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Abstract

This note presents an extension of a general computational scheme of an asymptotic expansion
proposed by our previous works([49], [42], [43]). In particular, through change of variable technique
as well as the various ways of setting perturbation parameters in an expansion, we provide flexibility
of setting the benchmark distribution around which the expansion is made and an automatic way for
computation up to an arbitrary order in the expansion. For instance, we introduce new expansions
so called Log-normal expansion and CEV expansion. We also show some concrete examples with
numerical experiment, which implies a high order CEV expansion will produce more precise and stable
approximation for option pricing under SABR model than existing approximation methods.

1 Introduction

An asymptotic expansion approach in finance has been developed for the past two decades, which is
mathematically justified by Watanabe theory (Watanabe [50]) in Malliavin calculus (e.g. Malliavin1 [21],
Chapter V-8 in Ikeda, N. and Watanabe [11], Nualart [25]). To the best of our knowledge, the asymptotic
expansion technique is firstly applied to finance for evaluation of an average option that is a popular
derivative in commodity markets. [13] and [34] derive the approximation formulas for an average option
by an asymptotic method based on log-normal approximations of an average price distribution when the
underlying asset price follows a geometric Brownian motion. Yoshida [54] applies a formula derived more
generally by his result [53] for the asymptotic expansion of small diffusion processes based on Watanabe
theory. Thereafter, the asymptotic expansion have been applied to a broad class of problems in finance: See
[35], [36], Kunitomo and Takahashi [14], [15], [16], Li [20] Matsuoka, Takahshi and Uchida [23], Osajima [26],
Shiraya and Takahashi [28], [29], Shiraya, Takahashi and Toda [30], Shiraya, Takahashi and Yamazaki [31],
Shiraya, Takahashi and Yamada [32], Takahashi and Matsushima [37], Takahashi and Saito [38], Takahashi
and Yamada [45], [46] Takahashi and Yoshida [47], [48], Takahashi and Uchida [44], and Takahashi and
Takehara [39], [40], [41].

For other asymptotic expansion approaches in finance, see also Bayer and Laurence [1], Ben Arous and
Laurence [2], Gatheral, Hsu, Laurence, Ouyang, and Wang [9], Fujii and Takahashi [5], [6], [7], Fouque,
Papanicolaou and Sircar [8], Henry-Labordere [19], Kato Takahashi and Yamada [12], Kusuoka and Osajima
[17], Osajima [27], Siopacha and Teichmann [33], Yamamoto, Sato andTakahashi [51], .Yamamoto and
Takahashi [52].

In the application of the asymptotic expansion based on Watanabe theory, we need to calculate certain
conditional expectations which appear in their expansions and play a key role in computation. In the first
place [53] and [54] have developed the formulas necessary for the second order expansion. Subsequently,
[34], [35], [39], [40] and [41] have derived new formulas up to the third order. (Also, multi-dimensional
formulas were provided in [34] and [35].) In many applications, these formulas give sufficiently accurate
approximation, but in some cases such as in the cases with long maturities or/and with highly volatile

∗This research is supported by Center for Advanced Research in Finance (CARF) and the global COE program “The
research and training center for new development in mathematics.”
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underlying variables, the approximation up to the third order may not provide satisfactory accuracies.
Thus, the formulas for the higher order computation are desirable.

Recently, [49], [42] and [43] have proposed two alternative computational schemes for any order expan-
sions in an automatic manner. In fact, one of their new methods does not rely on direct evaluation of the
conditional expectations, but on solving a certain system of ordinal differential equations with grading struc-
ture. Independently, Li [20] has developed a new computational method for the conditional expectations
necessary for high order expansions. As a consequence, their approximations generally showed sufficient
accuracy with computation of high order expansions, which was confirmed by numerical experiments.

Furthermore, in terms of approximation it is important to set the limiting or benchmark distribution
around which an expansion is made. Typically a normal distribution is chosen, which enables us to compute
higher order correction terms due to the nice and well-known Gaussian properties. For (shifted) log-normal
local volatility cases in (jump-diffusion) stochastic volatility models, the same technique is applied. (For
instance, see [16], [49], [30],[32] [45].)

This paper introduces change of variable technique in order to obtain flexibility for setting a benchmark
distribution. We also note that a perturbation parameter affects the expansion significantly since different
ways of perturbation provide not only different benchmark distributions, but also different correction
terms in the given orders. Therefore, we also take various ways of setting a perturbation parameter into
account. Through these consideration, we extend a general computational scheme proposed by [49], [42]
[43]. Particularly, we construct a scheme that enables us to set a distribution around which we would like
to expand a target random variable, and to approximate the target variable up to any order based upon the
distribution. As examples, we present new Log-normal and CEV expansions for approximations of option
prices under a general local-stochastic volatility. In addition, we show those numerical approximations up
to the third order for option prices in SABR model, which implies a higher order CEV expansion will
provide more precise and robust approximation than other approximation scheme including Log-normal
and well-known normal expansions.

The next section constructs our new expansion scheme under a general multi-dimensional diffusion set-
ting. Section 3 gives concrete examples with numerical examination. Appendix provides the supplementary
numerical results.

2 Asymptotic Expansions

2.1 An Asymptotic Expansion in a General Diffusion Setting

Let (W,P ) be the r-dimensional Wiener space. We consider a d-dimensional diffusion process Xt =
(X1

t , · · · , Xd
t ) which is the solution to the following stochastic differential equation:

dXj
t = V j

0 (Xt)dt+ V j(Xt)dWt (j = 1, · · · , d) (1)

X0 = x0 ∈ Rd

where W = (W 1, · · · ,W r) is an r-dimensional standard Wiener process; V j
0 : Rd 7→ R and V j : Rd 7→ Rd

are smooth functions with bounded derivatives of all orders.
Next, let C : Rd 7→ Rd be a C2-function which has the unique inverse function, C−1, and define X̃t as

X̃t = C(Xt). Then, the dynamics of X̃ is given by

dX̃j
t = Ṽ j

0 (X̃t)dt+ Ṽ j(X̃t)dWt (j = 1, · · · , d), (2)

X̃0 = x̃0,

where

Ṽ j
0 (x̃) :=

d∑
j′=1

∂j′C
j(x̃)V j′

0 (C−1(x̃)) +
1

2

d∑
j′,k′=1

∂j′k′Cj(x̃)V j′(C−1(x̃))V k′
(C−1(x̃))′,

Ṽ j(x̃) :=
d∑

j′=1

∂j′C
j(x̃)V j′(C−1(x̃)),
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and x̃0 = C(x0).
Next, we introduce a perturbation parameter ϵ ∈ (0, 1] as follows:

X̃t 7→ X̃
(ϵ)
t

Ṽ j
0 (x̃, ϵ) 7→ Ṽ

(ϵ),j
0 (x̃, ϵ)

Ṽ j(x̃) 7→ ϵṼ j(x̃),

and hence, the dynamics of X̃(ϵ) is expressed as

dX̃
(ϵ),j
t = Ṽ

(ϵ),j
0 (X̃

(ϵ)
t , ϵ)dt+ ϵṼ j(X̃

(ϵ)
t )dWt (j = 1, · · · , d). (3)

Hereafter, let us apply the technique developed in [43] to the transformed SDE (3). Firstly, take a
smooth function g : Rd 7→ R with all of the derivatives having polynomial growth orders. Then, a smooth

Wiener functional g(X
(ϵ)
T ) has its asymptotic expansion:

g(X̃
(ϵ)
T ) ∼ g0T + ϵg1T + ϵ2g2T + · · · (4)

in Lp for every p > 1(or in D∞) as ϵ ↓ 0.

Let Akt = 1
k!

∂kX̃
(ϵ)
t

∂ϵk
|ϵ=0 and Aj

kt, j = 1, · · · , d denote the j-th elements of Akt. In particular, A1t is
represented by

A1t =

∫ t

0

YtY
−1
u

(
∂ϵṼ0(X̃

(0)
u , 0)du,+Ṽ (X̃(0)

u )dWu

)
, (5)

where Ṽ0 = (Ṽ 1
0 , · · · , Ṽ d

0 ): R
d × (0, 1] 7→ Rd, and V = (Ṽ 1, · · · , Ṽ d): Rd 7→ Rd ⊗Rr;

Y denotes the solution to the differential equation:

dYt = ∂Ṽ0(X̃
(0)
t , 0)Ytdt; Y0 = Id.

Here, ∂Ṽ0 denotes the d× d matrix whose (j, k)-element is ∂kṼ
j
0 =

∂Ṽ j
0 (x,ϵ)
∂xk

, Ṽ j
0 is the j-th element of Ṽ0,

and Id denotes the d× d identity matrix. Note that A1t follows a normal distribution.
For k ≥ 2, Aj

kt, j = 1, · · · , d is recursively determined by the following: 1

Aj
kt =

1

k!

∫ t

0
∂k
ϵ Ṽ

j
0 (X̃

(0)
u , 0)du

+
k∑

l=1

(l)∑
l⃗β ,d⃗β

1

(k − l)!

1

β!

∫ t

0

 β∏
j=1

A
dj
lju

 ∂β

d⃗β
∂k−l
ϵ Ṽ j

0 (X̃
(0)
u , 0)du

+

(k−1)∑
l⃗β ,d⃗β

1

β!

∫ t

0

 β∏
j=1

A
dj
lju

 ∂β

d⃗β
Ṽ j(X̃

(0)
u )dWu (6)

where ∂lϵ =
∂l

∂ϵl
, ∂β

d⃗β
= ∂β

∂X̃d1
···∂X̃dβ

,

(l)∑
l⃗β ,d⃗β

:=
l∑

β=1

∑
l⃗β∈Ll,β

∑
d⃗β∈{1,··· ,d}β

, (7)

and

Ll,β :=

l⃗β = (l1, · · · , lβ);
β∑

j=1

lj = l; (l, lj , β ∈ N)

 . (8)

1They can be expressed as the finite sum of iterated multiple Wiener -Itô integrals. See Section 3 of [42] for the detail.
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Then, g0T and g1T can be written as

g0T = g(X̃
(0)
T ),

g1T =
d∑

j=1

∂jg(X̃
(0)
T )Aj

1T .

For n ≥ 2, gnT = 1
n!

∂ng(X̃
(ϵ)
T )

∂ϵn

∣∣∣∣
ϵ=0

is expressed as follows:

gnT =

(n)∑
l⃗β ,d⃗β

1

β!
∂β
d⃗β
g(X̃

(0)
T )Ad1

l1T
· · ·Adβ

lβT
. (9)

Here, we note that each Ai
lt(i = 1, · · · , d, l = 1, 2, · · · , k, 0 ≤ t ≤ T ) has all finite moments due to a

grading structure as follows: Consider the stochastic differential equation of the form

dSt = µ(St, t)dt+ σ(St, t)dWt; S0 = s0 ∈ Rd (10)

where µ : Rd ×R+ → Rd and σ : Rd ×R+ → Rd ⊗Rr.

Definition 1. A grading of Rd is a decomposition Rd = Rd1 × · · · × Rdq with d = d1 + · · · + dq. The
coordinates of a point in Rd are always arranged in an increasing order along the subspace Rdi , and we
set M0 = 0 and Ml = d1+ · · ·+ dl for 1 ≤ l ≤ q. We say that the coefficients µ and σ are graded according
to the grading Rd = Rd1 × · · · × Rdq if µi(s, t) and σi

j(s, t), j = 1, · · · , r depend upon only through the

coordinates (sk)1≤k≤Mp when Mp−1 ≤ i ≤Mp.

Theorem 1. We assume the coefficients µ and σ in (10) have a Lipschitz lower triangular structure, and
are graded according to Rd = Rd1 × · · · ×Rdq . Moreover for F (s, t) = µ(s, t) or σj(s, t), j = 1, · · · , r, we
assume F is differentiable in s in Rd and

1. |F i(0, t)| ≤ Zt for i = 1, · · · , d

2. | ∂
∂sj F

i(s, t)| ≤ Ẑt(1 + |s|θ) for all i, j

3. | ∂
∂sj F

i(s, t)| ≤ ζ if Mp−1 ≤ i, j ≤Mp for some p ≤ q

where ζ, θ ≥ 0 are constants, and Z, Ẑ are predictable processes such that ∥Z∥p and ∥Ẑ∥p are finite for all

p ≥ 1 where ∥Z∥p =
{∫ T

0
E[|Zt|p]dt

}1/p

. Then (10) have a unique solution S, and for every p ≥ 1 there

are constants cp and γp depending only upon (ζ, θ, {||Ẑ||p′}p′≥1), such that

|| sup
0≤t≤T

St||Lp ≤ cp(s0 + ||Z||γp).

For the detail of the definition and theorem above, see pp.45-47 in Bichteler, Gravereaux and Jacod [3].
Applying Theorem 1 to the system of stochastic differential equations consists of Ai

lt(i = 1, · · · , d, l =
1, · · · , k, 0 ≤ t ≤ T ) and any products of them, we obtain the following lemma.

Lemma 1. Each coefficient of the expansion Ai
lt(i = 1, · · · , N, l = 1, · · · , k, 0 ≤ t ≤ T ) has all finite

moments.

(proof) Consider the system of stochastic differential equations which A1
1, · · · , Ad

1, A
1
1A

1
1, · · · , Ad

1A
d
1,

A1
2, · · · , Ad

2,· · · follow. Note that the system of equations is linear and the coefficients of the linear equations

are represented by the derivatives at ϵ = 0 of Ṽ0(X
(ϵ)
u , ϵ) and Ṽ (X

(ϵ)
u ) which are bounded in [0, T ]. Then

it is easily shown that the coefficients of the equation have a grading structure and satisfy the conditions
in Theorem 1. Hence the coefficients Ai

kt have all finite moments.2
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Next, normalize g(X̃
(ϵ)
T ) to

G(ϵ) =
g(X̃

(ϵ)
T )− g0T
ϵ

for ϵ ∈ (0, 1]. Then,
G(ϵ) ∼ g1T + ϵg2T + · · ·

in Lp for every p > 1.
Moreover, let

V̂ (x, t) = (∂g(x))
′
[YTY

−1
t Ṽ (x)]

and make the following assumption:

(Assumption 1) ΣT =

∫ T

0

V̂ (X̃
(0)
t , t)V̂ (X̃

(0)
t , t)

′
dt > 0.

Note that g1T follows a normal distribution with variance ΣT ; the density function of g1T denoted by
fg1T (x) is given by

fg1T (x) =
1√

2πΣT

exp

(
− (x− c)2

2ΣT

)
(11)

where

c = (∂g(X̃
(0)
T ))

′
∫ T

0

YTY
−1
t ∂ϵṼ0(X̃

(0)
t , 0)dt.

Hence, (Assumption 1) means that the distribution of g1T does not degenerate.
Let S be the real Schwartz space of rapidly decreasing C∞-functions on R and S ′ be its dual space.
Next, take Φ ∈ S ′. Then, the asymptotic expansion of a generalized Wiener functional Φ(G(ϵ)) as

ϵ ↓ 0 can be verified by Watanabe theory. (e.g. Watanabe [50], Yoshida [53], Malliavin [21], Chapter 7 of
Malliavin and Thalmaier [22].)

In particular, if we take the delta function at x ∈ R, δx as Φ, we obtain an asymptotic expansion of
the density for G(ϵ). That is, the expectation of Φ(G(ϵ)) is expanded as follows:

E[Φ(G(ϵ))] =
N∑

n=0

ϵn
(n)∑
k⃗δ

1

δ!
E

Φ(δ)(g1T )
δ∏

j=1

g(kj+1)T

+ o(ϵN )

=

N∑
n=0

ϵn
(n)∑
k⃗δ

1

δ!

∫
R

Φ(δ)(x)E
[
X̃ k⃗δ |g1T = x

]
fg1T (x)dx+ o(ϵN )

=

N∑
n=0

ϵn
(n)∑
k⃗δ

1

δ!

∫
R

Φ(x)(−1)δ
dδ

dxδ

{
E
[
X̃ k⃗δ |g1T = x

]
fg1T (x)

}
dx+ o(ϵN ) (12)

where Φ(δ)(g1T ) =
dδΦ(x)
dxδ

∣∣∣
x=g1T

,
∑(n)

k⃗δ
=
∑n

δ=1

∑
k⃗δ∈Ln,δ

, and

X̃ k⃗δ :=
δ∏

j=1

g(kj+1)T . (13)

To compute the asymptotic expansion (12), we need to evaluate the conditional expectations of the
form

E
[
X̃ k⃗δ

∣∣∣ g1T = x
]

where X̃ k⃗δ is represented by a product of multiple Wiener-Itô integrals. Previous works(e.g. [34], [35]
) provided the conditional expectation formulas necessary for the expansions up to the third order. [42]
showed a general scheme for deriving formulas for the higher order expansions.
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On the other hand, [49] and [43] have introduced an alternative but equivalent computational algorithm
for an asymptotic expansion. Here, by extending their work, we compute the unconditional expectations
instead of the conditional ones by deriving a system of ordinary differential equations which the expectations
satisfy. Thus, we are able to derive high order approximation formulas in an automatic manner.

The next theorem shows a general result for an asymptotic expansion of the density function for G(ϵ).
In particular, the coefficients in the expansion are obtained through the solution of a system of ordinary
differential equations(ODEs). The key point is that each ordinary differential equation(ODE) does not
involve any higher order terms, and only lower or the same order terms appear in the right hand side of
the ODE. Hence, one can easily solve (analytically or numerically) the system of ODEs.

Remark 1. We can extend Lemma 1 in [43], which easily leads to the asymptotic expansion of a multi-
dimensional density function in the same manner as for the one dimensional case appearing in the next
theorem. That is, we obtain the following result as an extension of Lemma 1 in [43].

Let (Ω,F , P ) be a probability space. Suppose that X ∈ L2(Ω, P ) and Z⃗ is a d-dimensional random
variable with Gaussian distribution with mean 0⃗ and variance-covariance matrix Σ. Then, the conditional
expectation E[X|Z⃗ = x⃗] for x⃗ ∈ Rd has the following expansion in L2(Rd, µ⃗) where µ⃗ is the Gaussian
measure on Rd with mean 0⃗ and variance Σ:

E[X|Z⃗ = x⃗] =
∞∑

|n⃗|=0

an⃗!Hn⃗(x⃗ : Σ), (14)

where n⃗ = (n1, n2, · · · , nd), |n⃗| = n1 + n2 + · · ·+ nd, n⃗! = n1!n2! · · ·nd! and

an⃗ =
1

n⃗

1

i|n⃗|
∂n⃗

∂ξ⃗

∣∣∣∣
ξ⃗=0⃗

{
e

1
2 ξ⃗

⊤Σξ⃗E
[
eξ⃗

⊤Z⃗X
]}

. (15)

Here, Hn⃗(x⃗ : Σ) stands for the d-dimensional multiple Hermite polynomial of degree |n⃗| with n⃗ = (n1, n2, · · · , nd):

Hn⃗(x⃗ : Σ) =
1

n[x⃗ : Σ]

(
− ∂

∂x1

)(
− ∂

∂x2

)
· · ·
(
− ∂

∂xd

)
n[x⃗ : Σ]; x⃗ = (x1, x2, · · · , xd) (16)

where

n[x⃗ : Σ] =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
x⃗⊤Σ−1x⃗

}
. (17)

Indeed, since the system of Hermite polynomials:

{Hn⃗(x⃗ : Σ) : n⃗ = (n1, n2, · · · , nd), ni = 0, 1, 2 · · · (i = 1, 2, · · · , d)}

is an orthogonal basis of L2(Rd, µ⃗), and E[X|Z⃗ = x⃗] ∈ L2(Rd, µ⃗), we have the following unique expansion

of E[X|Z⃗ = x⃗] in L2(Rd, µ⃗):

E[X|Z⃗ = x⃗] =
∞∑

|n⃗|=0

an⃗Hn⃗(x⃗ : Σ).

On the other hand, we know the relation:

∞∑
|⃗j|=0

(iξ⃗)j⃗

j⃗!
H̃j⃗(x⃗ : Σ) = eiξ⃗

⊤x⃗e
1
2 ξ⃗

⊤Σξ⃗, (18)

and hence,

eξ⃗
⊤x⃗ = e−

1
2 ξ⃗

⊤Σξ⃗
∞∑

|⃗j|=0

(iξ⃗)j⃗

j⃗!
H̃j⃗(x⃗ : Σ),

6



where

H̃n⃗(x⃗ : Σ) =
1

n[x⃗ : Σ]

(
− ∂

∂y1

)(
− ∂

∂y2

)
· · ·
(
− ∂

∂yd

)
n[x⃗ : Σ], (19)

y⃗ = (y1, y2, · · · , yd) = Σ−1x⃗.

Therefore,

e
1
2 ξ⃗

⊤Σξ⃗E
[
eξ⃗

⊤Z⃗X
]

= e
1
2 ξ⃗

⊤Σξ⃗E
[
eξ⃗

⊤Z⃗E
[
X|Z⃗ = x⃗

]]
=

∫
Rd


∞∑

|⃗j|=0

H̃n⃗(x⃗ : Σ)(iξ⃗)j⃗




∞∑
|n⃗|=0

an⃗Hn⃗(x⃗ : Σ)

µ(dx⃗) (20)

=
∞∑

|n⃗|=0

n⃗!an⃗i
|n⃗|ξ⃗n⃗; (ξ⃗n⃗ = ξn1

1 ξn2
2 · · · ξnd

d ), (21)

and making n⃗ = (n1, · · · , nd)-th order differentiation of both sides in the equation above with respect to

ξ⃗ = (ξ1, · · · , ξd) at ξ⃗ = 0⃗, we obtain (15) and hence the result, (14) - (17).

Theorem 2. The asymptotic expansion of the density function of G(ϵ) =
g(X̃

(ϵ)
T )−g(X̃

(0)
T )

ϵ up to ϵN -order is
given by

fG(ϵ)(x) = fg1T (x)

+

N∑
n=1

ϵn

(
3n∑

m=0

CnmHm(x− c,ΣT )

)
fg1T (x) + o(ϵN ),

(22)

where Hn(x; Σ) is the Hermite polynomial of degree n which is defined as

Hn(x; Σ) = (−Σ)nex
2/2Σ dn

dxn
e−x2/2Σ, (23)

and

Cnm =
1

Σm
T

(m)∑
k⃗δ

(k1+1)∑
l⃗1β1

,d⃗1
β1

· · ·
(kδ+1)∑
l⃗δβδ

,d⃗δ
βδ

1

δ!(m− δ)!

×

 δ∏
j=1

1

βj !
∂
βj

d⃗j
βj

g(X̃
(0)
T )

 1

im−δ

∂m−δ

∂ξm−δ
η
d⃗1
β1

⊗···⊗d⃗δ
βδ

l⃗1β1
⊗···⊗l⃗δβδ

(T ; ξ)

∣∣∣∣
ξ=0

,
(
i =

√
−1
)
. (24)
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η
d⃗β

l⃗β
(T ; ξ) are obtained as a solution to the following system of ODEs:

d

dt

{
η
d⃗β

l⃗β
(t; ξ)

}
=

β∑
k=1

1

lk!
η
d⃗β/k

l⃗β/k

(t; ξ)∂lkϵ Ṽ
dk
0 (X̃

(0)
t , 0)

+

β∑
k=1

lk∑
l=1

(l)∑
m⃗γ ,

⃗̃
dγ

1

(lk − l)!

1

γ!
η
(d⃗β/k)⊗

⃗̃
dγ

(⃗lβ/k)⊗m⃗γ
(t; ξ)∂γ⃗̃

dγ

∂lk−l
ϵ Ṽ dk

0 (X̃
(0)
t , 0)

+

β∑
k,m=1

k<m

(lk−1)∑
m⃗γ ,

⃗̃
dγ

(lm−1)∑
m⃗δ,

⃗̂
dδ

1

γ!δ!
η
(d⃗β/k,m)⊗ ⃗̃

dγ⊗ ⃗̂
dδ

(⃗lβ/k,m)⊗m⃗γ⊗m⃗δ
(t; ξ)

×∂γ⃗̃
dγ

Ṽ dk(X̃
(0)
t )∂δ⃗̂

dδ

Ṽ dm(X̃
(0)
t )

+ (iξ)

β∑
k=1

(lk−1)∑
m⃗γ ,

⃗̃
dγ

1

γ!
η
(d⃗β/k)⊗

⃗̃
dγ

(⃗lβ/k)⊗m⃗γ
(t; ξ)∂γ⃗̃

dγ

Ṽ dk(X̃
(0)
t )V̂ (X̃

(0)
t , t)

η
d⃗β

l⃗β
(0; ξ) = 0 for (⃗lβ , d⃗β) ̸= (∅, ∅), η(∅)(∅)(t; ξ) = 1. (25)

Here, we use the following notations:

l⃗β/k := (l1, · · · , lk−1, lk+1, · · · , lβ)

l⃗β/k,n := (l1, · · · , lk−1, lk+1, · · · , ln−1, ln+1, · · · , lβ), 1 ≤ k < n ≤ β

l⃗β ⊗ m⃗γ := (l1, · · · , lβ ,m1, · · · ,mγ)

for l⃗β = (l1, · · · , lβ) and m⃗γ = (m1, · · · ,mγ).

The proof is given in Sections 3 and 5 of [43].

Remark 2. Due to the hierarchical structure of the ODEs with respect to l =
∑β

j=1 lj and η
(∅)
(∅)(t; ξ) = 1,

one can easily solve these ODEs successively from lower order terms to higher order terms with initial

conditions η
d⃗β

l⃗β
(0; ξ) = 0 for (⃗lβ , d⃗β) ̸= (∅, ∅). For instance, ηj(1), η

j,k
(1,1) and ηj(2) are evaluated in the

following order:
ηj(1) → ηj,k(1,1) → ηj(2).

2.2 Applications to Option Pricing

Given the above theorem for an approximation of the density, we can easily derive approximation formulas
for option prices under various models.

For instance, let us evaluate a plain-vanilla call option on the underlying asset whose price process is
given by X1 where X1 denotes the first element of X. We first determine the change of variable function,
C such that

C(x) = (C1(x
1), Cd−1(x

2, · · · , xd)),

where xj denotes the j-th element of x ∈ Rd, and C1 : R 7→ R and Cd−1 : Rd−1 7→ Rd−1 are some
invertible functions. Then, we have X̃t = C(Xt) for all t ∈ [0, T ].

Next, we introduce a perturbation parameter ϵ ∈ [0, 1] to get X̃
(ϵ)
t = (X̃

(ϵ),1
t , · · · , X̃(ϵ),d

t ) for all t ∈ [0, T ]

as in (3), and define X
(ϵ),1
T = C−1

(
X̃

(ϵ),1
T

)
. (In particular, X1 = C−1

(
X̃

(1),1
T

)
.) Also, we set a smooth

function g : Rd 7→ R (appearing in (4) of the previous subsection) as g(x) = x1 for x = (x1, · · · , xd).
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Let us consider an approximation of the call option price, Call(ϵ)(K,T ) with maturity T and strike
price K, whose payoff is given by(

X
(ϵ),1
T −K

)
+
:= max

{
X

(ϵ),1
T −K, 0

}
.

Then, we obtain an approximation of the call price as follows:

Call(ϵ)(K,T ) = P (0, T )E

[(
C−1

1

(
X̃

(ϵ),1
T

)
−K

)
+

]
= P (0, T )E

[(
C−1

1

(
ϵG(ϵ) + X̃

(0),1
T

)
−K

)
+

]
≈ P (0, T )

∫ ∞

y(ϵ)

(
C−1

1

(
ϵx+ X̃

(0),1
T

)
−K

)
fG(ϵ),N (x)dx,

where

G(ϵ) =

(
X̃

(ϵ),1
T − X̃

(0),1
T

)
ϵ

, (26)

y(ϵ) =
C1(K)− X̃

(0),1
T

ϵ
. (27)

Here, P (0, T ) stands for the price at time 0 of a zero coupon bond with maturity T , and fG(ϵ),N denotes

the asymptotic expansion of density of G(ϵ) up to ϵN -th order:

fG(ϵ),N (x) = fg1T (x) +
N∑

n=1

ϵn

(
3n∑

m=0

CnmHm(x− c,ΣT )

)
fg1T (x), (28)

which comes from the first and second terms of (22) in Theorem 2.
Particularly, when ϵ = 1, the payoff is given by(

X1
T −K

)
+
=
(
X

(1),1
T −K

)
+
. (29)

Then, an approximation of the call price, Call(K,T ) ≡ Call(1)(K,T ) with maturity T and strike price K
is obtained by

Call(K,T ) = P (0, T )E

[(
C−1

1 (X̃1
T )−K

)
+

]
= P (0, T )E

[(
C−1

1

(
G(1) + X̃

(0),1
T

)
−K

)
+

]
≈ P (0, T )

∫ ∞

y

(
C−1

1

(
x+ X̃

(0),1
T

)
−K

)
fG(1),N (x)dx, (30)

where

G(1) = X̃
(1),1
T − X̃

(0),1
T , (31)

y = C1(K)− X̃
(0),1
T , (32)

and fG(1),N is given by

fG(1),N (x) = fg1T (x) +
N∑

n=1

(
3n∑

m=0

CnmHm(x− C,ΣT )

)
fg1T (x). (33)

Various approximation formulas could be obtained through choice of change of variable function C

or/and the way to setting the perturbation parameter ϵ in Ṽ j
0 (X̃

(ϵ)
t , ϵ) of (3), for instance, Ṽ j

0 (X̃
(ϵ)
t ),

ϵṼ j
0 (X̃

(ϵ)
t ), ϵ2Ṽ j

0 (X̃
(ϵ)
t ), · · · . Then, the limiting distribution of the underlying asset price may become nor-

mal, log-normal, shifted log-normal, non-central chi-square, and so on. The next subsection will illustrate
option pricing under a local-stochastic volatility model.
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2.2.1 Option Pricing under Local-Stochastic Volatility Model

We assume the underlying process is the unique solution to the following SDE:

dSt = σ(Xt)h(St)dWt

dXj
t = V j

0 (Xt)dt+ V j(Xt)dWt (j = 2, · · · , d) (34)

S0 = s0 ∈ R, X0 = x0 ∈ Rd−1,

where σ : Rd−1 → Rr, h : R → R, and W is a r-dimensional Brownian motion. Then, we evaluate a
call option with strike K and maturity T , whose underlying price process is given by S. Under the zero
discount interest, for simplicity, the call price Call(K,T ) is obtained by

Call(K,T ) = E[(ST −K)+]. (35)

First, for x = (x1, x2, · · · , xd), let

C(x) = (C1(x
1), x2, · · · , xd),

where C1 : R → R be an invertible C2-function. Then, S̃t = C1(St), and the dynamics of S̃ is given by

dS̃t =
1

2
||σ(Xt)||2h(C−1

1 (S̃t))
2C

′′

1 (C
−1
1 (S̃t))dt+ σ(Xt)C

′

1(C
−1
1 (S̃t))dWt, s̃0 = C1(s0). (36)

Next, we introduce a perturbation parameter ϵ as follows:

dS̃
(ϵ)
t =

η(ϵ)

2
||σ(X(ϵ)

t )||2h(C−1(S̃
(ϵ)
t ))2C ′′(C−1(S̃

(ϵ)
t ))dt+ ϵσ(X

(ϵ)
t )C ′(C−1(S̃

(ϵ)
t ))dWt, (37)

dX
(ϵ),j
t = V j

0 (X
(ϵ)
t , ϵ)dt+ ϵV j(X

(ϵ)
t )dWt (j = 1, · · · , d),

where η(ϵ) = ϵj and j is a nonnegative integer such as j = 0, 1, 2, · · · . Note that

St = C−1
1 (S̃t) = C−1

1 (S̃
(1)
t ).

According to Theorem 2, we have already an asymptotic expansion of the density function of G(ϵ) =
S̃

(ϵ)
T −S̃

(0)
T

ϵ up to ϵN -order, denoted by fG(ϵ),N (x).
Therefore, an approximation formula of the call price is given as follows:

Call(K,T ) = E[(ST −K)+] = E

[(
C−1

1

(
S̃
(1)
T

)
−K

)
+

]
(38)

≈
∫ ∞

y

(
C−1

1 (x+ S̃
(0)
T )−K

)
fG(1),N (x)dx, (39)

where y = C1(K)− S̃
(0)
T .

A simple example is the following. Set the local volatility function to be linear:

dSt = σ(Xt)StdWt

dXj
t = V j

0 (Xt)dt+ V j(Xt)dWt (j = 2, · · · , d). (40)

For x = (x1, x2, · · · , xd), let

C(x) = (log x1, x2, · · · , xd),

and set η(ϵ) = ϵj where j is 0, 1 or 2. Then, we have S̃
(ϵ)
t = logS

(ϵ)
t , where

dS̃
(ϵ)
t = −ϵ

j

2
σ(X

(ϵ)
t )2dt+ ϵσ(X

(ϵ)
t )dWt, (41)

dX
(ϵ),j
t = V j

0 (X
(ϵ)
t , ϵ)dt+ ϵV j(X

(ϵ)
t )dWt (j = 1, · · · , d).

This case corresponds to some existing researches. (e.g. [40], [49], [41], [42], [43], [45])
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3 Examples

This section will provide concrete examples with numerical examination.

3.1 Constant Elasticity of Variance(CEV) Model

The first example is on the well-known CEV model (Cox [4]) :

dSt = σ(Sβ
t S

1−β
0 )dWt, σ and S0 are positive constants, β ∈ [0, 1], (42)

where the term S1−β
0 makes the level of σ is of the same order for different β. For x > 0, let us take the

change of variable function to be C(x) = log(x/S0), that is x = C−1(x̃) = S0 exp(x̃). Hence, S̃t = log St

S0

and we have

dS̃t = −1

2
σ2e2(β−1)S̃tdt+ σe(β−1)S̃tdWt. (43)

Next, we introduce a perturbation ϵ ∈ [0, 1], again as follows:

dS̃
(ϵ)
t = −η(ϵ)

2
σ2e2(β−1)S̃

(ϵ)
t dt+ ϵσe(β−1)S̃

(ϵ)
t dWt, (44)

where η(ϵ) = ϵj and j is a nonnegative integer.
Because

ST = C−1
(
S̃
(1)
T

)
= S0 exp

(
S̃
(1
T

)
= S0 exp

(
G(1) + S

(0)
T

)
,

an approximation formula of the call price with strike K and maturity T is given as follows:

Call(K,T ) = E[(ST −K)+] = E

[(
S0 exp

(
G(1) + S̃

(0)
T

)
−K

)
+

]
≈

∫ ∞

y

(
S0 exp

(
x+ S̃

(0)
T

)
−K

)
fG(1),N (x)dx; (45)

y = C(K)− S̃
(0)
T = log

K

S0
− S̃

(0)
T . (46)

Note that fg1T , the first term in the asymptotic expansion of the density fG(ϵ) is a normal density and
hence, the underlying asset price is expanded around a log-normal distribution. Thus, we could call this
case a log-normal asymptotic expansion. We also remark that the case of η(ϵ) = ϵ0 = 1 is harder to be

evaluated than the other cases, which is essentially due to difficulty in computation of S̃
(0)
t for η(ϵ) = 1.

3.2 The λ-SABR Model

Let us consider a stochastic volatility model so called λ-SABR Model [19]:

dSt = σt(S
β
t S

1−β
0 )dW 1

t ; S0 > 0, (47)

dσt = λ(θ − σt)dt+ νσtdW
2
t ; σ0 > 0

where β ∈ [0, 1], λ ≥ 0, θ > 0, ν > 0, and W = (W 1,W 2) is a two dimensional Wiener process with
correlation ρ ∈ [0, 1].

Remark 3. Previous works such as [49], [42] and [43] have considered an asymptotic expansion based on
the following perturbed process, where the change of variable function, C is set by C(x) = x:

dS
(ϵ)
t = ϵσt(S

(ϵ)
t )βdW 1

t ; S
(ϵ)
0 = S0 > 0, (48)

dσ
(ϵ)
t = λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0 > 0

11



From a viewpoint of mathematical justification of our asymptotic expansion, we may consider a smooth
and bounded version of the local volatility function, xβ in the above model as follows:

dS
(ϵ)
t = ϵσtg1(S

(ϵ)
t )dW 1

t (49)

dσ
(ϵ)
t = λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t

where for prefixed very small K3 > 0 and very large K1 > K2(> K3),

g1(x) = h1(x)g2(x) + h2(x)K
β
1 , (50)

g2(x) = h3(x)x
β ,

h1(x) =
ψ(K1 − x)

ψ(x−K2) + ψ(K1 − x)
, 0 < K2 < K1,

h2(x) =
ψ(x−K2)

ψ(x−K2) + ψ(K1 − x)
, 0 < K2 < K1,

h3(x) =
ψ(x)

ψ(x) + ψ(K3 − x)
, 0 < K3 < K2 < K1,

ψ(x) = e−1/x for x > 0, ψ(x) = 0 for x ≤ 0. (51)

Note that the local volatility function g1(x) shows the following feature:

g1(x) = 0, if x ≤ 0 (52)

= h3(x)x
β , if 0 < x ≤ K3

= xβ , if K3 < x ≤ K2

= h1(x)x
β + h2(x)K

β
1 , if K2 < x ≤ K1

= Kβ
1 , if x > K1(constant).

Hence, this model is be regarded as a smooth and bounded modification of the local volatility function:

(min{max{x, 0},K1})β . (53)

Then, we are easily able to apply our asymptotic expansion to this modified λ-SABR model up to an
arbitrary order. In fact, because we can take K1 and K2 as arbitrarily large constants, and K3 as arbitrarily
positive small constant, we may use the same asymptotic expansion both for (48) and (49) as long as the
deterministic process {S(ϵ)(t)

∣∣
ϵ=0

: 0 ≤ t ≤ T}. is in the range between K2 and K3. If necessary, we could
modify the volatility process as well.

The similar modification and consideration could be applied to the asymptotic expansions appearing in
the current paper.

3.2.1 Log-Normal Asymptotic Expansion

Let us take a log-normal asymptotic expansion for the underlying asset price S, that is for x1 > 0, set
C(x1, x2) = (log(x1/S0), x2) and S̃t = log St

S0
:

dS̃t = −1

2
σ2
t e

2(β−1)S̃tdt+ σte
(β−1)S̃tdW 1

t ; S̃0 = 0 (54)

dσt = λ(θ − σt)dt+ νσtdW
2
t ; σ0 > 0.

Next, we introduce a perturbation ϵ ∈ [0, 1], again as follows:

dS̃
(ϵ)
t = −η1(ϵ)

2
σ2e2(β−1)S̃

(ϵ)
t dt+ ϵσe(β−1)S̃

(ϵ)
t dWt; S̃0 = 0, (55)

dσ
(ϵ)
t = η2(ϵ)λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0,

where ηi(ϵ) = ϵji , i = 1, 2 and ji is a nonnegative integer. For instance, typical cases are given as follows:
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Case I

dS̃
(ϵ)
t = −1

2
σ
(ϵ)
t

2
e2(β−1)S̃

(ϵ)
t dt+ ϵσ

(ϵ)
t e(β−1)S̃

(ϵ)
t dW 1

t (56)

dσ
(ϵ)
t = λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t

Case II (an extension of the Log-Normal Asymptotic Expansion in [49], [42])

dS̃
(ϵ)
t = − ϵ

2
σ
(ϵ)
t

2
e2(β−1)S̃

(ϵ)
t dt+ ϵσ

(ϵ)
t e(β−1)S̃

(ϵ)
t dW 1

t (57)

dσ
(ϵ)
t = λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t

Case III (an extension of [39] to the CEV-type local volatility)

dS̃
(ϵ)
t = −ϵ

2

2
σ
(ϵ)
t

2
e2(β−1)S̃

(ϵ)
t dt+ ϵσ

(ϵ)
t e(β−1)S̃

(ϵ)
t dW 1

t (58)

dσ
(ϵ)
t = λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t

An approximation formula of the call price with strike K and maturity T is given as follows:

Call(K,T ) = E[(ST −K)+] = E

[(
S0 exp

(
G(1) + S̃

(0)
T

)
−K

)
+

]
≈

∫ ∞

y

(
S0 exp

(
x+ S̃

(0)
T

)
−K

)
fG(1),N (x)dx; (59)

y = C(K)− S̃
(0)
T = log

K

S0
− S̃

(0)
T . (60)

Again, we note that Case I, that is η(ϵ) = ϵ0 = 1 is harder to be evaluated than the other cases, which

results from difficulty in computation of S̃
(0)
t for η(ϵ) = 1.

3.2.2 CEV Asymptotic Expansion

Let us take change of variable function C as C(x) = (C1(x1), x2)forx = (x1, x2), where for x > 0 and
β ∈ [0, 1),

C1(x) =
1

1− β

x1−β

S1−β
0

(
=

∫ x dz

zβS1−β
0

)
. (61)

That is,

C−1
1 (x̃) = S0(1− β)

1
(1−β) x̃

1
(1−β) . (62)

Then, as S̃t = C1(St), we have

dS̃t = −1

2

β

1− β
σ2
t

1

S̃t

dt+ σtdW
1
t ; S̃0 =

1

1− β
(63)

dσt = λ(θ − σt)dt+ νσtdW
2
t σ0 > 0.

Again, we obtain a perturbed process as follows:

dS̃
(ϵ)
t = −η1(ϵ)

2

β

1− β
(σ

(ϵ)
t )2

1

S̃
(ϵ)
t

dt+ ϵσ
(ϵ)
t dW 1

t ; S̃
(ϵ)
0 =

1

1− β
(64)

dσ
(ϵ)
t = η2(ϵ)λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0,

where ηi(ϵ) = ϵji , i = 1, 2 and ji is a nonnegative integer.
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For illustrative purpose, let us set η1(ϵ) = η2(ϵ) = ϵ. That is,

dS̃
(ϵ)
t = − ϵ

2

β

1− β
(σ

(ϵ)
t )2

1

S̃
(ϵ)
t

dt+ ϵσ
(ϵ)
t dW 1

t ; S̃
(ϵ)
0 =

1

1− β
, (65)

dσ
(ϵ)
t = ϵλ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0.

In this case, as S̃
(0)
t = 1

1−β and σ
(0)
t = σ0 for all t ∈ [0, T ], the first term in the asymptotic expansion,

g1t =
∂
∂ϵ

∣∣
ϵ=0

S̃
(ϵ)
t follows a Gaussian process:

dg1t =
−βσ2

0

2
dt+ σ0dW

1; g10 = 0. (66)

Then, by applying Itô’s formula to

ĝ1t := C−1
1 (g1t) = S0(1− β)

1
(1−β) g

1
(1−β)

1t , (67)

and using

g1t =
1

1− β

ĝ1−β
1t

S1−β
0

, (68)

we formally obtain the dynamics of ĝ1t though it is well-defined only for g1t ≥ 0:

dĝ1t =
σ2
0

2
ĝβ1t

[
−βS1−β

0 + S
2(1−β)
0 ĝβ−1

1t

]
dt+ σ0S

1−β
0 ĝβ1tdW

1
t ; ĝ10 = 0. (69)

Here, the diffusion coefficient of ĝ1t = C−1
1 (g1t) is given by σ0S

1−β
0 (ĝ1t)

β . As we may think that S is
expanded around ĝ1, we call this case a CEV asymptotic expansion (though ĝ1 is not exactly a CEV
process).
In particular, when β = 1/2,

dĝ1t =
σ2
0

2

[
−
√
S0ĝ1t/2 + S0

]
dt+ σ0

√
S0ĝ1tdW

1
t ; ĝ10 = 0, (70)

and because

ĝ1T =
S0

4
g21T , (71)

ĝ1T follows a non-central χ-square distribution, around which the original underlying asset price ST is
expanded.

Finally, for ηi(ϵ) = ϵji , i = 1, 2 and ji is a nonnegative integer, an approximation formula of the call
price with strike K and maturity T is obtained as follows:

Call(K,T ) = E[(ST −K)+] = E
[
C−1

1 (S̃T )−K
]

= E

[({
S0(1− β)

1
(1−β) (S̃T )

1
(1−β)

}
−K

)
+

]
= E

[({
S0(1− β)

1
(1−β) (S̃

(1)
T )

1
(1−β)

}
−K

)
+

]
= E

[({
S0(1− β)

1
(1−β) (G(1) + S̃

(0)
T )

1
(1−β)

}
−K

)
+

]
≈

∫ ∞

y

({
S0(1− β)

1
(1−β) (x+ S̃

(0)
T )

1
(1−β)

}
−K

)
fG(1),N (x)dx; (72)

y = C1(K)− S̃
(0)
T =

1

1− β

(
K

S0

)1−β

− S̃
(0)
T . (73)
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3.3 Numerical Examination

For numerical examination of approximation for European option prices, we take SABR [10] model (λ-
SABR with λ = 0):

dSt = σt(S
β
t S

1−β
0 )dW 1

t ; S0 > 0, (74)

dσt = νσtdW
2
t ; σ0 > 0

In particular, we apply the following three different expansions for approximation. (Although we use the
same notation fG(1),N (x) for the density approximations in all expansions, each represents the density
obtained by the corresponding expansion.)

1. Normal expansion

This case corresponds to the original asymptotic expansion method.(e.g. [34]). We apply the asymp-
totic expansion to the following perturbed stochastic differential equation:

dS
(ϵ)
t = ϵσt(S

(ϵ)
t )βS1−β

0 dW 1
t ; S

(ϵ)
0 = S0 > 0, (75)

dσ
(ϵ)
t = ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0 > 0

Then, an approximation of a call option price with maturity T and strike price K is given by

C(K,T ) ≈
∫ ∞

y

(x− y)fG(1),N (x)dx, (76)

y = K − S
(0)
T = K − S0, (77)

where G(1) = G(ϵ)
∣∣
ϵ=1

,

G(ϵ) =
S
(ϵ)
T − S

(0)
T

ϵ
=
S
(ϵ)
T − S0

ϵ
, (78)

and fG(1),N denotes the asymptotic expansion of density of G(ϵ) up to ϵN -th order evaluated at ϵ = 1.

Integrals may be calculated by the formulas:∫ ∞

y

(x− y)Hk(x; Σ)fg1T (x)dx = Σ2Hk−2(−y; Σ)fg1T (y). (79)

2. Log-normal expansion

We apply the expansion result in Section 3.2.1 with η1(ϵ) = ϵ:

dS̃
(ϵ)
t = − ϵ

2
σ
(ϵ)
t

2
e2(β−1)S̃

(ϵ)
t dt+ ϵσ

(ϵ)
t e(β−1)S̃

(ϵ)
t dW 1

t ; S̃
(ϵ)
0 = 0, (80)

dσ
(ϵ)
t = ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0

In this case, an approximation of a call option price with maturity T and strike price K is given by

Call(K,T ) ≈
∫ ∞

y

(S0e
x −K) fG(1),N (x)dx; (81)

y = C(K)− S̃
(0)
T = log

K

S0
. (82)

3. CEV expansion

We apply the result in Section 3.2.2 with η1(ϵ) = ϵ, that is,

dS̃
(ϵ)
t = − ϵ

2

β

1− β
(σ

(ϵ)
t )2

1

S̃
(ϵ)
t

dt+ ϵσ
(ϵ)
t dW 1

t ; S̃
(ϵ)
0 =

1

1− β
, (83)

dσ
(ϵ)
t = ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0.
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Hence, an approximation formula of the call price with strikeK and maturity T is obtained as follows:

Call(K,T ) ≈
∫ ∞

y

({
S0(1− β)

1
(1−β)

(
1

(1− β)
+ x

) 1
(1−β)

}
−K

)
fG(1),N (x)dx; (84)

y = C1(K)− S̃
(0)
T =

1

1− β

(
K

S0

)1−β

− 1

(1− β)
. (85)

In the numerical examples below, we set the parameters as follows:

• The option maturity T , the current underlying asset price S0, the current volatility σ0, the volatility
on volatility ν:

S0 = 100, T = 1, σ0 = 0.30, ν = 0.30.

• The instantaneous correlation ρ between the asset price S and its volatility σ: three different corre-
lations;

ρ = 0.0,−0.5,−0.75.

• The CEV parameter β of the underlying asset price process S: nine different βs;

β = 0.0, 0.125, 0.25, 0.375, 0.50, 0.625, 0.75, 0.875, 1.0.

• Strike price K of the option: twenty different strikes;

K = 10, 20, · · · , 100, 110, 120, · · · , 200.

Benchmark prices are computed by Monte Carlo simulation with 108 trials, 1024 time steps and the
antithetic variable method, where Euler-Maruyama scheme is used for the discretization of the stochastic
differential equation (74). Then, the absolute error is given by |(approximation price)−(benchmark price)|
for each case. We have computed each expansion up to the third order. That is, for each approximation
we use ϵj , (j = 1, 2, 3)-order expansion for the density fG(1)(x), that is f cevG(1),j

(x):

fG(1),j (x) = fg1T (x) +

j∑
n=1

(
3n∑

m=0

CnmHm(x− C,ΣT )

)
fg1T (x). (86)

For each expansion, the higher order expansion provides the better approximation. Particularly, as for
ϵ3-order expansion Figure 1-3 below show the average values of the absolute errors for option prices with
all the strikes K for each β, given the correlation value ρ.2 In the figures, the horizontal axis is β while
the vertical axis is the average absolute error; Normal A.E. 3rd, Log A.E. 3rd and LV A.E. 3rd represent
Normal expansion, Log-normal expansion and CEV expansion, respectively. Because CEV expansion is not
well-defined for β = 1, we use the same formula as the one of Log-normal expansion.

We find that CEV expansion provides the most stable approximations for all the cases. On the other
hand, Log-normal expansion is not robust to the change in β in a sense that its approximation becomes
worse as β deviates from 1. As for Normal expansion, although its approximation in zero correlation
ρ = 0.0 becomes worse as β deviates from 0, it becomes stable for the higher (negative) correlations such as
ρ = −0.5,−0.75. For completeness, Appendix provides the results of the first and second order expansions.
Through investigation of the behavior of the the asymptotic expansions up to the third order, we observe
that CEV expansion becomes more precise with the same level of absolute errors across the whole range
of β along the higher order expansions. Thus, we expect a higher order CEV expansion will produce the
better and more stable approximation than normal and log-normal expansions.

2The details of the numerical analysis are given upon request.
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Figure 1: Correlation ρ = 0.0
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Figure 2: Correlation: ρ = −0.5
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Figure 3: Correlation: ρ = −0.75
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4 Conclusion

This note extends a general computational scheme proposed by our previous results [49], [42], and [43].
Particularly, we have constructed a scheme that enables us to set a distribution around which we would
like to expand a target random variable, and to approximate the target variable up to any order based
upon the distribution. As numerical examples, we have shown new Log-normal and CEV expansions up to
the third order for approximations of option prices under SABR model, which demonstrate that the CEV
expansion will be a candidate for a more precise and robust technique than other approximation schemes
such as normal and log-normal expansions.
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[25] Nualart, D., Üstünel A. S. and Zalai M. [1988], “On the moments of a multiple Wiener-Itô integral
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5 Appendix

This appendix provides the approximation result of the first and second order expansions for numerical
examples in Section 3.2. CEV expansion provides the best approximation for zero correlation ρ = 0 while
Normal expansion gives the best for the other correlation cases, ρ = −0.5,−0.75.The approximation of
Log-normal expansion is the worst for all cases.

Figure 4: Correlation ρ = 0.0
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Figure 5: Correlation: ρ = −0.5
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Figure 6: Correlation: ρ = −0.75
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Figure 7: Correlation ρ = 0.0
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Figure 8: Correlation: ρ = −0.5
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Figure 9: Correlation: ρ = −0.75
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