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Abstract

This paper presents a new computational scheme for an asymptotic
expansion method of an arbitrary order.

The asymptotic expansion method in finance initiated by Kunitomo
and Takahashi [9], Yoshida [34] and Takahashi [20], [21] is a widely ap-
plicable methodology for an analytic approximation of expectation of a
certain functional of diffusion processes. Hence, not only academic re-
searchers but also many practitioners have used the methodology for a
variety of financial issues such as pricing or hedging complex derivatives
under high-dimensional underlying stochastic environments. In practical
applications of the expansion, a crucial step is calculation of conditional
expectations for a certain kind of Wiener functionals. [20], [21] and Taka-
hashi and Takehara [23] provided explicit formulas for those conditional
expectations necessary for the asymptotic expansion up to the third order.

This paper presents the new method for computing an arbitrary-order
expansion in a general diffusion-type stochastic environment, which is
powerful especially for high-order expansions: We develops a new calcula-
tion algorithm for computing coefficients of the expansion through solving
a system of ordinary differential equations that is equivalent to comput-
ing the conditional expectations directly. To demonstrate its effectiveness,
the paper gives numerical examples of the approximation for a λ-SABR
model up to the fifth order.
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1 Introduction

This paper presents a new scheme for computation in the method so-called “an
asymptotic expansion approach” by developing a new calculation algorithm.

To our best knowledge, the ‘asymptotic expansion method’ was firstly intro-
duced to a financial literature by [9] and [20] with an application to the evalu-
ation of an average option that is a popular derivative in commodity markets.
They derive the approximation formulas for the average option by the asymp-
totic expansion method based on log-normal approximations of a distribution
of an average price when an underlying asset price follows a geometric Brow-
nian motion. [34] applies a formula derived through the asymptotic expansion
of certain statistical estimators for small diffusion processes to approximating
average option prices. Thereafter, the asymptotic expansion have been applied
to a broad class of problems in finance: See [21], [22], Kunitomo and Takahashi
[10], [11], Matsuoka, Takahashi and Uchida [14], Takahashi and Yoshida [30],
[31], Muroi [15], and Takahashi and Takehara [23], [24], [25]. It is notable that
the method has flexible applicability to a broad class of diffusion-type stochas-
tic settings in a unified way, and mathematical justification by Watanabe the-
ory(Watanabe [32], Yoshida [33]) in Malliavin calculus.

There are also other various approaches for approximation of solutions to
pricing PDEs, Greeks and heat kernels through certain asymptotic expansions:
for instance, there are recent works such as Fouque, Papanicolaou and Sircar
[4], [5], Hagan, Kumar, Lesniewski and Woodward [7], Henry-Labordere [12],
[13], Siopacha and Teichmann [19], Ben Arous and Laurence [3] and Gatheral,
Hsu, Laurence, Ouyang and Wang [6].

Recently, not only academic researchers but also many practitioners such
as Antonov and Misirpashaev [1] or Andersen and Hutchings [2] have used the
asymptotic expansion method based on Watanabe theory in or combined with
their techniques for a variety of financial issues. e.g. pricing or hedging complex
derivatives under high-dimensional underlying stochastic environments. These
methods fully or partially rely on the framework developed by [9], [20], [21] in
a financial literature.

In theory, this method provides us the expansion, which has a proper mean-
ing in the limit of some ideal situations such as cases where these processes
would be deterministic, of underlying stochastic processes (for the detail see
[32], [33] or [11]).

In practice, however, we are often interested in cases far from those sit-
uations, where the underlying processes are highly volatile as seen in recent
financial markets especially after the crisis on 2008. Then from view points of
accuracy or stability of the techniques in practical uses, it is desirable to inves-
tigate behaviors of its estimators especially with expansion up to high orders in
such environments.

In the existing application of the asymptotic expansion based on Watanabe
theory, they calculated certain conditional expectations which appear in their
expansions and which play key roles in computation, by formulas up to the third
order given explicitly in [20], [21] and [23]. In many applications, these formu-
las give sufficiently accurate approximation, but in some cases, for example in
cases with long maturities or/and with highly volatile underlying variables, the
approximations up to the third order may not provide satisfactory accuracies.
Thus, formulas for higher-order computations are desirable. But to our knowl-
edge, the asymptotic expansion formulas higher than the third order in a general
setting have not been given yet.

This paper provides a new scheme for computing unconditional expectations
which is completely equivalent to direct calculation of the conditional expecta-
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tions. This enables us to derive the high-order approximation formulas in an
automatic manner. Consequently, our approximation generally shows sufficient
accuracy in computation of high-order expansions, which is confirmed by nu-
merical experiments. In those experiments, comparing our method to another
existing one, we also see its advantageous applicability in financial practice.

Recently, Takehara, Takahashi and Toda [27] introduced a computational
scheme for the conditional expectations as well as an equivalent scheme for the
unconditional ones in the same manner to this work, and gave some formulas for
the fourth order expansion. That paper and Takehara, Toda and Takahashi [28]
applied those to option pricing in the λ-SABR model and in a cross-currency
setting with long maturities. However, in those papers key ideas of the methods
were heuristically shown only in a very simple setting while their applications
were out of that framework. Thus, in this sense, this paper can be considered
to give justification and generalization of those works to a much broader class
of models.

Organization of this paper is as follows: After a brief explanation of the
asymptotic expansion in Section 2, Section 3 introduces our new computation
algorithm and derives the formulas for the asymptotic expansion. Section 4
applies our algorithm described in the previous section to the concrete financial
models, and confirms effectiveness of the high-order expansions by numerical
examples in the (λ-)SABR model. Finally, Appendix shows proofs of Lemma 1
and Theorem 1 in Section 3, which are omitted in the main text. Due to the
limitation of space, some related results and some of concrete data of the experi-
ments in Section 4 are omitted and left in our online working paper CARF-F-149
[26] (http://www.carf.e.u-tokyo.ac.jp/pdf/workingpaper/fseries/154.pdf).

2 An Asymptotic Expansion in a General Dif-
fusion Setting

This section briefly describes an asymptotic expansion method in a general
diffusion setting.

Let (W,P ) be a r-dimensional Wiener space. We consider a d-dimensional

diffusion process X
(ϵ)
t = (X

(ϵ),1
t , · · · , X(ϵ),d

t )′ which is the solution to the follow-
ing stochastic differential equation:

dX
(ϵ),j
t = V j

0 (X
(ϵ)
t , ϵ)dt+ ϵV j(X

(ϵ)
t )dWt (j = 1, · · · , d) (1)

X
(ϵ)
0 = x0 ∈ Rd

where W = (W 1, · · · ,W r)′ is a r-dimensional standard Wiener process, and
ϵ ∈ (0, 1] is a known parameter.

Suppose that V0 = (V 1
0 , · · · , V d

0 )
′ : Rd × (0, 1] 7→ Rd and V = (V 1, · · · , V d):

Rd 7→ Rd ⊗ Rr satisfy some regularity conditions(for example, V0 and V are
smooth functions with bounded derivatives of all orders).

Next, let a function g : Rd 7→ R be smooth and all of its derivatives have

polynomial growth. Then, a smooth Wiener functional g(X
(ϵ)
T ) has its asymp-

totic expansion:

g(X
(ϵ)
T ) ∼ g0T + ϵg1T + ϵ2g2T + · · ·

in D∞ as ϵ ↓ 0 where g0T , g1T , g2T , · · · ∈ D∞. For any k ∈ N, q ∈ (1,∞) and
s > 0, this expansion means that

1

ϵk
∥g(X(ϵ)

T )− (g0T + ϵg1T + · · ·+ ϵk−1gk−1,T )∥q,s = O(1) (as ϵ ↓ 0),
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where ∥G∥q,s represents the sum of Lq -norms of Malliavin derivatives of a
Wiener functional G up to the s-th order. Further, a Banach space Dq,s =
Dq,s(R) can be regarded as the totality of random variables bounded with
respect to (q, s)-norm ∥ · ∥q,s, and D∞ = ∩s>0 ∩1<q<∞ Dq,s.

Coefficients gnT ∈ D∞(n = 0, 1, · · · ) in the expansion can be obtained by
Taylor’s formula and represented based on multiple Wiener-Itô integrals. See
chapter V of Ikeda and Watanabe [8] for the detail.

In financial applications, for example X(ϵ) consists of two stocks, X(ϵ) =

(S
(ϵ)
1 , S

(ϵ)
2 )′ and g(·) is their average g(x) = x1+x2

2 for x = (x1, x2)
′: As another

example, we can set X(ϵ) is a vector of N discrete Libor forward rates, X(ϵ) =

(L
(ϵ)
1 , · · · , L(ϵ)

N )′, and

g(X
(ϵ)
T ) = SR

(ϵ)
T =

1−
∏N

j=1
1

1+τL
(ϵ)
jT

τ
∑N

i=1

∏i
j=1

1

1+τL
(ϵ)
jT

,

that is a swap rate with maturity TN = T +Nτ .

Let Akt = 1
k!

∂kX
(ϵ)
t

∂ϵk
|ϵ=0 and Aj

kt, j = 1, · · · , d denote the j-th elements of
Akt. In particular, A1t is represented by

A1t =

∫ t

0

YtY
−1
u

(
∂ϵV0(X

(0)
u , 0)du+ V (X(0)

u )dWu

)
(2)

where Y denotes the solution to the ordinary differential equation:

dYt = ∂V0(X
(0)
t , 0)Ytdt; Y0 = Id.

Here, ∂V0 denotes the d× d matrix whose (j, k)-element is ∂kV
j
0 =

∂V j
0 (x,ϵ)
∂xk

, V j
0

is the j-th element of V0, and Id denotes the d× d identity matrix.
For k ≥ 2, Aj

kt, j = 1, · · · , d is recursively determined by the following
equation:

Aj
kt =

1

k!

∫ t

0

∂k
ϵ V

j
0 (X

(0), 0)du

+
k∑

l=1

(l)∑
l⃗β ,d⃗β

1

(k − l)!

1

β!

∫ t

0

 β∏
j=1

A
dj

lju

 ∂β

d⃗β
∂k−l
ϵ V j

0 (X
(0)
u , 0)du

+

(k−1)∑
l⃗β ,d⃗β

1

β!

∫ t

0

 β∏
j=1

A
dj

lju

 ∂β

d⃗β
V j(X(0)

u )dWu (3)

where ∂l
ϵ =

∂l

∂ϵl
, ∂β

d⃗β
= ∂β

∂xd1
···∂xdβ

,

Ln,β =

l⃗β = (l1, · · · , lβ);
β∑

j=1

lj = n, lj ≥ 1, j = 1, · · · , β

 (4)

and

(n)∑
l⃗β ,d⃗β

=

n∑
β=1

∑
l⃗β∈Ln,β

∑
d⃗β∈{1,··· ,d}β
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for n ≥ 1, and

(0)∑
l⃗β ,d⃗β

=
∑
β=0

∑
l⃗0=(∅)

∑
d⃗0=(∅)

.

Then, g0T and g1T can be written as

g0T = g(X
(0)
T ),

g1T =

d∑
j=1

∂jg(X
(0)
T )Aj

1T .

For n ≥ 2, gnT is expressed as follows:

gnT =

(n)∑
l⃗β ,d⃗β

1

β!
∂β

d⃗β
g(X

(0)
T )Ad1

l1T
· · ·Adβ

lβT
. (5)

Next, let normalize g(X
(ϵ)
T ) to

G(ϵ) =
g(X

(ϵ)
T )− g0T

ϵ

for ϵ ∈ (0, 1]. Then, we have

G(ϵ) ∼ g1T + ϵg2T + · · ·

in D∞. Moreover, let

V̂ (x, t) = (∂g(x))
′
[YTY

−1
t V (x)]

and make the following assumption:

(Assumption 1) ΣT =

∫ T

0

V̂ (X
(0)
t , t)V̂ (X

(0)
t , t)

′
dt > 0.

Note that g1T follows a normal distribution with variance ΣT ; the density func-
tion of g1T denoted by fg1T (x) is given by

fg1T (x) =
1√

2πΣT

exp

(
− (x− C)2

2ΣT

)
where

C :=
(
∂g(X

(0)
T )
)′ ∫ T

0

YTY
−1
t ∂ϵV0(X

(0)
t , 0)dt. (6)

Hence, Assumption 1 means that the distribution of g1T does not degenerate. In
application, it is easy to check this condition in most cases. Hereafter, Let S be
the real Schwartz space of rapidly decreasing C∞-functions on R and S ′ be its
dual space that is the space of the Schwartz tempered distributions. Next, take
Φ ∈ S ′. Then, by Watanabe theory(Watanabe [32], Yoshida [33]) a generalized
Wiener functional Φ(G(ϵ)) has an asymptotic expansion in D−∞ as ϵ ↓ 0 where
D−∞ denotes the set of generalized Wiener functionals. See chapter V of Ikeda
and Watanabe [8] for the detail. Hence, the expectation of Φ(G(ϵ)) is expanded
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around ϵ = 0 as follows: For N = 0, 1, 2, · · · ,

E[Φ(G(ϵ))] =
N∑

n=0

ϵn
(n)∑
k⃗δ

1

δ!
E

Φ(δ)(g1T )

 δ∏
j=1

g(kj+1)T

+ o(ϵN )

=
N∑

n=0

ϵn
(n)∑
k⃗δ

1

δ!
E
[
Φ(δ)(g1T )X

k⃗δ

]
+ o(ϵN )

=
N∑

n=0

ϵn
(n)∑
k⃗δ

1

δ!

∫
R

Φ(δ)(x)E[X k⃗δ |g1T = x]fg1T (x)dx+ o(ϵN )

=
N∑

n=0

ϵn
(n)∑
k⃗δ

1

δ!

∫
R

Φ(x)(−1)δ
dδ

dxδ

{
E[X k⃗δ |g1T = x]fg1T (x)

}
dx+ o(ϵN )

(7)

where Φ(δ)(g1T ) =
∂δΦ(x)
∂xδ

∣∣∣∣
x=g1T

,

X k⃗δ =
δ∏

j=1

g(kj+1)T

for k⃗δ ∈ Ln,δ, and

(n)∑
k⃗δ

=
n∑

δ=1

∑
k⃗δ∈Ln,δ

.

In the preceding works on application of the asymptotic expansion, condi-
tional expectations in (7) were directly computed with some formulas given in
[21] or [23] (for example, see Appendix B of [23]). Recently, while the formulas
had been given up to the third order by those papers, [26] developed a high-order
computation scheme for the conditional expectations using the fact that each of

these {Aj
k,t}j,k, {gnT }n and also {X k⃗δ}k⃗δ

can be decomposed into a finite sum
of iterated multiple Wiener-Itô integrals by Itô’s formula, and a certain property
of iterated multiple Wiener-Itô integrals (see Nualart, Üstünel and Zakai [17]
and Section 4 of [26]). On the other hand, as shown in the next section, this
paper develops a new method computing unconditional expectations instead of
the conditional ones.

3 A New Computational Scheme

In this section we propose the new computational scheme in the asymptotic
expansion, which is an alternative to the direct calculation method for the con-
ditional expectations given by [26].

To compute the conditional expectations in the right hand side of (7), we
use the following lemma which can be derived from a property of Hermite poly-
nomials and leads us to compute the unconditional expectations instead of the
conditional ones.

Lemma 1 Let (Ω, F, P ) be a probability space. Suppose that X ∈ L2(Ω, P ) and
Z is a random variable with Gaussian distribution with mean 0 and variance Σ.
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Then, the conditional expectation E[X|Z = x] has the following expansion in
L2(R, µ) where µ is the Gaussian measure on R with mean 0 and variance Σ:

E[X|Z = x] =

∞∑
n=0

an
Σn

Hn(x; Σ) (8)

where Hn(x; Σ) is the Hermite polynomial of degree n which is defined as

Hn(x; Σ) = (−Σ)nex
2/2Σ dn

dxn
e−x2/2Σ

and coefficients an are given by

an =
1

n!

1

in
∂n

∂ξn

∣∣∣∣
ξ=0

{
e

ξ2

2 ΣE[eiξZX]

}
. (9)

(proof) See Section 5.1. 2

Here, we define ĝ1 = {ĝ1t; t ∈ R+} and Z⟨ξ⟩ = {Z⟨ξ⟩
t ; t ∈ R+} as the

stochastic processes

ĝ1t =

∫ t

0

V̂ (X(0)
u , u)dWu

and

Z
⟨ξ⟩
t = exp

(
iξĝ1t +

ξ2

2
Σt

)
,

respectively.
Then, from Lemma 1, the conditional expectations appearing in the right

hand side of the equation (7) is expressed as

E[X k⃗δ |g1T = x] = E[X k⃗δ |ĝ1T = x− C]

=
∞∑
l=0

ak⃗δ

l

Σl
T

Hl(x− C,ΣT ) (10)

where

ak⃗δ

l =
1

l!

1

il
∂l

∂ξl
E[X k⃗δZ

⟨ξ⟩
T ]

∣∣∣∣
ξ=0

. (11)

Here it is noted that with this expression we now need to compute uncondi-

tional expectations E[X k⃗δZ
⟨ξ⟩
T ] instead of the conditional expectations.

3.1 The Asymptotic Expansion of Density Function

In this subsection, we explain the new computational method through deriving a
general formula for the expansion (7) with an arbitrary specification of its order
N . In particular, we show that the coefficients in the expansion are obtained
through a system of ordinary differential equations that is solved easily.

First, we define η
d⃗β

l⃗β
(t; ξ) for l⃗β ∈ Ln,β and d⃗β ∈ {1, · · · , d}β (n ≥ β ≥ 1) as

η
d⃗β

l⃗β
(t; ξ) = E

 β∏
j=1

A
dj

ljt

Z
⟨ξ⟩
t

 , (12)

and for n = 0 as

η
(∅)
(∅)(t; ξ) = E

[
Z

⟨ξ⟩
t

]
. (13)
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Then, unconditional expectations E[X k⃗δZ
⟨ξ⟩
T ] appearing in the definition of

ak⃗δ

l (11) can be written in terms of η as follows:

E[X k⃗δZ
⟨ξ⟩
T ] = E

 δ∏
j=1

g(kj+1)T

Z
⟨ξ⟩
T


= E


 δ∏

j=1

(kj+1)∑
l⃗jβj

,d⃗j
βj

1

βj !
∂
βj

d⃗j
βj

g(X
(0)
T )A

dj
1

lj1T
· · ·A

dj
βj

ljβj

Z
⟨ξ⟩
T


=

(k1+1)∑
l⃗1β1

,d⃗1
β1

· · ·
(kδ+1)∑
l⃗δβδ

,d⃗δ
βδ

 δ∏
j=1

1

βj !
∂
βj

d⃗j
βj

g(X
(0)
T )

 η
d⃗1
β1

⊗···⊗d⃗δ
βδ

l⃗1β1
⊗···⊗l⃗δβδ

(T ; ξ)

(14)

where

d⃗iβi
⊗ d⃗jβj

:= (di1, · · · , diβi
, dj1, · · · , d

j
βj
),

l⃗iβi
⊗ l⃗jβj

:= (li1, · · · , liβi
, lj1, · · · , l

j
βj
).

So, we have to calculate η
d⃗β

l⃗β
(T ; ξ) to evaluate the asymptotic expansion (7).

In the following, we derive a system of ODEs satisfied by these {ηd⃗β

l⃗β
}. Before

showing a general result, we first derive the ODEs for few leading-low-order
terms explicitly to give a better intuition of a key idea of our method. Consider

the evaluation of ηj(2)(T ; ξ) = E[Aj
2TZ

⟨ξ⟩
T ] which appears in the ϵ-order. Here,

for simplicity, we assume that V0 does not depend on ϵ, and write V0(x, ϵ) as

V0(x). First, applying Itô’s formula to Aj
2tZ

⟨ξ⟩
t , we have

d(Aj
2tZ

⟨ξ⟩
t ) = Aj

2tdZ
⟨ξ⟩
t + Z

⟨ξ⟩
t dAj

2t + d⟨Aj
2, Z

⟨ξ⟩⟩t

=

{
(iξ)

d∑
j′=1

Aj′

1tZ
⟨ξ⟩
t V̂ (X

(0)
t , t)∂j′V

j(X
(0)
t )′ +

d∑
j′=1

Aj′

2tZ
⟨ξ⟩
t ∂j′V

j
0 (X

(0)
t )

+
1

2

d∑
j′,k′=1

Aj′

1tA
k′

1tZ
⟨ξ⟩
t ∂j′∂k′V j

0 (X
(0)
t )

}
dt

+

(iξ)Aj
2tZ

⟨ξ⟩
t V̂ (X

(0)
t , t) +

d∑
j′=1

Aj′

1tZ
⟨ξ⟩
t ∂j′V

j(X
(0)
t )

 dWt.

Since the last term is a martingale, taking expectation on both sides, we have
the following ordinary differential equation for ηj(2):

d

dt
ηj(2)(t; ξ) = (iξ)

d∑
j′=1

ηj
′

(1)(t; ξ)V̂ (X
(0)
t , t)∂j′V

j(X
(0)
t )′

+

d∑
j′=1

ηj
′

(2)(t; ξ)∂j′V
j
0 (X

(0)
t ) +

1

2

d∑
j′,k′=1

ηj
′,k′

(1,1)(t; ξ)∂j′∂k′V j
0 (X

(0)
t ).

Here, ηj(1)(j = 1, · · · , d) appearing in the right hand side of the above ODE are
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evaluated in the similar manner:

d(Aj
1tZ

⟨ξ⟩
t ) = Aj

1tdZ
⟨ξ⟩
t + Z

⟨ξ⟩
t dAj

1t + d⟨Aj
1, Z

⟨ξ⟩⟩t

=

(iξ)Z
⟨ξ⟩
t V̂ (X

(0)
t , t)V j(X

(0)
t )′ +

d∑
j′=1

Aj′

1tZ
⟨ξ⟩
t ∂j′V

j
0 (X

(0)
t )

 dt

+
{
(iξ)Aj

1tZ
⟨ξ⟩
t V̂ (X

(0)
t , t) + Z

⟨ξ⟩
t V j(X

(0)
t )
}
dWt,

hence, we have

d

dt
ηj(1)(t; ξ) = (iξ)V̂ (X

(0)
t , t)V j(X

(0)
t )′ +

d∑
j′=1

ηj
′

(1)(t; ξ)∂j′V
j
0 (X

(0)
t ).

ηj,k(1,1) and other higher-order terms can be evaluated in the same way. The

key observation is that each ODE does not involve any higher-order terms, and
only lower- or the same order- terms appear in the right hand side of the ODE.
So, one can easily solve (analytically or numerically) the system of ODEs and
evaluate the expectations.

The following theorem provides a way to calculate general η
d⃗β

l⃗β
(T ; ξ) as a

solution to the system of the ordinary differential equations:

Theorem 1 For η
d⃗β

l⃗β
(t; ξ) defined in (12), the following system of ordinary dif-

ferential equations is satisfied:

d

dt

{
η
d⃗β

l⃗β
(t; ξ)

}
=

β∑
k=1

1

lk!

{
η
d⃗β/k

l⃗β/k

(t; ξ)

}{
∂lk
ϵ V dk

0 (X
(0)
t , 0)

}

+

β∑
k=1

lk∑
l=1

(l)∑
m⃗γ ,

⃗̃
dγ

1

(lk − l)!

1

γ!

{
η
(d⃗β/k)⊗

⃗̃
dγ

(⃗lβ/k)⊗m⃗γ
(t; ξ)

}{
∂γ
⃗̃
dγ

∂lk−l
ϵ V dk

0 (X
(0)
t , 0)

}

+

β∑
k,m=1

k<m

(lk−1)∑
m⃗γ ,

⃗̃
dγ

(lm−1)∑
m⃗δ,

⃗̂
dδ

1

γ!δ!

{
η
(d⃗β/k,m)⊗ ⃗̃

dγ⊗ ⃗̂
dδ

(⃗lβ/k,m)⊗m⃗γ⊗m⃗δ
(t; ξ)

}{
∂γ
⃗̃
dγ

V dk(X
(0)
t )

}{
∂δ
⃗̂
dδ

V dm(X
(0)
t )
}

+ (iξ)

β∑
k=1

(lk−1)∑
m⃗γ ,

⃗̃
dγ

1

γ!

{
η
(d⃗β/k)⊗

⃗̃
dγ

(⃗lβ/k)⊗m⃗γ
(t; ξ)

}{
∂γ
⃗̃
dγ

V dk(X
(0)
t )

}
V̂ (X

(0)
t , t) (15)

where

l⃗β/k := (l1, · · · , lk−1, lk+1, · · · , lβ)

l⃗β/k,n := (l1, · · · , lk−1, lk+1, · · · , ln−1, ln+1, · · · , lβ), 1 ≤ k < n ≤ β

l⃗β ⊗ m⃗γ := (l1, · · · , lβ ,m1, · · · ,mγ)

for l⃗β = (l1, · · · , lβ) and m⃗γ = (m1, · · · ,mγ).

(Proof) See Section 5.2. 2

Remark 1 Due to the hierarchical structure of the ODEs with respect to n =∑β
j=1 lj and η

(∅)
(∅)(t; ξ) = E[Z

⟨ξ⟩
t ] = 1, one can easily solve these ODEs suc-

cessively from lower-order terms to higher-order terms with initial conditions

η
d⃗β

l⃗β
(0; ξ) = 0 for (⃗lβ , d⃗β) ̸= (∅, ∅).
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Remark 2 Further, due to the structure of the system of the differential equa-

tions, it is easily shown by induction that each η
d⃗β

l⃗β
(t; ξ) is expressed as a poly-

nomial of degree n =
∑β

j=1 lj with respect to (iξ). Then, we can also show

that E[X k⃗δZ
⟨ξ⟩
T ] is a polynomial of degree (n+ δ) with respect to (iξ), and thus

ak⃗δ

l = 0(l > n+ δ) for k⃗δ ∈ Ln,δ. This ensures a convergence of the infinite sum
in (10).

Then, from Lemma 1 and (7), we have the following expression of E[Φ(G(ϵ))]:

E[Φ(G(ϵ))] =
N∑

n=0

ϵn
(n)∑
k⃗δ

1

δ!

∫
R

Φ(x)(−1)δ
dδ

dxδ

{
n+δ∑
l=0

ak⃗δ

l

Σl
T

Hl(x− C,ΣT )fg1T (x)

}
dx+ o(ϵN )

=
N∑

n=0

ϵn
(n)∑
k⃗δ

1

δ!

∫
R

Φ(x)

{
n+δ∑
l=0

ak⃗δ

l

Σl+δ
T

Hl+δ(x− C,ΣT )fg1T (x)

}
dx+ o(ϵN )

Here we used the relation

dδ

dxδ
{Hl(x− C,ΣT )fg1T (x)} = (−1)δ

1

Σδ
T

Hl+δ(x− C,ΣT )fg1T (x).

In particular, let Φ be the delta function at x ∈ R, δx, we obtain the
asymptotic expansion of the density of G(ϵ):

fG(ϵ)(x) = E[δx(G
(ϵ))]

=
N∑

n=0

ϵn
(n)∑
k⃗δ

1

δ!

n+δ∑
l=0

ak⃗δ

l

Σl+δ
T

Hl+δ(x− C,ΣT )fg1T (x) + o(ϵN ). (16)

We summarize the discussion above as the following theorem:

Theorem 2 The asymptotic expansion of the density function of G(ϵ) up to
ϵN -order is given by

fG(ϵ)(x) = fg1T (x) +

N∑
n=1

ϵn

(
3n∑

m=0

CnmHm(x− C,ΣT )

)
fg1T (x) + o(ϵN )

(17)

where

Cnm =
1

Σm
T

m∑
δ=1

∑
k⃗δ∈Ln,δ

(k1+1)∑
l⃗1β1

,d⃗1
β1

· · ·
(kδ+1)∑
l⃗δβδ

,d⃗δ
βδ

1

δ!(m− δ)! δ∏
j=1

1

βj !
∂
βj

d⃗j
βj

g(X
(0)
T )

 1

im−δ

∂m−δ

∂ξm−δ

{
η
d⃗1
β1

⊗···⊗d⃗δ
βδ

l⃗1β1
⊗···⊗l⃗δβδ

(T ; ξ)

}∣∣∣∣
ξ=0

(18)

and η
d⃗β

l⃗β
(T ; ξ) are obtained as a solution to the system of ODEs given in Theorem

1.
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3.2 Asymptotic Expansion of Option Prices

We apply the asymptotic expansion to option pricing. We consider a plain

vanilla option on the underlying asset g(X
(ϵ)
T ) whose dynamics is given by (1).

For example, an asymptotic expansion up to ϵ(N+1) of a call option price at

time 0 with maturity T and strike price K where K = X
(0)
T − ϵy for arbitrary

y ∈ R is given by

C(K,T ) = P (0, T )E[max(g(X
(ϵ)
T )−K, 0)]

= ϵP (0, T )

∫ ∞

−y

(x+ y)fG(ϵ),N (x)dx+ o(ϵ(N+1)). (19)

Here, P (0, T ) denotes the price at time 0 of a zero coupon bond with maturity
T and fG(ϵ),N is the asymptotic expansion of the density of G(ϵ) up to ϵN -order
given by (17):

fG(ϵ),N (x) = fg1T (x) +

N∑
n=1

ϵn

(
3n∑

m=0

CnmHm(x− C,ΣT )

)
fg1T (x)

Integrals appearing in the right hand side of (19) can be calculated by following
formulas related to the Hermite polynomials∫ ∞

−y

Hk(x; Σ)fg1T (x)dx = ΣHk−1(−y; Σ)fg1T (y) (k ≥ 1),∫ ∞

−y

xHk(x; Σ)fg1T (x)dx = −ΣyHk−1(−y; Σ)fg1T (y)

+Σ2Hk−2(−y; Σ)fg1T (y) (k ≥ 2).

3.3 A Log-Normal Asymptotic Expansion

In this subsection, we develop a slightly different expansion from the one intro-
duced in the previous subsection.

Suppose that an underlying one-dimensional asset process S(ϵ) and d-dimensional
stochastic process X(ϵ) follow

dS
(ϵ)
t = g(X

(ϵ)
t )S

(ϵ)
t σ̄dWt; S

(ϵ)
0 = s0,

dX
(ϵ)
t = V0(X

(ϵ)
t , ϵ)dt+ ϵV (X

(ϵ)
t )dWt; X

(ϵ)
0 = x0 ∈ Rd

respectively, where g:Rd → R and σ̄ is a constant vector in Rr. First, let we
define X̂(ϵ) as

X̂
(ϵ)
t = log

(
S
(ϵ)
t

s0

)
.

Then, we have

X̂
(ϵ)
t = −|σ̄|2

2

∫ t

0

g(X(ϵ)
u )2du+

∫ t

0

g(X(ϵ)
u )σ̄dWu,

and note that
X̂

(0)
T ∼ N(µ̂T , Σ̂T ),

where

µ̂T = −|σ̄|2

2

∫ T

0

g(X(0)
u )2du = −1

2
Σ̂T ,

Σ̂T = |σ̄|2
∫ T

0

g(X(0)
u )2du.

11



Moreover, an asymptotic expansion of X̂
(ϵ)
T up to ϵN -order is expressed as

X̂
(ϵ)
T = X̂

(0)
T +

N∑
n=1

ϵnÂnT + o(ϵN ),

where Ânt =
1
n!

∂nX̂
(ϵ)
t

∂ϵn |ϵ=0. Note that S
(ϵ)
T is now expanded around a log-normal

distribution since X̂
(0)
T has the Gaussian distribution (hereafter we call this

expansion ‘the log-normal asymptotic expansion’ of S
(ϵ)
T in contrast to calling

the expansion in the previous subsection ‘the normal asymptotic expansion’).

Next, define Z⟨ξ⟩ = {Z⟨ξ⟩
t ; t ∈ R+} as

Z
⟨ξ⟩
t = exp

(
iξ

∫ t

0

g(X(0)
u )σ̄dWu

)
.

Then, the result in the previous subsection is applied to deriving the density

function of X̂
(ϵ)
T with replacement of G(ϵ) by X̂

(ϵ)
T .

Similar to the normal case, the log-normal asymptotic expansion of the price

of the call option on X̂
(ϵ)
T is given by

C(K,T ) = P (0, T )

∫ ∞

log K
s0

(s0e
x −K)f

X̂
(ϵ)
T

(x)dx.

We also remark that as shown in Takahashi and Yamada [29], the asymptotic
expansion approach can be applied to a shifted log-normal model, sometimes
called a displaced diffusion model (Rubinstein [18]), under stochastic volatility
environments. Hence, the method for high-order expansions introduced in this
paper can be applied to the model. More specifically, a stochastic volatility
version of this model in the asymptotic expansion framework is expressed as
follows:

dS
(ϵ)
t = g(X

(ϵ)
t )(S

(ϵ)
t + α)σ̄dWt; S

(ϵ)
0 = s0,

dX
(ϵ)
t = V0(X

(ϵ)
t , ϵ)dt+ ϵV (X

(ϵ)
t )dWt; X

(ϵ)
0 = x0 ∈ Rd

where α is a constant. Once we define Ŝ
(ϵ)
t := S

(ϵ)
t + α, the same method as

above is easily applied since the model is now described as

dŜ
(ϵ)
t = g(X

(ϵ)
t )Ŝ

(ϵ)
t σ̄dWt; Ŝ

(ϵ)
0 = s0 + α,

dX
(ϵ)
t = V0(X

(ϵ)
t , ϵ)dt+ ϵV (X

(ϵ)
t )dWt; X

(ϵ)
0 = x0 ∈ Rd

and the payoffs of call and put options with strike K and maturity T are ex-

pressed as (Ŝ
(ϵ)
T − (K + α))+ and ((K + α)− Ŝ

(ϵ)
T )+ respectively.

4 Numerical Examples

4.1 λ-SABR model

In this section, we test effectiveness of the asymptotic expansion method de-
scribed in the previous section through numerical examples. Also, we compare
approximation accuracy of our method with that of another existing approxi-
mation method.

12



4.1.1 Asymptotic Expansion of the λ-SABR Model

To test efficiency of the expansion, we first consider a European plain-vanilla
call and put prices under the following λ-SABR model [12] (interest rate=0%) :

dS(ϵ)(t) = ϵσ(ϵ)(t)(S(ϵ)(t))βdW 1
t ,

dσ(ϵ)(t) = λ(θ − σ(ϵ)(t))dt+ ϵν1σ
(ϵ)(t)dW 1

t + ϵν2σ
(ϵ)(t)dW 2

t ,

S(ϵ)(0) = S0, σ(ϵ)(0) = σ0,

where ν1 = ρν，ν2 = (
√
1− ρ2)ν (an instantaneous correlation between S(ϵ)

and σ(ϵ) is ρ ∈ [−1, 1]). Note that when λ = 0 the model becomes the original
SABR model [7]. Rigorously speaking, this model does not satisfy the regularity
conditions stated in pp.3-4 of Section 2 since the coefficient function V 1(σ, s) =
σsβ is unbounded and has non-smooth derivatives at s = 0. However, as seen
in the following, our method is (formally) applicable to this model and gives
better accuracies for approximate prices in higher-order expansions for various
ranges of strikes and parameters.

To compute an option price on S(ϵ), we need the density function of S
(ϵ)
T

whose asymptotic expansion is given by (17) with setting g(S, σ) = S. The
asymptotic expansion of the density function is obtained by solving the system
of the ordinary differential equations given in Theorem 1. For example, the
corresponding differential equations up to the second order are given by

d

dt
ηS(1)(t; ξ) = (iξ)(S

(0)
t )2β(σ

(0)
t )2,

d

dt
ησ(1)(t; ξ) = (iξ)ν1(S

(0)
t )β(σ

(0)
t )2 − λησ(1)(t; ξ),

d

dt
ηS(2)(t; ξ) = (iξ)β(S

(0)
t )2β−1(σ

(0)
t )2ηS(1)(t; ξ) + (iξ)(S

(0)
t )2βσ

(0)
t ησ(1)(t; ξ),

where S
(0)
t = S0 and σ

(0)
t = e−λt(σ0 − θ) + θ. Since these equations are linear

and have the hierarchical structure, one can easily integrate them as

ηS(1)(t; ξ) = (iξ)

∫ t

0

(S
(0)
t1 )2β(σ

(0)
t1 )2dt1,

ησ(1)(t; ξ) = (iξ)

∫ t

0

e−λ(t−t1)ν1(S
(0)
t1 )β(σ

(0)
t1 )2dt1,

ηS(2)(t; ξ) = (iξ)2
∫ t

0

∫ t1

0

β(S
(0)
t1 )2β−1(σ

(0)
t1 )2(S

(0)
t2 )2β(σ

(0)
t2 )2dt2dt1

+(iξ)2
∫ t

0

∫ t1

0

e−λ(t1−t2)(S
(0)
t1 )2βσ

(0)
t1 ν1(S

(0)
t2 )β(σ

(0)
t2 )2dt2dt1.

Integrals appearing in the right hand side are analytically evaluated, which is
omitted due to the limitation of the space (they are available upon request).

Then, from Theorem 2 the asymptotic expansion of the density function of

G(ϵ) =
S

(ϵ)
T −S

(0)
T

ϵ can be expressed as

fG(ϵ)(x) ∼ fg1T (x) + ϵC13H3(x; ΣT )fg1T (x) + · · · (20)

where

fg1T (x) =
1√

2πΣT

exp

(
− x2

2ΣT

)
with

ΣT =

∫ T

0

(S
(0)
t )2β(σ

(0)
t )2dt
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and

C13 =
1

Σ3
T

∫ T

0

∫ t1

0

β(S
(0)
t1 )2β−1(σ

(0)
t1 )2(S

(0)
t2 )2β(σ

(0)
t2 )2dt2dt1

+
1

Σ3
T

∫ T

0

∫ t1

0

e−λ(t1−t2)(S
(0)
t1 )2βσ

(0)
t1 ν1(S

(0)
t2 )β(σ

(0)
t2 )2dt2dt1.

Note also that C13 is calculated in closed form; the expression is omitted, which
is available upon request. Moreover, by a similar calculation to that in Section
3.2, an approximate price of a call option on S(ϵ) at time 0 with maturity T and

strike K = S
(0)
T − ϵy up to ϵ2-order is given by

C(K,T ) = ϵP (0, T )

(
ΣT fg1T (y) + yN

(
y√
ΣT

))
−ϵ2P (0, T )C13Σ

2
T yfg1T (y) + o(ϵ2) (21)

where N(·) is a cumulative distribution function of the standard normal dis-
tribution. Higher-order asymptotic expansions can be calculated in a similar
manner.

4.1.2 Numerical Example: λ = 0 (SABR case)

First, we consider European plain-vanilla call and put prices under the original
SABR case (λ = 0 in the λ-SABR model). We calculate approximated prices
by the asymptotic expansion method up to the fifth order. Note that all the
solutions to the differential equations are obtained in closed form. Thus, the
computation is very fast(e.g. the computation time is within 10−5 ∼ 10−6

second for the fifth-order expansion). We also calculate approximated prices by
Hagan et al.[7] to compare accuracy of its approximation with ours. Benchmark
values are computed by Monte Carlo simulations. In the simulations for the
benchmark values, we use Euler-Maruyama scheme as a discretization scheme
with 1024 time steps, and generate 108 paths in each simulation. ϵ is set to be
one and other parameters used in the test are given in Table 1.

Table 1: Parameters used in the SABR (λ = 0) case

Parameter S(0) β σ(0) ν ρ T

i 100 0.5 3.0 0.3 -0.7 10

Results are in Table 3 and Figure 1. From the results, we can see that the
higher-order asymptotic expansion almost always improves accuracy of the ap-
proximation by the lower ones. While sometimes the third-order approximation
does not perform well, particularly in OTM options, the fifth-order one ap-
proximates the prices almost perfectly in these settings. This strongly supports
importance of computing high-order terms, and hence of our method. We also
see the fifth-order expansion has equal or smaller approximation errors than Ha-
gan et al.[7]’s formula. Moreover, as seen in the next example, the asymptotic
expansion method can be easily extend to the λ-SABR (λ ̸= 0) case.

4.1.3 Numerical Example: λ ̸= 0

Next, we consider the European option prices under the λ-SABR model with
λ ̸= 0. Parameters used in the test are given in Table 2 (and ϵ = 1 as well as in
the previous examples).
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Table 2: Parameters used in the λ-SABR (λ ̸= 0) case

Parameter S(0) β σ(0) λ θ ν ρ T

ii 100 0.5 3.0 0.1 3.0 0.3 -0.7 10
iii 100 1.0 0.3 0.1 0.3 0.3 -0.7 10

We calculate approximated prices by the asymptotic expansion method up
to the fifth order. Note that all the solutions to the differential equations are
obtained analytically. Further, for the case of β = 1 in the λ-SABR model (case
iii), we can also apply the log-normal asymptotic expansion method given in
Section 3.3. This gives the slightly different approximation formula from that
with the normal asymptotic expansion method. Note also that the system of
ODEs appearing in the log-normal expansion formula are solved analytically as
in the normal asymptotic expansion case. We calculate approximated prices by
the log-normal asymptotic expansion up to the forth order. We also calculate
option prices by Hagan et al.[7]’s formula by setting λ = 0 in the model which
can be thought as the SABR approximation to the λ-SABR model. Bench-
mark prices are computed by Monte Carlo simulations with Euler-Maruyama
discretization scheme with 1024 time steps, and we generate 108 paths in each
simulation.

Results for the normal asymptotic expansion are in Table 3 and Figure 2 and
3, and results for the log-normal expansion for case iii are in Table 4 and Figure
4. Note that the 0th-order log-normal expansion (indicated by ‘LogNormal’ in
Table 4 and Figure 4) gives a simple log-normal approximation of the model.

From the results, in each case, as well as the examples in the original
SABR model the higher-order expansion or log-normal expansion almost al-
ways improve accuracy of the approximation by the lower-order expansions. On
the other hand, a naive application of Hagan et al.[7]’s formula to λ-SABR
model(λ ̸= 0) seems to fail to capture the underlying distribution and the
resulting option prices. This might be caused by the fact that it cannot be
directly applied to the λ-SABR setting while our method is applicable to a gen-
eral setting in the unified manner. Further, unlike Hagan et al.[7]’s one whose
high-order expansions are difficult to calculate, our method easily provides us
the approximation with an arbitrary-high order as we have already seen. These
results support flexibility of ours in financial practice.

In addition, for SABR and λ-SABRmodels we compare computation times of
our method with the ones of the method by Hagan et al. [7]. As the computation
times of both methods are very fast (10−5 ∼ 10−6 second per option), we
implement 10,000 times calculations of 20 options with different strike prices
for comparison. Then, the computation times are of the same order for both
methods: the ratios of the times based on our method relative to the ones by
Hagan et al.[7] are approximately 0.3 ∼ 1.6 for the cases in which both methods
achieve the similar accuracies.

At the end of this section, we stress the applicability of our high-order
method to much higher-dimensional settings. In fact, in [26], [27], and [28]
we apply this technique to pricing options on foreign exchange rates with a
stochastic volatility and Libor market models of domestic/foreign interest rates;
the model consists of ten underlying stochastic variables. Even in this high-
dimensional model, our proposed scheme performs very well for valuation of
options with long maturities such as fifteen years. See those papers for the
detail.
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5 Appendix

5.1 Proof of Lemma 1 in Section 3

Since the system of Hermite polynomials {Hn(x; Σ)} is an orthogonal basis of
L2(R, µ), and E[X|Z = x] ∈ L2(R, µ), we have the following unique expansion
of E[X|Z = x] in L2(R, µ):

E[X|Z = x] =

∞∑
n=0

an
Σn

Hn(x; Σ).

Since we have another Taylor expansion

eiξx = e−
ξ2

2 Σ
∞∑

n=0

Hn(x; Σ)

n!
(iξ)n,

then,

e
ξ2

2 ΣE[eiξZX] = e
ξ2

2 Σ

∫
R

eiξxE[X|Z = x]µ(dx)

=

∫
R

∞∑
m=0

Hm(x; Σ)

m!
(iξ)m

∞∑
n=0

anHn(x; Σ)µ(dx)

=
∞∑

n=0

an(iΣ)
nξn.

Comparing to the coefficients of the Taylor series of e
ξ2

2 ΣE[eiξZX] around 0
with respect to ξ, we see that an can be written as (9).2

20



5.2 Proof of Theorem 1 in Section 3.1

First, Applying Itô’s formula to
(∏β

j=1 A
dj

ljt

)
, we have

d

 β∏
j=1

A
dj

ljt

 =

β∑
k=1

 β∏
j=1

j ̸=k

A
dj

ljt

 dAdk

lkt
+

β∑
k,m=1

k<m

 β∏
j=1

j ̸=k,m

A
dj

ljt

 d⟨Adk

lk
, Adm

lm
⟩t

=

β∑
k=1

 β∏
j=1

j ̸=k

A
dj

ljt

 1

lk!
∂lk
ϵ V dk

0 (X
(0)
t , 0)dt

+

β∑
k=1

lk∑
l=1

 β∏
j=1

j ̸=k

A
dj

ljt

 (l)∑
m⃗γ ,

⃗̃
dγ

1

(lk − l)!

1

γ!

 γ∏
j′=1

A
d̃j′
mj′ t

 ∂γ

d̃γ
∂lk−l
ϵ V dk

0 (X
(0)
t , 0)dt

+

β∑
k=1

 β∏
j=1

j ̸=k

A
dj

ljt

 (lk−1)∑
m⃗γ ,

⃗̃
dγ

1

γ!

 γ∏
j′=1

A
d̃j′
mj′ t

 ∂γ

d̃γ
V dk(X

(0)
t )dWt

+

β∑
k,m=1

k<m

 β∏
j=1

j ̸=k,m

A
dj

ljt

 (lk−1)∑
m⃗γ ,

⃗̃
dγ

(lm−1)∑
m⃗δ,

⃗̂
dδ

1

γ!δ!

×

 γ∏
j′=1

A
d̃j′
mj′ t

 ∂γ

d̃γ
V dk(X

(0)
t )

 δ∏
j′=1

A
d̂j′
mj′ t

 ∂δ
d̂δ
V dm(X

(0)
t )dt.

(22)

Note also that

dZ
⟨ξ⟩
t = (iξ)V̂ (X

(0)
t , t)Z

⟨ξ⟩
t dWt. (23)

Then, applying Itô’s formula again to
(∏β

j=1 A
dj

ljt
Z

⟨ξ⟩
t

)
and taking expectations

on both sides, we obtain the result. 2
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