
 

 

 

 

 

 

C A R F  W o r k i n g  P a p e r 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CARF is presently supported by Bank of Tokyo-Mitsubishi UFJ, Ltd., Citigroup, Dai-ichi 
Mutual Life Insurance Company, Meiji Yasuda Life Insurance Company, Nippon Life Insurance 
Company, Nomura Holdings, Inc. and Sumitomo Mitsui Banking Corporation (in alphabetical 
order). This financial support enables us to issue CARF Working Papers. 

 
 

 

 

 

 

 

 

 

CARF Working Papers can be downloaded without charge from: 
http://www.carf.e.u-tokyo.ac.jp/workingpaper/index.cgi 

 

 

 

 

Working Papers are a series of manuscripts in their draft form.  They are not intended for 
circulation or distribution except as indicated by the author.  For that reason Working Papers may 
not be reproduced or distributed without the written consent of the author. 

   
CARF-F-267 

 
Speculative Attacks with Multiple Targets 

 
 

Junichi Fujimoto 
The University of Tokyo  

 
 

November 2011 



Speculative Attacks with Multiple Targets

Junichi Fujimoto∗

University of Tokyo

First Version: October 2009
This Version: November 2011

Abstract

This paper examines a global games model of speculative attacks in which spec-

ulators can choose to attack any one of a number of targets. In the canonical global

games model with a single target, it is well known that there exists a unique equilib-

rium that survives the iterative deletion of dominated strategies, characterized by

the threshold values of the private signal and the fundamentals. This paper shows

that with two targets, iterative deletion of dominated strategies yields a unique

combination of threshold signal functions that are nondecreasing in the private sig-

nals of the other target’s fundamentals, and threshold fundamentals functions that

are increasing in the other target’s fundamentals. The result is shown to extend

to environments with any N symmetric targets. The key argument is to combine

the iterative deletion procedure with the contraction mapping theorem. The pa-

per then goes through a number of numerical examples and shows, among other

results, that more accurate private signals have a decoupling effect on the outcomes

of attack on different countries. Finally, this paper introduces public information

and shows that the sufficient condition for unique equilibrium threshold functions

is very similar to that for a unique equilibrium in the single-target model.
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1 Introduction

Global games of regime change are “coordination games of incomplete information in

which a status quo is abandoned once a sufficiently large fraction of agents attack it”

(Angeletos, Hellwig, and Pavan (2007)). In a typical setup, agents receive a noisy private

signal of the fundamentals, which represents the strength of the regime, or the status

quo. The agents then individually decide whether or not to attack, or more generally

take an action against, the regime, and when the fraction of agents attacking exceeds a

certain threshold that depends on the fundamentals, the attack succeeds and the regime is

abandoned. Since the seminal work of Morris and Shin (1998), which applied such games

to analyze speculative attacks against a currency peg, these games have been actively

applied to model a wide range of crisis situations.

This paper extends the literature on global games of regime change by allowing for

multiple regimes, or targets, that agents can choose to attack. Such a situation may

arise in a number of real-life environments. In the context of currency crises, speculators

may face multiple emerging countries with currency pegs, and choose from among these

currencies to allocate their limited resources for attack, such as wealth and informational

capacity. For example, during the Asian crisis of 1997-98, there were a number of

Asian currencies largely pegged to the U.S. dollar that came under speculative attack.

Similar scenarios apply to sovereign debt crises, including the recent European sovereign

debt crisis, in which the debt and credit default swaps of several countries, rumored to

be facing potential default, have been subject to speculative trading. Other possible

applications include a situation in which investors decide which project to invest in, or

rioters choose which government facility to attack, where the success of investment or

attack requires participation of at least a certain mass of agents.1 So, while this paper

places the discussion in the context of currency crises, its implications extend to a much

broader context.

In the canonical global games model with a single target, it is well known (see,

e.g., Morris and Shin (1998)) that iterative deletion of (strictly) dominated strategies

yields a unique equilibrium2 characterized by a threshold value of the private signal that

determines whether an agent participates in an attack, and by a threshold value of the

fundamentals that determines whether the regime is abandoned. This paper shows that

with two targets, with potentially different precision of signals and cost of attack, iterative

1The global games approach is used to analyze investment in projects in Dasgupta (2007), and political

riots in Atkeson (2000), although in an environment with a single project or target of attack.
2Multiple equilibria may arise, however, when there is public information of the fundamentals, ei-

ther exogenous (Hellwig (2002)) or endogenous (Angeletos and Werning (2006), Hellwig, Mukherji, and

Tsyvinski (2006)) that is sufficiently precise.
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deletion of strictly dominated strategies results in a unique combination of equilibrium

threshold signal functions and threshold fundamentals functions. As a consequence, the

equilibrium is unique up to ties, and the outcomes of attack are uniquely determined given

the fundamentals. The present paper then shows that the result extends to environments

with any N symmetric countries.

The basic argument behind these results is as follows. By extending the iterative

deletion procedure to the multiple target environment, one can define an operator on an

adequate space of functions. The existence and uniqueness of the equilibrium thresh-

old functions then follows by showing that this operator is a contraction, and by then

invoking the contraction mapping theorem. The resulting threshold signal functions are

nondecreasing in the private signals of other targets’ fundamentals, whereas threshold

fundamentals functions are increasing3 in the fundamentals of other targets.

While the equilibrium threshold functions cannot be obtained in closed form, they can

be computed through a relatively simple numerical algorithm, thanks to the contraction

property. In order to explore further properties of these functions and the associated

outcomes of attack, this paper explores, mainly focusing on the two-country case, several

numerical examples, and obtains several interesting results. First, with multiple targets,

a target’s sustainability depends crucially on the fundamentals of the other target, and not

simply on its own fundamentals; a target’s fundamentals are evaluated relative to those of

the other target. Second, the presence of a second target makes the survival of a target

more likely, if the total measure of speculators is fixed; if the measure of speculators

doubles as does the number of targets, however, the region of fundamentals in which

both countries sustain the peg becomes smaller than when the two countries separately

face the speculative attack. Third, an increased precision of speculators’ private signals

has a decoupling effect ; since more accurate signals allow speculators to better discern the

country with the weaker fundamentals and to concentrate their attack on it, two countries

are more likely to face different outcomes of attack.

Finally, this paper examines an extension of introducing exogenous public information.

The sufficient condition for unique equilibrium threshold functions, which guarantees that

the relevant operator is a contraction, is expressed in terms of the relative precision of

public and private information, and closely resembles the known sufficient condition for

equilibrium uniqueness in the standard model with a single target. In view of this finding,

this paper relates its contraction argument to the standard proof of equilibrium uniqueness

through iterative deletion of dominated strategies.

This paper is related to studies that explore games of incomplete information with mul-

3Throughout this paper, increasing (decreasing) implies strictly increasing (decreasing), and nonde-

creasing (nonincreasing) implies weakly increasing (decreasing).
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tidimensional actions, types or payoff parameters. McAdams (2003) provides a sufficient

condition for the existence of an isotone pure strategy equilibrium in a class of games of

incomplete information with multidimensional actions and types. Oury (2005) considers

global games with multidimensional actions and payoff parameters, and shows that the

limit uniqueness result of Frankel, Morris, and Pauzner (2003) extends to this setting. In

both these studies, the elements of multidimensional actions can be chosen independently.

In contrast, in the present paper, speculators can attack at most one target, or more gen-

erally, can sell at most a fixed amount of all target currencies combined. This assumption

imposes restrictions on the possible combinations of actions toward each country, and as

an important consequence, there is no complementarity within own actions, unlike Oury

(2005).

This paper also has some similarities with Steiner (2007), which examines a mobile

game in which agents in a sector coordinate to make an investment and have the outside

option of leaving the current coordination problem (i.e., sector) for other problems (i.e.,

other sectors). However, while agents in the present paper receive private signals of

multiple fundamentals, in Steiner (2007) agents receive private signals only of the funda-

mentals of the current sector and, consequently, the equilibrium remains characterized by

threshold values, instead of threshold functions.

Finally, there are a number of studies that adopt the contraction mapping approach

to examine the equilibrium of games with strategic complementarities. Levin (2001)

explores an overlapping generations games in which agents, having an incentive to co-

ordinate and facing uncertainty in future states of the world, sequentially choose their

actions. Using the contraction mapping theorem, Levin (2001) shows the existence of

a unique equilibrium when agents believe their actions will have no influence on future

play. Mason and Valentinyi (2007) applies the contraction mapping argument to prove

the existence and uniqueness of equilibrium in a class of games of incomplete informa-

tion that exhibits, unlike the typical global games environment, large heterogeneity in

agents’ types. Mathevet (2010) considers finite global games in which the existence of

pure strategy equilibria follows from the standard argument for supermodular games4,

and establishes uniqueness of equilibrium by showing that the best response function is

weak contraction. The present paper considers a multidimensional environment substan-

tially different from these studies, and applies the contraction approach to the threshold

fundamentals functions, instead of the best response function.

4For detailed discussions on supermodular games, see e.g., Milgrom and Roberts (1990) and Vives

(1990).
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2 Model

2.1 Basic Environment

The model follows a simplified version of that in Morris and Shin (1998), except that

speculators can now choose to attack one of multiple potential targets, creating a new

dimension of coordination. There are N > 1 countries indexed by j ∈ {1, 2, . . . , N},
whose currencies are also referred to as currency j. Each currency is pegged to a foreign

currency. Country j’s economic fundamentals are denoted as θj , and θ1, θ2, . . . , θN are

independently drawn from a uniform distribution over the entire real line.

There is a continuum of risk-neutral speculators, indexed by i ∈ [0, 1]. Instead of ob-

serving the true values of θj, speculators receive noisy private signals of them. Speculator

i’s private signal of θj , denoted as xj
i , is expressed as

xj
i = θj + ǫji , (1)

where ǫ1i , ǫ
2
i , . . . , ǫ

N
i are independently drawn from N (0, 1/βj), βj > 0.5

Based on these N signals, speculators individually decide whether to attack any, but at

most one, of the N currencies. In what follows, a superscript −j implies that the variable

pertains to N − 1 countries (or currencies) other than j. Speculator i’s pure strategy is
(

a1i , a
2
i , . . . , a

N
i

)

: RN → {0, 1}N , ΣN
j=1a

j
i

(

xj
i , x

−j
i

)

= {0, 1}, where aji = 1 implies attacking

currency j and aji = 0 implies not attacking it.6 While I focus here on pure strategy, and

also, do not consider partial attacks against a single or multiple currencies, the analysis

below shows that it is without loss of generality, except for measure zero of marginal

speculators facing equally attractive targets.

Denote by Aj : RN → [0, 1] the measure, or the fraction since the measure of spec-

ulators equals one, of speculators attacking currency j, as a function of fundamentals

θ ≡
(

θ1, θ2, . . . , θN
)

= (θj, θ−j). If the measure of speculators attacking j equals or ex-

ceeds the realized value of the fundamentals θj or, equivalently, if Aj (θj, θ−j) ≥ θj , the

attack against j is successful, forcing country j to abandon the peg; currency j then floats

and depreciates, providing profits to those who attacked the currency. Otherwise, the

5The assumption that ǫji is normally distributed is stronger than is necessary for the results in Section

3; the argument goes through if ǫji is distributed according to a continuous probability density function

(pdf) with support on the real line. The normality assumption is necessary, however, when allowing for

public information in Section 5.1. The case of correlated signals is discussed in Section 5.2.
6Alternatively, I could rule out partial attacks (i.e., aji ∈ (0, 1)) from the outset and define speculator

i’s pure strategy as ai : R
N → {0, 1, . . . , N}, where ai = j ∈ {1, 2, . . . , N} implies attacking country j,

and ai = 0 implies attacking none. The current formulation, however, allows us to see that the main

implications of the paper do not hinge on the exclusion of partial attacks.
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attack against currency j is unsuccessful and j sustains the peg. Thus, currency j always

abandons the peg for θj ≤ 0, and never does so for θj > 1. Since a speculator can attack

at most one currency, ΣN
j=1A

j (θj, θ−j) ≤ 1.

Speculators’ payoffs are summarized in Table 1. The payoff for speculators who attack

a particular currency depends only on the success of that attack, and not on the outcomes

of attack for other currencies. Speculators attacking currency j receive 1 − cj > 0 if j

abandons the peg, and −cj < 0 otherwise, where cj ∈ (0, 1) is a transaction cost, which

may differ across j. Speculators attacking none of the currencies receive 0 regardless of

the outcome of the attack.

Currency j abandons the peg Currency j sustains the peg

Attack currency j 1− cj −cj

Attack no currency 0 0

Table 1: Payoffs.

2.2 Two Benchmark Models

Before starting the main analysis, I discuss below two related models with a similar

environment, which will be used for comparison with the model of this paper.

2.2.1 Multiple Targets with Public Information

The first benchmark is a version of the model in which there are N > 1 targets but

where the fundamentals θj , j = {1, 2, . . . , N}, are publicly observed. For simplicity,

suppose that cj is the same for all countries.7 This can be considered a multi-country ex-

tension of Obstfeld (1996), which exhibits a tripartite division of fundamentals θ according

to the resulting forms of equilibrium: All speculators attack and the peg is abandoned if

θ ≤ 0, no speculator attacks and the peg is sustained if θ > 1, and both of these become

equilibria if θ ∈ (0, 1].

With multiple targets, the Nash equilibrium is described as follows. If θj > 1 for all j,

no speculator attacks any currency and the peg is sustained for all j. If θj ≤ 0 for j = j̃

and θj > 1 for all j 6= j̃, all speculators attack currency j̃, and the peg is abandoned for

j̃ and is sustained for all j 6= j̃. In all other cases, there will be multiple equilibria. If

θj ≤ 0 for at least one j and θj ≤ 1 for at least one other j, each speculator attacks one of

7When cj is allowed to vary with j, the analysis requires examining various cases according to the

values of cj and θj . While not difficult, such analysis does not provide additional insight on the difference

between public and private information environments.
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the currencies with θj ≤ 1, and currencies attacked by any speculator abandon the peg.

Finally, if θj > 0 for all j and θj ≤ 1 for at least one j, either (1) each speculator attacks

one of the currencies with θj ≤ 1, and currencies attacked by any speculator abandon the

peg, or (2) no speculator attacks any currency and the peg is sustained for all j.

Therefore, as in Obstfeld (1996), the total fraction of speculators participating in an

attack, ΣN
j=1A

j (θj, θ−j), always equals 0 or 1, and there may be a unique equilibrium

or multiple equilibria, depending on the realization of fundamentals. The presence of

multiple targets naturally complicates the structure of the equilibrium, but the economic

outcomes for each country are very similar to the single-country case: The peg is aban-

doned for sure if θj ≤ 0, sustained for sure if θj > 1, and either outcome is possible if

θj ∈ (0, 1]. The only additional restriction is that max [θj , 0], summed over countries that

abandon the peg, cannot exceed 1, which is the largest possible fraction of attackers. So,

whether a country sustains the peg depends little on the fundamentals of other countries,

which contrasts with the private information case analyzed in this paper.

2.2.2 Single Target with Private Information

The second benchmark is the canonical global games model with a single target. Since

N = 1, the superscript j denoting country j is redundant, and hence is removed; otherwise,

all assumptions in Section 2.1 are sustained. As is well known, in this environment, there

exists a unique Bayesian Nash equilibrium that survives the iterative deletion of dominated

strategies. I briefly describe this iterative deletion procedure8, so as to facilitate the

understanding of the corresponding procedure in the multiple target environment.

By assumption, the peg collapses for θ ≤ 0 = θ∗1 even if no speculator attacks the peg.

Thus, given the signal xi, the expected payoff from attacking is at least

(1− c) · Pr (θ ≤ θ∗1|xi)− c · (1− Pr (θ ≤ θ∗1|xi)) = Pr (θ ≤ θ∗1|xi)− c, (2)

where Pr (θ ≤ θ∗1|xi) denotes the probability that θ ≤ θ∗1, conditional on receiving xi. Let

Φ be the cumulative density function of the standard normal distribution. Since θ follows

N(xi, 1/β) given xi, Pr (θ ≤ θ∗1|xi) = Φ
(√

β (θ∗1 − xi)
)

, which is decreasing in xi. Thus,

not attacking is a dominated strategy for speculators with signals xi < x∗
1, where

c = Pr (θ ≤ θ∗1|x∗
1) = Φ

(

√

β (θ∗1 − x∗
1)
)

, (3)

which completes the first round of deletion.

8For a more detailed discussion on the iterative deletion of dominated strategies in this context, see

e.g., Atkeson (2000).
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In the second round of deletion, it is taken as given that speculators with signals

xi ≤ x∗
1 will attack the currency.9 Let Pr (xi ≤ x∗

1|θ) be the probability that xi ≤ x∗
1,

conditional on a given realization of θ; from the law of large numbers, this is also the

fraction of speculators with such signals. Since xi follows N(θ,1/β) conditional on θ,

Pr (xi ≤ x∗
1|θ) = Φ

(√
β (x∗

1 − θ)
)

, which is decreasing in θ. So, even under the most

pessimistic belief about the success of attack, speculators must expect the peg to collapse

for θ ≤ θ∗2, where

θ∗2 = Pr (xi ≤ x∗
1|θ∗2) = Φ

(

√

β (x∗
1 − θ∗2)

)

. (4)

Thus, not attacking is a dominated strategy for speculators with signals xi < x∗
2, where

c = Pr (θ ≤ θ∗2|x∗
2) = Φ

(

√

β (θ∗2 − x∗
2)
)

. (5)

Clearly θ∗2 > θ∗1 = 0, which implies x∗
2 > x∗

1. This completes the second round of deletion.

Iterating this process, one obtains an increasing sequence {θ∗n, x∗
n}∞n=1 such that in

the n-th round of deletion, even under the most pessimistic belief about the success of

an attack, speculators must expect the peg to collapse for θ ≤ θ∗n, and not attacking

is a dominated strategy for xi < x∗
n. Proceeding similarly from θ̄1 = 1, one obtains a

decreasing sequence
{

θ̄∗n, x̄
∗
n

}∞

n=1
such that in the n-th round of deletion, even under the

most optimistic belief about the success of an attack, speculators must expect the peg to

be sustained for θ > θ̄∗n, and attacking is a dominated strategy for xi > x̄∗
n.

The limits of these sequences, {θ∗∞, x∗
∞} and

{

θ̄∗∞, x̄∗
∞

}

, must both be solutions to

c = Pr (θ ≤ θ∗s |x∗
s) = Φ

(

√

β (θ∗s − x∗
s)
)

, (6)

θ∗s = Pr (xi ≤ x∗
s|θ∗s) = Φ

(

√

β (x∗
s − θ∗s)

)

. (7)

But given Φ (a) = 1− Φ (−a), (6) and (7) yield

θ∗s = 1− c, (8)

x∗
s = θ∗s +

1√
β
Φ−1 (θ∗s) = 1− c +

1√
β
Φ−1 (1− c) , (9)

hence θ∗∞ = θ̄∗∞ = θ∗s and x∗
∞ = x̄∗

∞ = x∗
s. Thus, with a single target, the equilibrium

is characterized by a threshold signal x∗
s and threshold fundamentals θ∗s such that each

speculator attacks if and only if xi ≤ x∗
s, and the peg is abandoned if and only if θ ≤ θ∗s .

9Having a weak, instead of strict, inequality here presumes that speculators attack when they are

indifferent; such a tie-breaking rule is immaterial.
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3 Analysis of the Main Model

3.1 Overview

I now turn to the main model of this paper, which features multiple targets and pri-

vate information. I show below that with N = 2 countries, or with any N symmetric

countries, the equilibrium of this speculative attack game can be obtained by iterative

deletion of dominated strategies. Such equilibrium takes the following form: speculator

i attacks currency j if xj
i < xj∗

(

x−j
i

)

, and only if xj
i ≤ xj∗

(

x−j
i

)

, where xj∗ : RN−1 →
R is continuous and nondecreasing. The associated outcomes of attack are such that

currency j abandons the peg if and only if θj ≤ θj∗ (θ−j), where θj∗ : RN−1 → (0, 1) is

continuous and increasing. Thus, the equilibrium is characterized by a unique combi-

nation of threshold signal functions xj∗ and threshold fundamentals functions θj∗. As a

consequence, the outcomes of attack for all countries are uniquely pinned down given the

fundamentals, which contrasts with the public information case discussed above.

The argument proceeds as follows. First, I adapt the iterative deletion procedure

discussed above to this multiple target environment. This procedure generates, for each

country, an increasing sequence of threshold functions starting from ‘below’, and a decreas-

ing sequence of threshold functions starting from ‘above’. Second, I define an operator

associated with these sequences, show that the operator is a contraction, and invoke the

contraction mapping theorem to show that there is a unique fixed point of this operator,

corresponding to the limits of the sequences of functions from iterative deletion. Finally,

I show that the ‘lower’ and ‘upper’ limiting functions indeed coincide.

3.2 Iterative Deletion of Dominated Strategies

With multiple targets, speculators face not only the choice between attacking and not

attacking, but also the choice of which country to attack, which complicates the procedure

of iterative deletion of dominated strategies. To obtain the sequences of functions that

converge to the equilibrium functions, one must combine deletion from ‘above’ and ‘below’,

instead of proceeding separately as in the single-country case discussed in Section 2.2.2.

For any θ−j, let θj∗n (θ−j) and θ̄j∗n (θ−j) denote, respectively, the value of θj associated

with the most pessimistic and the most optimistic beliefs about the success of attack

against currency j, at the beginning of the n-th round of deletion. For any N signals xi =
(

x1
i , x

2
i , . . . , x

N
i

)

=
(

xj
i , x

−j
i

)

, let Γj∗
n (xi) and Γ̄j∗

n (xi) denote, respectively, the expected

payoff from attacking currency j under the belief that j abandons the peg if and only

if θj ≤ θj∗n (θ−j), and that under the belief that j abandons the peg if and only if θj ≤
θ̄j∗n (θ−j). Associated with these extreme beliefs are functions xj∗

n and x̄j∗
n such that in
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the n-th round, not attacking j is strictly dominated for xj
i < xj∗

n

(

x−j
i

)

, and attacking j

is strictly dominated for xj
i > x̄j∗

n

(

x−j
i

)

. Clearly, x̄j∗
n

(

x−j
i

)

≥ xj∗
n

(

x−j
i

)

.

Recall that for θj ≤ 0, currency j abandons the peg even if no speculator attacks j,

and for θj > 1, j sustains the peg even if all speculators attack it. Thus, in the first round

of deletion, speculators must believe, even under the most pessimistic belief about the

success of attack against currency j, that j abandons the peg for θj ≤ 0 = θj∗1 (θ−j), and

even under the most optimistic belief about the success of attack against j, that j sustains

the peg for θj > 1 = θ̄j∗1 (θ−j). Let us now compute Γj∗
1 and Γ̄j∗

1 . Since θj = xj
i − ǫji ,

Pr
(

θj ≤ θj∗|xj
i

)

= Pr
(

−ǫji ≤ θj∗ − xj
i

)

= Φ
(

√

βj
(

θj∗ − xj
i

)

)

(10)

for a fixed θj∗. Therefore, noting that θ−j = x−j
i − ǫ−j

i ,

Γj∗
1 (xi) = Pr

(

θj ≤ θj∗1
(

θ−j
)

|xj
i , x

−j
i

)

− cj (11)

=

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

βj
(

θj∗1
(

x−j
i − ǫ−j

i

)

− xj
i

)

)

dǫ−j
i − cj ,

where φ̃−j is the joint pdf of N − 1 independent normal noises, ǫ−j
i . Letting φ be the pdf

of the standard normal distribution, φ̃−j
(

ǫ−j
i

)

= Πk 6=j

√

βkφ
(

√

βkǫki

)

. Similarly,

Γ̄j∗
1 (xi) = Pr

(

θj ≤ θ̄j∗1
(

θ−j
)

|xj
i , x

−j
i

)

− cj (12)

=

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

βj
(

θ̄j∗1
(

x−j
i − ǫ−j

i

)

− xj
i

)

)

dǫ−j
i − cj .

For any x−j
i ∈ R

N−1, xj∗
1

(

x−j
i

)

is the value of xj
i such that not attacking currency j is

dominated for all xj
i < xj∗

1

(

x−j
i

)

. Formally,

xj∗
1

(

x−j
i

)

= inf
{

xj
i |Γj∗

1 (xi) ≤ max
{

0,
(

Γ̄k∗
1 (xi)

)

k 6=j

}}

, (13)

where xj∗
1

(

x−j
i

)

= −∞ if the infimum does not exist.10 Thus, for speculators with signals

xj
i < xj∗

1

(

x−j
i

)

, even under the most pessimistic belief about the success of attack against

currency j and the most optimistic beliefs about the success of attacks against other

currencies, the expected payoff from attacking j exceeds that from other alternatives (i.e.,

attacking other currencies or attacking none). Similarly, x̄j∗
1

(

x−j
i

)

is defined as

x̄j∗
1

(

x−j
i

)

= sup
{

xj
i |Γ̄j∗

1 (xi) ≥ max
{

0,
(

Γk∗
1 (xi)

)

k 6=j

}}

, (14)

10The infimum may not exist when cj > ck, since for sufficiently small xk
i , Γ̄

k∗
1 (xi) = Φ

(

1− xk
i

)

− ck >

1 − cj = lim
x
j

i
→−∞ Γj∗

1 (xi), hence Γj∗
1 (xi) < Γ̄k∗

1 (xi) for arbitrarily small xj
i . Similar situations may

arise in subsequent rounds of deletion.

10



where x̄j∗
1

(

x−j
i

)

= −∞ if the supremum does not exist.11 Given x−j
i , x̄j∗

1

(

x−j
i

)

is the

value of xj
i such that for xj

i > x̄j∗
1

(

x−j
i

)

, even under the most optimistic belief about the

success of attack against currency j and the most pessimistic beliefs about the success of

attacks against other currencies, speculators prefer not to attack j.

In the second round, it is taken as given that speculators with signals xj
i < xj∗

1

(

x−j
i

)

will attack currency j, and those with signals xj
i > x̄j∗

1

(

x−j
i

)

will not. Since Pr
(

xi < xj∗
1 |θ
)

=

Φ
(

√

βj
(

xj∗
1 − θ

)

)

and Pr
(

xi < x̄j∗
1 |θ
)

= Φ
(

√

βj
(

x̄j∗
1 − θ

)

)

for fixed xj∗
1 and x̄j∗

1 , spec-

ulators must believe, even under the most pessimistic belief about the success of attack

against j, that j abandons the peg for θj ≤ θj∗2 (θ−j), and even under the most optimistic

belief about the success of attack against j, that j sustains the peg for θj > θ̄j∗2 (θ−j),

where

θj∗2
(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

βj
(

xj∗
1

(

θ−j + ǫ−j
i

)

− θj∗2
(

θ−j
))

)

dǫ−j
i , (15)

θ̄j∗2
(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

βj
(

x̄j∗
1

(

θ−j + ǫ−j
i

)

− θ̄j∗2
(

θ−j
))

)

dǫ−j
i . (16)

Clearly, 1 = θ̄j∗1 (θ−j) ≥ θ̄j∗2 (θ−j) ≥ θj∗2 (θ−j) ≥ θj∗1 (θ−j) = 0 for all θ−j .

Repeating this procedure, one recursively obtains the sequences of functions
{

Γj∗
n , Γ̄j∗

n , xj∗
n , x̄j∗

n , θj∗n+1, θ̄
j∗
n+1

}∞

n=1
as

Γj∗
n (xi) =

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

βj
(

θj∗n
(

x−j
i − ǫ−j

i

)

− xj
i

)

)

dǫ−j
i − cj , (17)

Γ̄j∗
n (xi) =

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

βj
(

θ̄j∗n
(

x−j
i − ǫ−j

i

)

− xj
i

)

)

dǫ−j
i − cj , (18)

xj∗
n

(

x−j
i

)

= inf
{

xj
i |Γj∗

n (xi) ≤ max
{

0,
(

Γ̄k∗
n (xi)

)

k 6=j

}}

if inf exists, (19)

= −∞ otherwise,

x̄j∗
n

(

x−j
i

)

= sup
{

xj
i |Γ̄j∗

n (xi) ≥ max
{

0,
(

Γk∗
n (xi)

)

k 6=j

}}

if sup exists, (20)

= −∞ otherwise,

θj∗n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

βj
(

xj∗
n

(

θ−j + ǫ−j
i

)

− θj∗n+1

(

θ−j
))

)

dǫ−j
i , (21)

θ̄j∗n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

βj
(

x̄j∗
n

(

θ−j + ǫ−j
i

)

− θ̄j∗n+1

(

θ−j
))

)

dǫ−j
i . (22)

11The supremum may not exist when cj > ck, since for sufficiently small xk
i , Γ

k∗
1 (xi) = Φ

(

−xk
i

)

− ck >

1 − cj = lim
x
j

i
→−∞ Γ̄j∗

1 (xi), hence the set
{

xj
i |Γ̄

j∗
1 (xi) ≥ max

{

0,
(

Γk∗
1 (xi)k 6=j

)}

}

is empty. The

opposite case where Γ̄j∗
1 (xi) ≥ max

{

0,
(

Γk∗
1 (xi)k 6=j

)}

for arbitrarily large xj
i does not arise, since Γ̄

j∗
1 (xi)

decreases continuously in xj
i with lim

x
j

i
→∞ Γ̄j∗

1 (xi) = −cj < 0. The same applies to subsequent rounds.

11



For any X ⊆ R
l and g, g′ : X → R, write g ≥ g′ to imply g (x) ≥ g′ (x) for any

x ∈ X . Then, given θ̄j∗1 ≥ θ̄j∗2 ≥ θj∗2 ≥ θj∗1 , (17) and (18) imply Γ̄j∗
1 ≥ Γ̄j∗

2 ≥ Γj∗
2 ≥ Γj∗

1 ,

which in turn implies x̄j∗
1 ≥ x̄j∗

2 ≥ xj∗
2 ≥ xj∗

1 from (19) and (20). But then, (21) and

(22) imply θ̄j∗2 ≥ θ̄j∗3 ≥ θj∗3 ≥ θj∗2 . Proceeding in the same fashion, it follows that for

j = {1, 2, . . . , N},
{

θj∗n ,Γj∗
n , xj∗

n

}∞

n=1
are nondecreasing sequences and

{

θ̄j∗n , Γ̄j∗
n , x̄j∗

n

}∞

n=1

are nonincreasing sequences, where 1 ≥ θ̄j∗n ≥ θj∗n ≥ 0, Γ̄j∗
n ≥ Γj∗

n , and x̄j∗
n ≥ xj∗

n for all n.

There are several points that should be noted about the procedure described above.

First, Γj∗
n (xi) and Γ̄j∗

n (xi) are always decreasing in xj
i , and so are Γj∗

n (xi)− Γ̄k∗
n (xi) and

Γ̄j∗
n (xi) − Γk∗

n (xi) when θj∗n and θ̄j∗n are nondecreasing. In such case, there is no xj
i ≥

xj∗
n

(

x−j
i

)

such that Γj∗
n (xi) > max

{

0,
(

Γ̄k∗
n (xi)

)

k 6=j

}

and no xj
i ≤ x̄j∗

n

(

x−j
i

)

such that

Γ̄j∗
n (xi) < max

{

0,
(

Γk∗
n (xi)

)

k 6=j

}

, so in each round, all strictly dominated strategies are

eliminated. When θj∗n and θ̄j∗n are not necessarily nondecreasing, however, some strictly

dominated strategies may be left uneliminated in each round. This is not an issue of

concern, since the order of deletion of strictly (as opposed to weakly) dominated strategies

is irrelevant. Second, while the procedure above is a systematic method for deleting

strictly dominated strategies, it is not the only possible procedure, since the order of

deletion is irrelevant. What is critical is to eliminate only strictly dominated strategies,

and the definitions of xj∗
n and x̄j∗

n in (19) and (20) guarantee that this is the case, even

when θj∗n and θ̄j∗n are not continuous and nondecreasing.

For each θ−j ∈ R
N−1,

{

θj∗n (θ−j)
}∞

n=1
is a nondecreasing sequence in R, and

{

θ̄j∗n (θ−j)
}∞

n=1

is a nonincreasing sequence in R, where each sequence is, respectively, bounded above and

below by the other. Thus, the sequences of functions
{

θj∗n
}∞

n=1
and

{

θ̄j∗n
}∞

n=1
each con-

verge pointwise. However, this argument is insufficient to adequately explore the issues

of main interest, such as the existence and uniqueness of equilibrium threshold functions.

These issues are addressed by resorting to the contraction mapping theorem.

3.3 Contraction Mapping

The equations (17)–(22) map 2N functions
{

θj∗n , θ̄j∗n
}N

j=1
to
{

θj∗n+1, θ̄
j∗
n+1

}N

j=1
. One

must define an operator representing this mapping on an adequate space, such that the

contraction mapping theorem can be applied.

For any X ⊆ R
l, let B(X,RN ) denote the space of bounded, continuous, vector-

valued functions g : X → R
N , g =

(

g1, g2, . . . , gN
)

, equipped with the max-sup norm

||g|| ≡ maxNj=1 (supz∈X |gj (z) |). Further, let B̃(X,RN) denote the space of bounded,

continuous, nondecreasing vector-valued functions g : X → R
N , g =

(

g1, g2, . . . , gN
)

,

with the same norm. Then, B̃(X,RN) is a closed subset of B(X,RN).

Now, define vector-valued functions θ∗n ≡
(

θ1∗n , θ2∗n , . . . , θN∗
n

)

and θ̄∗n ≡
(

θ̄1∗n , θ̄2∗n , . . . , θ̄N∗
n

)

,

12



and an operator T on B̃(RN ,R2N ) by g∗n+1 = Tg∗n, where g
∗
n = (θ∗n, θ̄

∗
n).

12 In other words,13

g∗n (θ) = (θ1∗n
(

θ−1
)

, . . . , θN∗
n

(

θ−N
)

, θ̄1∗n
(

θ−1
)

, . . . , θ̄N∗
n

(

θ−N
)

). (23)

The max-sup norm applied to such g∗n is

||g∗n|| ≡ maxNj=1

[

max

(

sup
θ−j∈RN−1

|θj∗n
(

θ−j
)

|, sup
θ−j∈RN−1

|θ̄j∗n
(

θ−j
)

|
)]

. (24)

If B̃(RN ,R2N) is a complete metric space, T : B̃(RN ,R2N ) → B̃(RN ,R2N), and T is a

contraction, then the contraction mapping theorem implies that T has a unique fixed point

in B̃(RN ,R2N). Let
(

θ∗, θ̄∗
)

denote this fixed point, and x∗ =
(

x1∗, x2∗, . . . , xN∗
)

, x̄∗ =
(

x̄1∗, x̄2∗, . . . , x̄N∗
)

be the associated threshold signal functions. Since the theorem also

implies that g∗n converges to this fixed point from any g∗0 ∈ B̃(RN ,R2N), this fixed point

corresponds to the limiting functions from the iterative deletion of dominated strategies.

Once this step is accomplished, it remains to show θ∗ = θ̄∗; this implies x∗ = x̄∗, such

that speculator i attacks currency j if xj
i < xj∗

(

x−j
i

)

, and never does so if xj
i > xj∗

(

x−j
i

)

.

That θ∗ = θ̄∗ can be established by showing that T maps g∗n = (θ∗n, θ̄
∗
n) with θ∗n = θ̄∗n

to g∗n+1 = (θ∗n+1, θ̄
∗
n+1) with θ∗n+1 = θ̄∗n+1, and invoking the corollary to the contraction

mapping theorem.

Thus, the key is to show that T satisfies the requirement of the contraction mapping

theorem. It is straightforward to show that B̃(RN ,R2N) is a complete metric space.

For N = 2, one can further show that T : B̃(RN ,R2N) → B̃(RN ,R2N) and that T is a

contraction mapping. For N > 2, this can be shown only for the symmetric target case,

and requires a slightly modified approach. The next two subsections examine these cases

in turn, and discuss the resulting equilibrium.

3.4 Equilibrium with N = 2 Targets

For N = 2, one can show that iterative deletion of dominated strategies yields a unique

combination of equilibrium threshold functions, as summarized below.14

Proposition 1. For N = 2, the equilibrium is characterized by a unique combination of

threshold signal functions xj∗ and threshold fundamentals functions θj∗, j = {1, 2}, such
that

12The reason for defining an operator on threshold fundamentals functions, not threshold signal func-

tions, is that, unlike the former, which is guaranteed to have values in [0, 1], the latter is not bounded.
13Alternatively, I could define θj∗n and θ̄∗n as functions of θ ∈ R

N , where θj∗n and θ̄∗n are invariant to θj .

Such formulation simplifies exposition but obscures the fact that θj∗n and θ̄∗n depend only on θ−j , which

is why the current formulation is chosen. In any case, these choices are not essential to the results.
14The proofs to all propositions are in the appendix.
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1. A speculator attacks currency j if xj
i < xj∗

(

x−j
i

)

and only if xj
i ≤ xj∗

(

x−j
i

)

, where

xj∗ is continuous and increasing.

2. Country j abandons the peg if and only if θj ≤ θj∗ (θ−j), where θj∗ ∈ (0, 1) and θj∗

is continuous and increasing.

The proof proceeds exactly as described in Sections 3.2 and 3.3; that is, by resorting

to the contraction mapping theorem to establish the existence and uniqueness of the fixed

point of T , and by resorting to the corollary of this theorem to show that the lower and

upper threshold functions coincide at this fixed point, and to obtain additional properties

of the equilibrium functions.

Proposition 1 completely specifies the speculators’ attacking strategy, except when

xj
i = xj∗

(

x−j
i

)

. This corresponds to the case in which the speculator is indifferent between

attacking j, and either attacking some other currency or not attacking. Therefore, once

the tie-breaking rule is specified, iterative deletion of dominated strategies leads to a

unique equilibrium. Since marginal speculators with signals xj
i = xj∗

(

x−j
i

)

have measure

zero, such tie-breaking rule has no impact on the outcomes of attack; the combination of

fundamentals (θ1, θ2) uniquely pins down whether countries 1 and 2 sustain or abandon

the peg. For the same reason, focusing on pure strategy and ruling out partial attacks is

also immaterial.

Note that in the equilibrium above, the threshold fundamentals and the threshold

signals of one country are affected by the fundamentals and signals of the other country,

even though neither the fundamentals nor the signals of the two countries are correlated.

More precisely, a speculator is more willing to attack currency j when that speculator’s

signal for the other country is strong, and country j is more likely to abandon the peg

when the other country has strong fundamentals.

3.5 Equilibrium with Symmetric N > 2 Targets

For N > 2, the argument above does not apply, at least immediately, for the following

reason. Recall the operator T defined by (17)–(22). When θj∗n and θ̄j∗n are bounded,

continuous and nondecreasing, it is possible to show that the Blackwell’s sufficient condi-

tions for contraction, namely monotonicity and discounting, are satisfied. What cannot

be shown is that θj∗n+1 and θ̄j∗n+1 are again nondecreasing. To see this, consider the case

of N = 3, and take (x2
i , x

3
i ) such that x1∗

n (x2
i , x

3
i ) is given by the condition

Γ1∗
n

(

x1∗
n

(

x2
i , x

3
i

)

, x2
i , x

3
i

)

= Γ̄2∗
n

(

x1∗
n

(

x2
i , x

3
i

)

, x2
i , x

3
i

)

> max
{

0, Γ̄3∗
n

(

x1∗
n

(

x2
i , x

3
i

)

, x2
i , x

3
i

)}

.

(25)
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Now, take ∆ > 0 sufficiently small, and consider x1∗
n (x2

i , x
3
i +∆). Since θj∗n and θ̄j∗n are

continuous by assumption, so are Γj∗
n and Γ̄j∗

n . Then, x1∗
n (x2

i , x
3
i +∆) is still determined

by the indifference condition between attacking 1 and 2,

Γ1∗
n

(

x1∗
n

(

x2
i , x

3
i +∆

)

, x2
i , x

3
i +∆

)

= Γ̄2∗
n

(

x1∗
n

(

x2
i , x

3
i +∆

)

, x2
i , x

3
i +∆

)

. (26)

As x3
i rises to x3

i + ∆, Γ1∗
n and Γ̄2∗

n weakly increase since θj∗n and θ̄j∗n are nondecreasing

by assumption. To restore equality, x1
i may need to rise or fall, so it is possible that

x1∗
n (x2

i , x
3
i +∆) < x1∗

n (x2
i , x

3
i ). In other words, while x1∗

n (x2
i , x

3
i ) defined by (25) is in-

creasing in x2
i , it need not be nondecreasing in x3

i . But then, (21) implies that θ1∗n+1 (θ
2, θ3)

may not be nondecreasing in θ3.

More generally, the argument above implies that for N > 2, xj∗
n and x̄j∗

n need not be

nondecreasing, which in turn implies that θj∗n+1 and θ̄j∗n+1 may not be nondecreasing even if

θj∗n and θ̄j∗n are so.15 Thus, T cannot be shown to be a self-map on B̃(RN ,R2N ). Defining

T instead on B(RN ,R2N ) does not resolve the issue, because then T turns out to lose the

discounting property.

This issue can be overcome for the symmetric case in which βj and cj are the same

across j. The trick is to slightly modify the procedure of iterative deletion as follows. In

the n-th round of iteration, compute Γj∗
n and Γ̄j∗

n from θj∗n and θ̄j∗n by (17) and (18), and

then xj∗
n and x̄j∗

n by (19) and (20). Now, define the sets of functions in B̃
(

R
N−1,R

)

that

is dominated by xj∗
n , and that dominates x̄j∗

n , by

Xj∗
n ≡

{

f ∈ B̃
(

R
N−1,R

)

|f ≤ xj∗
n

}

, (27)

X̄j∗
n ≡

{

g ∈ B̃
(

R
N−1,R

)

|g ≥ x̄j∗
n

}

. (28)

Then, define functions xj∗
n,ND and x̄j∗

n,ND as

xj∗
n,ND =

{

f ∈ Xj∗
n |f ≥ f ′ , ∀f ′ ∈ Xj∗

n

}

, (29)

x̄j∗
n,ND =

{

g ∈ X̄j∗
n |g ≤ g′, ∀g′ ∈ X̄j∗

n

}

. (30)

Finally, define θj∗n+1 and θ̄j∗n+1 by

θj∗n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

βj
(

xj∗
n,ND

(

θ−j + ǫ−j
i

)

− θj∗n+1

(

θ−j
))

)

dǫ−j
i , (31)

θ̄j∗n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

βj
(

x̄j∗
n,ND

(

θ−j + ǫ−j
i

)

− θ̄j∗n+1

(

θ−j
))

)

dǫ−j
i . (32)

15Note that this problem does not arise for N = 2. If θj∗n and θ̄j∗n are nondecreasing, Γ1∗
n

(

x1
i , x

2
i

)

is

decreasing in x1
i and nondecreasing in x2

i , whereas Γ̄
2∗
n

(

x1
i , x

2
i

)

is decreasing in x2
i and nondecreasing in

x1
i . Then, x1∗

n

(

x2
i

)

is nondecreasing in x2
i , hence θ1∗n+1

(

θ2
)

is nondecreasing in θ2.
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Let T ′ denote this modified operator defined by (17)–(20) and (27)–(32), which maps from

g∗n = (θ∗n, θ̄
∗
n) to g∗n+1 = (θ∗n+1, θ̄

∗
n+1).

This modification forces θj∗n+1 and θ̄j∗n+1 to be nondecreasing, by eliminating the strate-

gies ‘do not attack currency j’ only for xj
i < xj∗

n,ND

(

x−j
i

)

≤ xj∗
n

(

x−j
i

)

, and ‘attack currency

j’ only for xj
i > x̄j∗

n,ND

(

x−j
i

)

≥ x̄j∗
n

(

x−j
i

)

, where xj∗
n,ND and x̄j∗

n,ND are nondecreasing.

Since one must avoid eliminating strategies that are not strictly dominated, choosing

xj∗
n,ND ∈ Xj∗

n and x̄j∗
n,ND ∈ X̄j∗

n is critical. On the other hand, choosing xj∗
n,ND and x̄j∗

n,ND

to be the largest and smallest function, respectively, in Xj∗
n and X̄j∗

n is inessential, be-

cause the order of deletion of strictly dominated strategies is irrelevant. This can also be

seen from the fact that when the contraction mapping theorem applies, the fixed point is

achieved from any initial value. Then, one can show that the operator T ′ is a contraction

on B̃(RN ,R2N), and hence has a unique fixed point, as stated in the following proposition.

Proposition 2. T ′ has a unique fixed point,
(

θ∗, θ̄∗
)

.

The final step is to show θ∗ = θ̄∗, which is achieved by taking advantage of the

symmetry across targets, namely that βj and cj are common to all j. The following

definition is introduced to facilitate the discussion.

Definition. hj : RN→ R, j = {1, 2, . . . , N}, are said to be symmetric across j if for

any s = (s1, s2, . . . , sN) and j, k ∈ {1, 2, . . . , N}, (1) hj (s) = hk (s′) where s′ is created

from s by exchanging its j-th and k-th element, and (2) hj (sj, s−j) = hj (sj , s̃−j) for any

permutation s̃−j = (s̃1, . . . , s̃j−1, s̃j+1, . . . , s̃N) of {s1, . . . , sj−1, sj+1, . . . , sN}.

For hj : RN−1→ R, j = {1, 2, . . . , N}, which are functions only of s−j, the definition

above can be applied by considering hj as functions of s ∈ R
N , whose values do not

vary with sj .16 In the present context, that hj is symmetric across j simply implies

that the roles played by N countries are identical. Then, one can show that T ′ maps

g∗n = (θ∗n, θ̄
∗
n) ∈ B̃

(

R
N ,R2N

)

, where θ∗n = θ̄∗n ≡ θ∗n =
(

θ1∗n , θ2∗n , . . . , θN∗
n

)

with θj∗n symmetric

across j, to g∗n+1 = (θ∗n+1, θ̄
∗
n+1) with the same properties. Further, for such g∗n, one can

also show that xj∗
n = x̄j∗

n and that these are nondecreasing, which implies xj∗
n = x̄j∗

n =

xj∗
n,ND = x̄j∗

n,ND. It then follows that with symmetric targets, the unique fixed point of

T ′ is such that θ∗ = θ̄∗ ≡ θ∗, which yields x∗ = x̄∗ ≡ x∗. But since the set of eliminated

strategies each round by the procedure corresponding to operator T ′ is a subset of that

associated with operator T , the unique fixed point of T ′ must coincide with that of T , or

equivalently, with the limiting function from the iterative deletion of dominated strategies.

This argument establishes the following results.

16For example, let N = 3 and consider θ1∗n
(

θ2, θ3
)

, θ2∗n
(

θ1, θ3
)

, θ3∗n
(

θ1, θ2
)

. If θj∗n is symmetric across

j, then for any a, b ∈ R, θj∗n (a, b) = θj∗n (b, a) for all j, and the value is independent of j.
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Proposition 3. For N > 2, suppose βj = β > 0 and cj = c ∈ (0, 1) for all j ∈
{1, 2, . . . , N}. Then the equilibrium is characterized by a unique combination of threshold

signal functions xj∗ and threshold fundamentals functions θj∗ that are symmetric across

j, such that

1. A speculator attacks currency j if xj
i < xj∗

(

x−j
i

)

and only if xj
i ≤ xj∗

(

x−j
i

)

, where

xj∗ is continuous and nondecreasing, and xj∗
(

x−j
i

)

≤ mink 6=j x
k
i .

2. Country j abandons the peg if and only if θj ≤ θj∗ (θ−j), where θj∗ ∈ (0, 1) and θj∗

is continuous and increasing.

Proposition 3 implies, as in the case of N = 2, that the equilibrium is unique up

to ties and that the outcomes of attack for the N countries are uniquely pinned down

given the fundamentals of all countries. Further, the equilibrium strategy has an intuitive

property; xj∗
(

x−j
i

)

≤ mink 6=j x
k
i implies that if a speculator attacks, the speculator attacks

the currency with the lowest signal.

This approach is, however, silent on the existence and uniqueness of equilibrium thresh-

old functions in environments with N > 2 nonsymmetric targets. The argument for es-

tablishing existence and uniqueness of the fixed point
(

θ∗, θ̄∗
)

of T ′ does not hinge on

targets being symmetric. However, with nonsymmetric targets, θ∗n = θ̄∗n does not imply

θ∗n+1 = θ̄∗n+1. This is because, as observed from (29) and (30), xj∗
n,ND 6= x̄j∗

n,ND even if

xj∗
n = x̄j∗

n , unless xj∗
n (= x̄j∗

n ) is nondecreasing, which cannot be guaranteed to be the case.

Accordingly, the final step of establishing θ∗ = θ̄∗ cannot be accomplished.

4 Numerical Examples

It is shown above that for N = 2 targets, as well as for general N symmetric targets,

the equilibrium is characterized by threshold functions that are uniquely determined.

Unlike the threshold values of fundamentals and signal in the single-target case discussed

in Section 2.2.2, however, these functions cannot be obtained in closed form. This

section explores several numerical examples, in order to obtain additional insights on

these equilibrium functions.17

4.1 Symmetric and Nonsymmetric N = 2 Targets

This subsection discusses the case of N = 2, which is the main focus of the analysis.

17Detailed computational procedures are described in the appendix.
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4.1.1 Symmetric Targets

I first consider the case with common cj and βj. Note that results are symmetric

across two countries in this case, hence the explanations below apply when the roles of

country 1 and 2 are reversed. Figures 1–4 illustrate the equilibrium threshold functions

for c1 = c2 = c = 0.1 and β1 = β2 = β = 1.

As observed from Figure 1, the threshold signal function x1∗ is composed of two parts;

one part that coincides with the 45 degree line, where the speculator is indifferent between

attacking currency 1 and 2, and a flatter part, where the speculator is indifferent between

attacking currency 1 and not attacking. Note that x1∗ (x2
i ) < x∗

s and x1∗ (x2
i ) → x∗

s as

x2
i → ∞, where x∗

s is the threshold signal in the single-target case, given by (9). This

can be understood as follows. Since each speculator expects some other speculators to

attack currency 2, the expected payoff from attacking currency 1 is, for any x2
i , lower

than with a single target. So, speculators choose a less aggressive attacking strategy, and

thus x1∗ (x2
i ) lies below x∗

s. But as x2
i increases, a speculator infers greater values of θ2

and expects a smaller fraction of other speculators to attack currency 2, so the presence

of currency 2 will have a smaller effect on the speculator’s decision to attack currency 1.

As x2
i → ∞, the presence of country 2 becomes irrelevant, and the speculator behaves as

if currency 1 is the only target. Speculators’ attacking decisions for given signals (x1
i , x

2
i )

can be observed from Figure 2. Observe that functions x1∗ and x2∗ divide the (x1
i , x

2
i )

space into three regions according to the corresponding attacking decision.

Similarly, Figure 3 indicates that θ1∗ (θ2) < θ∗s and θ1∗ (θ2) → θ∗s as θ2 → ∞, where θ∗s
is the threshold fundamentals in the single-target case, given by (8). Thus, the presence

of a second target always makes the survival of a peg more likely. This implication is

not surprising because, given that the total measure of speculators is fixed, the presence

of multiple targets serves to diversify the attacking pressure. Of greater importance is

that θ1∗ (θ2) is highly dependent on the value of θ2. This can be more clearly observed in

Figure 4, in which θ1∗ and θ2∗ divide the (θ1, θ2) space into four regions according to the

outcomes of attack for the two countries. Figure 4 shows that the success of attack on

one country depends critically on the other country’s fundamentals, and not just on its

own. Put differently, what matters here is not necessarily the value of the fundamentals

per se, but their value relative to the other target. Such a feature is completely lacking

in the public information case discussed in Section 2.2.1, unless it is exogenously imposed

through an equilibrium selection device.18

18For example, one can assume that in the multiple-equilibria region in which at most one peg can

fail (θ1, θ2 ∈ (0, 1] and θ1 + θ2 > 1), the probability of speculators coordinating to attack currency 1 is

increasing in θ2, and vice versa. While such assumption may sound plausible, it is totally ad hoc.
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The comparison between θ1∗ and θ∗s above assumes the same total measure of specu-

lators, normalized to one, for single and two-country environments. One may ask what

happens if the per country, not total, measure of speculators is fixed. In other words,

the question is whether doubling both the number of targets and the population of spec-

ulators, or equivalently, pooling the speculators who were segmented into two distinct

markets, makes collapse of the peg more likely or less so. This is an interesting ques-

tion because, while doubling the population of speculators increases the potential size of

the attack towards each country, the presence of multiple targets may make coordina-

tion among speculators more difficult, and it is not obvious which of the two channels

dominates. To answer this question, Figure 5 draws θ1∗ and θ2∗ along with the lines

corresponding to θ∗s,0.5, the threshold value of fundamentals in the single-target case with

measure 0.5 of speculators.19 Note that θ1∗ can be lower than θ∗s,0.5, which implies that

currency 1 may be able to sustain the peg, even with the values of fundamentals that

force country 1 to abandon the peg in the single-target case with half the population of

speculators. However, this can occur only when country 2 falls victim to attack; indeed,

the region of (θ1, θ2), under which both currencies sustain the peg (i.e., the upper right

region of Figure 5 in which both θ1 and θ2 are above the relevant threshold), is smaller

when speculators are pooled. This finding turns out to be robust to changes in β and c.

Another interesting exercise involves varying β. Figure 6 illustrates the outcomes of

attack when β1 and β2 are raised to 4, corresponding to more precise private signals than

in Figure 4. Note from (8) that the value of θ∗s is independent of β, hence Figures 4 and

6 are directly comparable. Comparing Figures 4 and 6, we observe that in Figure 6, θ1∗

is higher for relatively large values of θ2, and is lower for relatively small values of θ2. As

a result, the region of fundamentals (θ1, θ2) for which both pegs survive, and the region

for which both pegs fail, are both smaller in Figure 6. The implication is that increased

precision of signals has a decoupling effect, in the sense that the two countries are less

likely to face the same outcomes of attack. When private signals become more precise,

speculators are able to better discern the country with relatively weak fundamentals, hence

the attacking pressure tends to be more concentrated on that country. Thus, the country

with relatively strong fundamentals manages to survive the attack for a wider range of its

own fundamentals, at the cost of placing the other country in a more vulnerable situation.

Conversely, if one interprets the case of simultaneous collapses of the peg as contagion,

the model suggests that contagion is more likely with less precise signals. However, such

an implication for contagion based on a one-shot game requires some caution, since the

implication may be quite different if there are multiple rounds of speculative attacks.

19Proceeding as in Section 2.2.2, with the condition (7) modified as θ∗s,0.5 = 0.5Φ
(√

β
(

x∗
s,0.5 − θ∗s,0.5

))

,

one obtains θ∗s,0.5 = 0.5 (1− c) = 0.5θ∗s , and x∗
s,0.5 = θ∗s,0.5 +

1√
β
Φ−1

(

2θ∗s,0.5
)

.
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To see this, note that greater precision of signals expands the region of fundamentals

(θ1, θ2) for which at least one country abandons the peg. But once one country floats

its currency, the remaining country faces all speculators alone, such that it must now

abandon the peg for a wider range of its own fundamentals. If contagion is interpreted in

such an environment under repeated speculative attacks, then more accurate information

indeed facilitates contagion.

4.1.2 Nonsymmetric Targets

Let us now examine the nonsymmetric case, where c1 = c2 = 0.1, β1 = 1, and β2 = 4.

Figure 7 shows the attacking decisions in the (x1
i , x

2
i ) space. Note that unlike in Figure 2,

the part of x1∗ (x2
i ) where the speculator is indifferent between attacking currency 1 and 2

is steeper than the 45 degree line. The intuition is that country 2’s signal, which is more

precise, has a stronger impact on the speculator’s decision than country 1’s signal. For

example, when both x1
i and x2

i are relatively large (say, equal to 1), speculators recognize

that θ2 is more certain to be strong than θ1, and hence prefer to attack currency 1 over

currency 2. The opposite is true when both x1
i and x2

i are relatively small.

Figure 8 illustrates the outcomes of attack in the (θ1, θ2) space. Note that the outcome

of attack for currency 1 is more strongly dependent on θ2 than the outcome of attack for

currency 2 is on θ1, which can be understood as follows. Since β1 < β2, country 2’s

fundamentals, whether strong or weak, are perceived more accurately by speculators.

Thus, when country 2 has strong fundamentals, speculators recognize this and tend to

shift their target to country 1, placing country 1 in a vulnerable position. Conversely,

when country 2 has weak fundamentals, speculators also recognize this, and tend to shift

their target to country 2, relaxing the attacking pressure on country 1.

This explanation suggests that what really matters for the profile of the threshold

fundamentals function of a country (say, θ1∗) is the precision of the signal for the other

country (β2), not its own (β1). Indeed, we observe that in Figure 8, θ1∗ resembles that in

Figure 6, where β1 = β2 = 4, whereas θ2∗ is similar to that in Figure 4, where β1 = β2 = 1.

The implication of this observation, with respect to the issues of contagion and de-

coupling mentioned above, is as follows. Suppose the precision of private signals reflects

the transparency of government policy20, such that country j’s government authority can,

to some extent, control βj. Then, what country 1’s government authority can affect is

mainly how the outcome of attack for currency 2 depends on country 1’s fundamentals;

the issue which is probably more important to country 1’s government authority, the de-

20Heinemann and Illing (2002) adopts such an interpretation and discusses the impact of transparency

on the probability of successful speculative attack.
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pendence of the outcome of attack for currency 1 on country 2’s fundamentals, is instead

at the discretion of country 2’s government authority.

4.2 Symmetric N = 3 Targets

I conclude this section by setting forth an example for the symmetric N > 2 case.

Figures 9 and 10 depict the equilibrium threshold functions for N = 3, where cj = 0.1

and βj = 1 for all j. Note that the threshold functions are symmetric across j.

Figure 9 depicts x3∗ (x1
i , x

2
i ); speculators receiving signals below the graph attack coun-

try 3. As in the case ofN = 2, x3∗ (x1
i , x

2
i ) is composed of two parts; the part that coincides

with min {x1
i , x

2
i }, where the speculator is indifferent between attacking currency 3 and

one of the other two currencies, and the flatter part, where the speculator is indifferent

between attacking currency 3 and not attacking. While x∗
s is not indicated in the figure

to avoid graphical clutter, x3∗ (x1
i , x

2
i ) < x∗

s and x3∗ approaches x∗
s as both x1

i and x2
i tend

to ∞. The intuition is similar to the N = 2 case. Compared to the single-target case,

speculators choose a less aggressive attacking strategy towards country 3, since the at-

tacking pressure is spread out over three countries. But as x1
i and x2

i increase, speculators

expect a smaller fraction of other speculators to attack these countries, so the presence of

the other two countries becomes less important for the decision to attack country 3. As

both x1
i and x2

i approach ∞, the speculator behaves as if currency 3 is the only target.

Note that x1∗, x2∗ and x3∗ divide the (x1
i , x

2
i , x

3
i ) space into four regions according to

speculators’ attacking decisions.

Figure 10 illustrates θ3∗ (θ1, θ2); country 3 abandons the peg when the combination

of the fundamentals lies on or below the graph. As observed from Figure 10, θ3∗ (θ1, θ2)

increases smoothly in θ1 and θ2. Moreover, θ3∗ (θ1, θ2) approaches 0 as either θ1 or θ2

tends to −∞, and approaches θ∗s as both θ1 and θ2 approach ∞. This implies that if there

is one country with very weak fundamentals, speculators target this country, relaxing the

attacking pressure on other countries. The threshold fundamentals functions for the

three countries divide the (θ1, θ2, θ3) space into eight regions according to the outcomes

of attack for the three countries.

5 Discussions and Extensions

5.1 Introduction of Public Information

I have thus far restricted speculators’ information on the fundamentals to private

signals by assuming an uninformative prior of the fundamentals. Here, I relax this
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assumption and introduce public information.

In the standard model with a single target, it has been shown (e.g., Morris and Shin

(2002), Hellwig (2002)) that multiple equilibria may exist if there is public information

that is sufficiently informative relative to private information. For example, when the

fundamentals θ are drawn from a common prior N (y, 1/α) in the model of Section 2.2.2,

then there may be multiple equilibria if α/
√
β >

√
2π. In other words, the sufficient

condition for a unique equilibrium is α/
√
β ≤

√
2π. The following proposition provides

the corresponding sufficient condition in the model with multiple targets.

Proposition 4. (1) For N=2, suppose the common prior distribution of θj is N (yj, 1/αj)

for j = {1, 2}. Proposition 1 holds if αj/
√

βj <
√
2π for j = {1, 2}. (2) For any N,

suppose that βj = β > 0, cj = c ∈ (0, 1), and that the common prior distribution of θj is

N (y, 1/α) for all j ∈ {1, 2, . . . , N}. Proposition 3 holds if α/
√
β <

√
2π.

When the sufficient condition in Proposition 4 is not satisfied, it turns out that the

corresponding operator cannot be proved to be a contraction. Note that the sufficient

condition for a unique combination of equilibrium threshold functions is very similar to

the sufficient condition for a unique equilibrium in the single-target case. Such similarity

is not a coincidence. In fact, it is possible to apply the contraction approach used in this

paper to the single-target environment, as can be seen as follows.

Consider a N = 2 case with c2 > 1, such that while there are two potential targets,

attacking currency 2 is never profitable. Then, no speculator ever attacks currency

2, hence θ1∗n (θ2) and θ̄1∗n (θ2) become independent of θ2. Using such constant valued

functions, we can proceed with the iterative deletion as in the proof of Proposition 4(1);

then, under the condition α1/
√

β1 <
√
2π which guarantees that T is a contraction, θ1∗n

and θ̄1∗n converge to the same, constant valued function, which establishes the unique

equilibrium result. Except for the inequality being strict, this condition coincides with

the known sufficient condition for equilibrium uniqueness.21

5.2 Correlated Noises

This paper has assumed throughout that the noises ǫji are independent across j. This

assumption enables the focus on the direct impact of increasing the number of targets

and facilitates comparison with the two benchmark models; however, it is not crucial for

21When α1/
√

β1 =
√
2π, the operator T is only a weak contraction, hence the contraction mapping

theorem does not apply. However, in the single-target case, a slight reformulation yields an operator

which maps a compact space to itself, so one can instead invoke Edelstein’s fixed point theorem (Edelstein

(1962)) to show that there exists a unique fixed point, and thus a unique equilibrium.
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the existence and uniqueness of equilibrium threshold functions shown in Section 3, as

stated by the proposition below.

Proposition 5. (1) For N = 2, suppose ǫji , j = {1, 2}, are drawn from a continuous and

bounded joint pdf ϕ : R2 → R
++. Then, Proposition 1 holds. (2) For N > 2, suppose

βj = β > 0 and cj = c ∈ (0, 1) for all j, and suppose ǫji , j = {1, 2, . . . , N}, are drawn

from a continuous bounded joint pdf ϕ : RN → R
++ that is symmetric across j. Then,

Proposition 3 holds.

At first glance, correlated noises may appear to create complications in establishing

that the relevant operator is a contraction. Proposition 5 states, however, that this is

not the case, and the same equilibrium properties can be obtained even when noise is

correlated. Intuitively, this is because, whatever the correlation among the noises, a

higher value of xj
i suggests a higher value of θj , and a higher value of θj increases the

proportion of strong signals xj
i , which is key for the equilibrium to be characterized by

threshold functions.

6 Conclusions

This paper has examined a global games model of speculative attacks in which there

exist multiple targets for speculators to attack. With two countries, or any N symmetric

countries, the equilibrium is characterized by threshold signal functions and threshold

fundamentals functions, which are uniquely determined for each country. Accordingly, in

these cases, a country’s fundamentals are evaluated in relation to those of other countries,

and the outcomes of attack are uniquely determined given the fundamentals of all coun-

tries. Such an equilibrium property is a natural extension to that in the canonical global

games model with a single target, and it starkly contrasts with that in a multiple-target

environment with publicly observed fundamentals.

This paper has set forth a number of numerical exercises to generate further insight

into these equilibrium threshold functions, mainly focusing on the two-country case, and

has derived several implications. First, the addition of the second target lowers the

threshold fundamentals and facilitates a country to sustain the peg, if the total population

of speculators is held constant. When instead the per-country population of speculators

is held constant, the threshold fundamentals may still be lower than in the single-target

case, but only when the other country falls victim to speculative attack. Second, increased

quality of private information has a decoupling effect, such that under greater precision

of signals, the two countries are less likely to face the same economic outcome. This

is because, with greater precision of signals, speculators are more capable of uncovering
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the country with the weaker fundamentals and of coordinating their attacks on that

country. Third, the precision of signals for country 1 mainly affects how country 2’s

threshold fundamentals function varies with country 1’s fundamentals, not how country

1’s threshold fundamentals function varies with country 2’s fundamentals. This restricts

the usefulness, as a policy tool, of varying the transparency of government policy, unless

countries coordinate on such policy.

Finally, this paper has considered the extension of introducing public information

through an informative prior of the fundamentals, and has shown that the sufficient

condition for the existence of unique equilibrium threshold functions closely resembles

the known sufficient condition for the unique equilibrium in the single-target case. In

order to relate these conditions, this paper has described how its contraction argument

can be applied to the single-target case.

The environment of this paper, namely global games of regime change with multiple

regimes, is not only of theoretical interest, but has many interesting real-life applications.

Combining the iterative deletion procedure with the contraction mapping argument turns

out to be a powerful approach for examining such an environment, not only for the theo-

retical analysis of the equilibrium, but also for numerical computations. One limitation of

this approach is that it is not applicable when there are more than two nonsymmetric tar-

gets, in which case the threshold functions may not always be nondecreasing. Obtaining,

for example, sufficient conditions for unique threshold functions in such an environment

appears to require a different approach, and such pursuit is left for future research.
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Appendix A: Proofs

Proposition 1

Let operator T and spaces B(X,R2N ), B̃(X,R2N ) be as defined in Section 3.3. If one

can show that B̃(RN ,R2N) is a complete metric space, that T maps from B̃(RN ,R2N)

to itself, and that T is a contraction, then the contraction mapping theorem implies

that there exists a unique fixed point g∗ = (θ∗, θ̄∗) of T . The proof then concludes by

establishing the properties of this fixed point, most importantly θ∗ = θ̄∗. Let these steps

be proved through a series of lemma.

Lemma 1. For any X ⊆ R
l, B(X,RN) is a Banach space.

Proof. That B(X,RN) is a normed vector space easily follows from the definition of a

normed vector space. It remains to show that B(X,RN) is complete, so that if {gn}∞n=1,

gn ∈ B(X,RN ) ∀n, is a Cauchy sequence, there exists g ∈ B(X,RN) such that, for any

ǫ > 0, there exists Mǫ such that ||gn − g|| ≤ ǫ, all n ≥ Mǫ, where || · || is the max-sup

norm. This is shown by extending the proof that the space of scalar-valued, bounded

continuous functions is complete (see e.g., Stokey and Lucas (1989), Theorem 3.1), and

involves three steps: (1) to find a candidate for g, (2) to show {gn} converges to g in the

max-sup norm, and (3) to show g ∈ B(X,RN). First, fix any z ∈ X . Then the sequence

of real numbers {gjn(z)} satisfies

|gjn(z)− gjm(z)| ≤ sup
w∈X

|gjn(w)− gjm(w)| ≤ max
j

sup
w∈X

|gjn(w)− gjm(w)| = ||gn − gm||,

so it satisfies a Cauchy criterion, since {gn} is a Cauchy sequence by assumption, and its

convergence to some gj(z) ∈ R is assured since the space of real numbers is complete. So

the candidate for g is g =
(

g1, g2, . . . , gN
)

, where gjn → gj pointwise for each j. Next, take

any ǫ > 0 and choose Mǫ so that n,m ≥ Mǫ implies ||gn − gm|| ≤ ǫ/2. This is possible

since {gn} is a Cauchy sequence. Then, for any z ∈ X and m ≥ n ≥ Mǫ,

|gjn(z)− gj(z)| ≤ |gjn(z)− gjm(z)|+ |gjm(z)− gj(z)|
≤ ||gn − gm||+ |gjm(z)− gj(z)|
≤ ǫ/2 + |gjm(z)− gj(z)|.

Since gjn → gj pointwise, m can be chosen separately for each z so that |gjm(z)− gj(z)| ≤
ǫ/2. Since the choice of z ∈ X was arbitrary, it follows that supz∈X |gjn(z) − gj(z)| ≤ ǫ,

all n ≥ Mǫ. Since this holds for any j, it follows that ||gn − g|| ≤ ǫ, all n ≥ Mǫ.

Thus ||gn − g|| → 0 as n → ∞, since the choice of ǫ was arbitrary. Finally, let us show

that g ∈ B(X,RN ), which is true if each gj is bounded, continuous and nondecreasing.
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Boundedness is obvious. For continuity, one needs to show that for any ǫ > 0 and

any z ∈ X , there exists δ > 0 such that |gj (z) − gj (w) | < ǫ if ||z − w||E < δ, where

|| · ||E is the Euclidean norm on R
l. For any j, take any ǫ, z and choose k so that

supw∈X |gj(w) − gjk(w)| < ǫ/3. This is possible because, since gn → g in the max-sup

norm, each gjn → gj in the sup norm. Then choose δ such that ||z − w||E < δ implies

|gjk (z)− gjk (w) | < ǫ/3. Since gjk is continuous, such a choice is possible. Then

|gj (z)− gj (w) | ≤ |gj (z)− gjk (z) |+ |gjk (z)− gjk (w) |+ |gjk (w)− gj (w) |
≤ 2 sup

w∈X

|gj(w)− gjk(w)|+ |gjk (z)− gjk (w) |

< ǫ,

so gj is continuous for all j. Therefore g ∈ B(X,RN), which completes the proof.

Given Lemma 1, B(X,RN) is a complete metric space with the metric d (f, g) = ||f−g||
for f, g ∈ B(X,RN), where || · || is the max-sup norm. Thus, being a closed subset of

B(X,RN), B̃(X,RN ) is also a complete metric space with the max-sup norm. Since this

is true for any X ⊆ R
l and N , B̃(R2,R4) is a complete metric space.

Lemma 2. T maps B̃(R2,R4) to itself.

Proof. Take any g∗n such that g∗n (θ) = (θ1∗n (θ2) , θ2∗n (θ1) , θ̄1∗n (θ2) , θ̄2∗n (θ1)) ∈ B̃(R2,R4).

To prove g∗n+1 = Tg∗n ∈ B̃(R2,R4), one must show that all component functions of g∗n+1,

namely θj∗n+1 and θ̄j∗n+1, j = {1, 2}, are bounded, continuous and nondecreasing. Bound-

edness is obvious since θj∗n+1, θ̄j∗n+1 ∈ (0, 1) from (21) and (22). For continuity, note

from (17) and (18) that if θj∗n and θ̄j∗n are bounded, continuous and nondecreasing for

j = {1, 2}, then Γj∗
n (xi)− Γ̄k∗

n (xi) and Γ̄j∗
n (xi)− Γk∗

n (xi) are bounded and continuous in

both arguments, decreasing in xj
i , and nondecreasing in xk

i . Then, (19) and (20) imply

that xj∗
n

(

xk
i

)

and x̄j∗
n

(

xk
i

)

are continuous and nondecreasing, and increasing for the range

of xk
i for which xj∗

n

(

xk
i

)

and x̄j∗
n

(

xk
i

)

are determined by the indifference condition between

attacking j and k under the corresponding beliefs. It then follows from (21) and (22)

that θjn+1 and θ̄jn+1 are continuous and nondecreasing (in fact, increasing), hence g∗n+1 ∈
B̃(R2,R4).

Lemma 3. T is a contraction.

Proof. The proof proceeds by showing that the Blackwell’s sufficient conditions for a con-

traction are satisfied for each component function. Take any g∗n (θ) = (θ1∗n (θ2) , θ2∗n (θ1) , θ̄1∗n (θ2) , θ̄2∗n (θ1))

B̃(R2,R4). For monotonicity, fix j ∈ {1, 2} and define g∗∗n ∈ B̃(R2,R4) by replacing the

j-th component of g∗n, namely θj∗n , by θj∗∗n ≥ θj∗n . Further, let Γ∗∗
n , Γ̄∗∗

n , x∗∗
n , x̄∗∗

n , θ∗∗n+1,
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θ̄∗∗n+1 be the functions obtained from g∗∗n by (17)–(22). For any xi =
(

xj
i , x

−j
i

)

∈ R
2, (17)

and (18) imply Γj∗∗
n (xi) ≥ Γj∗

n (xi), whereas Γ̄
∗∗
n (xi) = Γ̄∗

n (xi). Then, since Γj∗∗
n (xi) and

Γj∗
n (xi) are decreasing in xj

i , whereas Γ̄k∗∗
n (xi) and Γ̄k∗

n (xi) are nondecreasing in xj
i for

k 6= j, (19) implies xj∗∗
n ≥ xj∗

n . Thus, (21) implies θj∗∗n+1 ≥ θj∗n+1, hence monotonicity holds.

For discounting, fix j ∈ {1, 2}, take any a ≥ 0 and define g#n ∈ B̃(R2,R4) by replacing

the j-th component of g∗n, namely θj∗n , by θj∗n + a. Let Γ#
n , Γ̄

#
n , x

#
n , x̄

#
n , θ

#
n+1, θ̄

#
n+1 be

the functions obtained from g#n by (17)–(22). Then, noting that Γj#
n (xi) and Γj∗

n (xi)

are decreasing in xj
i , whereas Γ̄k#

n (xi) and Γ̄k∗
n (xi) are nondecreasing in xj

i for k 6= j,

xj#
n ≤ xj∗

n + a follows from (17)–(20). Now, define θj##
n+1 (θ−j) by

θj##
n+1

(

θ−j
)

(33)

=

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

βj

(

xj∗
n

(

θ−j + ǫ−j
i

)

+ a− θj##
n+1

(

θ−j
)

))

dǫ−j
i .

Since xj#
n ≤ xj∗

n +a, θj#n+1 ≤ θj##
n+1 . Let γj be the maximum value of the slope of Φ

(
√

βjz
)

for z ∈ R, that is, γj =
√

βjφ (0) =
√

βj/
√
2π > 0. Then, Φ

(
√

βj (z + a)
)

−Φ
(
√

βjz
)

≤
γja for any a ≥ 0. Thus, from (21) and (33),

θj##
n+1

(

θ−j
)

− θj∗n+1

(

θ−j
)

≤
∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

γj
[

a−
(

θj##
n+1

(

θ−j
)

− θj∗n+1

(

θ−j
)

)]

dǫ−j
i

≤ γj
[

a−
(

θj##
n+1

(

θ−j
)

− θj∗n+1

(

θ−j
)

)]

≤ λja,

where λj ≡ γj/ (1 + γj) ∈ (0, 1). Thus, θj#n+1 (θ
−j) ≤ θj##

n+1 (θ−j) ≤ θj∗n+1 (θ
−j) + λja, and

since the choice of a ≥ 0 was arbitrary, discounting also holds. Repeating the argument

above for each component function of g∗n, it follows that monotonicity and discounting

holds for θj∗n and θ̄j∗n , j = {1, 2}. Now, let g∗n and g∗n+1 be as defined above, take any

g+n ∈ B̃(R2,R4) such that

g+n (θ) = (θ1+n (θ2) , θ2+n (θ1) , θ̄1+n (θ2) , θ̄2+n (θ1)), and let g+n+1 = Tg+n . Then, noting

θj∗n ≤ θj+n + sup
θ−j∈RN−1

|θj∗n
(

θ−j
)

− θj+n
(

θ−j
)

|

and invoking monotonicity and discounting shown above,

θj∗n+1 ≤ θj+n+1 + λj sup
θ−j∈RN−1

|θj∗n
(

θ−j
)

− θj+n
(

θ−j
)

|.

Reversing the role of θj∗n and θj+n , one obtains

θj+n+1 ≤ θj∗n+1 + λj sup
θ−j∈RN−1

|θj∗n
(

θ−j
)

− θj+n
(

θ−j
)

|.
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Therefore,

sup
θ−j∈RN−1

|θj+n+1

(

θ−j
)

− θj∗n+1

(

θ−j
)

| ≤ λj sup
θ−j∈RN−1

|θj∗n
(

θ−j
)

− θj+n
(

θ−j
)

| (34)

for all j. A similar argument establishes

sup
θ−j∈RN−1

|θ̄j+n+1

(

θ−j
)

− θ̄j∗n+1

(

θ−j
)

| ≤ λj sup
θ−j∈RN−1

|θ̄j∗n
(

θ−j
)

− θ̄j+n
(

θ−j
)

|, (35)

for all j. But then, letting λ ≡ maxj λ
j,

||Tg∗n − Tg+n ||
= ||g∗n+1 − g+n+1||

= max
j

[

max

(

sup
θ−j∈RN−1

|θj∗n+1

(

θ−j
)

− θj+n+1

(

θ−j
)

|, sup
θ−j∈RN−1

|θ̄j∗n+1

(

θ−j
)

− θ̄j+n+1

(

θ−j
)

|
)]

≤ max
j

[

λj max

(

sup
θ−j∈RN−1

|θj∗n
(

θ−j
)

− θj+n
(

θ−j
)

|, sup
θ−j∈RN−1

|θ̄j∗n
(

θ−j
)

− θ̄j+n
(

θ−j
)

|
)]

≤ λmax
j

[

max

(

sup
θ−j∈RN−1

|θj∗n
(

θ−j
)

− θj+n
(

θ−j
)

|, sup
θ−j∈RN−1

|θ̄j∗n
(

θ−j
)

− θ̄j+n
(

θ−j
)

|
)]

= λ||g∗n − g+n ||,

which implies that T is a contraction.

Given Lemma 1–3, T has a unique fixed point g∗ = (θ∗, θ̄∗) from the contraction

mapping theorem. The final step of the proof is to show θ∗ = θ̄∗ ≡ θ∗, where θj∗ ∈ (0, 1)

and θj∗ is continuous and increasing. Take g∗n (θ) = (θ1∗n (θ2) , θ2∗n (θ1) , θ̄1∗n (θ2) , θ̄2∗n (θ1)) ∈
B̃(R2,R4) such that θj∗n = θ̄j∗n , j = {1, 2}. Then, (17) and (18) imply Γj∗

n = Γ̄j∗
n ≡ Γj∗

n .

But then, (19) and (20) imply xj∗
n = x̄j∗

n . This is because, since Γj∗
n and Γj∗

n − Γk∗
n are

continuous and decreasing in xj
i for j, k ∈ {1, 2}, j 6= k, either the set

{

xj
i |Γj∗

n (xi) ≥

max
{

0,
(

Γk∗
n (xi)k 6=j

)}

}

is empty (in which case, xj∗
n = x̄j∗

n = −∞), or else there is a

single value of xj
i at which Γj∗

n (xi)−max
{

0,
(

Γk∗
n (xi)

)

k 6=j

}

changes its sign. Therefore,

(21) and (22) imply θj∗n+1 = θ̄j∗n+1 ≡ θj∗n+1. Moreover, arguing as in the proof of Lemma 2,

θj∗n+1 ∈ (0, 1) and θj∗n+1 is continuous and increasing.

Now, let B̃′(R2,R4) denote the space of bounded, continuous, nondecreasing vector-

valued functions g : R2 → R
4, g = (g1, g2, g3, g4) where g1 = g3 and g2 = g4, equipped with

the max-sup norm ||g|| ≡ maxNj=1 (supz∈R |gj (z) |). Further, let B̃′′(R2,R4) ⊆ B̃′(R2,R4)

be the space in which ‘nondecreasing’ in the definition of B̃′(R2,R4) is replaced by ‘in-

creasing’, and gj ∈ (0, 1) for all j. Then, B̃′(R2,R4) is a closed subset of B̃(R2,R4),

and the argument above implies T
(

B̃′(R2,R4)
)

⊆ B̃′′(R2,R4) ⊆ B̃(R2,R4), so it follows

that g∗ ∈ B̃′′(R2,R4) (Stokey and Lucas (1989), Theorem 3.2, Corollary 1). Therefore,

θ∗ = θ̄∗ ≡ θ∗, where θj∗ ∈ (0, 1) and θj∗ is continuous and increasing, as was to be shown.�

28



Proposition 2

The proof is almost identical to the N = 2 case. First, since B(X,RN ) is a Ba-

nach space as shown in Lemma 1, B̃(X,RN) is a complete metric space, and thus so is

B̃(RN ,R2N). That T ′ maps B̃(RN ,R2N) to itself is also straightforward, except that this

time, xj∗
n and x̄j∗

n may not always be nondecreasing, but xj∗
n,ND and x̄j∗

n,ND are nondecreas-

ing by construction, such that θjn+1 and θ̄jn+1 are nondecreasing (indeed, increasing). It

remains only to confirm that using xj∗
n,ND and x̄j∗

n,ND, instead of xj∗
n and x̄j∗

n , to compute

θjn+1 and θ̄jn+1 does not hamper the satisfaction of the Blackwell’s sufficient conditions for

contraction.

For monotonicity, fix j ∈ {1, 2, . . . , N} and define g∗∗n ∈ B̃(RN ,R2N) by replacing the

j-th component of g∗n, namely θj∗n , by θj∗∗n ≥ θj∗n . Let Γ∗∗
n , Γ̄∗∗

n , x∗∗
n , x̄∗∗

n , x∗∗
n,ND, x̄

∗∗
n,ND, θ

∗∗
n+1,

θ̄∗∗n+1 be the functions obtained from g∗∗n by (17)–(20) and (27)–(32), with cj = c and βj = β

for all j. Proceeding as in the proof of Lemma 3, it follows that xj∗∗
n ≥ xj∗

n , and since

xj∗
n ≥ xj∗

n,ND from the definition of xj∗
n,ND, x

j∗
n,ND ∈ Xj∗∗

n ≡
{

f ∈ B̃
(

RN−1,R
)

|f ≤ xj∗∗
n

}

.

Then, xj∗∗
n,ND ≥ xj∗

n,ND from the definition of xj∗∗
n,ND, and thus θj∗∗n+1 ≥ θj∗n+1 from (31), which

implies monotonicity.

For discounting, fix j ∈ {1, 2, . . . , N}, take any a ≥ 0 and define g#n ∈ B̃(RN ,R2N)

by replacing the j-th component of g∗n, namely θj∗n , by θj∗n + a. Let Γ#
n , Γ̄

#
n , x

#
n , x̄

#
n ,

θ#n+1, θ̄
#
n+1 be the functions obtained from g#n by (17)–(20) and (27)–(32). Proceeding

as in the proof of Lemma 3, xj#
n ≤ xj∗

n + a, which implies xj#
n,ND − a ≤ xj#

n − a ≤ xj∗
n .

Then xj#
n,ND − a ∈ Xj∗

n =
{

f ∈ B̃
(

RN−1,R
)

|f ≤ xj∗
n

}

, so from the definition of xj∗
n,ND,

xj#
n,ND − a ≤ xj∗

n,ND, or equivalently, x
j#
n,ND ≤ xj∗

n,ND + a. Thus, arguing as in the proof of

Lemma 3, θj#n+1 (θ
−j) ≤ θj∗n+1 (θ

−j) + λa, where γ =
√
β/

√
2π and λ ≡ γ/ (1 + γ) ∈ (0, 1),

and since the choice of a ≥ 0 was arbitrary, discounting also holds.

Repeating the argument above for each component functions of g∗n, with a minor

modification for the 2j-th component functions, monotonicity and discounting holds for

θj∗n and θ̄j∗n , j = {1, 2, . . . , N}. Thus, proceeding as in the Proof of Lemma 3, T ′ is

shown to be a contraction with the factor of contraction λ, so by the contraction mapping

theorem, T ′ has a unique fixed point, denoted as
(

θ∗, θ̄∗
)

.�

Proposition 3

Given Proposition 2, it remains to establish the properties of the fixed point
(

θ∗, θ̄∗
)

,

such as θ∗ = θ̄∗ ≡ θ∗, and this is where one must resort to symmetry. Take g∗n = (θ∗n, θ̄
∗
n) ∈

B̃(RN ,R2N) such that θ∗n = θ̄∗n ≡ θ∗n =
(

θ1∗n , θ2∗n , . . . , θN∗
n

)

, where θj∗n is symmetric across

j. From (17) and (18), Γj∗
n = Γ̄j∗

n ≡ Γj∗
n . Moreover, Γj∗

n is symmetric across j, and Γj∗
n

and Γj∗
n −Γk∗

n are continuous and decreasing in xj
i , so (19) and (20) imply xj∗

n = x̄j∗
n ≡ xj∗

n ,
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where xj∗
n is symmetric across j.

Furthermore, xj∗
n is nondecreasing, as shown below. Clearly xj∗

n is nondecreasing

when it equals −∞, so suppose xj∗
n is finite. Pick any j, k ∈ {1, 2, . . . , N} , j 6= k. Fix

x−j
i ∈ R

N−1, and let xj,k
n

(

x−j
i

)

be the value of xj
i such that

Γj∗
n (xi) = Γk∗

n (xi) . (36)

Since Γj∗
n is symmetric across j, (36) is satisfied for xj

i = xk
i , and since Γj∗

n (xi)−Γk∗
n (xi) is

decreasing in xj
i , no other x

j
i satisfies (36). Therefore, xj,k

n

(

x−j
i

)

= xk
i , which is continuous

and increasing in xk
i , and is independent of other elements of x−j

i . Now, with a slight

abuse of notation, let xj,0
n

(

x−j
i

)

be the value of xj
i such that

Γj∗
n (xi) = 0. (37)

Since Γj∗
n (xi) is continuous, decreasing in xj

i and nondecreasing in x−j
i , xj,0

n

(

x−j
i

)

is

uniquely determined, and is continuous and nondecreasing in x−j
i . Then, (19) (or equiv-

alently, (20)) implies

xj∗
n

(

x−j
i

)

= min
{

xj,0
n

(

x−j
i

)

,
(

xj,k
n

(

x−j
i

))

k 6=j

}

= min
{

xj,0
n

(

x−j
i

)

,
(

xk
i

)

k 6=j

}

. (38)

So, xj∗
n is continuous and nondecreasing in x−j

i , and is increasing in xk
i ∈ x−j

i in the region

of x−j
i ∈ R

N−1 for which xj∗
n

(

x−j
i

)

= xj,k
n

(

x−j
i

)

= xk
i . But since xj∗

n = x̄j∗
n = xj∗

n is

nondecreasing, xj∗
n = xj∗

n,ND = x̄j∗
n = x̄j∗

n,ND. Thus, (31) and (32) imply θ∗n+1 = θ̄∗n+1 ≡
θ∗n+1 =

(

θ1∗n+1, θ
2∗
n+1, . . . , θ

N∗
n+1

)

, where θj∗n+1 is symmetric across j, θj∗n+1 ∈ (0, 1), and θj∗n+1 is

continuous and increasing.

Finally, let B̃′(RN ,R2N) denote the space of bounded, continuous, nondecreasing

vector-valued functions g : R
N → R

2N , g =
(

g1, g2, . . . , g2N
)

, where gj is symmet-

ric across j and gj = g2j for j = {1, 2, . . . , N}, equipped with the max-sup norm

||g|| ≡ maxNj=1 (supz∈R |gj (z) |). Further, let B̃′′(RN ,R2N) ⊆ B̃′(RN ,R2N) be the space

in which ‘nondecreasing’ in the definition of B̃′(RN ,R2N) is replaced by ‘increasing’, and

gj ∈ (0, 1) for all j. Then, B̃′(RN ,R2N ) is a closed subset of B̃(RN ,R2N), and the ar-

gument above implies T
(

B̃′(RN ,R2N )
)

⊆ B̃′′(RN ,R2N) ⊆ B̃(RN ,R2N), so it follows that

g∗ ∈ B̃′′(RN ,R2N) (Stokey and Lucas (1989), Theorem 3.2, Corollary 1). Therefore,

θ∗ = θ̄∗ ≡ θ∗ =
(

θ1∗, θ2∗, . . . , θN∗
)

, where θj∗ is symmetric across j, θj∗ ∈ (0, 1) and θj∗ is

continuous and increasing. Then, at this fixed point, the expected payoff functions and

the threshold signal functions must be such that Γj∗ = Γ̄j∗ ≡ Γj∗ and xj∗ = x̄j∗ ≡ xj∗,

where xj∗ is continuous and nondecreasing. That xj∗
(

x−j
i

)

≤ mink 6=j x
k
i also follows

since, by the argument above,

xj∗
(

x−j
i

)

= min
{

xj,0
(

x−j
i

)

,
(

xk
i

)

k 6=j

}

, (39)

where xj,0
(

x−j
i

)

is the value of xj
i such that Γj∗ (xi) = 0.�
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Proposition 4

Let us first consider the N = 2 case. Among the equations (17)–(22) that define the

operator T , (17) and (18) are modified as follows. This time, conditional on receiving

xj
i , θ

j follows N
((

αjyj + βjxj
i

)

/ (αj + βj) , 1/ (αj + βj)
)

such that

Pr
(

θj ≤ θj∗|xj
i

)

= Φ
(

√

αj + βj

(

θj∗ − αjyj+βjx
j
i

αj+βj

))

for a given θj∗. Therefore

Pr
(

θj ≤ θj∗n
(

θ−j
)

|xj
i , x

−j
i

)

(40)

=

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ

(

√

αj + βj

(

θj∗n
(

x−j
i − ǫ−j

i

)

− αjyj + βjxj
i

αj + βj

))

dǫ−j
i ,

which implies

Γj∗
n (xi) =

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ

(

√

αj + βj

(

θj∗n
(

x−j
i − ǫ−j

i

)

− αjyj + βjxj
i

αj + βj

))

dǫ−j
i − cj ,

(41)

and similarly

Γ̄j∗
n (xi) =

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ

(

√

αj + βj

(

θ̄j∗n
(

x−j
i − ǫ−j

i

)

− αjyj + βjxj
i

αj + βj

))

dǫ−j
i − cj .

(42)

It is straightforward to check that T : B̃(R2,R4) → B̃(R2,R4) and that monotonicity

holds as in the model with only private information. For discounting, take any g∗n =

(θ1∗n (θ2) , θ2∗n (θ1) , θ̄1∗n (θ2) , θ̄2∗n (θ1)) ∈ B̃(R2,R4). Then fix j ∈ {1, 2}, take any a ≥ 0 and

define g#n ∈ B̃(R2,R4) by replacing the j-th component of g∗n, namely θj∗n , by θj∗n + a.

Let us denote by Γ#
n , Γ̄

#
n , x

#
n , x̄

#
n , θ

#
n+1 and θ̄#n+1 the functions obtained from g#n by (41),

(42), and (19)–(22). Then, noting that Γj#
n (xi) and Γj∗

n (xi) are decreasing in xj
i , whereas

Γ̄k#
n (xi) and Γ̄k∗

n (xi) are nondecreasing in xj
i for k 6= j, xj#

n ≤ xj∗
n + β−1 (α + β) a from

(41), (42), and (19). Now, define θj##
n+1 (θ−j) by

θj##
n+1

(

θ−j
)

(43)

=

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

βj

(

xj∗
n

(

θ−j + ǫ−j
i

)

+ a
(

αj + βj
)

/βj − θj##
n+1

(

θ−j
)

))

dǫ−j
i .

Then, since xj#
n ≤ xj∗

n + β−1 (α+ β) a, θj#n+1 ≤ θj##
n+1 . Let γj be the maximum value of

the slope of Φ
(

√

βjz
)

for z ∈ R, that is, γj =
√

βjφ (0) =
√

βj/
√
2π > 0. Then from
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(21) and (43),

θj##
n+1

(

θ−j
)

− θj∗n+1

(

θ−j
)

≤
∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

γj
[

a
(

αj + βj
)

/βj −
(

θj##
n+1

(

θ−j
)

− θj∗n+1

(

θ−j
)

)]

dǫ−j
i

≤ γj
[

a
(

αj + βj
)

/βj −
(

θj##
n+1

(

θ−j
)

− θj∗n+1

(

θ−j
)

)]

≤ aλj
(

αj + βj
)

/βj,

where λj ≡ γj/ (1 + γj) ∈ (0, 1), so θj#n+1 (θ
−j) ≤ θj##

n+1 (θ−j) ≤ θj∗n+1 (θ
−j)+aλj (αj + βj) /βj.

But since αj <
√

βj
√
2π by assumption,

λj
(

αj + βj
)

/βj =

√

βj/
√
2π

1 +
√

βj/
√
2π

αj + βj

βj
<

√

βj

√
2π +

√

βj

√
2π +

√

βj

√

βj
= 1, (44)

and since the choice of a ≥ 0 was arbitrary, discounting also holds. The rest of the proof

follows that of Proposition 1.

For the symmetric N > 2 case, among the equations (17)–(20) and (27)–(32) that

define the operator T ′, (17) and (18) are modified as (41) and (42), and cj = c, βj = β in

all equations. It is again straightforward to check that T ′ : B̃(RN ,R2N) → B̃(RN ,R2N)

and that monotonicity holds, and arguing as in the N = 2 case above, discounting follows

given α/
√
β <

√
2π. The rest of the proof follows that of Proposition 3.�

Proposition 5

The argument requires only minor modifications to that for Propositions 1–3. When

signals ǫi =
(

ǫ1i , ǫ
2
i , . . . , ǫ

N
i

)

=
(

ǫji , ǫ
−j
i

)

are drawn from a joint pdf ϕ, one can write, for

example,

Pr
(

θj ≤ θj∗n
(

θ−j
)

|xj
i , x

−j
i

)

= Pr
(

xj
i − ǫji ≤ θj∗n

(

x−j
i − ǫ−j

i

))

=

∫

ǫ
−j
i ∈RN−1

∫ ∞

x
j
i−θj∗n (x

−j
i −ǫ

−j
i )

ϕ (ǫi) dǫ
j
idǫ

−j
i . (45)
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Thus, the equations (17)–(22) that define the operator T are rewritten as

Γj∗
n (xi) =

∫

ǫ
−j
i ∈RN−1

∫ ∞

x
j
i−θj∗n (x

−j
i −ǫ

−j
i )

ϕ (ǫi) dǫ
j
idǫ

−j
i − cj, (46)

Γ̄j∗
n (xi) =

∫

ǫ
−j
i ∈RN−1

∫ ∞

x
j
i−θ̄

j∗
n (x−j

i −ǫ
−j
i )

ϕ (ǫi) dǫ
j
idǫ

−j
i − cj, (47)

xj∗
n

(

x−j
i

)

= inf
{

xj
i |Γj∗

n (xi) ≤ max
{

0,
(

Γ̄k∗
n (xi)

)

k 6=j

}}

if inf exists, (48)

= −∞ otherwise,

x̄j∗
n

(

x−j
i

)

= sup
{

xj
i |Γ̄j∗

n (xi) ≥ max
{

0,
(

Γk∗
n (xi)

)

k 6=j

}}

if sup exists, (49)

= −∞ otherwise,

θj∗n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

∫ x
j∗
n (θ−j+ǫ

−j
i )−θ

j∗
n+1(θ−j)

−∞

ϕ (ǫi) dǫ
j
idǫ

−j
i , (50)

θ̄j∗n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

∫ x̄
j∗
n (θ−j+ǫ

−j
i )−θ̄

j∗
n+1(θ−j)

−∞

ϕ (ǫi) dǫ
j
idǫ

−j
i . (51)

Suppose N = 2. Lemma 1 clearly does not hinge on these equations. Lemma 2

follows from the same argument as when noises are independent. Regarding Lemma 3,

monotonicity can be shown as before. For discounting, proceed as before to obtain

θj##
n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

∫ x
j∗
n (θ−j+ǫ

−j
i )+a−θ

j##
n+1 (θ−j)

−∞

ϕ (ǫi) dǫ
j
idǫ

−j
i . (52)

Let ϕ−j
(

ǫ−j
i

)

denote the marginal pdf of ǫ−j
i , ϕj

(

ǫji |ǫ−j
i

)

be the conditional pdf of ǫji given

ǫ−j
i , and define γj ≡ supǫi

ϕj
(

ǫji |ǫ−j
i

)

. Then, from (50) and (52),

θj##
n+1

(

θ−j
)

− θj∗n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

ϕ−j
(

ǫ−j
i

)

∫ x
j∗
n (θ−j+ǫ

−j
i )+a−θ

j##
n+1 (θ−j)

x
j∗
n (θ−j+ǫ

−j
i )−θ

j∗
n+1(θ

−j)

ϕj
(

ǫji |ǫ−j
i

)

dǫjidǫ
−j
i

≤
∫

ǫ
−j
i ∈RN−1

ϕ−j
(

ǫ−j
i

)

γj
(

a−
(

θj##
n+1

(

θ−j
)

− θj∗n+1

(

θ−j
)

))

dǫ−j
i

≤ γj
(

a−
(

θj##
n+1

(

θ−j
)

− θj∗n+1

(

θ−j
)

))

≤ λja,

where λj ≡ γj/ (1 + γj) ∈ (0, 1), which establishes discounting. The remaining part of

the proof follows that of Proposition 1.

For the symmetric N > 2 case, rewrite the equations that define the operator T ′,

(17)–(20) and (27)–(32), using ϕ. Then discounting can be shown as for the N = 2 case

above, and the rest of the proof follows that of Propositions 2 and 3.�
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Appendix B: Computational Procedure

For N = 2, the operator T defined by (17)–(22) satisfies the requirement of the

contraction mapping theorem, so the equilibrium functions can be obtained by iterating

on these equations from any g∗0 (θ) = (θ1∗0 (θ2) , θ2∗0 (θ1) , θ̄1∗0 (θ2) , θ̄2∗0 (θ1)) ∈ B̃(R2,R4).

But then, one can choose g∗0 such that θj∗0 = θ̄j∗0 ≡ θj∗0 for j = {1, 2}, in which case

g∗1 (θ) = (θ1∗1 (θ2) , θ2∗1 (θ1) , θ̄1∗1 (θ2) , θ̄2∗1 (θ1)) is such that θj∗1 = θ̄j∗1 ≡ θj∗1 for j = {1, 2}, as
argued in the proof of Proposition 1. Thus, one can iterate instead on the equations,

Γj∗
n (xi) =

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

βj
(

θj∗n
(

x−j
i − ǫ−j

i

)

− xj
i

)

)

dǫ−j
i − cj , (53)

xj∗
n

(

x−j
i

)

=
{

xj
i |Γj∗

n (xi) = max
{

0,
(

Γk∗
n (xi)

)

k 6=j

}}

if such xj
i exists, (54)

= −∞ otherwise,

θj∗n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

βj
(

xj∗
n

(

θ−j + ǫ−j
i

)

− θj∗n+1

(

θ−j
))

)

dǫ−j
i . (55)

for j, k ∈ {1, 2}, j 6= k, starting from any (θ1∗0 , θ2∗0 ) ∈ B̃(R2,R2).22

For the symmetric case, including N = 2, the operator T ′ defined by (17)–(20) and

(27)–(32) satisfies the requirement of the contraction mapping theorem, so the equilibrium

functions can be obtained by iterating on these equations from any g∗0 (θ) ∈ B̃(RN ,R2N).

However, there are a number of possible simplifications. As discussed in the proof of

Proposition 3, if g∗0 (θ) is such that θj∗0 = θ̄j∗0 ≡ θj∗0 for j = {1, 2, . . . , N}, where θj∗0 is

symmetric across j, then xj∗
0 = x̄j∗

0 = xj∗
0,ND = x̄j∗

0,ND ≡ xj∗
0 , where xj∗

0 is symmetric across

j; this implies θj∗1 = θ̄j∗1 ≡ θj∗1 , where θj∗1 is symmetric across j. So, starting from such

g∗0, the operators T
′ and T are equivalent. Thus, one can iterate on (53)–(55) for a single

j, and set all Γk∗
n to be symmetric to Γj∗

n . Moreover, for
(

θ1∗n , θ2∗n , . . . , θN∗
n

)

∈ B̃(RN ,RN)

such that θj∗n is symmetric across j, xj∗
n can be expressed as (38). In summary, one can

choose any θj∗0 ∈ B̃(RN−1,R) and iterate to convergence on

Γj∗
n (xi) =

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

β
(

θj∗n
(

x−j
i − ǫ−j

i

)

− xj
i

)

)

dǫ−j
i − c, (56)

xj∗
n

(

x−j
i

)

= min
{

xj,0
n

(

x−j
i

)

,
(

xk
i

)

k 6=j

}

, Γj∗
n

(

xj,0
n

(

x−j
i

)

, x−j
i

)

= 0, (57)

θj∗n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

φ̃−j
(

ǫ−j
i

)

Φ
(

√

β
(

xj∗
n

(

θ−j + ǫ−j
i

)

− θj∗n+1

(

θ−j
))

)

dǫ−j
i , (58)

for a single j, and resort to symmetry to obtain functions for other j.

22Since Γj∗
n , Γj∗

n − Γk∗
n decrease continuously in xj

i , the set
{

xj
i |Γj∗

n (xi) = max
{

0,
(

Γk∗
n (xi)

)

k 6=j

}

}

is empty, or has a unique element that equals both inf
{

xj
i |Γj∗

n (xi) ≤ max
{

0,
(

Γk∗
n (xi)

)

k 6=j

}

}

and

sup
{

xj
i |Γj∗

n (xi) ≥ max
{

0,
(

Γk∗
n (xi)

)

k 6=j

}

}

. So, (19) and (20) simplify as (54).
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Figure 1: Threshold signal function (symmetric, β = 1).
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Figure 2: Attacking decisions (symmetric, β = 1).
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Figure 3: Threshold fundamentals function (symmetric, β = 1).
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Figure 4: Outcomes of attack (symmetric, β = 1).
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Figure 5: θ1∗ (θ2) and θ2∗ (θ1) compared with θ∗s,0.5 (symmetric, β = 1).
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Figure 6: Outcomes of attack (symmetric, β = 4).
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Figure 7: Attacking decisions (β1 = 1, β2 = 4).
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Figure 8: Outcomes of attack (β1 = 4, β2 = 1).
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Figure 9: Threshold signal function (N = 3).
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Figure 10: Threshold fundamentals function (N = 3).
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