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ON ADMISSIBLE STRATEGIES IN ROBUST UTILITY MAXIMIZATION

KEITA OWARI

Graduate School of Economics, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

The existence of optimal strategy in robust utility maximization is addressed when the
utility function is finite on the entire real line. A delicate problem in this case is to find
a “good definition” of admissible strategies to admit an optimizer. Under certain assump-
tions, especially a kind of time-consistency property of the set P of probabilities which
describes the model uncertainty, we show that an optimal strategy is obtained in the class
of those whose wealths are supermartingales under all local martingale measures having a
finite generalized entropy with one of P 2 P .

1. INTRODUCTION

This paper analyzes a qualitative aspect of the problem of robust utility maximization.
Given a utility function U and a set P of probabilities which describes the model uncer-
tainty, the basic problem of this paper is to maximize the robust utility functional

X 7! inf
P2P

EP ŒU.X/�

over all terminal wealths xC � � ST D xC
R T
0
�dS of admissible strategies � , where S is

an underlying semimartingale. When U is finite only on the positive half-line, the duality
theory for this problem in the spirit of [15, 16] has been studied in both quantitative and
qualitative aspects (e.g. [23], [22], [8]). In the case of utility taking finite values for
all x 2 R, [18] shows the key duality, while [8] and [17] give a partial result on the
existence of optimal strategy which we shall complete in this paper. See also [9] for more
comprehensive reference and the background of the robust utility maximization problem.

A key subtlety intrinsic to the case of utility on R is the “good definition” of admissible
strategies � , which will constitute the central theme of this paper. In this case, a universal
and conceptually natural definition of admissibility is that � � S is uniformly bounded
from below by some constant, which completely determines the quantitative nature of the
problem. This class, however, typically fails to admit an optimizer. On the other hand, if
U is �1 on R�, the only natural (non-redundant) definition of admissibility is that the
stochastic integral � � S is bounded from below by �x, and an optimal strategy is indeed
obtained in this class under certain mild assumptions (see [23, 22]).

In the classical case (i.e., P D fP g, say), the question of the good definition of admis-
sibility is closely analyzed by [21] following the observation by [7] and [14] in the case of
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2 K. OWARI

exponential utility. [21] shows that a “good definition” which yields us an optimal strategy
is that � � S is a supermartingale under all local martingale measures Q which has a “finite
entropy” with the physical probability P . We denote the class of such � by �V .P / (see
Section 2 for precise definitions including the meaning of “finite entropy”). Note that this
class contains the usual admissible class, and the supermartingale property is consistent to
the “No-Arbitrage philosophy”. Thus �V .P / is acceptably natural choice when a single
physical probability is specified.

In the general robust case with P containing (infinitely) many elements, [8] (see also
[17] for a slight generalization) provides a partial analogue of the above result which states
that, under certain stronger assumptions, an optimal strategy is obtained in the class of �
with � � S being a supermartingale under all local martingale measures Q having a finite
entropy w.r.t. a certain element yP 2 P called a least favorable measure, i.e., in the class
�V . yP /. Here a dissatisfaction comes of course from the dependence of admissibility on
yP . In philosophy, P is the set of candidates of real world models, and we do not know

which one is true. Thus an “admissible strategy” should be universally admissible for all
candidates P 2 P . Also, the least favorable probability yP is a part of solution to the dual
problem of robust utility maximization, hence the class �V . yP / is not a priori available.

In this view, a seemingly natural admissible class is
T
P2P �V .P / which is universal

and contains all � whose stochastic integrals are bounded below. Thus our central question
in this paper is:

Question 1. Does the class
T
P2P �V .P / admit an optimal strategy?

The main result (Theorem 3.2) states that this is indeed the case if (in addition to stan-
dard assumptions) the set P of candidate models has a time-consistency property. We
proceed as follows. The first step is to construct a so-called “optimal claim” for the ab-
stract version of robust utility maximization, from which a candidate of optimal strategy O�
is derived through a predictable representation argument. This part is mostly standard ex-
cepting some technicality, but we give a slightly better description of optimal claim. Note
that the additional time-consistency assumption is not required at this stage. The crucial
step is to verify the supermartingale property of O� � S under all local martingale measures
Q which has a finite entropy with some P 2 P but its entropy with yP is infinite. We shall
do this by a (slight surprisingly) simple trick.

2. FORMULATION

We fix a complete probability space .˝;F ;P / as well as a filtration F D .Ft /t2Œ0;T � sat-
isfying the usual conditions, where T 2 .0;1/ is a fixed time horizon. Though many
probabilities on .˝;F/ will appear in the sequel, the probability P plays the role of refer-
ence probability, i.e., every probabilistic notion is defined under P unless other probability
is explicitly specified as EP Œ��, L1.P / etc. In particular, the underlying asset prices S is a
d -dimensional P -càdlàg semimartingale, and we assume:

(A1) S is P -locally bounded:

Let P be a set of probabilities P � P , which we can (and do) embed into L1 via the
mapping P 7! dP=dP . In this sense, we assume:

(A2) P is convex and �.L1; L1/-compact:

We work with a utility function U W R! R which we assume

(A3) U is differentiable, strictly concave on R, and U 0.�1/ D1; U 0.1/ D 0;
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and satisfies the condition of reasonable asymptotic elasticity:

(A4) lim inf
x!�1

xU 0.x/

U.x/
> 1 and lim sup

x!1

xU 0.x/

U.x/
< 1:

The conjugate of utility function U is denoted by V , i.e.,

(2.1) V.y/ WD sup
x2R

.U.x/ � xy/; y 2 R:

The assumptions (A3) and (A4) guarantee that V is a “nice” convex function (see [10],
[19] for details). Using this function, we introduce a generalized entropy:

(2.2) V.�jP / WD

(
EP ŒV .d�=dP /� if � � P;

C1 otherwise

for any positive finite measure � � P and P 2 P . When U.x/ D 1 � e�x (exponential
utility) and Q is a probability with Q � P , we have V.QjP / D EQŒlog.dQ=dP /�, i.e.,
the relative entropy. Abusing the terminology, we still call the map V.�j�/ the generalized
entropy associated to V . We define also the robust generalized entropy by

(2.3) V.QjP/ WD inf
P2P

V.QjP / <1:

Let Mloc be the set of all local martingale measures for S , i.e., probabilities Q � P
under which S is a local martingale. We then set

MV WD fQ 2Mloc W V.QjP/ <1g:(2.4)

Generically, for any set Q of probabilities Q � P , we denote by Qe the set of Q 2 Q
with Q � P . We assume the existence of equivalent local martingale measure with finite
entropy in the following sense:

(A5) Me
V WD fQ 2MV W Q � Pg ¤ ;:

In particular, this implies the existence of .Q;P / 2Me
V � P such that Q � P � P and

V.QjP / <1. See [17] for detail and other consequences of these assumptions.
Let L.S/ be the totality of all .S;P /-integrable d -dimensional predictable processes,

L0.S/ WD f� 2 L.S/ W �0 D 0g, and we denote by � �S the stochastic integral of � 2 L.S/
w.r.t. S . See e.g., [12] or [13] for more information. When the utility function is finite on
the entire real line, a conceptually natural choice of � is

(2.5) �bb WD f� 2 L0.S/ W � � S0 D 0; � � S is bounded from belowg:

Then the value function of the robust utility maximization problem is given by

(2.6) u.x/ WD sup
�2�bb

inf
P2P

EP ŒU.x C � � ST /�; x 2 R:

When we seek an optimal strategy, however, the class�bb is typically too small to admit an
optimal strategy. We thus have to enlarge the admissible class. Our choice is the following.

�V WD f� 2 L0.S/ W � � S is a Q-supermartingale, 8Q 2MV g:(2.7)

Remark 2.1 (Another equivalent formulation). We have defined the classes MV and
�V through the robust generalized entropy Q 7! V.QjP/. But the following equivalent
formulation is sometimes useful for comparison. For each P 2 P , we set

MV .P / WD fQ 2Mloc W V.QjP / <1g;(2.8)

�V .P / WD f� 2 L0.S/ W � � S is a Q-supermartingale 8Q 2MV .P /g:(2.9)
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When a single P 2 P is fixed as the physical probability, the class �V .P / is shown to be
an appropriate domain of utility maximization in [21]. Recalling (2.3), our choices MV

and �V are rewritten respectively as

MV D

[
P2P

MV .P /; �V D
\
P2P

�V .P /:

Thus our definition (2.7) is consistent to what we wrote in introduction.

Under the assumptions (A1) – (A5), a duality result (Theorem 2.3 of [18]) is applicable,
which states in our case that for any � with �bb � � � �V , we have

(2.10) u.x/ D sup
�2�

inf
P2P

EP ŒU.x C � � ST /� D inf
�>0

inf
Q2MV

.V .�QjP/C �x/:

In particular, the value function is unchanged if we replace �bb by the larger class �V .
Under the same assumptions, the right hand side, the dual problem of the (2.6), admits
a solution . O�; yQ/ 2 .0;1/ �MV , and the infimum V. O� yQjP/ D infP2P V. O� yQjP / is
attained by a yP 2 P since P is weakly compact, and V.�j�/ is lower semicontinuous. Thus
the right hand side of (2.10) is also written as V. O� yQj yP /, and we call the triplet . O�; yQ; yP /
a dual optimizer.

A way of proving (2.10) and the existence of a solution . O�; yQ/ is to closely analyze the
robust utility functional X 7! infP2P EP ŒU.X/� on L1 characterizing V.�jP/ as its con-
jugate. Then the duality and the existence of . O�; yQ/ follow simultaneously from Fenchel’s
duality theorem. See [18] for detail. Alternatively, one can separate the dual problem into
the minimization of � 7! infQ2MV

V.�QjP/C�x and ofQ 7! V.�QjP/ for each �. For
the latter problem, called the robust f -projection, [8] proves the existence by establishing
a uniform integrability criterion in terms of V.�jP/ in the spirit of the de la Vallée-Poussin
theorem.

In contrast to the standard utility maximization, neither the uniqueness of . O�; yQ/ (hence
of the triplet . O�; yQ; yP /) nor the equivalence yQ � P hold in the robust case, as the follow-
ing trivial example illustrates:

Example 2.2. Suppose Me
loc
¤ ;, and that Mloc contains an element Q0 which is not

equivalent to P . Then we take P so that Q0 2 P � Mloc . In this case, O� is uniquely
determined as the minimizer of � 7! V.�/ C �x. Then a triplet . O�;Q;P / is a dual
optimizer if (and only if) P D Q 2 P � Mloc . Indeed, by Jensen’s inequality and the
strict convexity of V , V.�QjP / D EP ŒV .�dQ=dP /� � V.�/ whenever Q� P , and the
“equality” holds if and only if Q D P . Hence . O�; yQ; yP / is not unique, and . O�;Q0;Q0/ is
a solution with Q0 6� P .

As for the equivalence, we still have yQ � yP whenever . O�; yQ; yP / is a dual optimizer
(see [17], Theorem 2.7). Also, by an exhaustion argument, there exists a maximal solution
. O�; yQ; yP / in the sense that if .�;Q;P / is another dual optimizer, then P � yP (hence
Q� yQ) and �dQ=dP D O�d yQ=d yP , P -a.s., where the density d yQ=d yP is defined P -a.s.
in the sense of Lebesgue decomposition. In particular, if . O�; yQ; yP / and . Q�; QQ; QP / are two
maximal solution, then

(2.11) Q�d QQ=d QP D O�d yQ=d yP ; P -a.s.,

See [17, Theorem 2.5 and Proposition 4.7]. This uniqueness is still useful in our purpose.
Note finally that even such a maximal yQ may fail to be equivalent to the reference proba-
bility P . See [23, Example 2.5] for a counter example. In the sequel, we fix such a maximal
dual optimizer, and call yP a least favorable measure.
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The duality (2.10) completely characterizes the quantitative nature of the problem (2.6).
But our aim in this paper is to discuss the qualitative nature, especially the existence of
optimal strategy in �V . To do this, assumptions (A1) – (A5) are not enough, and we
assume additionally

(A6) sup
�2�bb

EP ŒU.� � ST /� <1; 8P 2 Pe:

Remark 2.3. Several remarks on assumption (A6) are in order.

1. This assumption is automatically satisfied if U.1/ WD supx U.x/ < 1 as exponential
utility, and in this case, U.X/C 2

T
P2P L

1.P / for any random variable X . There-
fore, the robust utility functional X 7! infP2P EP ŒU.X/� is well-defined on L0 as a
Œ�1;1/-valued concave functional.

2. If U.1/ D1, [2, Th. 1.1 and Remark 1.2] show under (A4) that (A6) is equivalent to:

(2.12) 8P 2 Pe; 9Q 2MV such that V.QjP / <1:

This is further equivalent to saying that vP .y/ < 1 for all y > 0 and P 2 Pe , where
vP is the dual value function

vP .y/ WD inf
Q2MV

V.yQjP /; y > 0:

3. We could state (A6) with the whole P rather than Pe . But for our purpose, (A6) is
enough. Recall that (A5) implies in particular Pe ¤ ;. If NP 2 Pe , we have .P C
NP /=2 2 Pe for all P 2 P , and kXkL1..PC NP/=2/ D .kXkL1.P / C kXkL1. NP//=2 �

kXkL1.P /=2. Hence we have, for instance,
(a)

T
P2P L

1.P / D
T
P2Pe L

1.P /;
(b) if .Xn/ is bounded in L1.P / for all P 2 Pe , then the same is true for all P 2 P .

In particular, (A6) (hence (2.12)) guarantees even in the case U.1/ D1 that

(2.13) X 2
\

Q2MV

L1.Q/ ) U.X/C 2
\
P2P

L1.P /:

In fact, if V.QjP / < 1 and X 2 L1.Q/, Young’s inequality implies U.X/ �
V.dQ=dP / C .dQ=dP /X 2 L1.P /, and we can take such a Q 2 MV by (2.12)
for all P 2 Pe .

Remark 2.4 (Continuation of Remark 2.1). We give a brief comparison of admissible
classes considered in literature. In [17], the class �V . yP / is used to discuss the existence
of optimal strategy, while [8] considered (implicitly) a slightly smaller class:

M0
V .
yQ; yP / WD fQ 2Mloc W V.˛QC .1 � ˛/ yQj yP / <1; 9˛ 2 .0; 1/g;(2.14)

�0V .
yQ; yP / WD

(
� 2 L0.S/ W

� � S is a Q-supermartingale,
8Q 2M0

V .
yQ; yP /

)
:(2.15)

Note that �0V . yQ; yP / � �V . yP / since MV . yP / �M0
V .
yQ; yP /, while if we set �m. yQ/ WD

f� 2 L0.S/ W � � S is a yQ-martingaleg,

�V \�m. yQ/ � �V . yP / \�m. yQ/ D �
0
V .
yQ; yP / \�m. yQ/:

Thus�V . yP / and�0V . yQ; yP / are essentially equivalent for the existence of optimal strategy
(see Theorem 3.2). We just emphasize here that our class�V depends neither on particular
P 2 P nor Q 2MV , while �V . yP / and �0V . yQ; yP / do.

We conclude this section by recalling a stability property of a set of probability mea-
sures, called m-stability, which will be used in Theorem 3.2 below.
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Definition 2.5 ([5], Definition 1). A set Q of probability measures is said to be m-
stable (multiplicatively stable) if for any Q 2 Q, Q0 2 Qe with the density processes
Zt D .dQ=dP /jFt and Z0t D .dQ0=dP /jFt , as well as any stopping time � � T , a new
probability NQ defined by d NQ=dP WD Z� .Z0T =Z

0
� / is an element of Q.

This property is equivalent to the time-consistency of the corresponding dynamic co-
herent monetary utility function �� .X/ WD ess infQ2QEQŒX jF� �: for any X; Y 2 L1

and stopping times � � � , �� .X/ � �� .Y / implies �� .X/ � �� .Y /. This is further
equivalent (under (A3)) to the time-consistency of the dynamic robust utility functional
U� .X/ WD ess infQ2QEQŒU.X/jF� �. See [5, Theorem 12] for details and precise formu-
lation. Note that the set Mloc of all local martingale measures is m-stable.

3. MAIN RESULTS

We first state a result on a “weak solution” to the problem (2.6), which yields a candidate
of optimal strategy. Let

(3.1) X WD
n
X 2 L0 W X 2

T
Q2MV

L1.Q/; supQ2MV
EQŒX� � 0

o
:

Note that � � ST 2 X if � 2 �V , and X 2 X implies U.xCX/C 2
T
P2P L

1.P / for any
x 2 R, by (A6) and Remark 2.3. Thus the robust utility functionalX 7! infP2P EP ŒU.xC
X/� is well-defined on X .

Theorem 3.1. Suppose (A1) – (A6), and let x 2 R and . O�; yQ; yP / be a maximal dual
optimizer. Then there exists an yX 2 X such that U.x C yX/ 2

T
P2P L

1.P / and

u.x/ D sup
X2X

inf
P2P

EP ŒU.x CX/� D inf
P2P

EP ŒU.x C yX/�;(3.2)

where the infimum is attained by yP . Moreover, there exists an .S; yQ/-integrable pre-
dictable process O� with O�0 D 0 such that O� � S is a yQ-martingale (not only local) and

(3.3) x C yX D �V 0. O�d yQ=d yP / D x C O� � ST ; yQ-a.s.

In particular, yX is yQ-a.s. unique, and O� is unique in the sense that O� � S is unique up to
yQ-indistinguishability.

The proof is given in Section 4. The first equality in (3.2) states that the robust utility
maximization over terminal wealths xC� �ST is (quantitatively) equivalent to the indirect
utility maximization :

uMV
.x/ D sup

X2X
inf
P2P

EP ŒU.x CX/�;

while the random variable yX is the so-called optimal contingent claim. Such arguments
are quite standard in (non-robust) utility maximization, and also in the robust case, [8, The-
orem 3.11] shows a similar result: under (A1) – (A5), the assertions of Theorem 3.1 hold
true except that the sets MV (in the definition (3.1)) and P are replaced by M0

V .
yQ; yP /

and P0. yQ; yP / defined respectively by Remark 2.4 and

P0. yQ; yP / WD fP 2 P W V. yQj˛P C .1 � ˛/ yP / <1; 9˛ 2 .0; 1/g:

Note that our finite utility assumption (A6) is automatic if P is replaced by P0. yQ; yP /.
Also, when U.1/ < 1, the set P0. yQ; yP / actually coincides with the whole set P ([8],
Remark 3.10). However, M0

V .
yQ; yP / still depends on . yQ; yP / which is the solution to the

dual problem, hence not a priori available. On the other hand, our formulation is universal,
which is a slight, but qualitatively crucial contribution.
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Theorem 3.1 suggests that the “strategy” O� is a candidate of optimal strategy. However,
we still have to prove that this strategy is indeed admissible.

Theorem 3.2. In addition to (A1) – (A6), we assume that yQ � P and P is m-stable.
Then O� is .S;P /-integrable (hence .S; P /-integrable for all P 2 P), and O� � S is a su-
permartingale under all Q 2 MV . In particular, O� belongs to �V and is an optimal
strategy.

The proof is given in Section 5. When P D fPg, the question of uniform supermartin-
gale property of this type goes back to the “six-author paper” [7] which shows that the
optimal wealth in exponential utility maximization is a martingale under all local martin-
gale measures having a finite relative entropy with P , under an additional assumption on
reverse Hölder inequality which is later removed by [14]. Although this uniform martin-
gale property is no longer true for other utility functions, [21] shows that the optimal wealth
is a supermartingale under allQ 2MV .P /, for any utility functions on R with reasonable
asymptotic elasticity. There are also some extensions to the case where the semimartingale
S is not locally bounded. See e.g. [3] and [4].

In the robust case, the Q-supermartingale property for all Q 2 MV . yP / (hence all
Q 2 M0

V .
yQ; yP / since O� � S is a yQ-martingale) is shown by [8] (see also [17] for a

slight extension). We emphasize that the difference between MV . yP / and MV is essential
here. Note that yX is also optimal for the utility maximization problem under the fixed
measure yP , and the same is true for . O�; yQ/ in the dual side. Thus the result of [21] cited
in the previous paragraph is still applicable (under the assumption yQ � P ) for Q with
V.Qj yP / <1, while we have to consider the case where V.QjP / <1 for some P 2 P
but possibly V.Qj yP / D1.

To grasp the situation, we try to describe the heuristics behind the argument in [21]
(from our point of view), and our idea of extending it. In what follows in this section, we
suppose all the assumptions of Theorem 3.2, especially yQ � P .

For a moment, we suppose that O� � S is a Q-supermartingale for some Q 2 MV .
Then the yQ-martingale property and the representation (3.3) imply: for any stopping time
� � T ,

(3.4) E yQŒV
0. O�d yQ=d yP /jF� � � EQŒV 0. O�d yQ=d yP /jF� �; Q-a.s.

On the other hand, Ansel-Stricker’s lemma [1] shows that O� � S is a Q-supermartingale
if and only if there exists a Q-martingale lower bound, i.e., a Q-martingale MQ such
that O� � S � MQ, Q-a.s. In particular, if (3.4) holds true for any stopping time � � T ,
the process defined by MQ

� D �EQŒV
0. O�d yQ=d yP /jF� � provides a desired lower bound,

hence (3.4) is a necessary and sufficient condition for O� � S to be a Q-supermartingale.
When V.Qj yP / <1, the inequality (3.4) is obtained as the variational inequality which

characterizes yQ as a minimizer of the functional Q 7! V. O�Qj yP / when � D 0, and
a “Bellman-type” principle using the m-stability of the set of local martingale measures
shows the case of general � � T .

If infP2P V.QjP / < 1 but V.Qj yP / D 1, this argument is no longer applicable at
least directly. Mathematically speaking, we loose some important estimates to guarantee
the necessary convergences, or more intuitively, any element Q with V.Qj yP / D 1 is
in no way optimal at very early stage, and we can not draw further information from the
optimality of yQ in the minimization of Q 7! V. O�Qj yP /. However, we have used only a
part of information of yQ so far, and it is natural to expect that a better information may
improve the result. More specifically,
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Step 1 the optimality of . yQ; yP / in the minimization of .Q;P / 7! V. O�QjP / should yield
a variational inequality similar to (3.4) but with an additional term involving P :

“ E yQŒV
0. O�d yQ=d yP /jF� �C F� . yP / � EQŒV 0. O�d yQ=d yP /jF� �C F� .P /”:

Step 2 Though we may not take P D yP in general, it seems natural to expect that we may
take P “arbitrarily close to yP ” keeping V.QjP / <1 with fixed Q.

Step 3 If this is the case, we may expect (3.4) by an approximation argument:

“ F� .P /! F� . yP /”:

The formal inequality in Step 1 will be realized as Proposition 5.4 below, where the m-
stability of P will play an important role. On the other hand, Steps 2 and 3 will be justified
in a certain sense by a simple trick which is a consequence of reasonable asymptotic elas-
ticity (Lemma 5.5).

Remark 3.3 (What happens when yQ 6� P?). The equivalence yQ � P is automatic if all
elements of P are equivalent to P . When the filtration F is continuous (i.e., every .F ;P /-
martingale is continuous, especially if it is generated by a Brownian motion), the latter
condition is already implied by the m-stability of P and (A2) (see [5, Theorem 8]), thus it
is not a further restriction in that case.

In general, however, the equivalence yQ � P may fail (see [23, Example 2.5] for a
counter example), thus it is worth asking what happens in that case. When U is finite
only on the positive half-line, the optimal claim yX (which does not require the assumption
yQ � P ) is super-hedged by some .S;P /-integrable process Q� with Q� �S D O� �S , yQ-a.s. By

the monotonicity of robust utility functional, we see that Q� is an optimal strategy without
the additional assumption yQ � P (see [23] and [22]). However, this argument essentially
relies on the fact that yX is bounded below by �x (since U.x/ D �1 for x < 0), and no
longer works when the utility function is finite on the entire real line. Thus we can not drop
the assumption yQ � P (at now).

Remark 3.4 (Random Endowment). The results of this paper may also be stated with a
random endowment B as long as it is an FT -measurable random variable satisfying

8P 2 P; 9"P > 0 such that U.�"PB
C/ 2 L1.P /;

9" > 0 such that fU.�.1C "/B�/dP=dPgP2P is uniformly integrable.
(3.5)

Then the robust utility maximization problem (2.6) reads as

(3.6) uB.x/ WD sup
�2�bb

inf
P2P

EP ŒU.x C � � ST C B/�;

Assumption (3.5) implies that B 2
T
Q2MV

L1.Q/, and guarantees under (A1) – (A5)
that a duality corresponding to (2.10) holds true [18, Theorem 2.3]:

(3.7) sup
�2�V

inf
P2P

EP ŒU.x C � � ST C B/� D inf
�>0

inf
Q2MV

.V .�QjP/C �x C �EQŒB�/;

With the same assumptions, the dual problem admits a maximal solution with the unique
density in the sense of (2.11). Then Theorems 3.1 and 3.2 remain true with similar proofs,
and with obvious modifications, e.g., (3.3) is replaced by xC yXCB D �V 0. O�d yQ=d yP / D
xC O� �STCB , yQ-a.s. We omit the details. See [18] for the treatment of random endowment
and other implications of (3.5).
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4. OPTIMAL CLAIM

We first note that we have only to consider the case x D 0. Indeed, assumptions (A3) and
(A4) on the utility function are invariant under the translation of utility function from U to
Ux.�/ WD U.x C �/, and all the results for x ¤ 0 follow from those for x D 0 applied to
the new utility function Ux . Thus we assume x D 0 in what follows.

The next technical lemma is a collection of several arguments in [4].

Lemma 4.1 ([4]). Let .Q;P / be a pair of probabilities with V.QjP / <1, and .kn/n a
sequence of random variables such that EP ŒU.kn/� is bounded from below and EQŒkn� �
0 for all n. Then

(a) .kn/n is bounded in L1.Q/;
(b) .U.kn//n is bounded in L1.P /;
(c) If in addition kn converges a.s. to some k 2 L0, we have k 2 L1.Q/, U.k/ 2 L1.P /

and that

(4.1) EQŒk� � 0 and lim sup
n

EP ŒU.k
n/� � EP ŒU.k/�:

Proof. We just fill the gap from [4]. As we are assuming the reasonable asymptotic elas-
ticity (A4), assertions (a) and (b) are contained in Proposition 6.3 of [4]. The assertion (c)
also appears (implicitly) in the proof of their Theorem 4.10, which we briefly recall here.

Assume kn ! k, P -a.s. Since .kn/ (resp. .U.kn/) is bounded inL1.Q/ (resp. L1.P /),
Fatou’s lemma applied to the sequence .jknj/n (resp. .jU.kn/j/n/ shows that k 2 L1.Q/
(resp. U.k/ 2 L1.P /). By Young’s inequality, we have U.kn/ � �.dQ=dP /kn �
V.�dQ=dP / 2 L1.P / for all n 2 N and � > 0, where the P -integrability of the right
hand side for all � follows from the reasonable asymptotic elasticity. By this integrable
upper bound as well as the assumption EQŒkn� � 0, (reverse) Fatou’s lemma shows that

lim sup
n

EP ŒU.k
n/� � lim sup

n
EP ŒU.k

n/ � �.dQ=dP /kn�

� EP ŒU.k/ � �.dQ=dP /k� D EP ŒU.k/� � �EQŒk�; 8� > 0:

Letting � # 0, we have (4.1), while EQŒk� � 0 follows by letting � " 1. �

Proof of Theorem 3.1. We choose a maximizing sequence .�n/n � �bb , that is

(4.2) inf
P2P

EP ŒU.�
n
� ST /�% u.0/:

This sequence does not have to converge, thus we appeal to a Komlós type argument. Let
. NQ; NP / 2MV � P be such that NQ � NP � P and V. NQj NP / < 1 which exists by (A5).
Since E NP ŒU.�

n � ST /� � infP2P EP ŒU.�1 � ST /� and E NQŒ�
n � ST � � 0 by construction,

Lemma 4.1 (a) shows that .�n � ST /n is bounded in L1. NQ/. Hence Komlós’ theorem (see
e.g. [6, Theorem 15.1.3]) yields another sequence . Qkn/n such that(

Qkn 2 conv.�n � ST ; �nC1 � ST ; � � � /
Qkn converges NQ-a.s. (hence P -a.s.) to some yX 2 L1. NQ/:

By construction, each Qkn is again the terminal value of a stochastic integral Q�n � ST where
Q�n is the convex combination of .�n; �nC1; � � � /with the same convex weights as Qkn, hence
Q�n 2 �bb and EQŒ Qkn� � 0 for each n and Q, in particular.

Since the robust utility functional X 7! infP2P EP ŒU.X/� is concave as a point-
wise infimum of concave functionals, we have infP2P EP ŒU. Qkn/� � infP2P EP ŒU.�n �
ST /� for each n. Hence we still have limn infP2P EP ŒU. Qkn/� D u.0/, and the sequence
.EP ŒU. Qk

n/�/n is bounded from below for all P 2 P .
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If Q 2 MV , there is a P 2 P with V.QjP / < 1 by the definition of MV , hence
another application of Lemma 4.1 to the sequence . Qkn/ with the pair .Q;P / shows that
yX 2 L1.Q/ and EQŒ yX� � 0. Hence yX 2 X .

We next show that U. yX/ 2
T
P2P L

1.P / and

(4.3) lim sup
n

EP ŒU. Qk
n/� � EP ŒU. yX/�; 8P 2 P :

This is immediate from Fatou’s lemma ifU is bounded from above. WhenU.1/ D1 and
P 2 Pe , we can take a Q 2MV with V.QjP / <1 by (2.12), hence Lemma 4.1 shows
(4.3) and that .U. Qkn//n is bounded inL1.P /. Then Remark 2.3 shows thatU. yX/ 2 L1.P /
and .U. Qkn//n is still bounded in L1.P / for arbitrary P 2 P which need not be equivalent
to P . To prove (4.3) in the case P 6� P , we take . NQ; NP / as above, and set P˛ WD ˛PC.1�
˛/ NP for ˛ 2 .0; 1/. Since P˛ � P , the claim is true for P˛ for all ˛ 2 .0; 1/, while we see
that supn jEP˛ ŒU. Qk

n/��EP ŒU. Qk
n/�j � 2.1�˛/ supn.kU. Qk

n/kL1.P /_kU.
Qkn/kL1. NP//!

0, as ˛ " 1. Thus we deduce

lim sup
n

EP ŒU. Qk
n/� D lim

˛"1
lim sup

n
E˛PC.1�˛/ NP ŒU.

Qkn/�

� lim
˛"1

E˛PC.1�˛/ NP ŒU.
yX/� D EP ŒU. yX/�:

Hence (4.3) holds for all P 2 P .
We now prove (3.2). Note first that for all � > 0, X 2 X , Q 2MV and P 2 P ,

EP ŒU.X/� � V.�QjP /C �EQŒX� � V.�QjP /:

In particular,

inf
P2P

EP ŒU.X/� � inf
�>0

inf
.Q;P /2MV

V.�QjP /
(2.10)
D u.0/; 8X 2 X ;

On the other hand, (4.3) shows

u.0/ D lim
n

inf
P2P

EP ŒU. Qk
n/� � inf

P2P
lim sup

n
EP ŒU. Qk

n/� � inf
P2P

EP ŒU. yX/�:

This concludes the proof of (3.2).
We proceed to (3.3). Notice that

U. yX/ D V. O�d yQ=d yP /C O�.d yQ=d yP / yX; yP -a.s.(4.4)

Indeed, “�” is just a Young’s inequality, while “�” follows from

u.0/ D inf
P2P

EP ŒU. yX/� � E yP ŒU.
yX/�

(i)
� E yP

"
V

 
O�
d yQ

d yP

!
C O�

d yQ

d yP
yX

#
(ii)
� V. O� yQj yP /

(2.10)
D u.0/:

Here (i) follows from the “�” part, and (ii) from yX 2 X . In particular, yP attains the
infimum in (3.2) and we obtain (4.4). But an elementary knowledge from convex analysis
shows that this is possible only if

yX D �V 0. O�d yQ=d yP /; yP -a.s.

This is the first equality in (3.3), and the yQ-a.s. uniqueness of yX follows from that of
O�d yQ=d yP (see (2.11)). On the other hand, the existence of O� 2 L.S; yQ/ with �0 D 0

and O� � S being a yQ-martingale, which represents �V 0. O�d yQ=d yP / as (3.3), follows from
Theorem 3.2 of [11] (see also [20, Theorem 2.2 (iv)]). Finally, yQ-a.s. uniqueness of the
process O� � S follows from the yQ-a.s. uniqueness of the terminal value O� � ST and the fact
that O� � S is a yQ-martingale. �
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5. UNIFORM SUPERMARTINGALE PROPERTY OF OPTIMAL WEALTH

We now proceed to the uniform supermartingale property of the optimal wealth, that is, we
shall show that O� �S is a supermartingale under all local martingale measuresQ with finite
entropy w.r.t. some P 2 P . As outlined in Section 3, this will follow if we can prove the
dynamic variational inequality (3.4) for everyQ 2MV . Therefore, the key of this section
is the next proposition which should be compared with [8, Lemma 3.12]. Recall that we
have only to consider the case x D 0. In what follows, all the assumptions of Theorem 3.2
are in force, and we do not cite them in each statement.

Proposition 5.1. We have

1. for all Q 2MV , and for all stopping time � � T ,

(5.1) EQ

h
V 0
�
O�d yQ=d yP

� ˇ̌̌
F�
i
� E yQ

h
V 0
�
O�d yQ=d yP

� ˇ̌̌
F�
i
; Q-a.s.

2. for all P 2 P , and for all stopping time � � T ,

(5.2) EP ŒU. O� � ST /jF� � � E yP ŒU. O� � ST /jF� �; P -a.s.

We introduce some notations. If L is a strictly positive martingale, we denote L�;T WD
LT =L� , for any stopping time � � T . Recall that any probability Q � P is identified
with a (uniformly integrable) martingale, namely the density process ZQ� D .dQ=dP /jF�

.
In what follows, we denote by yZ (resp. yD) the density process of yQ (resp. yP ). Also, when
a pair .Q;P / 2Mloc � P is fixed, the density process of Q (resp. P ) is denoted by Z
(resp. D), and set:

(5.3) Z˛�;T WD ˛Z�;T C .1 � ˛/
yZ�;T ; D˛

�;T WD ˛D�;T C .1 � ˛/
yD�;T ; ˛ 2 Œ0; 1�:

We make a couple of simple reductions. The first one is just a notational reduction.
In our purpose, we can assume without loss of generality that O� D 1 since we already
know O�. Indeed, . O� yQ; yP / minimizes .�; P / 7! V.�jP / if and only if . yQ; yP / minimizes
.�; P / 7! V O�.�jP / WD

1
O�
V. O��jP /. Next, we have only to prove (5.1) and (5.2) for all

Q 2Me
V and P 2 Pe , respectively. Indeed, if we could show (5.1) for all Q0 2Me

V for
instance, we have NQ WD .QC yQ/=2 2Me

V for anyQ 2MV on the one hand, and on the
other hand, Bayes’ formula implies

E yQŒ˚ jF� � � E NQŒ˚ jF� �

D
Z�

Z� C yZ�
EQŒ˚ jF� �C

yZ�

Z� C yZ�
E yQŒ˚ jF� � a.s. on fZ� > 0g

where ˚ D V 0.d yQ=d yP /, hence (5.1). A similar argument applies also to (5.2).
The first step is to show a “Bellman-type” principle for a time-consistent optimization.

Note that the set Mloc of all local martingale measures is m-stable, while MV is not. The
next simple lemma allows us to avoid this difficulty.

Lemma 5.2. Let .Q;P / 2Me
V � Pe with V.QjP / < 1, and .Z;D/ the correspond-

ing density processes as well as ˛ 2 Œ0:1�. Then for any stopping time � � T , the random

variable yD�D˛
�;T V

�
yZ�Z

˛
�;T

yD�D
˛
�;T

�
is F� -locally integrable i.e., there exists an increasing se-

quence An 2 F� such that

P .An/% 1 and 1An
yD�D

˛
�;T V

 
yZ�Z

˛
�;T

yD�D
˛
�;T

!
2 L1; 8n:(5.4)



12 K. OWARI

Proof. Since yD�D˛
�;T V

�
yZ�Z

˛
�;T

yD�D
˛
�;T

�
� ˛ yD�D�;T V

�
yZ�Z�;T
yD�D�;T

�
C .1� ˛/ yDT V

�
yZT
yDT

�
(see

the proof of Lemma 5.5 below), and the second term is integrable, it suffices to prove the
case ˛ D 1.

Recall from [10] that the condition (A4) of reasonable asymptotic elasticity is equivalent
to: for any a � 1, there exists Ca; C 0a > 0 such that

(5.5) V.�y/ � CaV.y/C C
0
a.y C 1/; 8� 2 Œa

�1; a�; 8y > 0:

Since V is bounded from below by U.0/, we can choose the constant C 0a so that the right
hand side is always positive. For the sequence An, we take

An WD f yZ� ; Z� ; yD� ;D� 2 .n
�1; n/g 2 F� ; 8n:

Noting that ' WD yD�D�;T V
�
yZ�Z�;T
yD�D�;T

�
D
yD�
D�
DT V

�
yZ�D�
yD�Z�

ZT
DT

�
, (5.5) implies that

' � n2Cn4DT V.ZT =DT /C n
2C 0

n4
.ZT CDT / a.s. on An:

Thus 1An' 2 L
1 for each n. Finally, P .An/ % 1 since yQ � yP � Q � P � P by

assumption. �

Lemma 5.3. For any .Q;P / ' .Z;D/ 2Me
V � Pe with V.QjP / <1, ˛ 2 Œ0; 1�,

E

"
yZT V

 
yZT

yDT

! ˇ̌̌
F�

#
� E

"
yD�D

˛
�;T V

 
yZ�Z

˛
�;T

yD�D
˛
�;T

! ˇ̌̌
F�

#
a.s.(5.6)

Proof. Note first that the conditional expectation of the right hand side is well-defined and
a.s. finite by Lemma 5.2. Let C 0 be the set on which the inequality (5.6) fails, which is
F� -measurable. Then we suppose by way of contradiction that P .C 0/ > 0.

Take a sequence .An/ � F� as in Lemma 5.2 and a large n so that P .C 0 \ An/ > 0.
Setting C WD C 0 \ An, we define a new pair . NQ; NP / ' . NZ; ND/ by

NZT D 1C c yZT C 1C yZ�Z
˛
�;T and NDT D 1C c yDT C 1C yD�D

˛
�;T :

First, . NQ; NP / 2Mloc � P by the m-stability of Mloc and P . Also, since

NDT V

 
NZT
NDT

!
D 1C c yDT V

 
yZT

yDT

!
C 1C yD�D

˛
�;T V

 
yZ�Z

˛
�;T

yD�D
˛
�;T

!
;

we have V. NQj NP / <1 by the construction of C and Lemma 5.2, hence NQ 2MV . Finally,

V. NQj NP / D E

"
NDT V

 
NZT
NDT

!#

DE

"
1C cE

"
yDT V

 
yZT

yDT

! ˇ̌̌
F�

#
C 1CE

"
yD�D

˛
�;T V

 
yZ�Z

˛
�;T

yD�D
˛
�;T

! ˇ̌̌
F�

##
<V. yQj yP /:

This contradict to the optimality of . yQ; yP /. �

Now the formal inequality in Step 1 at the end of Section 3 is realized as follows.

Proposition 5.4. For any .Q;P / ' .Z;D/ 2Me
V � Pe with V.QjP / <1,

yZ�

n
EQ

h
V 0
�
d yQ=d yP

� ˇ̌̌
F�
i
�E yQ

h
V 0
�
d yQ=d yP

� ˇ̌̌
F�
io

C yD�

n
EP ŒU. yX/jF� � �E yP ŒU. yX/jF� �

o
� 0; a.s.

(5.7)
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Proof. Let .Z;D/, � , ˛ be as above, and set

G� .˛/ WD yD�D
˛
�;T V.

yZ�Z
˛
�;T =
yD�D

˛
�;T /:

Then ˛ 7! G� .˛/ is convex (a.s.) by (the proof of) Lemma 5.5 below, hence .G� .˛/ �
G.0//=˛ decreases a.s. to the limit �� .Q;P / as ˛ & 0. Here �� .Q;P / is explicitly
computed as:

�� .Q;P / D yZ�V
0

 
d yQ

d yP

!
.Z�;T � yZ�;T /C yD�U. yX/.D�;T � yD�;T /;

using yZT = yDT D d yQ=d yP and U. yX/ D V.d yQ=d yP / � .d yQ=d yP /V 0.d yQ=d yP /. Since
G� .1/ is F� -locally integrable and EŒ.G� .˛/�G� .0//=˛jF� � � 0 a.s. by Lemma 5.3, the
(generalized) conditional monotone convergence theorem shows that EŒ�.Q;P /jF� � �
0. Noting that V 0.d yQ=d yP / D � yX 2 L1.Q/ and U. yX/ 2 L1.P / by Theorem 3.1, we
deduce (5.7) from Bayes’ formula. �

We proceed to Step 2. Fixing Q 2 MV , we want to take P “arbitrarily close” to yP .
The next simple lemma gives a precise form of this argument.

Lemma 5.5. Let .Q;P / and .Q0; P 0/ be any two pairs of probability measures abso-
lutely continuous w.r.t. P . Then for any ˛;  2 .0; 1/, we have

V.˛QC.1 � ˛/Q0jP C .1 � /P 0/

� V

�
˛


Q
ˇ̌̌
P

�
C .1 � /V

�
1 � ˛

1 � 
Q0

ˇ̌̌
P 0
�
:

(5.8)

In particular, V.QjP / < 1 and V.Q0jP 0/ < 1 imply V.˛Q C .1 � ˛/Q0jP C .1 �
/Q0/ <1 for any ˛;  2 .0; 1/.

Proof. Note that for any positive numbers x; x0; y; y0,

˛x C .1 � ˛/x0

y C .1 � /y0
D

y

y C .1 � /y0
˛



x

y
C

.1 � /y0

y C .1 � /y0
1 � ˛

1 � 

x0

y0
:

Thus the convexity of V shows that

.y C .1 � /y0/V

�
˛x C .1 � ˛/x0

y C .1 � /y0

�
� yV

�
˛



x

y

�
C .1 � /y0V

�
1 � ˛

1 � 

x0

y0

�
:

Putting dQ=dP (resp. dQ0=dP , dP=dP , dP 0=dP ) into x (resp. x0, y, y0), and taking the
P -expectation, this implies (5.8). The second claim follows from the fact that V.QjP / <
1) V.�QjP / <1 for any � > 0, as a consequence of reasonable asymptotic elasticity.

�

Proof of Proposition 5.1. As noted after the statement of Proposition 5.1, we have only to
consider the case .Q;P / 2Me

V �Pe with V.QjP / <1. Fixing such a pair .Q;P /, we
putQ˛ WD ˛QC.1�˛/ yQ and P WD PC.1�/ yP for any ˛;  2 .0; 1/. By Lemma 5.5,
the auxiliary variational inequality (5.7) is valid for any .Q˛; P / with arbitrary ˛;  2
.0; 1/. Noting that EQ˛ Œ˚ jF� � � E yQŒ˚ jF� � D

˛Z�

˛Z�C.1�˛/ yZ�
fEQŒ˚ jF� � � E yQŒ˚ jF� �g
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etc, we have

yZ�
˛Z�

˛Z� C .1 � ˛/ yZ�
fEQŒV

0.d yQ=d yP /jF� � �E yQŒV
0.d yQ=d yP /jF� �g

C yD�
D�

D� C .1 � / yD�
fEP ŒU. yX/jF� � �E yP ŒU. yX/jF� �g

� 0; a.s. 8˛;  2 .0; 1/:

Since D�=.D� C .1 � / yD� /
#0
! 0 and ˛Z�=.˛Z� C .1 � ˛/ yZ� /

˛#0
! 0, we deduce

(5.1) and (5.2) by letting  # 0 (resp. ˛ # 0) with ˛ (resp.  ) being fixed, whenever
V.QjP / < 1. Finally, any Q 2Me

V (resp. P 2 Pe) admits a P 2 P (resp. Q 2MV )
with V.QjP / <1 by definition (resp. by Remark 2.3). �

Proof of Theorem 3.2. Under the assumption yQ � P , the .S;P /-integrability of O� is clear.
We verify that O� � S is a supermartingale under each Q 2 MV . Since V 0.d yQ=d yP / 2
L1.Q/, the process defined by MQ

� D �EQŒV
0.d yQ=d yP /jF� � is a Q-martingale. Then

(3.3), (5.1) as well as the fact that O� � S is a yQ-martingale show that

O� � S� D �E yQŒV
0.d yQ=d yP /jF� � �MQ

� ; Q-a.s.

for any stopping time � � T . A stochastic integral w.r.t. a Q-local martingale dom-
inated below by a Q-(uniformly integrable) martingale is a Q-supermartingale by [24,
Theorem 1], which is a variant of Ansel-Stricker’s lemma [1, Proposition 3.3]. �
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