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Abstract

In this paper, we have studied the pricing of a continuously collateralized CDS. We
have made use of the ”survival measure” to derive the pricing formula in a straightfor-
ward way. As a result, we have found that there exists irremovable trace of the counter
party as well as the investor in the price of CDS through their default dependence
even under the perfect collateralization, although the hazard rates of the two parties
are totally absent from the pricing formula. As an important implication, we have also
studied the situation where the investor enters an offsetting back-to-back trade with
another counter party. We have provided simple numerical examples to demonstrate
the change of a fair CDS premium according to the strength of default dependence
among the relevant names, and then discussed its possible implications for the risk
management of the central counter parties.

Keywords : CVA, CSA, CCP, swap, collateral, derivatives, OIS, margin, basis, risk
management
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1 Introduction

The recent financial crisis, exemplified by the collapse of Lehman Brothers, is the major
driver of the increased use of collateral agreements based on CSA (credit support annex
published by ISDA), which is now almost a market standard among financial institu-
tions [10]. Coupled with the explosion of various basis spreads, such as Libor-OIS and the
cross currency swap (CCS) basis, the effects of collateralization on the derivative pricing,
particularly from the view point of funding costs, have become important research topics.
Johannes & Sundaresan (2007) [11] have first emphasized the cost of collateral using swap
rates in U.S. market. In a series of works Fujii & Takahashi (2009, 2010) [5, 6, 7], we have
developed a framework of interest-rate modeling in the presence of collateralization and
multiple currencies. We have also pointed out the importance of choice of collateral cur-
rency and the embedded cheapest-to-deliver option in collateral agreements [8]. Piterbarg
(2010) [12] discussed the general issue of option pricing under collateralization.

This financial crisis has also brought about serious research activity on the credit
derivatives and counter party default risk, and large amount of research papers have been
published since the crisis. The regulators have also been working hard to establish the
new rules for the counter party risk management, and also for the migration toward the
CCPs (central counter parties) particularly in the CDS (credit default swap) market.
The excellent reviews and collections of recent works are available in the books edited by
Lipton & Rennie (2011) [4] and Bielecki, Brigo & Patras (2011) [1], for example. However,
the effects of collateralization on credit derivatives remain still largely unclear. It seems
partly because that the idea of collateral cost appeared only recently, and also because the
detailed collateral modeling is very complicated, due to the existence of settlement lag,
threshold, and minimum transfer amount, e.t.c..

In this paper, based on the market development toward more stringent collateral man-
agement requiring a daily (or even intra-day) margin call, we have studied the pricing of
CDS under the assumption of continuous collateralization. This is expected to be particu-
larly relevant for the CCPs dealing with CDS and other credit linked products, for which
the assumption of continuous collateralization seems to be a reasonable proxy of the real-
ity. Although we have studied the similar issues for the standard fixed income derivatives
in the previous work [9], the result cannot be directly applied to the credit derivatives
since the behavior of hazard rates generally violates the so called ”no-jump” condition
(e.g. Collin-Dufresne, Goldstein & Hugonnier (2004) [2]) if there exists non-trivial default
dependence among the relevant parties. In this work, we apply the technique introduced
by Schönbucher (2000) [13] and adopted later by [2] in order to eliminate the necessity of
this condition.

As a result, we have obtained a simple pricing formula for the collateralized CDS.
We will see, under the perfect collateralization, that the CDS price does not depend
on the counter party hazard rates at all as expected. However, very interestingly, there
remains irremovable trace of the two counter parties through the default dependence. This
gives rise to a very difficult question about the appropriate pricing method for CCPs. A
CCP acts as a buyer as well as a seller of a given CDS at the same time, by entering a
back-to-back trade between the two financial firms. However, the result tells us that the
mark-to-market values of the two offsetting CDSs are not equal in general even at the
time of inception, if the CCP adopts the same premium rate for the two firms. Although
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the detailed work will be left in a separate paper, we think that the result has important
implications for the proper operations of CCPs for credit derivatives.

2 Fundamental Pricing Formula

2.1 Setup

We consider a filtered probability space (Ω,F ,F, Q), where Q is a spot martingale measure,
and F = {Ft ; t ≥ 0} is a sub-σ-algebra of F satisfying the usual conditions. We denote the
set of relevant firms C = {0, 1, 2, ..., n} and introduce a strictly positive random variable
τ i in the probability space as the default time of each party i ∈ C. We define the default
indicator process of each party as H i

t = 1{τ i≤t} and denote by Hi the filtration generated
by this process. We assume that we are given a background filtration G containing other
information except defaults and write F = G ∨ H0 ∨H1 ∨ · · · ∨Hn. Thus, it is clear that
τ i is an Hi as well as F stopping time. We assume the existence of non-negative hazard
rate process hi where

M i
t = H i

t −
∫ t

0
his1{τ i>s}ds, t ≥ 0 (2.1)

is an (Q,F)-martingale. We also assume that there is no simultaneous default for simplicity.
For collateralization, we assume the same setup adopted in [9] and repeat it here once

again for convenience: Consider a trade between the party 1 and 2. If the party i (∈ {1, 2})
has a negative mark-to-market value, it has to post the cash collateral 1 to the counter party
j (̸= i), where the coverage ratio of the exposure is denoted by δit ∈ R+. We assume the
margin call and settlement occur instantly. Party j is then a collateral receiver and has to
pay collateral rate cit on the posted amount of collateral, which is δit×(|mark-to-market|), to
the party i. This is done continuously until the end of the contract. Following the market
conventions, we set the collateral rate cit as the time-t value of overnight (O/N) rate of the
collateral currency used by the party i. It is not equal to the risk-free rate rt, in general,
which is necessary to make the system consistent with the cross currency market 2. We
denote the recovery rate of the party i by Ri

t ∈ [0, 1]. We assume that all the processes
except default times, such as {ci, r, δi, Ri} are adapted to the background filtration G. As
for the details of exposure to the counter party and the recovery scheme, see [9].

2.2 CDS Pricing

We denote the CDS reference name by party-0, the investor by party-1, and the counter
party by party-2, respectively. Let us define τ = τ0∧τ1∧τ2 and its corresponding indicator
process, Ht = 1{τ≤t}. We assume that the investor is a protection buyer and party-2 is a
seller. Under this setup, the CDS price from the view point of the investor can be written

1According to the ISDA survey [10], more than 80% of collateral being used is cash. If there is a liquid
repo or security-lending market, we may also carry out similar formulation with proper adjustments of its
funding cost.

2See Ref. [8] for details.
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as

St = βtE
Q

[∫
]t,T ]

β−1
u 1{τ>u}

(
dDu + q(u, Su)Sudu

)
+

∫
]t,T ]

β−1
u 1{τ≥u}

(
Z0
udH

0
u + Z1(u, Su−)dH

1
u + Z2(u, Su−)dH

2
u

)∣∣∣∣∣Ft

]
(2.2)

where D denotes the cumulative dividend process representing the premium payment for

the CDS, and βt = exp
(∫ t

0 rsds
)

denotes the money-market account with the risk-free

interest rate. Other variables are defined as follows (See also [9] for details.):

q(t, v) = δ1t y
1
t 1{v<0} + δ2t y

2
t 1{v≥0}

Z0
t = (1−R0

t )

Z1(t, v) =
(
1− (1−R1

t )(1− δ1t )
+
)
v1{v<0} +

(
1 + (1−R1

t )(δ
2
t − 1)+

)
v1{v≥0}

Z2(t, v) =
(
1− (1−R2

t )(1− δ2t )
+
)
v1{v≥0} +

(
1 + (1−R2

t )(δ
1
t − 1)+

)
v1{v<0} .

Here, yit = rit − cit is the difference of the risk-free and collateral rates relevant for the
collateral currency chosen by the party-i at the time t, which represents the instantaneous
return of the posted collateral. Thus the term q(t, v) summarizes the return (or cost)
of collateral from the view point of the investor. Zi represents the default payoff when
party-i defaults first among the set {0, 1, 2}.

Although we can follow the same procedures used in the previous work [9] based on the
arguments of Duffie & Huang (1996) [3], we need a careful treatment to avoid the jump
in the value process at the time of counter party default 3. In this work, we apply the
measure change technique introduced by Schönbucher [13] and used by Collin-Dufresne
et.al. (2004) [2], which leads to the following proposition in a clearcut way.

Proposition 1 Under the assumptions given in 2.1 and appropriate integrability condi-
tions, the pre-default value Vt corresponding to the CDS contract specified in Eq. (2.2) is
given by

Vt = EQ′

[∫
]t,T ]

exp

(
−
∫ s

t

(
ru − µ(u, Vu) + h0u

)
du

)(
dDs + Z0

sh
0
sds
)∣∣∣∣∣F ′

t

]
(2.3)

where

µ(u, v) =
(
y1t δ

1
t − (1−R1

t )(1− δ1t )
+h1t + (1−R2

t )(δ
1
t − 1)+h2t

)
1{v<0}

+
(
y2t δ

2
t − (1−R2

t )(1− δ2t )
+h2t + (1−R1

t )(δ
2
t − 1)+h1t

)
1{v≥0} (2.4)

and it satisfies St = 1{τ>t}Vt for all t ≥ 0. Here, the ”survival measure” Q′ is defined by

dQ′

dQ

∣∣∣∣
Ft

=

2∏
i=0

1{τ i>t} exp

(∫ t

0

2∑
i=0

hisds

)
(2.5)

and the filtration F′ = (F ′
t)t≥0 denotes the augmentation of F under Q′.

3See the remark just after the proposition 1 in [9].
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Proof: Using the Doob-Meyer decomposition, one obtains

St = βtE
Q

[∫
]t,T ]

β−1
u 1{τ>u}

(
dDu + q(u, Su)Sudu

)
+

∫ T

t
β−1
u 1{τ>u}

(
Z0
uh

0
u + Z1(u, Su)h

1
u + Z2

u(u, Su)h
2
u

)
du

∣∣∣∣Ft

]
. (2.6)

Let us define

ηt =
dQ′

dQ

∣∣∣∣
Ft

= 1{τ>t}Λt (2.7)

where we have used

Λt = exp

(∫ t

0
h̃sds

)
. (2.8)

and h̃s =
∑2

i=0 h
i
s. Then, we can proceed as

St = βtE
Q

[∫
]t,T ]

(βuΛu)
−1 ηu

(
dDu + q(u, Su)Sudu

)
+

∫ T

t
(βuΛu)

−1 ηu

(
Z0
uh

0
u + Z1(u, Su)h

1
u + Z2(u, Su)h

2
u

)
du

∣∣∣∣Ft

]
= 1{τ>t}E

Q′

[∫
]t,T ]

βtΛt

βuΛu

{
dDu +

(
q(u, Su)Su + Z0

uh
0
u + Z1(u, Su)h

1
u + Z2(u, Su)h

2
u

)
du
}∣∣∣∣∣F ′

t

]
.

Thus, on the set {τ > t}, we can write

Vt = EQ′

[∫
]t,T ]

βtΛt

βuΛu

{
dDu +

(
q(u, Vu)Vu + Z0

uh
0
u + Z1(u, Vu)h

1
u + Z2(u, Vu)h

2
u

)
du
}∣∣∣∣∣F ′

t

]
.

Simple algebra gives us

Vt = EQ′

[∫
]t,T ]

e−
∫ s
t (ru+h̃u)du

{
dDs + Z0

sh
0
sds+

(
h̃s − h0s + µ(s, Vs)

)
Vsds

}∣∣∣∣∣F ′
t

]
.

Integrating the linear terms gives us the desired result. �

3 Financial Implications

Following the approximation method in [9], we can derive price adjustments in various
situations. However, in the reminder of the paper, let us concentrate on the simplest but
important situation where the CDS is perfectly collateralized by the domestic currency,
which should be also the most relevant case for the operations of CCPs. In this case, we
have (δ1 = δ2 = 1) and (y1 = y2 = r − c). Thus, using the result of Proposition 1, the
pre-default value of the CDS is given by

Vt = EQ′

[∫
]t,T ]

exp

(
−
∫ s

t
(cu + h0u)du

)(
dDs + Z0

sh
0
sds
)∣∣∣∣∣F ′

t

]
(3.1)
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and one can easily confirm that the hazard rates of the investor 1 as well as the counter
party 2 are absent from the pricing formula. Naively, it looks as if we succeed to recover
the risk-free situation by the stringent collateral management. However, we will just see
that it is quite misleading and dangerous to treat the result of Eq. (3.1) as the usual
risk-free pricing formula.

The key point resides in the new measure Q′ and the filtration F′. As was emphasized
in the works [13, 2], the transformation in Eq. (2.5) puts zero weight on the events where
the parties {0, 1, 2} default. It can be easily checked as follows: By construction, we know
that

Mt = Ht −
∫ t

0
(1−Hs)h̃sds (3.2)

is a (Q,F)-martingale. Then, Maruyama-Girsanov’s theorem implies that

M ′
t = Mt −

∫ t

0

d⟨M,η⟩s
ηs−

(3.3)

should be a (Q′,F′)-martingale, where ⟨·, ·⟩ denotes the (conditional or predictable) quadratic
covariation. Now, one can easily check that

M ′
t = Mt +

∫ t

0
(1−Hs)h̃sds

= Ht (3.4)

and thus Ht = 1{τ≤t} itself becomes a (Q′,F′)-martingale. In other words, under the new
measure, the parties {0, 1, 2} do not default almost surely. Since the density process in
(2.7) has finite variation, there is no change of dynamics in the continuous part.

Let us consider the financial implications of this fact. By our construction of filtration,
(Q,F) hazard rate process of party i can be written in the following form in general:

hit =
∑

{D∈Π; i ̸∈D}

∏
j∈D

1{τj≤t}
∏

k∈C\D

1{τk>t}h
i
D(t) (3.5)

where Π denotes the set of all the subgroups of C = {0, 1, 2, · · · , n} including also the
empty set. Let us define HD =

∏
j∈D ∨Hk, then hiD(t) is adapted to the filtration G∨HD,

and hence includes the information of default times of the parties included in the set D
although they are not explicitly shown in the formula. Importantly, it is not the hazard
rate (or default intensity) under the new measure (Q′,F′).

In the new measure, the parties included in S = {0, 1, 2} are almost surely alive for all
t ≥ 0, and hence hit given in Eq. (3.5) is equivalent to h′it given below:

h′it =
∑

{D∈Π′; i̸∈D}

∏
j∈D

1{τj≤t}
∏

k∈C′\D

1{τk>t}h
i
D(t) (3.6)

where C′ = C\S, and Π′ denotes the set of all the subgroups of C′ and the empty set.
Thus, the pre-default value of the CDS can also be written as

Vt = EQ′

[∫
]t,T ]

exp

(
−
∫ s

t
(cu + h′0u )du

)(
dDs + Z0

sh
′0
s ds

)∣∣∣∣∣F ′
t

]
. (3.7)
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Now, let us consider the difference from the situation where the same CDS is being
traded between the two completely default-free parties. In this case, the pre-default value
of the CDS is given by

V rf
t = EQ

[∫
]t,T ]

exp

(
−
∫ s

t
(cu + h0u)du

)(
dDs + Z0

sh
0
sds
)∣∣∣∣∣Ft

]
. (3.8)

Here, we have assumed that the collateralization is still being carried out. In the reminder
of the paper, we study the important difference

V rf
t − Vt (3.9)

in details.
Here, let us briefly discuss the cause of the above difference intuitively. As one can

see from (3.5), the hazard rate in the full filtration F jumps at the default of any firm if
there is non-zero default dependence with the reference firm 4. Suppose the firm A has
positive dependence to the reference name. Then, the value of CDS protection bought from
the default-free firm jumps upward when A defaults and the V rf

0 contains the discounted
contribution from this scenario. Now, suppose the situation where we bought a protection
from the firm A. In this case, the contribution from the future scenarios where A defaults
before the contract expires is smaller than that in the previous situation. This is because
the collateral posted by the firm A cannot cover the upward jump of CDS at the time
of default. The similar effect also arises from the investor himself. As a result, if there
is positive (or contagious) default dependence among the participants and the reference
name, the CDS value is expected to be smaller than V rf . Although it is difficult to calculate
this difference in generic setup, we will provide the explicit formula in the two simplified
but important situations in the following sections.

4 Special Cases

We first list up the two special cases which provide us better understanding. Especially,
the second example can be applied to the back-to-back trade, which is the most relevant
situation for the CCPs.

4.1 3-party Case

The simplest situation to calculate the collateralized CDS is the case where there are only
three relevant names, C = {0, 1, 2}, which are the reference entity, the investor and the
counter party, respectively. In this case, since S = C, the set Π′ contains only the empty
set {∅}. Thus, under the survival measure (Q′,F′), we have

h′it = hi{∅}(t) (4.1)

and particularly,
h′0t = h0{∅}(t) . (4.2)

Since we know that hi{∅} is adapted to the background filtration G, the evaluation of CDS
value is quite straightforward in this case.

4See the discussion in Sec. 5.

8



4.2 4-party Case

Now, let us add one more party and consider the 4-party case, C = {0, 1, 2, 3}. We first
consider the trade of a CDS between the investor (party-1) and the counter party (party-
2). The reference entity is party-0. In this case, we have C′ = {3}. Therefore, the relevant
processes under the survival measure are

h′0t = 1{τ3>t}h
0
{∅}(t) + 1{τ3≤t}h

0
{3}(t, τ

3) (4.3)

h′3t = 1{τ3>t}h
3
{∅}(t) . (4.4)

Here, we have made the dependence on the default time in h0{3} explicitly. Since the
feedback effect only appears through the party 3 in the survival measure, we can proceed
in similar fashion done in Ref. [2].

In this case, the perfectly collateralized CDS pre-default value turns out to be

Vt = 1{τ3≤t}E
Q′

[∫
]t,T ]

e
−

∫ s
t

(
cu+h0

{3}(u,τ
3)
)
du
(
dDs + Z0

sh
0
{3}(s, τ

3)ds
)∣∣∣∣∣F ′

t

]

+1{τ3>t}

{
EQ′

[∫
]t,T ]

e
−

∫ s
t

(
cu+h0

{∅}(u)
)
du
(
e
−

∫ s
t h3

{∅}(u)du
)(

dDs + Z0
sh

0
{∅}(s)ds

)∣∣∣∣∣F ′
t

]

+EQ′

[∫
]t,T ]

e−
∫ s
t cudu

(∫ s

t
e
−
(∫ v

t h0
{∅}(u)+

∫ s
v h0

{3}(u,v)
)
du
[
e
−

∫ v
t h3

{∅}(x)dxh3{∅}(v)
]
dv

)
dDs

∣∣∣∣∣F ′
t

]

+EQ′

[∫
]t,T ]

e−
∫ s
t cudu

(∫ s

t
e
−
(∫ v

t h0
{∅}(u)+

∫ s
v h0

{3}(u,v)
)
du
[
e
−

∫ v
t h3

{∅}(x)dxh3{∅}(v)
]
h0{3}(s, v)dv

)
Z0
sds

∣∣∣∣∣F ′
t

]}
.

(4.5)

Here, the important point is not the possible contagious effect from the party-3, but rather
the lack of the contagious effects from the other names included in the set S, which are
included in the marginal default intensity of the reference entity.

Now, because of the symmetry, if the investor enters a back-to-back trade with the
counter party 3, the pre-default value of this offsetting contract is given as follows:

V B2B
t = −1{τ2≤t}E

Q′′

[∫
]t,T ]

e
−

∫ s
t

(
cu+h0

{2}(u,τ
2)
)
du
(
dDs + Z0

sh
0
{2}(s, τ

2)ds
)∣∣∣∣∣F ′′

t

]

−1{τ2>t}

{
EQ′′

[∫
]t,T ]

e
−

∫ s
t

(
cu+h0

{∅}(u)
)
du
(
e
−

∫ s
t h2

{∅}(u)du
)(

dDs + Z0
sh

0
{∅}(s)ds

)∣∣∣∣∣F ′′
t

]

+EQ′′

[∫
]t,T ]

e−
∫ s
t cudu

(∫ s

t
e
−
(∫ v

t h0
{∅}(u)+

∫ s
v h0

{2}(u,v)
)
du
[
e
−

∫ v
t h2

{∅}(x)dxh2{∅}(v)
]
dv

)
dDs

∣∣∣∣∣F ′′
t

]

+EQ′′

[∫
]t,T ]

e−
∫ s
t cudu

(∫ s

t
e
−
(∫ v

t h0
{∅}(u)+

∫ s
v h0

{2}(u,v)
)
du
[
e
−

∫ v
t h2

{∅}(x)dxh2{∅}(v)
]
h0{2}(s, v)dv

)
Z0
sds

∣∣∣∣∣F ′′
t

]}
.

(4.6)
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Here, Q′′ is defined according to the new survival set SB2B = {0, 1, 3} by

dQ′′

dQ

∣∣∣∣
Ft

=
∏

i∈SB2B

1{τ i>t} exp

∫ t

0

∑
i∈SB2B

hisds

 (4.7)

and the filtration F′′ = (F ′′
t )t≥0 denotes the augmentation of F under Q′′.

Now let us consider V0+V B2B
0 . It is easy to check that it is not zero in general and does

depend on the default intensities of party-2 and -3, and also their contagious effects to the
reference entity. Suppose that the investor is a CCP just entered into the back-to-back
trade with the party-2 and -3 who have the same marginal default intensities. Even under
the perfect collateralization, if the CCP applies the same CDS price (or premium) to the
two parties, it has, in general, the mark-to-market loss or profit even at the inception
of the contract. For example, consider the case where the protection seller (party-2) has
very high default dependence with the reference entity, while the buyer (party-3) of the
protection from the CCP has smaller one. In this case, the h0 in (Q′,F′) should be smaller
than that of (Q′′,F′′). If the CCP uses the same CDS premium to the two parties, CCP
should properly recognizes the loss, which stems from the difference of the contagion size
from the default of the two parties. Since the party 2 has high default dependence, the
short protection position of the CCP with the party 3 suffers bigger loss at the time of
the default of the party 2.

5 Examples using a Copula

In order to separate the marginal intensity and default dependence, we will adopt here
the copula framework. After explaining the general setup, we will apply Clayton copula
to demonstrate quantitative impact.

5.1 Framework

Suppose that we are given a non-negative process λi adapted to the background filtration
G for each party i ∈ C = {0, 1, 2, · · · , n}. Suppose also that there exists a uniformly
distributed random variable U i ∈ [0, 1]. We assume that, under (Q,F0), the (n + 1)-
dimensional random vector

U⃗ = (U0, U1, · · · , Un) (5.1)

is distributed according to the (n+ 1)-dimensional copula

C(u⃗) . (5.2)

We further assume that U⃗ is independent from G∞ and also that copula function C is
(n+ 1)-times continuously differentiable.

Now, let us define the default time τ i as

τ i = inf
{
t; e−

∫ t
0 λi

sds ≤ U i
}

. (5.3)

Then, given the information G∞, one obtains the joint default distribution as

Q
(
τ0 > T 0, τ1 > T 1, · · · , τn > Tn

∣∣∣G∞

)
= C

(
γ⃗(T⃗ )

)
(5.4)
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where we have used the notation of

C
(
γ⃗(T⃗ )

)
= C

(
γ0(T 0), · · · , γn(Tn)

)
(5.5)

and

γi(T ) = exp

(
−
∫ T

0
λi
sds

)
. (5.6)

Following the well known procedures 5, one obtains

Qi(t, T ) = Q
(
1{τ i>T i}

∣∣Ft

)
=

∑
{D∈Π; i̸∈D}

∏
j∈D

1{τ j≤t}
∏

k∈C\D

1{τk>t}

EQ
[
∂⃗DC

(
γi(T i), γ⃗C\{D,i}(t), γ⃗D (⃗tD)

)∣∣∣Gt

]
∂⃗DC

(
γ⃗C\D(t), γ⃗D (⃗tD)

)
∣∣∣∣∣∣
t⃗D=τ⃗D

.

(5.7)

Here, we have defined Π as the set containing all the subgroups of C with the empty set,
and

∂⃗D =
∏
i∈D

∂

∂ui
. (5.8)

γ⃗D(τ⃗D) is the set of γi(τ i) for all i ∈ D, and similarly for γ⃗C\D. In the expression of
Eq. (5.7), we have not properly ordered the arguments of the copula function just for
simplicity, which should be understood in the appropriate way.

(Q,F) hazard rate of party-i is calculated as

hit = − ∂

∂T
lnQi(t, T )

∣∣∣∣
T=t

= λi
tγ

i(t)
∑

{D∈Π; i ̸∈D}

∏
j∈D

1{τ j≤t}
∏

k∈C\D

1{τk>t}
∂i∂⃗DC

(
γ⃗C\D(t), γ⃗D(τ⃗D)

)
∂⃗DC

(
γ⃗C\D(t), γ⃗D(τ⃗D)

) . (5.9)

Hence, as we have done in Eq (3.6) for the survival set S = {0, 1, 2}, hit can be replaced
as follows under the new measure (Q′,F′):

h′it = λi
tγ

i(t)
∑

{D∈Π′; i̸∈D}

∏
j∈D

1{τ j≤t}
∏

k∈C′\D

1{τk>t}
∂i∂⃗DC

(
γ⃗C\D(t), γ⃗D(τ⃗D)

)
∂⃗DC

(
γ⃗C\D(t), γ⃗D(τ⃗D)

) (5.10)

where C′ = C\S and Π′ is the set of all the subgroups of C′ with an additional empty set.
One can observe that both hi and h′i are equal to the marginal intensity λi if there is no
default dependence (or in the case of the product copula).

Now, let us apply the copula framework to the two special cases given in Sec. 4.
(3-party Case): In the 3-party case with C = {0, 1, 2}, we have

h′0t = λ0
tγ

0(t)
∂0C

(
γ⃗(t)

)
C
(
γ⃗(t)

) (5.11)

5See, the works[14, 15], for example.
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where γ⃗(t) = (γ0(t), γ1(t), γ2(t)) .

(4-party Case): In the 4-party case with C = {0, 1, 2, 3}, we have

h′0t = 1{τ3>t}
∂0C

(
γ⃗(t)

)
C
(
γ⃗(t)

) + 1{τ3≤t}
∂0∂3C

(
γ⃗C\{3}(t), γ3(τ3)

)
∂3C

(
γ⃗C\{3}(t), γ3(τ3)

) (5.12)

h′3t = 1{τ3>t}
∂3C

(
γ⃗(t)

)
C
(
γ⃗(t)

) (5.13)

under (Q′,F′), and

h′′0t = 1{τ2>t}
∂0C

(
γ⃗(t)

)
C
(
γ⃗(t)

) + 1{τ2≤t}
∂0∂2C

(
γ⃗C\{2}(t), γ2(τ2)

)
∂2C

(
γ⃗C\{2}(t), γ2(τ2)

) (5.14)

h′′2t = 1{τ2>t}
∂2C

(
γ⃗(t)

)
C
(
γ⃗(t)

) (5.15)

under (Q′′,F′′).

5.2 Numerical Examples

In this paper, we adopt Clayton copula just for its analytical tractability and easy inter-
pretation of its parameter [14]. Clayton copula belongs to Archimedean copula family,
whose general form is given by

C(u⃗) = ϕ[−1]

(
n∑

i=0

ϕ(ui)

)
(5.16)

where the function ϕ(·) is called the generator of the copula, and ϕ[−1](·) is its pseudo-
inverse function. For Clayton copula, the generator function is given by

ϕ(u) = (u−α − 1)/α (5.17)

for α > 0, and hence we have

C(u⃗) =

(
−n+

n∑
i=0

(ui)−α

)−1/α

. (5.18)

For this copula, one can easily check that

γi
∂iC(γ⃗)

C(γ⃗)
=

(
C(γ⃗)

γi

)α

γi
∂i∂jC(γ⃗)

∂jC(γ⃗)
= (1 + α)

(
C(γ⃗)

γi

)α

(5.19)

which means that the hazard rate jumps to (1+α) times of its value just before the default
of any other party.
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Figure 1: Change of par CDS spread with Clayton copula parameter α.

In the following two figures, we have shown the numerical examples of the par premium
of the perfectly collateralized CDS under Clayton copula. For simplicity, we have assumed
continuous payment of the premium, and also assumed that the recovery rate Ri = 40%,
the collateral rate c = 0.02, and the marginal intensity λi of each name is constant.

In Fig. 1, we have shown the results of 3-party case for the set of maturities; 1yr, 5yr, 10yr

and 20yr. Here, the effective marginal intensity of each party λ
i
= (1− Ri)λi is given as

follows: (
λ
0
, λ

1
, λ

2)
=
(
200bp, 100bp, 120bp

)
.

The horizontal axis denotes the value of the copula parameter α. Considering the situation
where major financial institutions are involved, and recalling the events just after the
Lehman collapse, the significant jump of hazard rates seems possible. One can see that

there is meaningful deviation of the par CDS premium from the marginal intensity λ
0

even within the reasonable range of the jump size, or α.
If Fig. 2, we have shown the corresponding results for the 4-party case. Here, we have

set the effective marginal intensities as(
λ
0
, λ

1
, λ

2
, λ

3)
=
(
200bp, 30bp, 150bp, 75bp

)
.

In this case, we have modeled the situation where the investor has very high credit qual-
ity, which enters back-to-back trades with the two firms that have quite different credit
worthiness. In the figure, we have used the solid lines for the trade with party-2, and the
dashed lines for the offsetting trade with party-3. The result tells us that the back-to-back
trades have non-zero mark-to-market value if the investor applies the same premium. This
fact is very important for a CCP. It tells us that, even under the very stringent collateral
management, the CCP has to recognize that it is not free from the ”risk”. It is, in fact,
free from the credit risk of the counter party, but still suffers from the contagious effects
from the defaults of its counter parties.
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Figure 2: Change of par CDS spread with Clayton copula parameter α.

6 Conclusions

In this paper, we have studied the pricing of CDS under continuous collateralization. We
have made use of the ”survival measure” to avoid the ”no-jump” assumption required in
the previous work [9]. It allows us straightforward derivation of pricing formula of CDS.

In the main body of the paper, we have focused on the situation where the CDS is
perfectly collateralized. We have shown that there exists irremovable trace of the two
participating firms in the CDS price through their default dependence with the reference
name. For numerical examples, we have adopted Clayton copula to show the change of
the par CDS premium according to the dependence parameter. The results have shown
that there exists significant deviation of the par premium from the marginal intensity of
the reference entity when the default dependence is high.

We should emphasize that these numerical calculations are solely for demonstrative
purpose. Because of the simplicity of the chosen copula, there is no way to assign different
dependence among the relevant names. The detailed analysis with dynamic underlying
processes, and more realistic dependence structure is left for our future research. How-
ever, we still think that our results are enough to demonstrate the importance of default
dependence or contagious effects among the relevant names even under the very strin-
gent collateral management. This fact seems particularly important for the CCPs, where
the members are usually major broker-dealers that are expected to have very significant
impacts on all the other names just we have experienced in this crisis.
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