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Abstract

This paper proposes a new hedging scheme of European derivatives
under uncertain volatility environments, in which a weighted variance
swap called the polynomial variance swap is added to the Black-Scholes
delta hedging for managing exposure to volatility risk. In general, under
these environments one cannot hedge the derivatives completely by using
dynamic trading of only an underlying asset owing to volatility risk. Then,
for hedging uncertain volatility risk, we design the polynomial variance,
which can be dependent on the level of the underlying asset price. It is
shown that the polynomial variance swap is not perfect, but more efficient
as a hedging tool for the volatility exposure than the standard variance
swap. In addition, our hedging scheme has a preferable property that
any information on the volatility process of the underlying asset price is
unnecessary. To demonstrate robustness of our scheme, we implement
Monte Carlo simulation tests with three different settings, and compare
the hedging performance of our scheme with that of standard dynamic
hedging schemes such as the minimum-variance hedging. As a result, it is
found that our scheme outperforms the others in all test cases. Moreover,
it is noteworthy that the scheme proposed in this paper continues to be
robust against model risks.
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1 Introduction

This paper proposes a new hedging scheme of European derivatives under un-
certain volatility environments, in which an exotic variance swap called the
polynomial variance swap is added to the Black-Scholes delta hedging in or-
der to hedge volatility risk. To examine robustness of our hedging scheme, we
implement Monte Carlo simulation tests with three different settings of under-
lying processes and compare the hedging performance of our scheme with that
of other standard hedging schemes.

Variance swaps, which pay the realized variance of the returns on an un-
derlying price process and receive the fixed positive amount, have become the
most approved tools for trading volatility. Moreover, with a remarkable devel-
opment of volatility derivatives both in practice and academically, various types
of derivatives on realized variance/volatility are proposed; for examples, corri-
dor variance swaps (Carr and Lewis [2004]), gamma swaps (Mougeot [2005]),
conditional variance swaps (Mougeot [2005]), moment swaps (Schoutens [2005]),
volatility swaps (Carr and Lee [2008], and Friz and Gatheral [2005]), multi-asset
stochastic local variance contracts (Carr and Laurence [2009]), and options on
realized variance/volatility (Carr et al. [2005], and Carr and Lee [2007, 2009]).
By virtue of much energetic research, institutions can deal with a large number
of volatility-based trading strategies, and have invested in such realized vari-
ance/volatility contracts as new asset classes.

On the other hand, our interest is how robust the Black-Scholes delta hedging
is under uncertain volatility environments when adding a certain variance swap.
It is widely recognized that the variance swap is a useful tool for managing
exposure to volatility risk. This recognition, however, is questionable. For
example, volatility exposure of a call option is higher at-the-money than out/in-
the-money, while the standard variance swap has invariant volatility exposure
with respect to the underlying asset price. The similar problem exists with
respect to time-to-maturity. In general, it can be said that there is a discrepancy
between volatility risks of the hedging target derivative and the variance swap,
and volatility exposure of the variance swap cannot be completely balanced with
that of the derivative security. Therefore, the standard variance swap might not
work effectively to hedge volatility risk. This detailed discussion is stated in the
next section.

To overcome this problem, a special realized variance/volatility contract for
hedging volatility exposure on European derivatives is needed, and it is necessary
to consider a new hedging scheme using this contract. However, to the best of
our knowledge, there is no research designing such a variance/volatility contract
and proposing such a hedging strategy. Besides, in the past literature numerical
experiment or empirical analysis, which examines the hedging performance in
the case that the standard variance swap is used as a hedging tool of volatility
exposure, is very limited.

The purpose of this paper is as follows: First, we design a weighted vari-
ance swap called the polynomial variance swap for hedging volatility exposure
on path-independent European derivatives. Second, we propose a new robust
hedging scheme against exposure to volatility risk, in which the polynomial vari-
ance swap is added to the Black-Scholes delta hedging. Third, through Monte
Carlo simulation tests, we confirm effectiveness of our hedging scheme. In con-
trast to the hedging schemes with uncertain/stochastic volatilities proposed in
the past literature (e.g., Avellaneda et al. [1995], Bakshi et al. [1997], Heath
et al. [2001a, 2001b], Fink [2003], and Takahashi and Yamazaki [2009b]), our
scheme has a preferable property that any information about volatility process
of the underlying asset is unnecessary. Therefore, it can be expected that our
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hedging scheme minimizes model risk and continues to be robust to the hedging
performance under any uncertain volatility environments.

The rest of this paper is organized as follows: In the next section, we refer
to the hedging error due to uncertainty of volatility when applying the Black-
Scholes delta hedging. Then, it well be shown that the standard variance swap
is not entirely appropriate to hedge exposure to volatility risk. The third sec-
tion introduces the polynomial variance swap as a hedging tool for uncertain
volatility risk. The polynomial variance swap admits model-free replication.
The fourth section provides numerical experiments for verifying effectiveness of
our hedging scheme. As a result, it is found that our scheme is more robust
than other standard hedging schemes under uncertain volatility environments.
Finally, we give concluding remarks in the last section. The proofs of some
propositions are stated in appendix.

2 Hedging Uncertain Volatility Risk

In this section, we briefly review the hedging error caused by uncertain volatility
risk when using the Black-Scholes delta hedging. Then, we consider applying the
standard variance swap to eliminate this error. However, it will be demonstrated
that the standard variance swap is not quite a suitable tool for hedging uncertain
volatility risk.

2.1 Uncertain Volatility Risk on European Derivatives

We assume a frictionless and no-arbitrage market. Let St be the spot price of a
certain stock, an underlying asset price at time t ∈ [0, T ∗] where T ∗ is some ar-
bitrarily determined time horizon. For simplicity, both the risk-free interest rate
and the dividend yield of the stock are assumed to be zero. The no-arbitrage
assumption ensures the existence of a risk-neutral probability measure Q such
that the instantaneous expected rate of return on every asset is equal to the
instantaneous interest rate; i.e., it is equal to zero in our setting. Furthermore,
the risk-neutral process of the underlying asset price is assumed to be an Itô
process under a filtered probability space (Ω,F , {Ft}t∈[0,T∗], Q). Thus the un-
derlying asset price S under the risk-neutral measure Q is given by the unique
solution of the following stochastic differential equation (SDE):

dSt = σ(ω, t)StdWt, (2.1)

where W is a Brownian motion under Q, and σ is a R-valued {Ft}-progressively
measurable process that guarantees that unique solution to SDE (2.1).

Suppose that fT (S) is the payoff at maturity T of a path-independent Euro-
pean derivative whose randomness depends solely on the underlying asset price
at maturity, ST . If a trader hedges the derivative security over the period by
the Black-Scholes delta hedging with a fixed volatility σH > 0 called the hedging
volatility, then it holds the following equation:

fT (ST ) = v(0, S0; σH, fT ) +
∫ T

0

∂v

∂S
(t, St; σH, fT )dSt

+
1
2

∫ T

0

S2
t

∂2v

∂S2
(t, St; σH, fT )

[
σ2(ω, t) − σ2

H

]
dt, (2.2)

where v(t, St; σH, fT ) denote the Black-Scholes price function with the constant
volatility σH and payoff fT at time t, and ∂v

∂S (t, St;σH, fT ) and ∂2v
∂S2 (t, St; σH, fT )

are the Black-Scholes delta and gamma, respectively. The first term on the
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right hand side of Eq.(2.2) is the premium of the derivative security, and the
second term is the dynamic portfolio by the Black-Scholes delta with the hedging
volatility σH. The third term,

HE :=
1
2

∫ T

0

S2
t

∂2v

∂S2
(t, St; σH, fT )

[
σ2(ω, t) − σ2

H

]
dt, (2.3)

is the hedging error caused by uncertain volatility risk, which depends on the
difference between the instantaneous volatility σ(ω, t) and the hedging volatility
σH. If σ(ω, t) is completely predictable for all t ∈ [0, T ], the hedging error HE
can be eliminated perfectly. However, this situation is obviously unrealistic and
there exists uncertainty of volatilities in a real market all the time. In this
paper, we explore that how the Black-Scholes delta hedging can be improved
by using the variance swap under uncertain volatility environments.

2.2 Hedging Volatility Risk with Variance Swap

The hedging error HE can be decomposed into

HE =
∫ T

0

g(t, St)σ2(ω, t)dt − σ2
H

∫ T

0

g(t, St)dt =: A − B, (2.4)

where

g(t, St) :=
1
2
S2

t

∂2v

∂S2
(t, St; σH, fT ), (2.5)

and

A :=
∫ T

0

g(t, St)σ2(ω, t)dt, B := σ2
H

∫ T

0

g(t, St)dt. (2.6)

In the following, g(t, S) is called the volatility risk weight on the derivative
security at time t and stock price S. In Section 2.2.1 and 2.2.2, we consider the
hedging schemes of risk A and risk B in Eq.(2.4), separately.

2.2.1 Hedging Risk B

Firstly, we present a hedging scheme of risk B. By regarding gt(S) := g(t, S) as
a payoff function at maturity t, the volatility risk weight can be represented in
the following form:

g(t, St) = v(0, S0; σH, gt) +
∫ t

0

∂v

∂S
(u, Su;σH, gt)dSu

+
1
2

∫ t

0

S2
u

∂2v

∂S2
(u, Su; σH, gt)

[
σ2(ω, u) − σ2

H

]
du, (2.7)

for 0 ≤ u ≤ t. The third term on the right hand side of Eq.(2.7) is the hedging
error of risk B; i.e., the hedging error of the hedging error HE. This error,
however, is negligible because it is much smaller than HE in usual. Therefore,
by time-discretization and neglecting the hedging error of risk B, it satisfies

B ≈ σ2
H

∫ T

0

v(0, S0;σH, gt)dt +
N∑

n=1

σ2
H∆t

∫ tn

0

∂v

∂S
(u, Su; σH, gtn)dSu, (2.8)

where tn = n∆t is the re-balance timing of the dynamic hedging and tN = T .
Note that σ2

H

∫ T

0
v(0, S0; σH, gt)dt is the initial cost of risk B and the second

term on the right hand side of Eq.(2.8) is the dynamic portfolio for hedging risk
B. The closed-form expressions of v(u, Su; σH, gt) and ∂v

∂S (u, Su; σH, gt) can be
found in Appendix A.
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2.2.2 Hedging Risk A by Using Standard Variance Swap

Secondly, we consider a hedging scheme of risk A by using the standard variance
swap. The variance swap is now actively traded in over-the-counter (OTC) on
both stocks and stock indices. In this contract, one party agrees with the other
to receive the realized variance of returns of a specified underlying asset over
a specified future period. In return, the party pays a fixed positive amount at
expiry. The fixed positive amount is agreed upon at the initial time and chosen
so that the variance swap is costless to enter. That is, the variance swap in
continuous-time setting has the following payoff:

M

{
1

TVS

∫ TVS

0

σ2(ω, t)dt − KVS

}
, (2.9)

where M , KVS, and TVS are a notional amount, a fixing rate, and maturity of
the variance swap, respectively. Thus, in the contract (2.9) the party receives
M

TVS

∫ TVS

0
σ2(ω, t)dt while he pays MKVS.

It is well-known that the floating side of the variance swap, which is the
realized variance of an underlying asset price, admits model-free replication by
a static position in options and dynamic trading of the underlying asset; and
the fixing rate KVS is determined by the initial value of the static position. See
Derman et al. [1999] and Carr and Madan [1998] for details of the standard
variance swap.

Consider the situation in which a trader tries to hedge risk A by using
the variance swap. To do this, it is necessary to choose an appropriate no-
tional amount of the variance swap. If he can choose the notional amount
M = g(t, St)TVS for all t ∈ [0, T ] and St > 0, then risk A is entirely fixed to
MKVS. In addition, by setting the hedging volatility σH =

√
KVS, the initial

cost for hedging risk B in Eq.(2.8) can be balanced with the fixed payment of
the variance swap, MKVS. By virtue of the standard variance swap, a robust
hedging scheme for uncertain volatility risk is apparently able to be imple-
mented. However, this scheme seems to be not successful because the volatility
risk weight g(t, St) highly depends on both time t and the underlying asset
price St in general. Figure 1 shows over/under-hedging situations when using
the variance swap as a hedging tool of risk A on a call with strike K = 100 and
maturity T = 1. In order to improve this problem, we develop a new variance
swap called the polynomial variance swap in the next section.

3 Polynomial Variance Swap

In this section we introduce the polynomial variance swap (PVS) for hedging un-
certain volatility risk of European derivatives, instead of the standard variance
swap. PVS has the following payoff:∫ TPVS

0

1{St∈I}PM (St)σ2(ω, t)dt − KPVS, (3.1)

where I = [a, b], 0 ≤ a < b denotes a corridor interval, TPVS is maturity, KPVS

is a fixed payment of PVS, and PM (x) is the M -th order polynomial, that is,

PM (x) := a0 + a1x + a2x
2 + · · · + aMxM . (3.2)

Here, a0, a1, · · · , aM ∈ R are coefficients of PM (x). Note that PVS is a gen-
eralization of some variations on variance swaps which several institutes have
offered; e.g., the standard variance swap, the corridor variance swap, and the

5



gamma swap. By a suitable choice of the order and the coefficients of the poly-
nomial, PVS allows us an arbitrary allocation of the volatility risk weight with
respect to the underlying asset price.

3.1 Replication of Polynomial Variance

Similarly to the standard variance swap, PVS admits model-free replication by
a static portfolio in options and dynamic trading of the underlying asset. In
this subsection the replication scheme of PVS is provided.

Note that PVS is a linear combination of power variances with a corridor:∫ TPVS

0

1{St∈I}S
m
t σ2(ω, t)dt. (3.3)

Hence it is sufficient to demonstrate the model-free replication scheme of each
power variance.

First, in the case of m = 0, the power variance swap is obviously equivalent
to the corridor variance swap introduced by Carr and Lewis [2004].

Proposition 1 Let I = [a, b] be an interval. Define S∗
t = max(a, min(St, b)).

Then, for any κ ∈ I and all T ∈ [0, T ∗], it satisfies∫ T

0

1{St∈I}σ
2(ω, t)dt =

∫ κ

a

2
K2

(K − ST )+dK

+
∫ b

κ

2
K2

(ST − K)+dK

− 2
{

ln
κ

S∗
0

+
S0

κ
− S0

S∗
0

}
− 2

∫ T

0

(
1
κ
− 1

S∗
t

)
dSt. (3.4)

Proof: See Carr and Lewis [2004]. �

The first and second term on the right hand side of Eq.(3.4) are put and call
static portfolios, respectively. Moreover, the fourth term is a dynamic portfolio
of the underlying asset. Note that all of the portfolios in Eq.(3.4) are model-free.

Next, the following proposition shows the replication portfolio of power vari-
ance in the case of m = 1.

Proposition 2 Let I = [a, b] be an interval. Define S∗
t = max(a, min(St, b)).

Then, for any κ ∈ I and all T ∈ [0, T ∗], it satisfies∫ T

0

1{St∈I}Stσ
2(ω, t)dt =

∫ κ

a

2
K

(K − ST )+dK

+
∫ b

κ

2
K

(ST − K)+dK

− 2
{

S0 ln
S∗

0

κ
− S∗

0 + κ

}
− 2

∫ T

0

ln
S∗

t

κ
dSt. (3.5)

Proof: See Appendix B. �
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Note that all of the portfolios on the right hand side of Eq.(3.5), which are static
option positions and a dynamic position consisting of the underlying asset, are
also model-free.

Finally, the following proposition presents the replication portfolio of power
variance in the case of m ≥ 2.

Proposition 3 Let I = [a, b] be an interval and m ≥ 2 be an integer. Define
S∗

t = max(a, min(St, b)). Then, for any κ ∈ I and all T ∈ [0, T ∗], it satisfies∫ T

0

1{St∈I}S
m
t σ2(ω, t)dt

=
∫ κ

a

2Km−2(K − ST )+dK

+
∫ b

κ

2Km−2(ST − K)+dK

− 2
m(m − 1)

{
(1 − m)(S∗

0 )m − mS0

[
κm−1 − (S∗

0 )m−1
]
− (1 − m)κm

}
− 2

m − 1

∫ T

0

[
(S∗

t )m−1 − κm−1
]
dSt. (3.6)

Proof: See Appendix C. �

Similarly to the case of m = 0 and 1, all of the portfolios on the right hand side
of Eq.(3.6) are model-free.

3.2 Strike Volatility of Polynomial Variance Swap

When giving a polynomial PM (x) and a corridor I = [a, b], the fixed payment
KPVS of PVS can be computed easily as follows:

KPVS := E

[∫ TPVS

0

1{St∈I}PM (St)σ2(ω, t)dt

]
=

M∑
m=0

amβm, (3.7)

where E[ · ] denotes the expectation operator under the risk-neutral measure Q,
a0, a1, · · · , aM ∈ R are coefficients of PM (x),

β0 := E

[∫ TPVS

0

1{St∈I}σ
2(ω, t)dt

]

=
∫ S0

a

2
K2

P (K,T )dK +
∫ b

S0

2
K2

C(K,T )dK, (3.8)

β1 := E

[∫ TPVS

0

1{St∈I}Stσ
2(ω, t)dt

]

=
∫ S0

a

2
K

P (K,T )dK +
∫ b

S0

2
K

C(K,T )dK, (3.9)

and when m ≥ 2,

βm := E

[∫ TPVS

0

1{St∈I}S
m
t σ2(ω, t)dt

]

=
∫ S0

a

2Km−2P (K,T )dK +
∫ b

S0

2Km−2C(K, T )dK. (3.10)
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Here, P (K, T ) and C(K,T ) represent the time-0 prices of plain vanilla put and
call options with spot price S0, strike K and maturity T , respectively.

On the other hand, the strike volatility σPVS of PVS is defined as a positive
constant such that

E

[∫ TPVS

0

1{St∈I}PM (St)σ2(ω, t)dt

]
= E

[∫ TPVS

0

1{St∈I}PM (St)σ2
PVSdt

]
.(3.11)

In the simulation analysis, we adopt the strike volatility σPVS as the hedg-
ing volatility of the Black-Scholes delta hedging with/without PVS. The strike
volatility is computed by the following proposition:

Proposition 4 Let I = [a, b] be an interval. Then, the strike volatility σPVS is
given by

σPVS =
√

KPVS

LPVS
, (3.12)

where KPVS is defined in Eq.(3.7), and

LPVS :=
∫ TPVS

0

PM (κ)E
[
1{St∈I}

]
dt +

∫ TPVS

0

P ′
M (κ)E

[
1{St∈I}(St − κ)

]
dt

+
∫ TPVS

0

∫ κ

0

P ′′
M (K)E

[
1{St∈I}(K − St)+

]
dKdt

+
∫ TPVS

0

∫ ∞

κ

P ′′
M (K)E

[
1{St∈I}(St − K)+

]
dKdt, (3.13)

for any κ > 0.

Proof: See Appendix D. �

3.3 Hedging Volatility Risk with Polynomial Variance Swap

In order to improve the problem mentioned in section 2.3, we apply PVS to
hedge risk A. If a trader can use PVS such that 1{St∈I}PM (St) = g(t, St) for
all t ∈ [0, T ] and St > 0, then risk A is perfectly fixed to KPVS. Moreover,
by setting the hedging volatility σH = σPVS, the initial cost of risk B can be
canceled out to the initial payment of PVS KPVS. Similarly to the case of the
standard variance swap, there exists a discrepancy between the volatility risk
weight and PVS against time t and the underlying asset price St. However,
the over/under-hedging problem of PVS is more improvable than that of the
standard variance swap. To implement a suitable hedging scheme with PVS,
we provide a certain procedure to set up the polynomial as follows.

Fixing a certain time τ , a corridor I = [a, b] and an order M of a polynomial1,
the coefficients a0, a1, · · · , aM of the polynomial PM (x) can be determined by
solving the least square problem:

min
PM∈PM

∫ b

a

{g(τ, x) − PM (x)}2
dx, (3.14)

1Although the selection of τ , I, and M appear to be more art than science, it is not so
difficult to choose them for effective hedging (see Figure 2).
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where PM is the set of the M -th order polynomials. The solution of the problem
(3.14) is given by

PM (x) =
M∑

m=0

bmϕm(x), (3.15)

where ϕm(x) is the m-th order orthogonal polynomial such that∫ b

a

ϕm(x)ϕn(x)dx =

{
0 if m ̸= k

b−a
2(m+1) if m = k

, (3.16)

and

bm :=
2(m + 1)

b − a

∫ b

a

ϕm(x)g(τ, x)dx. (3.17)

Therefore, the coefficients a0, a1, · · · , aM of PM (x) are determined as real num-
bers satisfying

M∑
m=0

bmϕm(x) =
M∑

m=0

amxm. (3.18)

For example, Figure 2 plots the volatility risk weights of a call option and a
polynomial of PVS. In this example, the 6-th order PVS with a corridor interval
I = [70, 140] is applied and the fitting point of the polynomial is set as τ = 0.5,
while the call option is the same contract as Figure 1. Looking at Figure 2,
it can be said that although the mismatching problem cannot be completely
overcome2, PVS is much better for hedging uncertain volatility risk than the
standard variance swap.

When selling a European derivative in Eq.(2.2), the hedging scheme proposed
in the above discussion consists of the following positions:

• Hold ∂v
∂S (tn, Stn ; σPVS, fT ) units of the underlying asset Stn at each time

tn for the Black-Scholes delta hedging.

• Pay the fixed payment KPVS and receive the realized polynomial variance,∫ TPVS

0

1{St∈I}PM (St)σ2(ω, t)dt, (3.19)

at maturity of PVS for hedging risk A.

• Receive the initial cost of risk B,

σ2
PVS

∫ T

0

v(0, S0; σPVS, gt)dt, (3.20)

and hold

σ2
PVS∆t

∑
tn<ti

∂v

∂S
(tn, Stn ;σPVS, gti), (3.21)

units of the underlying asset Stn at each time tn for dynamic hedging of
risk B.

2As one method to improve the mismatching problem with respect to time t, the forward
start polynomial variance swaps can be considered as tools of time-piecewise fitting to the
volatility risk weight. However, this is not pragmatical because a large number of options are
needed for replicating the forward start PVSs.
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4 Simulation Analysis

This section shows the effectiveness of the hedging scheme proposed in Section 3
under uncertain volatility environments through Monte Carlo simulation tests.
To examine the performance of the Black-Scholes delta hedging with PVS, we
compare four types of hedging strategies under different three scenarios.

4.1 Setup of Simulation

Let us consider the problem faced by the writer of a call option on a certain stock,
whose maturity is 3-months and strike is at-the-money. The writer intends to
hold this short potion until the maturity, and can hedge his market risk using
various hedging schemes. For concreteness, suppose that the initial stock price
is S0 = 100, the strike of the target call is K = 100, and the option maturity
is T = 60/250; i.e., we assume that there are 20 business days in a month and
250 business days in a year. Both the interest rate and the dividend yield are
set to be zero for simplicity.

The assumed market situation in the simulation tests is as follows: All mar-
ket options are priced in accordance with the Heston’s stochastic volatility model
(Heston [1993]) with given parameters, and can be traded without any transac-
tion cost. That is, all traders in the option market believe that the risk-neutral
dynamics of the underlying asset price take the following form:

dSt =
√

VtStdWt, (4.1)

dVt = ξ(η − Vt)dt + θ
√

VtdZt,

where ξ, η and θ are positive constants such that ξη ≥ θ2/2, and W and Z are
Brownian motions with correlation ρ under a pricing measure. The writer also
knows the fact that the market option prices follow the Heston model through
observing the option market. The Heston parameters for the market option
prices are listed in Table 1.

Table 1: Heston Parameters for Market Option Prices
V0 ξ η θ ρ

0.202 1.15 0.202 0.39 -0.64

On the other hand, the writer does not know the true generating process of
the stock price. Thus, we consider the situation that the writer cannot know
not only the parameters of the generating model, but also the true model itself.

4.2 Hedging Strategies

We employ four hedging strategies in order to compare the performance of our
hedging scheme with that of standard hedging schemes. In the simulation tests,
the writer carries out one of these strategies systematically to hedge his market
risk on the target call until the maturity.

The first strategy is the Black-Scholes delta hedging without PVS (BS DH
for short). The writer uses the Black-Scholes model for dynamic hedging of the
call option:

dSt = σBSStdWt, (4.2)

where σBS is a constant volatility. At each time t, he computes the delta based
on the Black-Scholes model and re-balances the dynamic hedging portfolio ac-
cordingly. To be comparison with the Black-Scholes delta hedging with PVS,
the constant volatility σBS is set to be the strike volatility of PVS.
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The second strategy is the minimum-variance hedging with the Heston model
(HS MVH for short), which is a standard method of dynamic hedging in an
incomplete market. In the minimum-variance hedging under the Heston model
(4.1), the units of the underlying asset to be held at each time t are computed
as follows:3

∂Ct

∂St
+

ρθ

St

∂Ct

∂Vt
, (4.3)

where Ct denotes the time-t price of the target call option, and ρ and θ are
parameters in (4.1). Note that volatility risk can be partially hedged through
the correlation between the underlying asset price and its instantaneous variance
if the model and its parameters are correct. Based on the equation (4.3), the
writer re-balances the dynamic hedging portfolio at each time in the simulation
tests. For HS MVH, he adopts the same Heston parameters as in Table 1.

The third strategy is the Black-Scholes delta hedging with PVS, in which
the PVS maturity is the same as that of the target call; i.e., TPVS1 = 60/250
(BS DH with PVS1 for short). To hedge uncertain volatility risk on the target
call, the writer uses the sixth order PVS with corridor interval I = [85, 120].
Its polynomial is fitted with the volatility risk weight of the target call at time
τPVS1 = 30/250, and the static portfolio replicating the PVS is composed of 4
calls and 4 puts. In order to accurately approximate the static portfolio by the
finite number of options, the Gauss-Legendre quadrature rule is applied. More
detailed discussion for this approximation scheme can be found in Takahashi
and Yamazaki [2009a]. Table 2 reports the static portfolio compositions. At
initial time, the writer constitutes the static portfolio for the PVS. Then, he
computes the Black-Scholes delta and the amount of the underlying asset for
replicating the PVS at each time, and re-balances the dynamic portfolios of both
BS DH and the PVS accordingly. Note that, although the writer can roughly
offset the volatility risk by using the PVS, there is a discrepancy between the
polynomial of the PVS1 and the volatility risk weight of the target call for all
time t ∈ [0, T ]. In particular, this strategy is considerably over-hedging when
time t approaches the target call maturity and the stock price is apart from
at-the-money.

Table 2: Static Portfolio for Replicating PVS1
No.1 No.2 No.3 No.4

Call Strike 101.3886 106.6002 113.3998 118.6114
Call Amount 0.1906 0.2273 0.0560 0.0089
Put Strike 86.0415 89.9501 95.0499 98.9585
Put Amount 0.0180 0.1021 0.2341 0.1488

The fourth strategy is the Black-Scholes delta hedging with PVS, in which
the PVS maturity is shorter than that of the target call (BS DH with PVS2
for short). To avoid over-hedging against the volatility risk near the target
call maturity, the PVS maturity is set as TPVS2 = 55/250 in this strategy.
Additionally, the fitting point of its polynomial is τPVS2 = 27.5/250. Except
for the PVS maturity and the fitting point, the scheme of BS DH with PVS2
is the same as that of BS DH with PVS1. Table 3 shows the static portfolio
compositions.

For all strategies, the writer re-balances the dynamic portfolios once a day
until the target call maturity in the simulation tests. Then, we monitor the
hedging error (profit and loss) of each sample path, which is defined as the

3For example, see Bakshi et al. [1997] for the detail and for a practical application of the
minimum-variance hedging method.
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Table 3: Static Portfolio for Replicating PVS2
No.1 No.2 No.3 No.4

Call Strike 101.3886 106.6002 113.3998 118.6114
Call Amount 0.1837 0.2247 0.0622 0.0102
Put Strike 86.0415 89.9501 95.0499 98.9585
Put Amount 0.0206 0.1075 0.2292 0.1434

difference between the final value of the total hedging portfolio and the payoff
of the target call option.

4.3 Simulation Test

For the simulation tests, we consider three data generating processes: the Heston
model with correct estimated parameters, the Heston model with misspecified
parameters, and the CEV process. In each simulation, a time series of a daily
underlying asset price is generated according to an Euler-Maruyama approxima-
tion of the respective data generating process. Evey simulation result is based
upon 10,000 sample paths.

4.3.1 Simulation under Heston World

First, we generate underlying asset prices by the Heston model:

dSt = µStdt +
√

VtStdW ∗
t , (4.4)

dVt = ξ(η∗ − Vt)dt + θ
√

VtdZ
∗
t ,

where W ∗ and Z∗ are Brownian motions with correlation ρ under a physical
measure. Note that the parameter η∗, which denotes the mean reversion level of
the instantaneous variance for the data generating process, is generally smaller
than η in Eq.(4.1) because of market price of volatility risk. The Heston param-
eters for generating underlying asset prices are listed in Table 4. This scenario

Table 4: Heston Parameters for Generating Stock Prices
µ V0 ξ η∗ θ ρ

0.06 0.202 1.15 0.182 0.39 -0.64

indicates that the option market perfectly estimates both the data generating
process and its parameters. Such a situation, however, seems to be unrealistic
in practice.

Table 5 reports the summary statistics of the Monte Carlo simulation results.
Moreover, Figure 3 shows the histograms of hedging errors. In the Heston world
with correct estimated parameters, the means of hedging errors are nearly zero
for all hedging strategies. Conversely, the standard deviations are very different
for each hedging strategy. Since the minimum-variance hedging can partially
hedge volatility risk on the target call, the standard deviation of HS MVH is
smaller than that of BS DH without PVS. Furthermore, because the PVS can
directly hedge the volatility risk, the standard deviations of BS DH with PVS1
and PVS2 are reduced by half from BS DH and HS MVH. In addition, when
seeing in detail, the standard deviation of BS DH with PVS2 is smaller than
that of BS DH with PVS1. This is the effect of avoiding over-hedging near
the target call maturity. From the viewpoint of the standard deviation of the
hedging errors, it can be said that BS DH with PVS2 is the best strategy among
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four candidates. However, it is necessary to pay attention to high kurtosis of
the hedging errors in BS DH with PVS1 and PVS2. It means that BS DH with
PVS has a fat tail distribution of hedging errors. In fact, we can observe fat-tail
properties from Figure 3. In particular, the left tail on the histograms is thick;
i.e, negative skew. The high kurtosis is caused by the discrepancy between the
polynomials of the PVS and the volatility risk weights of the target call with
several bad scenarios for BS DH with PVS.

Table 5: Hedge Error under the Heston World
Hedging Scheme BS DH HS MVH BS DH

with PVS1
BS DH

with PVS2
Mean -0.0045 -0.0335 -0.0113 -0.0137
Std Err 0.9576 0.8685 0.4746 0.4612
Skewness -0.7288 -0.4404 -1.8565 -1.7630
Kurtosis 5.4867 3.6180 10.8580 11.3134
Min -7.1363 -5.6175 -4.3763 -3.9820
Max 3.2830 2.7374 1.5868 1.7767

4.3.2 Simulation under Heston World with Misspecified Parameters

Second, we generate underlying asset prices by the Heston model (4.4) with
misspecified parameters. The misspecified Heston parameters for generating
underlying asset prices are listed in Table 6.

Table 6: Misspecified Heston Parameters for Generating Stock Prices
µ V0 ξ η∗ θ ρ

0.06 0.202 2.00 0.252 0.39 -0.64

Table 7 reports the basic statistics of the Monte Carlo simulation results,
and Figure 4 shows the histograms of hedging errors. Note that BS DH and HS
MVH make losses on average while the means of hedging errors of BS DH with
PVS1 and PVS2 can be regarded as to be nearly zero. In addition, the standard
deviations of BS DH with PVS1 and PVS2 are much smaller than those of BS
DH and HS MVH. That is, by using the PVS the writer can improve the mean
of hedging errors as well as the standard deviation. As a result of this simulation
test, it can be said that the PVS is an appropriate tool for hedging volatility
risk even when the model parameters are mis-estimated, because the PVS does
not depend on parameter specification at all. On the other hand, similarly to
the previous case, there exists fat-tail risk of the hedging errors in BS DH with
PVS.

Table 7: Hedge Error under the Heston World with Misspecified Parameters
Hedging Scheme BS DH HS MVH BS DH

with PVS1
BS DH

with PVS2
Mean -0.2800 -0.3131 -0.0609 -0.0960
Std Err 0.9247 0.8303 0.5302 0.4942
Skewness -1.0346 -0.5237 -1.8707 -2.1345
Kurtosis 6.0194 3.7374 9.5258 11.1666
Min -7.1393 -5.6710 -4.8121 -4.3671
Max 2.6183 2.0812 1.7729 1.4335
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4.3.3 Simulation under CEV World

Third, we generate underlying asset prices by the CEV model:

dSt = µStdt + σCEVSβ
t dW ∗

t , (4.5)

where β and σCEV are constant parameters. The CEV parameters for generating
underlying asset prices are listed in Table 8. This situation means a model

Table 8: CEV Parameters for Generating Stock Prices
µ β σCEV

0.06 0.50 2.00

misspecification case.
Table 9 reports the basic statistics of the Monte Carlo simulation results, and

Figure 5 shows the histograms of hedging errors. Similarly to the misspecified
Heston world, although BS DH and HS MVH make losses on average, the means
of hedging errors of BS DH with PVS1 and PVS2 are nearly equal to zero. In
addition, the standard deviations of BS DH with PVS1 and PVS2 are much
smaller than HS MVH. Note that the hedging performance of HS MVH is worse
than BS DH without PVS because HS MVH is a fragile hedging scheme for
model risk. On the other hand, by adopting BS DH with PVS the writer can
improve the mean of hedging errors as well as the standard deviation. As a
consequence of this simulation test, it can be also said that BS DH with PVS is
a robust hedging scheme for model risk. Of course, fat-tail risk of the hedging
errors exists in BS DH with PVS.

Table 9: Hedge Error under the CEV World
Hedging Scheme BS DH HS MVH BS DH

with PVS1
BS DH

with PVS2
Mean -0.1300 -0.1702 -0.0327 -0.0495
Std Err 0.4429 1.1665 0.3866 0.3254
Skewness -0.3633 -0.0814 -1.4537 -1.5130
Kurtosis 4.7282 2.2873 6.1156 7.4525
Min -2.5923 -3.3922 -2.6899 -2.7925
Max 1.8762 2.7595 0.9525 1.1065

5 Concluding Remarks

This paper examines how robust the Black-Scholes delta hedging is against un-
certain volatility risk when adding a certain variance swap. While the standard
variance swap is the most approved contract to purely trade volatility of a un-
derlying asset, it is not absolutely an appropriate tool for hedging uncertain
volatility risk on derivative securities. To improve the defect of the standard
variance swap, we develop the polynomial variance swap, which is a kind of
exotic variance swaps and can be implemented by model-free replication. Then,
a new hedging scheme applying PVS is proposed. We test the hedging perfor-
mance of our scheme through Monte Carlo simulations which generate several
different scenarios of the underlying price processes. As a result, it is shown that
the hedging scheme proposed in this paper is not perfect, but significantly ro-
bust rather than other standard hedging schemes such as the minimum-variance
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hedging. Moreover, it is found that the hedging performance of our scheme is
hardly affected by model risk.

Finally, our next research topic will be to consider a robust hedging scheme
of exotic derivatives such as barrier options and look-back options against un-
certain volatility risk, and design a suitable volatility derivative as a hedging
tool for this problem.

A Price and Delta of the Volatility Risk Weight

We derive the closed-form expressions of v(0, S0; σH, gt) and ∂v
∂S (0, S0; σH, gt) in

Eq.(2.8) when the target derivative is a plain vanilla call. In the cases of other
European derivatives such as asset digital and cash digital, the closed-form
expressions can be obtained by the same manner as the following discussion.

Consider the payoff function fT (S) = (S −K)+ with strike K. By Eq.(2.5)
and the Black-Scholes gamma formula of the call option, the payoff function of
the volatility risk weight at maturity t can be written as

g(t, St) := gt(St) =
1
2
St

1√
2π

e−
1
2 d2

1

σH

√
T − t

, (A.1)

where

d1 =
ln St

K + 1
2σ2

H(T − t)
σH

√
T − t

. (A.2)

Therefore, the Black-Scholes price, which is the price in the case of σ(ω, t) = σH

in Eq.(2.1), of the derivative with payoff gt is given by

v(0, S0; σH, gt) = E

[
1
2
St

1√
2π

e−
1
2 d2

1

σH

√
T − t

]

=
1
2
S0I(S0), (A.3)

where

I(S0) := E

[
St

S0

1√
2π

e−
1
2 d2

1

σH

√
T − t

]

=
1√

2πTσH

exp

{
−1

2
(ln S0

K + 1
2σ2

HT )2

σ2
HT

}
. (A.4)

From Eq.(A.3), we have

∂v

∂S
(0, S0; σH, gt) =

1
2

[
I(S0) + S0

∂I

∂S
(S0)

]
=

[
1
4
−

ln S0
K

2σ2
HT

]
I(S0). (A.5)

B Proof of Proposition 2

Let

h(x) = 2
{

x ln
x∗

κ
− x∗ + κ

}
. (B.1)
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Then

h′(x) = 2 ln
x∗

κ
and h′′(x) =

2
x
1{x∈I}. (B.2)

By Itô’s formula, we obtain

1
2

∫ T

0

h′′(St)S2
t σ2(ω, t)dt = h(ST ) − h(S0) −

∫ T

0

h′(St)dSt. (B.3)

Since h(κ) = h′(κ) = 0, we have

h(ST ) =
∫ κ

0

h′′(K)(K − ST )+dK +
∫ ∞

κ

h′′(K)(ST − K)+dK

=
∫ κ

a

2
K

(K − ST )+dK +
∫ b

κ

2
K

(ST − K)+dK. (B.4)

Therefore, by substituting Eq.(B.1), (B.2), and (B.4) into Eq.(B.3), Eq.(3.5) is
obtained. �

C Proof of Proposition 3

Let

h(x) =
2

m(m − 1)
{
(1 − m)(x∗)m − mx

[
κm−1 − (x∗)m−1

]
− (1 − m)κm

}
.(C.1)

Then

h′(x) =
2

m − 1
{
(x∗)m−1 − κm−1

}
and h′′(x) = 2xm−11{x∈I}. (C.2)

Therefore, by the same discussion as Appendix B, Eq.(3.6) can be obtained. �

D Proof of Proposition 4

From the definition of the strike volatility, we have

σ2
PVS =

E
[∫ TPVS

0
1{St∈I}PM (St)σ2(ω, t)dt

]
E

[∫ TPVS

0
1{St∈I}PM (St)dt

] =
KPVS

LPVS
, (D.1)

where

LPVS = E

[∫ TPVS

0

1{St∈I}PM (St)dt

]
. (D.2)

Next, for any κ > 0 and all t ∈ [0, TPVS], it satisfies

PM (St) = PM (κ) + P ′
M (κ)(St − κ)

+
∫ κ

0

P ′′
M (K)(K − St)+dK +

∫ ∞

κ

P ′′
M (K)(St − K)+dK.(D.3)

Therefore, by substituting Eq.(D.3) into Eq.(D.2), Eq.(3.13) is obtained. �
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Figure 1: Volatility Risk Weight of Call and Variance Swap
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Figure 2: Volatility Risk Weight of Call and Polynomial Variance Swap
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