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APPLICATION OF THE KUSUOKA APPROXIMATION TO
BARRIER OPTIONS

SHIGEO KUSUOKA1, MARIKO NINOMIYA2, AND SYOITI NINOMIYA3

Abstract. The authors focuses on numerical experiments of application of
the Kusuoka approximation to pricing barrier options which is one of the

problems with a boundary condition. The killing functions play a role of
giving probability of hitting the boundary. The numerical experiments show
that second-order approximation is achieved as done in pricing European style

options ([3][4]).

As this is a draft paper at this stage, please do not cite, quote, or distribute
without authors’ permission.

0. Introduction

The Kusuoka approximation is known as one of the higher-order weak approxima-
tion schemes for stochastic differential equations (SDEs). Weak approximation is
calculation of E [f (X(T, x))] for a diffusion process X(t, x). Since the only condi-
tion imposed to f in the Kusuoka approximation is Lipschitz continuity([2]), this
scheme is directly applicable in dealing with European style options. The algo-
rithms for this scheme were developed by Ninomiya–Victoir(NV) and Ninomiya–
Ninomiya(NN) in [3] and [4] respectively to attain second-order approximation.

Our interest here is in applying this scheme to some other types of problems. In
this paper, we consider pricing barrier options. A barrier option is one of the popu-
lar derivatives in finance. In this paper, we focus on pricing the barrier option whose
price can be written as E [g (T, x) , min0≤t≤T X(t, x) > 0] for an N -dimensional dif-
fusion process such that

(0.1) X(t, x) = x +
∫ t

0

V0(X(s, x))ds +
∫ t

0

V1(X(s, x)) ◦ dB(s),

where ◦ denotes the Stratonovich integral, B(t) is a standard Brownian motion,
and V0, V1 ∈ C∞

b (RN ; RN ). If we let f be a function such that E [f (T, x)] =
E [g (X(T, x)) ,min0≤t≤T X(t, x) > 0], then f does not satisfy the Lipschitz condi-
tion imposed to f in the Kusuoka approximation.

Kusuoka suggested to separate the problem to two parts. One is approximation
of g (X(T, x)). The other is boundary condition. For approximation of g (X(T, x)),
the NV or the NN algorithm are directly applicable. For boundary condition, we
apply a killing function which represents probability of hitting boundary X(t, x) ≤ 0
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for t ∈ [0, T ]. Two types of killing functions are used in this research. One is called
a “simple” killing function which simply takes 1 if X(t, x) ≤ 0 and 0 otherwise.
The other killing function, “standard” killing function, takes it into account that
X(t, x) > 0 and X(s, x) ≤ 0 for s ∈ (t− 1, t). The definitions of these functions are
given in Section 2.

1. Problems and settings

Definitions and notations here follow [3].

Let (Ω,F , P ) be a probability space and B(t) a standard Brownian Motion.
C∞

b (RN ; RN ) denotes the set of RN -valued infinitely differentiable functions defined
in RN whose derivatives are all bounded.

Our interest is in approximation of E [g(X(T, x)),min0≤t≤T X(t, x) > 0] where
g ∈ C∞

b (RN ; R) and X(t, x) is a solution to the Stratonovich stochastic integral
equation

(1.1) X(t, x) = x +
∫ t

0

V0(X(s, x)) ◦ ds +
∫ t

0

V1 (X(s, x)) ◦ dB(s),

where V0, V1 ∈ C∞
b (RN ; RN ). Vi ∈ C∞

b

(
RN ; RN

)
, i = 0, 1, is regarded as a vector

field in the following way : for f ∈ C∞
b (RN ; R),

Vif(x) =
N∑

j=1

V j
i (x)

∂f

∂xj
(x).

We let T = 1 in this paper.

1.1. Weak approximation schemes. We here focus on the approximation of
g(1, x) in E [g (X(1, x)) , min0≤t≤1 X(t, x) > 0].

To avoid confusion, we suppose a general type of SDEs in this section:

(1.2) Xj(t, x) = xj +
d∑

i=0

∫ t

0

V j
i (X(s, x)) ◦ dBi(s)

for j = 1, . . . , N , where Vi ∈ C∞
b (RN ; RN ), B0(t) = t and (B1(t), . . . , Bd(t)) is a

d-dimensional standard Brownian motion. Let L be a differential operator defined
by

L = V0 +
1
2

d∑
k=1

V 2
i .

In this paper, we take three candidates of algorithms for approximation of
g (X(1, x)). One is the Euler–Maruyama scheme (EM) which is one of the most
popular first-order weak approximation schemes. The other two are NV and NN
algorithms for the Kusuoka approximation.

The EM scheme is widely adopted in finance, because of its simplicity and ease
of implementation. The following random variables are to be constructed in this
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scheme:

X
(EM),n
0 = x,

X
(EM),n
(k+1)/n = X

(EM),n
k/n +

1
n

Ṽ0

(
X

(EM),n
k/n

)
+

1√
n

d∑
i=1

Vi

(
X

(EM),n
k/n

)
Zi

k+1

(1.3)

where Ṽ0 denotes the conversion of V0 to a drift in an Ito-form SDE. Z1, Z2, · · · , Zn

are n independent d-dimensional random variables distributed as N(0, 1).

Notation 1.1. exp (V )x denotes the solution at time 1 of the ODE
dzt

dt
= V (zt) , z0 = x.

The NV algorithm can be represented by the following family of random variables{
X

(NV),n
i/n

}n

i=0
:

X
(NV),n
0 := x

X
(NV),n
(k+1)/n :=exp

(
V0
2n

)
exp

(
Z1

kV1√
n

)
exp

(
Z2

kV2√
n

)
· · · exp

(
Zd

kVd√
n

)
exp

(
V0
2n

)
X

(NV),n
k/n , if Λk = +1

exp
(

V0
2n

)
exp

(
Zd

kVd√
n

)
exp

(
Zd−1

k Vd−1√
n

)
· · · exp

(
Z1

kV1√
n

)
exp

(
V0
2n

)
X

(NV),n
k/n , if Λk = −1,

(1.4)

where (Λi, Zi)i∈{0,...,n−1} are n-independent random variables such that Λi is a
Bernoulli random variable independent of Zi which is a standard d-dimensional
normal random variable.

Remark 1.1. In the NV algorithm, only when there does not exist the exact solu-
tion to an ODE

dzt

dt
= Zi

kVi (zt) , z0 = y,

the Runge–Kutta method is applied to approximation of exp
(
Zi

kVi

)
y. Therefore,

a great advantage of the NV algorithm is that there can be opportunities to avoid
calculation for approximation of each exp

(
Zi

kVi

)
y.

The NN algorithm is defined by the following family of random variables
{

X
(NN),n
i/n

}n

i=0
:

X
(NN),n
0 := x,

X
(NN),n
(k+1)/n := exp

(
1
2n

V0 +
d∑

i=1

Si
1,k√
n

Vi

)
exp

(
1
2n

V0 +
d∑

i=1

Si
2,k√
n

Vi

)
X

(NN),n
k/n

(1.5)

where
(
Si

j,k

)
i∈{1,...,d},j∈{1,2}

k∈{0,...,n−1}
are constructed by

(1.6)
(

Si
1,k

Si
2,k

)
=
(

1/2 1/
√

2
1/2 −1/

√
2

)(
ηi
1,k

ηi
2,k

)
, where ηi

j,k
i.i.d.∼ N(0, 1).

Remark 1.2. In the NN algorithm, the ODE

(1.7)
dzt

dt
=

1
2n

V0 (zt) +
d∑

i=1

Si
2,k√
n

Vi (zt) , z0 = y
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is unlikely to have an exact solution because of its complexity. A wider range in-
cluding (1.7) of application of the original Runge–Kutta method is indicated in [3].

Both algorithms for the Kusuoka approximation attain second-order approxima-
tion as mentioned above.

2. Operator for approximation

Notation 2.1. Let

(2.1) (Ptg) (x) = E

[
g (X(t, x)) , min

0≤s≤t
X(s, x) > 0

]
.

For simplification of notation, we let F : (0, T ] × RN × RD(d) → RN be a function
determined by each algorithm as

X
(alg),n
0 = x,

X
(alg),n
tk

= F
(
tk, X

(alg),n
tk−1

, S (tk)
)

,

where D(d) is the number of random variables included in one-step calculation of
each algorithm.

(2.2) D(d) =


d if EM
d + 1 if NV
2d if NN

and S (tk) denotes a set of D(d) random numbers needed to obtain X
(alg),n
tk

from
X

(alg,n)
tk−1

.

A “killing function ” is constructed for representation of the probability density
of B(t)’s hitting the boundary.

Definition 2.1. Let k : (0, 1] × [0,∞) × R → [0, 1] be a measurable function.

• If

k (s, x, y) =

{
0, if y > 0
1, if y ≤ 0,

then k is called a simple killing function.
• If

k (s, x, y) =

{
exp− 2xy

s , if y > 0
1, if y ≤ 0,

then k is called a standard killing function.

Then we approximate (Ptg) (x) by a sub-Markov operator
(
Q(s)g

)
(x) defined by

(2.3)
(
Q(s)g

)
(x) = E [g (F (s, x, S(s))) (1 − k (s, x, F (s, x, S(s))))] .
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3. Numerical experiments

We deal with the following two types of combinations of diffusion processes and
functions for g :

(1) linear drift :

X(t, x) = x +
∫ t

0

(1 + X(s, x)) ◦ ds +
∫ t

0

◦dB(s).

For this process, we take g as a digital call option defined as

g(y) =

{
1 if K < y

0 otherwise

where K is a strike price.
(2) cosine drift :

X(t, x) = x +
∫ t

0

(
cos (X(s, x)) +

3
2

)
◦ ds +

∫ t

0

◦dB(s).

For this process, we take g as a European call option defined as

g(y)max{0,K − y}
where K is a strike price.

Our interest is in relation between the number of partitions and the accuracy
attained by each approximation scheme with the number partitions.

For approximation X
(ord p),n
1 of X(1, x) with n partitions of [0, 1],∣∣∣E [f (X(ord p),n

1

)]
− E [f (X(1, x))]

∣∣∣
is called discretization error. If

E
[
f
(
X

(ord p),n
1

)]
= E [f (X(1, x))] + O

(
n−p

)
,

then this approximation is said to be of order p.

It is shown that p = 1 for the EM scheme in [1] and [5] for C4-function f . On the
other hand, p = 2 for the NV and the NN algorithms if f is Lipschitz continuous
([2][3] [4]).

In partitioning [0, T ], we take the following procedure : Let (0 = t
(n)
0 , . . . , t

(n)
n =

T ) be a partitioning of the interval [0, T ) defined by t
(n)
k = kγT/nγ , where n ∈ N

and γ > 0. Then PT g is approximated by

Q(sn)Q(sn−1) · · ·Q(s1)g

where sk = t
(n)
k − t

(n)
k−1. Hence, if γ 6= 1.0, then the length of each interval differs.

Initial value, strike price, etc. are determined as follows :
(1) linear drift

• initial value : 0.5
• strike price : 1.5
• the number of sample points : 100,000,000

(2) cosine drift
• initial value : 1.0
• strike price : 1.5
• killing function : standard killing
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Figure 3.1. Discretization error(1)

• the number of sample points : 100,000,000

3.1. Result. Figure 3.1 and Figure 3.2 describes the discretization error of the
experiments.

The true values for (1) linear drift and (2) cosine drift are replaced with the
following values :

(1) linear drift
true value = 7.2806243601e − 01

obtained by the NV algorithm with
γ = 1.5
256 partitions
420, 000, 000 sample points
standard killing

(2) cosine drift
true value = 1.0606646755e + 00

obtained by the NV algorithm with
γ = 1.0
256 partitions
300, 000, 000 sample points
standard killing

We see some facts from these figures :
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Figure 3.2. Discretization error(2)

• It is not clear how γ works, which means that the effect of the difference of
lengths of interval is not remarkable as long as these experiments.

• For the experiment of (1) linear drift,
– the Euler–Maruyama scheme performs much better than expected.

More precisely, p, the order of approximation, is almost 3 which is
even larger than 1.

– both the NV and NN algorithms perform almost as good as the case
applied to Lipschitz continuous cases, which means that the order of
these algorithms is 2 as proved in [3] and [4].

– we see the effect of choice of a killing function. The fact that the
NN algorithm and the EM scheme both with a simple killing function
gave the same slope indicates that the error occurring from hitting
probability is so large that the difference of orders of approximation
for these schemes is canceled.

• For the experiment of (2) cosine drift,
– the slope of the EM scheme is −1 which is the exactly the same as

proved.
– it could be said that the NV algorithm performs a little worse than

the original order. The slope of it looks slightly larger than −2.

4. Discussion

• All algorithms performed even better than expected in the model (1) as if
it had been an experiment for the European style model. This result might
come from the simpleness of the model. The error from approximation of
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hitting boundary seems to be extremely small. It has not been cleared why
the EM scheme worked so well, however.

• Since the choice of a killing function might seriously affect the order of
approximation, better killing functions need be developed.

• From Figure 3.2, it is seemingly valuable to do more research for this type
of models. From the result of the case of the NV algorithm, we perceive
some other effect than the error from approximation of g(X(t, x)), though
somehow the EM scheme still worked well in the sense that the error from
the boundary condition is not observable.

• We have a larger class of possible models for (2.1) in the sense that various
combinations of forms of g and V0 can be considered. Therefore more
numerical experiments should be conducted in order to compare the results
dependent on combinations of models of V0 and types of g.

Multi-dimensional models (N ≥ 2) also interest us from the practical
point of view though only one-dimensional models are considered in these
experiments.
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