nontrivial, is helpful to improving
the understanding of rationality assumptions in economics.

In order to achieve these goals, we run a series of experiments on auctions
to collect data on individual choices, effi ciency, and revenue.

9.2 The Procedure of the Experiments

We present a series of auctions where you decide the bids. We will record
the bidding data on the computer for future analysis.

Specifically, the proceedings of the session are as follows:
1. We explain the goal of this project, the structure of the decision problems,
and the specific definitions of the auction environments where these decisions
take place.
2. We then introduce the auction software and explain how to interact with
the software and how to express the decisions that you make. We will then
run some practice auctions.
3. We will distribute the materials, which will characterize the decision
problems. More specifically, the value sheet is what the decision problems
are based on.
4. We present a series of auctions and ask you to place bids on the objects.

9.3 The Decision Problems

Here we explain the decision problems you are going to solve.
1. Your goal is to maximize the payoff from the auctions. In each auction,
you decide the bids, and these bids decide the allocation and the payment
of the auction. You obtain values from the allocation. The payoff from
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the auction is the difference between the values of the allocation and the
payment. For example, if you obtain object 3, the value of the object is
100, and the payment needed to obtain object 3 is 50, then the payoff is 50.
Given this structure, your objective is to choose bids which maximize the
payoffs from the auctions.
2. Given the structure of this decision problem, we need to understand three
issues. The first issue is how the allocation relates to values, the second issue
is how to decide bids, and the third issue is how the bids lead to allocations
and payments. Then, we explain how to choose bids when we discuss the
auction program interface.

9.4 The Allocation and the Value

We first discuss the allocation and the value.
1. Let us explain the objects to be auctioned. In this auction, there are 16
objects arranged in a rectangle. Intuitively, these objects have an analogy
to the distribution of spectrum licenses in the United States. For example,
agent 1 might be located at Seattle, the object 1 is a license for the state
of Washington, agent 2 is located at Massachusetts, agent 3 is located at
Chicago, and so on.
2. An allocation for you means how many of these 16 objects you win.
Mathematically, the allocation is defined as a subset of these 16 objects. An
example is a collection of objects 1, 2, and 5, represented by {1,2,5},

16151413

1211109

8765

4321Agent 1 Agent 2

Agent 3

Agent 4 Agent 5

Figure C1. Objects and Agents.
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3. You obtain economic values from an allocation. For example, in spectrum
auctions, a company obtains profits from running a business using these
licenses. Each of you can have different values even for the same object. For
example, if a company is located in Seattle, it might attach a higher value
for the license in the state of Washington than a company located in Florida
since it will have a lower operating cost. These values are defined in the
value sheet, which will be distributed before the auction.

Package Value Price
1 800
2 600
3 200
4 500
5 500
6 400
7 400
8 100
9 700
10 500
11 400
12 200
13 200
14 200
15 200
16 600
1 2 1832
1 2 5 2962
1 2 5 6 3591
1 2 6 2400
1 5 1661
1 5 6 2217
1 6 1296
2 5 1370
2 5 6 1902
2 6 1072
5 6 960

Table 31: A Value Sheet

4. Let us explain how to read this sample value sheet. The upper parts define
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the value of each object. For example, it says that the value of object 1 is
800. The second part of the value sheet defines the values of the packages.
For example, the value of the package {1,2} is 1832.
5. Let us explain superadditivity of values. Superadditivity implies that
the value of a package is larger than the sum of the values of the objects
which comprise the package. For example, consider the package {1,2}. The
value of this package is 1832. But object 1 and 2 have values of 800 and 600.
This is an example of superadditivity, since the value of the package is larger
than the sum of the values of the individual objects. An economic reason for
superadditivity is that there are cost savings from acquiring geographically
adjacent objects. For example, suppose a company has licenses which are
geographically closely located. The company may be able to save on sales or
operating costs since it can share labor or equipment in two areas. But there
are limitations on superadditivity. That is, you have superadditive values
only for a subset of the objects. It is not that agent 1 has superadditive
values for every package. Agent 1 has values only for a package which is a
subset of {1,2,5,6}.

16151413

1211109

8765

4321

Figure C3. Area of Interest.

If agent 1 gets objects from the set {1,2,5,6} and objects outside of this
set, then the total value is the sum of the package contained within the set
{1,2,5,6} and the values of the objects outside this set. For example, if agent
1 gets the objects {1,2,5,9}, then its value is the sum of the package {1,2,5},
which is 2962, and the value of object 9, which is 700, so the total value is
2962+700=3662. An interpretation is that agent 1 has ‘an area of interest’
of objects close to its ’headquarters.’
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9.5 Generalized Vickrey Auctions

The first mechanism we consider in this experiment is the generalized Vick-
rey auction.
1. Let us begin with a special case. It is a second price auction. In the
second price auction, each agent competes for a single object. In a second
price auction, an agent with the highest bid will win the object. The price
the winner pays is the second highest bid. Let us consider an example.
Suppose there are three agents, 1, 2, and 3. Suppose agent 1’s bid is 10,
agent 2’s bid is 9, and agent 3’s bid is 12.

Bids
Agent 1 10
Agent 2 9
Agent 3 12

Table 32: An Example of a Second Price Auction

The winner is agent 3 with the highest bid, and the price that agent 3 is
going to pay is the second highest bid of 10 by agent 1.
2. One way to understand the pricing rule in a second price auction, which
will generalize to the payment rule in the generalized Vickrey auction, is
that the price in the second price auction is determined by the externality
imposed upon other agents. The price that agent 3 is going to pay is the
externality imposed upon agents 1 and 2. If agent 3 is absent, then agent 1
is going to win the object with the bid of 10. But since agent 3 is present,
agent 1 is not going to win the object. In a sense, agent 1 loses 10 because
of agent 3. In other words, agent 3 imposes an externality of 10 on agent
1. According to this pricing rule, agent 3 is going to pay the price of 10.
Please note that agent 3 pays to the seller, and not to agent 1.
3. A generalized Vickrey auction can be best understood as a generalization
of second price auctions. In generalized Vickrey auctions, first, you submit
bids not only for each object, but also for packages. It is a sealed-bid, so
that you do not observe bidding behavior by others when you submit a bid.
Also you submit bids only once. The seller chooses the allocation which
maximizes the value for the seller expressed in the bids. The prices are
determined as the externality imposed upon the others.
4. Let us explain an example for 3 objects. Suppose agents 1, 2, and 3 bid
as follows.
The value-maximzing allocation: agent 1 wins object 1 and agent 2 wins
package {2, 3}. The total value is 25. The price paid by agent 2 is defined
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Agent 1 Agent 2 Agent 3
Object 1 5 1 3
Object 2 4 1 3
Object 3 3 3 1

Package {1,2} 9 12 6
Package {1,3} 8 14 4
Package {2,3} 7 20 4
Package {1,2,3} 12 21 7

Table 33: An Example of Bids

as (the value of the allocation to other agents when agent 2 is absent from
the auction) - (the value of the allocation to other agents when agent 2 is
present in the auction). Let us compute the first term. Consider the auction
without agent 2. The value-maximizing allocation is agent 1 wins package
{1,2,3}. The total value for agents 1 and 3 in the current allocation is 5.
The price paid by agent 2 is 12-5=7. An alternative interpretation is that
an agent pays the minimum price which will be needed to win the package.
These two interpretations are equivalent, as is most clearly seen in the case
of a second price auction.

If there are ties among the bids, a tie will be broken randomly.

9.5.1 The Computer Program Interfaces of Generalized Vickrey
Auctions

In the previous subsection, we explained generalized Vickrey auctions. In
this experiment, we ask you to bid in the computer programs. We will
explain how it works here.
1. Please read the instructions before the actual auctions since these auction
mechanisms may look quite complicated for the first time. Also please let
us know any questions at any time.
2. Please log in to your computers and open Internet Explorer. Then go to
[the auction web site URL] and click Participate. Please type in user name
and password as explained in the material.
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Figure C1. The Login Screen.

3. Then please go to the Auction list screen.

Figure C2. A List of Auctions.

4. Choose auctions and obtain informations from the configuration screen.

Figure C3. A Configuration Screen.
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5. Click Vickrey. It will lead to a bidding screen. The bids must be entered
by the end of the round time.

Figure C4. A Bidding Screen.

6. Create bids. To create a bid, check the objects and input the bid in the
right space. Here is an example of a bid for a package {1, 2} with the price
of 200.

Figure C5. A Bid.

7. To increase the number of bids, click the ‘more bids’box.
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Figure C6. More Bids.

8. Click ’complete’when you are done.

Figure C7. Waiting for an End of the Auction.

9. The result of the auction will be displayed at the result section. This
example shows that agent 1 won the allocation 1,2,3 with the price of 600.
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Figure C8. A Result.

9.6 Simultaneous Ascending Auctions

We next consider simultaneous ascending auctions.
1. Let us consider the simplest case: ascending auctions for a single object.
In this interpretation, each agent submits a bid in each round of bidding. A
bid must be higher than the highest bid submitted in the previous round.
The auction ends when no agent submits a bid for a round. The agent
with the highest bid wins at the price of the bid when the auction ended.
Suppose, in the first round, agent 1 bids 10 and agent 2 bids 15. At the
end of the first round, a provisional winner is agent 2 with a bid of 15. In
the second round, suppose agent 1 makes a counter bid of 20 and agent 2
keeps the bid of 15. Then at the end of the second round, agent 1 is the
provisional winner with the bid of 20. Suppose, in the third round, neither
agent 1 nor agent 2 make their bid. Then the auction closes. The winner is
agent 1 with the payment of 20.
2. Simultaneous ascending auctions run an ascending auction for each ob-
ject. The auction ends when there are no bids for any of the auctions in a
bidding round. That is, the market clears for each object. The (provisional)
winner and the minimum price of a round are determined object-wise. A
price can be different for each object. On the other hand, the auctions close
simultaneously. That is, an auction closes only when there are no new bids
for any auction.
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9.6.1 The Computer Program Interfaces of the Simultaneous As-
cending Auctions

1. Log in to the program as before.
2. Go to the auction list screen and click on ’simultaneous ascending auc-
tion’.
3. It will direct you to a configuration screen which displays information
about the auction name, the number of users and items, the round time
out, and the minimum increments.

Figure C9. A Configuration Screen for SAA.

4. Click ’bidding’. It will lead to a bidding screen. Here you can input your
bid for each object. There are time limits for each round and you need to
finish bidding within the time limit. For example, the next screen shows the
situation when you inputted a bid of 100 for object 1.
5. Confirm your bid at the bottom of the screen. It will ask you to wait
until a round is over.
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Table C10. A Bidding Screen.

6. When a round is over, it will lead to a new round. The next screen shows
that agent 3 is the provisional winner of object 1 at the price of 700.

Table C11. Round 2.

7. Input a new bid in this round in the same way as in round 1.
8. When the auction ends, the result is displayed under the ‘result’ tab.
Under the ’history’tab, the whole bidding history of the auction is available.
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Figure C12. An Auction Result.

Table C13. An Auction History.
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9.7 Clock-Proxy Auctions

The last mechanism we consider is clock-proxy auctions.
1. Clock-proxy auctions consist of two stages: clock auctions in the first
stage and proxy auctions in the second stage.
2. The first stage clock auction is similar to ascending auctions in that there
are no package bids. The difference is that the price goes up automatically
at each round of the clock auction. In ascending auctions, the price goes
up as a result of bidding. That is, in clock auctions, the price is raised
automatically by the auctioneer, and the agents choose whether to drop out
or to stay in the auction. An example is a flower auction in The Netherlands.
For example, consider an auction of a flower with three agents. The price
starts from zero. The price goes up from zero to 10, 20, 30... Suppose agent
3 drops out at the price of 20. Then there are only two agents, agent 1 and
agent 2, in the auction. Then the auction ends when one of the remaining
two agents drops out. Suppose agent 2 drops out at the price of 30. Then
agent 1 is the winner with the price of 30.

3. After the clock auction, the auction moves to the second stage of the proxy
auction. In this proxy auction. each agent can submit, as in the generalized
Vickrey auction. a package bid. A difference is that the allocation and the
price are determined by an ascending proxy auction.
4. In order to understand how an ascending proxy auction works, let us
explain how this auction works in the case of a single object. The proxy
bidding is similar to the one used in eBay. In these auctions, an agent tells
the maximum amount that the agent is willing to pay for the object. Then
the computer program, known as the proxy agent, bids on behalf of the
agent by increasing the price little by little. Essentially, in a proxy auction,
the agent provides a maximum amount that it is willing to pay, to the proxy
agents, and the proxy agents will try to win the object at the lowest price.
5. Let us extend our understanding to the heterogeneous objects case by
moving to ascending proxy auctions. A similarity with the single object case
is that each agent send the bids to the proxy agent. The only difference is
that the agent can place bids on packages in addition to bids for a single
object, as in Vickrey auctions. The proxy agents try to win one package for
the agent, with the lowest price. Let us explain this point using a numerical
example. Suppose there are two objects A and B and that the bids must be
integers. Also suppose that the values that an agent gave to the proxy agent
are v(A) = 10, v(B) = 5, v(A,B) = 20 and the current prices of the objects
and package are b(A) = 4, b(B) = 3, b(A,B) = 15. The principle that the
proxy agent follows is to bid on the package with the minimum price needed
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to win the package so as to maximize the gain from winning the auction. Let
us consider what happens if an agent bid on A. The minimum price needed
to win A is 5. At this price of 5, the payoff is 10-5=5. Now consider B, in
which case, the gain is 5-4=1. For package A,B, the gain is 20-16=4. Since
the payoff is highest for bidding on A, the proxy agent will bid on A for the
agent.
6. Let us explain the relation between clock auctions and proxy auctions.
The outcome of the clock auctions does not determine the final allocation.
But, the bids at the clock auction will be used at the proxy auctions: the
proxy agent will consider bids at the clock auctions in addition to bids at
the proxy auctions.

9.7.1 The Computer Program Interfaces of the Clock-Proxy Auc-
tions.

1. Choose a CP auction. It will lead to a ’config’screen.

Figure C14. A Configuration Screen for a Clock-Proxy Auction.

2. Click the clock tab. It will lead to the first stage of the clock auction.
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Figure C15. A First Stage of a Clock Auction.

Clicking the box below the price will imply staying in the auction. Other-
wise, it will imply dropping out of the auction.
3. After the first round is over, the price will go up, and it will lead to the
second stage.

Figure C16. The Second Stage of a Clock Auction.

4. Continue bidding. At the end, it will display the results of the clock
auction.
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Figure C17. A Result of a Clock Auction.

5. Move to the proxy auctions by clicking the tabs in the screen.

Figure C18. Inputting a Proxy Bid.

6. Place proxy bids and click complete.
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Figure C19. Proxy Bids.

7, At the end of the auction, the results will be displayed.

Figure C20. A Result of a Clock-Proxy Auction.
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10 Appendix D: Software Used to Conduct Auc-
tions

The auction experiments discussed in this paper were conducted using soft-
ware implemented by Eiichiro Kazumori and Yaakov Belch. This software
presents a comprehensive suite of package auction mechanism implementa-
tions, including the standard single unit auction.

Simultaneous Ascending Auctions
Simultaneous Descending Auctions
Simultaneous Clock Auctions
BernheimWhinston Menu Auctions
(exclusive/nonexclusive bids)
Vickrey Auctions (exclusive/nonexclusive bids)
AusubelMilgromCramton ClockProxy
(exclusive/nonexclusive bids)
ClockVickrey (exclusive/nonexclusive bids)

Auctions for
Heterogeneous Objects

First Price Auctions
Second Price Auctions
Ascending Price Auctions
Descending Price Auctions
Clock Auctions

Single Unit Auctions

Figure D1: The List of Implemented Auctions.

The software uses the algorithm of Zhong, Cai, and Wurman (2003) for
clock-proxy auctions.
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10.1 Configuration of Simultaneous Ascending Auctions

1. Choose ascending auctions.

Figure D2: A Choice of Auctions.

2. Choose parameter values.

Figure D3: A Choice of Parameters.
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10.2 Configuration of Generalized Vickrey and Clock-Proxy
Auctions.

1. Choose package auctions in a previous screen.
2. Set up parameters.

Figure D4: Parameters for Package Auctions.
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