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MAXIMUM LEBESGUE EXTENSION OF CONVEX RISK MEASURES

KEITA OWARI

Graduate School of Economics, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Given a convex risk measure on L having the Lebesgue property, we construct a solid
space of random variables on which the original risk measure is extended preserving the
Lebesgue property (on the entire space). This space is an order-continuous Banach lat-
tice, and is maximum among all solid spaces admitting such a regular extension. We then
characterize the space in terms of uniform integrability of certain families. As a byprod-
uct, we present a generalization of Jouini-Schachermayer-Touzi’s theorem on the weak-
compactness characterization of Lebesgue property, which is valid for any solid vector
spaces of random variables, and does not require any topological property of the space.

1. INTRODUCTION

In financial mathematics, a convex risk measure is a monotone (decreasing) convex func-
tion p on a vector space of random variables containing the constants, verifying the prop-
erty that p(X 4+ a) = p(X) — a whenever « is a constant (cash-invariance). This notion
was introduced by [6, 18, 20] to replace the widely used Value at Risk which is still the
industry standard, but has an essential drawback as a measure of risk that diversification
may increase the risk in terms of the Value at Risk. Since then, convex risk measures
on L*° (i.e. for bounded risks) have been extensively studied, establishing a number of
their fine properties as well as examples [see e.g. 14, 19]. However, L™ is clearly too
small to capture the actual risks, and a key current direction is the study of risk measures
beyond bounded risks. Several authors considered those on particular bigger spaces, e.g.,
L? spaces [1, 23], Orlicz spaces and their Morse subspaces [10, 27, 4, 5], abstract locally
convex Fréchet lattices [8], and L° [25] to mention a few.

Another direction towards unbounded risks, which we shall explore, is to extend convex
risk measures originally defined on L* to some big space. In this line, [11] considered
(essentially) an extension of risk measure on L to a possibly improper monotone convex
function on L, based on “approximation by bounded variables”, then provided necessary
and sufficient conditions for the resulting function to be proper (hence a risk measure). It s,
however, not a unique extension, and no regularity of resulting risk measure is considered
there. More recently, [16] investigated (in our language) an extension of risk measure
from L> to L' preserving the Fatou property. The method of [16] is mathematically
the topological (L'-) closure based on the Fenchel-Moreau dual representation, and it is
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2 K. OWARI

proved that if the original risk measure is law-invariant (which already implies the Fatou
property on L™), the L!-closure gives a unique lower semi-continuous extension to L?.

The Fatou property (o-order lower semi-continuity) is necessary and sufficient for the
risk measure to have a dual representation by o -additive probabilities, which is the minimal
requirement for practical use. In many applications, however, this is not enough, and
one often needs the stronger Lebesgue property (o-order continuity) corresponding to the
dominated convergence in measure theory. This property presents a number of pleasant
features, e.g., it is stable under inf-convolution, is connected to a useful weak compactness
property and provides the o-additive subgradients at everywhere. See [7, 24, 32, 15] for
the practical implications of these properties.

The aim of this paper is to investigate extensions of convex risk measures preserving
the Lebesgue property. In contrast to the “Fatou extension” by [16], even law-invariant risk
measures can not typically retain the Lebesgue property to L! (see Example 2.6). Then a
natural question is to ask, given a convex risk measure with the Lebesgue property on L*°,
how far it can be extended preserving the Lebesgue property, or if there is a “maximal”
space which accommodate a Lebesgue-preserving extension, and what such a space is (if
exists). Note that the Lebesgue property here refers to that on the entire space (not in
restriction to L.°°), and such extension does make sense.

Our heuristic behind this study is as follows. Among structural properties of the spaces,
the crucial one in the analysis of risk measures is not the topology, but the order struc-
ture. Also, as long as we consider spaces of random variables on a fixed probability space,
there is a universal order of almost sure inequality in terms of which key properties of
risk measures are described. Especially, the Fatou and Lebesgue properties are regularities
w.r.t. this order (see (Fa(.2")) and (Le(2")) for precise definition), thus in a certain sense,
these properties are compatible between different spaces, in contrast to the topological reg-
ularities (see Remark 2.4). In particular, the “maximal extension preserving the Lebesgue
property” makes sense.

Our analysis is based on a simple uniform-integrability-like property of risk measures
implied by the Lebesgue property (Lemma 3.1). Given a risk measure on L, this sug-
gest us to introduce (formally) a solid vector space of random variables beyond which the
risk measure can not have a Lebesgue extension. We then verify that the space thus con-
structed is (well-defined and) an order-continuous Banach lattice under a natural gauge
norm. Exploiting this and an extended Namioka-Klee theorem by [8], we show further
that this space admits a unique Lebesgue extension of the original risk measure, and the
space is maximum among all solid spaces of random variables admitting such an extension
(Theorem 3.5). We also characterize this maximum space as a subspace of more natural
Orlicz-type space in terms of certain uniform integrability property (Theorem 3.9).

The maximality and uniqueness of our Lebesgue extension implies that if p is a convex
risk measure on a solid space 2~ having the Lebesgue property, then p must agree on 2
with the unique Lebesgue extension of p|zo. This allows us to investigate the Lebesgue
property on arbitrary solid space, in the spirit of Jouini-Schachermayer-Touzi’s (JST) the-
orem [22] which asserts that for a risk measure on L°°, the Lebesgue property, the weak
compactness of lower level sets of the minimal penalty function and the attainability of the
supremum in the robust representation are all equivalent. See also [27] for a recent gener-
alization of this result to a certain class of Orlicz spaces. We shall provide a generalization
of JST theorem (Theorem 3.13) on arbitrary solid space where the weak compactness of
the level sets is replaced by the uniform integrability of the algebraic products of level sets
and arbitrary single element of 2~ which agrees with the one by [22] when 2~ = L.
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As an immediate consequence, we show that on any solid space, the Lebesgue property
is sufficient for the everywhere subdifferentiability with o-additive subgradients. Finally,
some typical examples are examined in Section 6.

2. PRELIMINARIES

We fix a complete probability space (£2, F, IP) throughout the paper. All random variables
are defined on (§2, F), and any probabilistic notation without reference to the probability
is understood with respect to IP. By convention, we identify without further notice random
variables which are equal almost surely (a.s.). L° := L°(£2, F,P) denotes the space of
(equivalence classes given a.s. equality) of a.s. finite (P(|X| < co) = 1) random variables.
The space L° is an order complete Riesz space (vector lattice) endowed with the partial
order of almost sure inequality, i.e., “X <Y a.s.”. A vector subspace 2~ C L0 is called
solid (in L) if X € 2 and |Y| < |X| (a.s.) imply Y € 2". Any solid subspace 2" is a
lattice on its own right with respect to the same a.s. order, thus in particular, if X € 2,
then X+ := X vO0, X~ := —(X A 0), | X = Xt 4+ X~ are elements of 2, and the
positive cone Z4 = {X € Z : X > 0} is well-defined.

The expectation of a random variable X € L° with respect to PP is denoted by E[X] :=
Jo X(w)P(dw) whenever well-defined, and for each p € (0,00], L? := L?($2, F,PP)
denotes the standard Lebesgue space, i.e., X € L? iff E[| X |P] < oo (resp. X is essentially
bounded) when p < oo (resp. p = oo). For all p € [0,00], L? is a solid subspace of
L% and for 1 < p < oo (resp. p = o0), it is a Banach space endowed with the norm
1X 1, := E[ X |71/ (resp. || X [loo := esssup |X]).

By P, we denote the set of all probability measures Q' absolutely continuous with re-
spectto P (Q <« P), and we use the notation Q ~ P tomean Q < P and P K Q
(equivalent). We identify a probability Q € P with its Radon-Nikodym density dQ /dP
with respect to P. Then P becomes a bounded convex closed subset of L!. For each
Q € P, the Q-expectation as well as the Lebesgue spaces under Q and their norms are
denoted respectively by Eg[X], LP(Q) := L?(22,F, Q) and || X||L»(g), Where we ex-
plicitly indicate the dependence on Q unless Q = P.

Finally, we make a couple of remarks. First, all spaces appearing in the sequel are
subspaces of L? (i.e., consists of random variables on (§2, F)), thus we omit mentioning
the “master space” LY in lattice related notation. For instance, “a solid space” refers to a
“solid vector subspace of L°”. Second, a solid space .2" contains L°° as soon as it contains
the constants or more simply, a single non-zero constant, say 1. For any other unexplained
notation and detail of Riesz space terminology, we refer the reader to [2, Ch. 8§, 9].

2.1. CONVEX RISK FUNCTIONS ON L*®
Throughout the paper, we will consider a convex risk function that we always assume:

Assumption 2.1 (and Definition). p° : L® — R is a normalized sensitive (relevant)
convex risk function on L°, that is

(A1) monotone: X,Y € L™, X <Y as. = p°(X) < p%(Y);

(A2) convex: p°(aX + (1 —a)Y) < ap®(X) + (1 —a)p®(Y), Yo € [0,1], X, Y € L*>®;
(A3) cash-invariant: p°(X +¢) = p°(X) + c forall X € L®, ¢ € R;

(A4) normalized: p°(0) = 0;

(A5) sensitive (relevant): p%(ely) > 0if & > 0 and P(4) > 0.
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Remark 2.2 (on terminology). If p° satisfies (A1-3) above, then X — p°(—X) (resp.
X — —p%=X)) is a convex risk measure (resp. concave monetary utility function).
Though the latter two notions seem more common in literature, we prefer convex and in-
creasing functions, and one can freely move between three notions with obvious change(s)
of sign. The normalizing assumption (A4) has no loss in generality, since we can always
replace p° by p° — p°(0).

(A1,3) imply that p° is ||-|| o-Lipschitz continuous, hence weakly lower semi-continuous
on L*°. This implies the Fenchel-Moreau dual representation in terms of finitely additive
probabilities. This type of regularity, however, is not interesting enough in practice, and
we usually require at least the Fatou property (on L°°):

2.1 sup | X, || < oo, X, = X as. = p°(X) < liminf p°(X,).
n n

This property is understood in two ways: the weak* (o (L%, L')-)lower semi-continuity
(Krein-Smulian theorem), and as the (¢-) order lower semi-continuity w.r.t. the a.s. order.
The latter view is essential for our analysis.

We define the (minimal) penalty function of p° as its Fenchel-Legendre transform

(2.2) v(Z):= sup (E[XZ]-p°(X)), VZelL'
XelLoe

Then y > 0 by (A4), y is convex and o (L', L>)-lower semi-continuous, while (A1,3)
mean in terms of y that y(Z) is finite only if Z is the density of some Q € P, i.e.,

(2.3) y(Z) <oo = Z >0as.and E[Z] =1,
We thus regard y as a function on P, and write y(Q) = y(dQ/dP). We set also
24) Q,:={0 €P: y(Q) < oo}.

In terms of y, the Fatou property (2.1) is equivalent to the robust representation

(2.5) p’(X) = sup (Eo[X]—y(Q)) = sup (Eg[X]—-y(Q)), X €L*.
QeP 0€Q,

Given (A1-3) and (2.1), p° satisfies (A4) iff infgeg, (@) = 0, and (AS) iff
(2.6) 30° ~ P such that y(Q°) < .

The function p° is said to satisfy the Lebesgue property (on L) If
.7) sup | Xnlloo < 00, Xp — X as. = p%(X) = 1im p°(X,).

n n

Clearly, (2.7) implies (2.1). It is known as the Jouini-Schachermayer-Touzi theorem (cited
below as Theorem 3.11) that given (2.1), the Lebesgue property (2.7) is equivalent to any
of the following two conditions: (1) {Q € P : y(Q) < c} is weakly compact in L for all
¢ > 0, (2) the supremum in (2.5) is attained for every X € L°.
2.2. CoNVEX RISK FUNCTIONS ON SOLID SPACES

The notion of convex risk functions can make sense on ordered vector spaces containing
the “constants”. Here we restrict our attention to solid vector spaces of random variables.

Definition 2.3 (Convex Risk Functions). Let 2~ C LO° be a solid space containing the
constants. Then a function p : 2~ — (—00, o] is called a convex risk function on 2~ if it
is monotone (X <Y a.s. = p(X) < p(Y)), proper (p # +00), convex and cash-invariant:

p(X +c¢c)=pX)+c,VX e Z,VeceR.
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A convex risk function p on 2" is said to be normalized (resp. sensitive) if p(0) = O (resp.
p(ely) > 0 whenever ¢ > 0 and P(A4) > 0).

A difference between Assumption (and Definition) 2.1 and Definition 2.3 (other than
the obvious change of space) is that we generally allow for convex risk functions on 2" to
take the value +oo, while on L, (A1) and (A3) already implies p° is finite valued.

The Fatou and Lebesgue properties also make senses on solid space 2" in the forms:

Fa(Z)) Y e ', |X,| <|Y]as.Vnand X;, > X as. = p(X) <liminf p(Xy),
n
Le(Z)) Y e &, |Xu| <|Y]|as.Vnand X, > X as. = p(X) = lim p(Xy).
n

Remark 2.4. A couple of remarks are in order.

(1) When 2 = L®°, the common assumption of (Fa(.2")) and (Le(.Z")) is equivalent to
sup,, || X»lleo < 00, hence these properties agree with (2.1) and (2.7), respectively.

(2) The Fatou and Lebesgue properties are compatible: if 2~ and & are solid spaces with
Z C %, then (Fa(%)) (resp. (Le(%))) implies (Fa(2")) (resp. (Le(Z"))).

Many authors studied convex risk functions on particular spaces that we briefly review
here in a highly selective manner. We divide the literature into three categories.

1. The first class of spaces are L? (p < oo) or slightly more generally the Morse subspaces
MY of the Orlicz spaces LY (also known as Orlicz hearts) [23, 10, 9, 1]. As the duals
of these spaces have no “singular parts”, the treatment of risk functions is rather easier
(than L°°), and the “norm” regularities already give sufficiently nice description of risk
functions. In this case, the Lebesgue (resp. Fatou) property coincides with the norm
continuity (resp. lower semi-continuity).

2. The second class is Orlicz spaces LY or more generally locally convex Fréchet lattices.
As L®°, the duals of these spaces generally have “singular part”, thus the topological
lower semi-continuity gives only a dual representation by possibly “singular measures”.
To obtain the o-additive representation and further nice description, we need the regu-
larities in terms of some weaker topology. In case of L°°, this is exactly those for the
weak* topology, which are characterized as the regularities in terms of order, namely Fa-
tou and Lebesgue properties. [8] generalized this observation to locally convex Fréchet
lattices, making clear the connection of topological and order regularities and the role
of order structure of the spaces. See also [4] for related direction.

3. Another conceptually natural choice of space is the space L° of all random variables.
As is well known, however, the dual of L° is degenerate ({0} if atomless), thus the
standard duality in convex analysis a la Fenchel-Moreau no longer works (directly).
[25] (see below) and [11] studied this case, appealing extensively to the monotonicity.

2.3. QUESTION AND RELATED DIRECTIONS

As noted in Remark 2.4, the Fatou and Lebesgue properties are stable under restriction of
spaces. In particular, if 2 is solid subspace of L° and p is a convex risk function on 2~
in the sense of Definition 2.3 with (Le(Z")) (resp. (Fa(Z"))), then p (more precisely its
restriction to L°°) is also a convex risk function on L in the sense of Assumption 2.1
having (2.7) (resp. (2.1)). We are interested in the converse direction.

Definition 2.5 (Lebesgue Extension). Let p be a convex risk function on a solid space
2 C L%and # C L° be another solid space with 2~ C %. We say that p has a Lebesgue
extension to % if there is a convex risk function p’ on % such that p’| - = p and p’ has the
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Lebesgue property on % (hence on 2 too). If this is the case, we call (p’, %) a Lebesgue
extension of (p, Z") (or simply, of p).

Question 1. Suppose Assumption 2.1 and (2.7). Then does there exists a maximum solid
space of random variables which admits a Lebesgue extension of p°?

Here we briefly review some related directions.

Fatou Extension of Law-Invariant Risk Functions. A natural related question is the ex-
tension preserving the Fatou property (instead of Lebesgue). Given a convex risk function
0% on L, [16] considered its L'-closure p'(X) := supzc;00(E[XZ] — y(Z)) on L.
This function is proper and (weakly) lower semi-continuous on L! (hence Fatou) as soon
as @, N L*® # @. On the other hand, it is not clear that p! is an extension of p°, i.e.
pllre = p°. [16] proved that this is the case if p° is law-invariant, and then p! is a
unique lower semi-continuous extension of p° to L!. In particular, every law-invariant
convex risk function has a “Fatou” extension to L!. In contrast, the Lebesgue property
may not be preserved to L! (even if law-invariant) as the next example illustrates.

Example 2.6 (Entropic Risk Function). Let
(2.8) pent(X) :=log E[exp(X)], X e L°.

Clearly, this is a convex risk function with the Fatou property on the whole L°. Indeed,
when 2" = L°, X,, — X already implies sup,, |X,| =: ¥ € L°, hence (Fa(2")) on L°
follows from Fatou’s lemma applied to (exp(X,)),. Let

L™ :={X € L°: E[exp(A|X|)] < 00, IA > 0} (Orlicz space),
M :={X e L°: E[exp(A|X|)] < 0o, VA > 0} (Morse subspace).

Then M C L®P C L! and the inclusions are strict if the probability space is atomless
(e.g. exponential random variables). The function pey satisfies the Lebesgue property on
MP. Indeed, if (X,) C M®P, |X,| <Y € M®P and X,, — X a.s., we can apply the
dominated convergence theorem to the sequence (exp(X,)), dominated by exp(Y) € L1.
On the other hand, the Lebesgue property fails to hold on L®*P. To see this, pick an X €
L\ M and a positive constant A > 0 with E[exp(4]|X|)] = co. Note that

X = eMXI]l{|X\>,,} + eMXlﬂ{\XEn} < exp(A| X L x|>ny) + M

Thus if we take X, = A|X|lgx|>n}, then |X,| < A|X| € L%, X, — 0 as., but
Pent(Xn) = +00 # 0 = pene(0). In summary, (Pent|pree, M*P) is a regular extension
of (pent, L), while (pene|zexe, LP) is not.

Approximation by Bounded Variables. One may have an intuition that L°° well-works as
a skeleton, i.e., even if a risk function is defined on a big space, its structure is more or less
determined by its values on L°°. The maximum Lebesgue extension gives a precise limit
of this reasoning. Suppose that p® has a Lebesgue extension p to a solid space 2~ C L.
Then the Lebesgue property implies for any X € 2~

(2.9) p(X) = lim lim p’((X v (=m)) An) =t pexe(X).

and the two limits are interchangeable. In particular, the Lebesgue extension (to Z7) is
unique (if exists) and it inherits the basic structure of the original p°. The equality (2.9), the
interchangeability of limits as well as the uniqueness may not be true for Fatou extension.

For general p° (not necessarily Lebesgue), pey itself is well-defined on the whole L°
as a possibly improper monotone convex cash-invariant function, and pey|re = p°. [11]
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investigated this extension (in the context of cadlag processes) providing necessary and
sufficient conditions for pex to be proper (hence a convex risk function).

Finite-Valued Extension and the Lebesgue Property on L°°. We note that our standing
assumption (2.7) is reasonable, and is related to a finite-valued extension of pO. In fact,

Theorem 2.7 ([12], Theorem 3). If (£2, F,P) is atomless and if p° has a finite-valued
extension to a solid space & 2 L°° which is rearrangement-invariant (X € 2 and
law(Y) = law(X) = Y € 2), then p° has the Lebesgue property (on L*°).

The assumption of being atomless is harmless in practice, and all L? spaces are solid
and rearrangement-invariant. In particular, most of risk functions of interest have the
Lebesgue property on L.

Inf-convolution. Another feature of the Lebesgue property that the Fatou property does
not have is the stability under infimal convolution. Given a risk function p and an arbi-
trary convex function g on a space 2, their infimal convolution is defined by pOg(X) =
infye g (0(X —Y )+ g(Y)) which is again a convex function, and it is proper iff p(0g(0) >
—oo. Then if either p or g has the Lebesgue property, then so does p[g (hence a fortiori
Fatou too) as long as proper, while the Fatou properties of both of p and g do not imply that
of pg, thus not enough even for the o-additive robust representation of the convolution.
In the financial context, this type of convolution appears in (1) risk/asset allocation prob-
lems where g is another convex risk function, and in (2) hedging and indifference pricing
based on a convex risk functions (measure or monetary utility) where g is the indicator
function (in the sense of convex analysis) of a convex set. In case (1), if both risk functions
are law-invariant, the Lebesgue property on L° of one of risk functions provide the robust
representation of the convolution on L thanks to Fatou-extendability to L' above. In case
(2), however, we note that the convex set determining g as its indicator function is typically
the convex cone (hence unbounded) of attainable claims which is not law-invariant. Thus
the argument of [16] no longer works and we can not impose the Lebesgue property on g.

3. MAIN RESULTS
3.1. ELEMENTARY OBSERVATIONS

Lemma 3.1. Suppose that Z is a solid subspace of L° and p is a (normalized) convex
risk function on 2. If p has the Lebesgue property (Le(Z")), then for any X € Z,

3.1 lim p (oz|X|Jl{‘X|>N}) =0, Va>0.
N—>oo

Proof. For any a > 0, Y5 = a|X|lyx;>ny — 0, as. (N 1 00), |[Yy| < |aX]| with
aX € 2, thus Yy € 2 (since solid) and limy p(Yy) = 0 by the Lebesgue property. [J

Remark 3.2. Some comments on the condition (3.1) are in order.

(1) (3.1) implies p(a|X|) < oo for every @ > 0. Indeed, by the convexity and monotonic-
ity, p(a| X|) < %(p(2a|X|]l{|X\>N}) +pQo| X |1gx|<ny))- The first term is eventually
finite by (3.1) while the second term is bounded by 2aN by the cash-invariance and
the monotonicity. In particular, if p has the Lebesgue property on 2", then it must be
finite valued since p(X) < p(|X|) again by the monotonicity.

(2) If X and Y satisfy the condition (3.1), then so does X + Y. To see this, observe that
(IXT+H1Y DIgx+yi=ny = 21X |Lgx)>n/23 + 2| [Lgjy|>N/23, then apply the convexity.

(3) Finally, if Y satisfies (3.1), then so does any X with |X| < |Y| by the monotonicity.



8 K. OWARI

Lemma 3.1 suggests us that the Lebesgue extension is impossible beyond
“{X eLl: limy ,OO(C\{|X|]1{|X‘>N}) =0, Va > 0}”.

Though this p° has not been defined outside L, thus this “space” is still formal, observe
that to give a rigorous meaning to this space, p® needs only to be defined for positive
random variables, and (the second expression of) (2.5) makes sense on L(_)F. We thus define

(3.2) p(X) = qug (Eo[X]—v(Q)), VX €Dy,
(3.3) Dy :={XeL’: X~ €geo, L'(O)}.

D, is not linear, but is a convex cone with L*>° U L& C Dy, and is upward solid: X >
Y € D, = X € D,. The next lemma says that / is a “convex risk function on D,,”:

Lemma 3.3. p: D, — (—o0, +09] is a proper monotone convex function with p(X +
¢)=p(X)+cforall X € Dyandc € R, and p|Le = p°.

Proof. Foreach Q € Q,, X — Eg[X]—y(Q) on D, is R U {4+o00}-valued, monotone,
and convex, hence so is the point-wise supremum p. It is clear from the definition that
p = p® on L*°, and in particular 5(0) = 0 (hence proper too). The cash-invariance is also
immediate by a direct computation. ]

3.2. THE MAXIMUM SOLID SPACE ADMITTING LEBESGUE EXTENSION

Now the following space is well-defined:
u

(3.4) M= 3X €L lim p(alX|lyx-ny) = 0. Yo > 0 .
—00

By Remark 3.2, M,f is a solid vector space. We introduce the gauge:

(3.5) [ X :=inf{A >0: p(|X|/A) <1} (inf@ := o0).

Lemma 34. | -||;isa [0, oo]-valued seminorm on L°. Moreover, for all X € L°,
(3.6) IX| < [Y]as. = [IX]; <Yl

(3.7 Xl <oo & pla|X]) < oo, Ja > 0;

(3.8) Xl =0 ¢ X =0as.

Proof. Tt is standard that the gauge of the convex set {X : p(|X|) < 1} is an [0, co]-valued
seminorm. (3.6) is clear from the monotonicity of p. As for (3.7), “=" is clear from (3.5),
while if p(@|X|) < oo foran « > 0, p(ex|X|) = p(ex|X| + (1 —¢)0) < ep(x|X]|) for
all ¢ € (0, 1) by convexity. To see “="in (3.8), suppose X # 0, then there is a set A with
|X| > &> 0o0nAandP(A4) > 0. By (AS), p|r = p°, monotonicity and convexity,

PUX1/A) = p((e/M)1a) = p°(ela)/A — 00 (1> 24| 0).
Thus || X5 > 0. 0

A norm on a Riesz space satisfying (3.6) is called a lattice norm. A Riesz space
equipped with such a norm is called a Banach lattice if it is complete (w.r.t. the norm).
By Lemma 3.4 and Remark 3.2 (1), we see that || - || 5 is a lattice norm on M,f.

Now our first result is the following which will be proved in Section 4:

Theorem 3.5. Suppose Assumption 2.1 and (2.7). Then
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(1) MY is solid in L°, and (MY, || - l5) is a o-order-continuous Banach lattice, i.e., Mp
is complete w.r.t. the lattice norm || - || 5 and || - || 5 is o-order continuous:

(3.9) Y € le’, | Xn| <Y |as. (¥Yn), and |X,| — 0as. = lim|/X,|; = 0.
n

(2) (p, M,f) is a Lebesgue extension of p°, i.e., p : M,f — R is well-defined as a convex
risk function satisfying (Le(Z")) on M,f with plree = p°.

(3) M,f is the maximum solid space admitting a Lebesgue extension of p°, i.e., if ' C
LY is a solid space and (o', ") is a Lebesgue extension of p°, then 2~ C M,f) and
plar = p'. In particular, p is the unique Lebesgue extension of p° to M{f.

Remark 3.6. The property (3.9) remains true if sequences (X,) are replaced by nets
(X)), thus (M,',6 .|l - Il ) is actually order-continuous (not only “c™). Indeed, L° is order-
complete, hence so is its ideal M,f (see [3, Theorem 7.73], [2, Lemma 8.14]), and the order-
continuity of the norm of an order-complete Banach lattice is equivalent to the generally
weaker o-order-continuity (see [2, Theorem 9.22]).

We already know that Mf is solid, and is a normed Riesz space with the lattice norm
|| - |l while it is heuristically clear that p° has no Lebesgue extension beyond M,f It
thus remains essentially that (M,ﬁ3 .|l - II5) is complete, and || - || ; is order-continuous. In
fact, if || - || 5 is order-continuous, every norm-continuous function is automatically order-

continuous (hence Lebesgue), while if M,f is complete (hence is a Banach lattice), every
finite-valued monotone convex function is norm-continuous by the extended Namioka-
Klee theorem due to [8]. )

Obviously, our idea for the definition of M,] stems from the theory of (Musielak-)Orlicz
spaces. Let us define the Orlicz space and its Morse subspace associated to p:

(3.10) LA :={XeL’: pa|X]) <oo, o >0 L (X eL®: |X|; < oo},
G MPi={XeL’: p(e|X]) < oo, Ya > 0}.

In analogy to the standard Orlicz spaces both L? and M? are Banach lattices (cf. [25, 31]),
and p is well-defined (R U {4o0}-valued) on L? with the Fatou property, and it is finite-

valued on M? (Proposition 4.5 below). In general, M ¢ M hcLh by Remark 3.2 (2)
and (3.7), and the inclusions can generally be strict as the following two examples illustrate.

Example 3.7 (Entropic Risk Function revisited). Put p® = p.y (defined by (2.8)). Then

Y(Q) = supyeroc(EQ[X] — peni(X)) = Egllog(dQ/dP)] =: H(Q|P), the relative
entropy (thus entropic risk function, see [19, Lemma 3.29]). Therefore

Pent(X) = sup (Eo[X]—H(Q[P)),
0 <P H(Q|P)<o0

and the identity pen(X) = log E[exp(X)] remains true for all X € Lg_. In particular,
M Pt — pfexp C L = LPen if (82, F,P) is atomless. Further, we see that M,fe"‘ =
MPe(= M), Indeed, if X € M, Elexp(A| X |1 x|>n})] = Elexp(A| X )1 x >3] +
P(]X| < N) — 1 by the dominated convergence for every A > 0.

The next example shows that the inclusion M, C M# may be strict.

Example 3.8. Let (22, F) = (N, 2N) and define a sequence of probabilities on (N, 2NV):
0:1({1}) =1, 0x({1}) = 1—=1/n, Qu({n}) = 1/n, neN,
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and set P({n}) = 27" (Vn € N), Q :=conv(Q, : n € N) and y(Q) = 0 (resp. = +00)
if Q € Q (resp. O ¢ Q). The corresponding risk function p° is coherent. We see easily
that Q is weakly compact (hence p° has the Lebesgue property on L™ ~ [*) and

p(X) = sup Eg[X] =supEg,[X], X elLf,
0eQ n

Now if we take X (k) = k, then
Eo,IX]=0—-1/n)+n-(1/n)=2—1/n = p(X) =sup Ep,[X] =2,
n

thus X € M? by coherence. On the other hand, for any N € N,
Eg,[X1ix>ny] = Linsny = p(Xlix>ny) =sup Eg, [X1x>n3] = 1.
n

Hence X ¢ M,f.

We now state our second result which explains the reason for the subscript “u”. The
proof will be given in Section 5.1.

Theorem 3.9. For X € MP?, the following are equivalent:

(1) X € MP;

(2) forany ¢ > 0, the family {XdQ /dP : y(Q) < ¢} is uniformly integrable;
(3) for every Y € L, the supremum supgeg, (Eo[|X[Y]—y(Q)) is attained.

Remark 3.10. In the coherent case, the condition (2) simplifies to the uniform integra-
bility of families {XdQ/dP}peo for a suitable set Q, which repeatedly appeared in the
study of duality theory for robust utility indifference prices by the author [28, 29]. There
the difference between the “integrability” (supgeg E@|[|X|] < 00) and the “uniform inte-
grability” in the sense above plays a crucial role for the validity of the key duality formula.
In analogy, the condition (2) is crucial when we generalize the duality theory to the case of
penalized robust utility, which was an original motivation of the current study.

3.3. JOUINI-SCHACHERMAYER-TOUZI’S THEOREM AND SUBDIFFERENTIABILITY

Here we discuss a generalization of the following Jouini-Schachermayer-Touzi (JST) the-
orem, obtained first by [22] under an additional assumption of separability of L', and the
latter condition was removed by [13] using a homogenization technique.

Theorem 3.11 ([22, Theorem 5.2], [13, Theorem 2]). For a convex risk function pO :
L°° — R with the Fatou property (2.1), the following are equivalent:

(1) p° has the Lebesgue property (2.7);
(2) {dQ/dP : y(Q) < c} is weakly compact for each ¢ > 0;
(3) foreach X € L, the supremum supgeo , (E@[X] —y(Q)) is attained.

Several comments are in order.
Item (3) is also stated in terms of subdifferentiability of p°. In fact, noting that

(3.12) p°(X) = EglX]-7(Q) & EolX]-p"(X) = 1(Q) = sup (Eql¥]-p"(Y).

the maximizer Q is a o-additive subgradient of p° at X. Thus (1) < (3) tells us that the
Lebesgue property is a necessary and sufficient condition for everywhere subdifferentia-
bility in this sense. Here the o-additivity is essential since finitely additive subgradient
always exists as long as p® is Fatou in the L™ case (by Banach- Alaoglu theorem). [8]
then shows that the latter type of subdifferentiability is still true for finite-valued convex
risk functions on any locally convex Fréchet lattice (including all Banach lattices), raising
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a natural question: given a finite-valued convex risk function having a dual representation
by o-additive probabilities, is the supremum in the representation always attained? The
answer is generally no of course, but [8] proved that this is the case if the space is a lo-
cally convex Fréchet lattice and the risk function have the Lebesgue property, namely the
implication (1) = (3) is still true for “good spaces”.

(2) & (3) is viewed as an analogue of James’ theorem: a bounded closed convex subset
B of a Banach space E is weakly compact if and only if every continuous linear functional
on E attains the maximum on B. This theorem can also be stated in a perturbed form: the
set B is weakly compact iff (x, y) —4p (x) attains the maximum over the whole E for every
y € E*, while {x € E : §p(x) < ¢} = B forall ¢c > 0. In this view, the equivalence (2)
< (3) is a version of perturbed James’ theorem with the indicator §p replaced by a convex
perturbation function p°. In this line, [26] recently obtained a general form of perturbed
James’ theorem for coercive perturbation functions (see Theorem 5.2 below).

Recently, [27] obtained a complete generalization of JST theorem for an Orlicz space
LY whose order continuous dual coincides with M¥". The precise statement is:

Theorem 3.12 ([27], Theorem 1). Let ¥ be a Young function with finite conjugate ¥*,
and p : LY — R a finite-valued convex risk function which is lower semi-continuous w.r.t.
(LY, MY") (weak* topology). Then the following are equivalent:

(1) p has the Lebesgue property (Le(2")) on LY ;

(2) foreachc > 0,{Z € MY" : p*(Z) < c}iso(M¥", LY)-compact;

(3) foreach X € LY, the supremum sup, ¢ ppe (E[XZ] — p*(2)) is attained.

The o (LY, MY¥")-lower semi-continuity is equivalent to the representation p(X) =
sup, e (E[XZ] — p*(Z)) with Z e M ¥" only, which is generally stronger than the
Fatou property on LY (& the representation with all Z € LY"). The two conditions
are in fact equivalent if the conjugate ¥™* satisfies the so-called A,-condition (since then
LY =M q’*). On the other hand, if ¥ satisfies the A,-condition, then LY = MY and
this case is thoroughly studied by [10, 9].

Using Theorems 3.5 and 3.9 as well as simple comparisons, we can give yet another
extension of Theorem 3.11. For the space 2~ we require only that it is a solid space
containing the constants, which is the case for most of common spaces including all Orlicz
spaces/Morse subspaces and L? with p € [0, oo], so our setting is quite general. Besides
its generality, our characterization is also universal (and elementary) in the sense that it
does not involve any topological structure of the particular space.

Theorem 3.13 (Generalization of JST-Theorem [22]). Let 2~ C L° be a solid space
containing the constants and p : & — R be a finite-valued convex risk function with
plLee satisfying (Al-5) and the Fatou property (2.1). Then the following are equivalent:

(1) p has the Lebesgue property (Le(Z")) on Z°;
(2) forall X € Z andc > 0, {XdQ/dP : y(Q) < c} is uniformly integrable where

Yoo(Q) = supyeroo(Eg[X] — p(X));
(3) forall X € Z, the supremum SUPpeo,., (EglX] — Yoo (Q)) is (welil-defined and)

attained.
(4) it holds that
(3.13) p(X) = max (Eg[X]—yx(0Q)), VX e€Z,
0€Qy

Proof will be given in Section 5.2.

Remark 3.14. Some remarks on (3) and (4) are in order.
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(1) We have not a priori assumed that p(X) = suppcg,  (E@[X]—y(Q)) on the whole
Z (recall that y is the conjugate of p|z), thus (3) = (4) is not completely trivial.

(2) The finiteness of p on 2 and the Fatou property on L°° already imply that 2~
is contained in erQym L'(Q). See Lemma 5.4, or observe more directly that
Eo[|X|] = sup, Eg[IX[ A n] < sup, p(|1X| A1) 4+ Yoo(Q) = p(IX]) + Yo (Q).
Thus the supremum in (3) is well-defined without any further assumption.

(3) When 2" = L, Theorem 3.13 recovers JST theorem since then (2) is equivalent to
the weak compactness of all lower level sets of the minimal penalty function.

Here we emphasize that our extension is not only general, but also elementary and uni-
versal. In fact, our statements are completely free of topological structure of the particular
space 2, as everything is done by the minimal penalty function ye, of p|reco. In particular,
we do not need a priori to mind whether 2" is locally convex, what the order-continuous
dual Z,7 is (if 2" is a Fréchet lattice), and how good is the topology o (2", Z,7) etc. If
p has the Lebesgue property, then p is represented by yo and O, on the whole 2" as
(3.13) and 2" a fortiori has a good topology as a subspace of M,f . However, the a priori
assumed topology of 2~ does not matter as long as we hope the Lebesgue property.

Nevertheless, it is better to mention what is deduced additionally if we are given some
topological information of 2°. When 2" is a locally convex Fréchet lattice as in [8], the
finiteness of p and the Fatou property on L imply additionally that 9, C 2, since
then 2" C mQEQyoo Ll(Q) (Remark 3.14 (2)), while (3.13) implies y», = p*. Thus (4)
can be stated as: supz¢ o~ (E[XZ] — p*(Z)) is attained for all X € 2 as obtained in [8,
Lemma 7]. If more specifically .2 is an Orlicz space LY, then Item (2) in Theorem 3.13
is actually equivalent to

(3.14) {Z e LY p*(Z) <c}is o(LY", LY)-compact for all ¢ > 0.

That (2) implies (3.14) is an easy consequence of a characterization of weakly compact
sets in LY (see [30, p.144, Corollary 2]). The converse implication follows from the
observation that (3.14) implies with the help of a minimax theorem that p = /WL; on LY,
hence a fortiori p* = Yoo.

Finally, we make a comment on the subdifferentiability. Let 2" be a solid space and
p: & — R afinite-valued convex risk function as in Theorem 3.13. From the implication
(1) = (3), if p has the Lebesgue property on 2", there exists some Q such that

EQlX] - p(X) = 700(Q) = Eg[¥]—p(¥). VY € L%

Since 2~ C ﬂQegym L'(Q) by Remark 3.14 (2), another application of the Lebesgue
property shows Eg[Y] — p(Y) = lim, (Eg[Y 1y |<n}] — p(Y 1{jy|<ny)) forall Y € 27,
hence the above inequality is valid for all Y € 2. We thus obtain:

Corollary 3.15. Let 2 be a solid space and p a finite-valued convex risk function on
Z. If p has the Lebesgue property, then it admits a o-additive subgradient everywhere in
the sense that for every X € 2, there exists a Q € P such that 2" C L'(Q) and

EolX] - p(X) = Eg[Y] - p(Y). VY €2

4. PROOF OF THEOREM 3.5
Lemmad4.1. /5 :D, — [0, 00] is continuous from below:

@.1) Xo /' X as, X1 € D(y) = H(X) = lim p(X).
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In particular,
42) X, —> X eL%as and3Y € D(y) s.t. X, =Y, Vn = p(X) < liminf p(X,,);
n

43) [IXl; #0 = p(X|/1Xp) < 1:
44 VA>0 X, <2 < p(X[/A) <1
45) L°>X, > XelL® = ||X|; <liminf||X,||5.

n
Proof. Note first that X,, > X; € D(y) implies that X,,, X € D(y), thus p(X,) are well-

defined, and (4.1) is equivalent to 5(X) = sup, p(X,) by monotonicity. Since X; €
ﬂQer L'(Q), we can use the monotone convergence (under each Q € Q,) to deduce

p(X) = sup (Eg[X]—y(Q)) = sup sup(Eg[X,]—y(Q))

QGQV QEQV n
= sup sup (Eg[Xn] —y(Q)) = sup p(Xy),
n QeQy n

hence (4.1). To deduce (4.2) from (4.1), we set Y, := infy>, Xx. Then D, 3 Y <Y,
X, hence p(X) = sup, p(¥y) < sup, infx>, p(Xk) by (4.1) and the monotonicity.

If | Xl # 0, (4.1) shows that p(|X|/[ X ||5) = lim, p(|X|/(| X ]|+ 1/n)) < 1 where
the last inequality follows from the definition of || - ||5. The implication “<="in (4.4) is
clear from the definition, while (4.3) shows that 0 < ||X||; < A implies p(|X|/1) <
AUXI/1IX15) < 1, and if | X[, = 0, p(|1X[/A) < 1 forany A > 0.

Finally, if X, — X € L° as., the non-negative sequence (|X,|/A) satisfies the as-
sumption of (4.2) for any A > 0. In particular, forany 0 < & < [| X5,

L <5 | X| o Xl
<p|l——— ) Zliminfp| ——].
X5 —e " X1l —e

Thus for any such ¢, there exists an n, such that for any k > ng, p(| Xi|/(| X ||; —€)) > 1
< [ Xkllp > XI5 — € by (4.4), hence liminf, || Xy, > infr>n, [ Xell; = X5 — &

Since ¢ > 0 is arbitrary, we have (4.5). O
Lemma 4.2. Forany X € L°, we have
(4.6) [Xllo =M+ y(@ODIXIlz forany Q € Q,.

Proof. This is trivial if || X |5 = oo. If | X||; < oo, (3.2) and (3.5) imply that for any
e>0, Eo[|X|/(I1X1l; + &)] —y(Q) = p(1XI/(I X5 + €)) = 1, hence

[XlL1o) = M +y(@NUIX|5 + ). Ve > 0.

Letting € | 0, we obtain (4.6). O
Lemma4.3. | -||; is o-order-continuous on L™ i.e.,
4.7 sup || Xy lloo < 00 and X, — 0as. = || Xy|; — 0.

n

Proof. Since p|p = p° and p° has the Lebesgue property on L> by assumption, we
have lim,, (X, /A) = O forany A > 0. Thus (4.7) follows from the definition of ||-||;. [

Lemma 4.4. Forany X € L, the following conditions are equivalent:

(1) X € MP;

(2) limy oo | X1gx1>n3ll5 = 0;

(3) for any decreasing sequence (A,) C F with P(A,) | 0, | X1y4,15 4 0;

(4) for any decreasing sequence (A,) C F with P(A,) | 0and o > 0, p(x|X|14,) | O;
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Proof. Observe that for any decreasing sequence Y, N\, 0 a.s.,
p(@Yy) (0, Yo > 0 & Vo >0, 3ng s.t. platy,) < 1.
Indeed, “=" is clear, while the latter condition implies that for any ¢ € (0, 1),

(1/8)p(¥n,,.) = p((@/€)Yn,,,) < 1, hence p(aly, ) < e.

This shows (1) < (2), and (3) < (4). The implication (3) = (2) is obvious.
Suppose (2) and let (A4,) be a decreasing sequence with P(A,) | 0. Then observe that

1X14,ll5 < 1 X1a,ngx1>m53 s + 1 X 1a,ngxi<nvills S I X 1gxsaylls + Nllla, |l

The first term in the right hand side tends to 0 by (2), hence we can take a large N so
that | X1gx>n;llp < /2, while |14, ]loc < 1 and 14, \( 0 as. by assumption. Then

Lemma 4.3 shows that |14, [|5 "\ 0, thus it is less than ¢/2N for large n, hence (3). [

Proposition 4.5. Both M? and LP are Banach lattices, 0 is well-defined as a convex risk
function on LP satisfying the Fatou property (Fa(Z")), and it is finite-valued on MP.

Proof. By definition, both M? and L? are solid vector spaces, M? C LP and | - || P
is a lattice norm on L? (hence on M ‘3) by Lemma 3.4 and the subsequent comments.
Also, by (4.6), L C D, N (—D,), hence § is a well-defined convex risk function on LP
(hence on M?) satisfying (Fa(2")) by Lemma 3.3 and (4.2), while it is finite on M ? since
) = pIXD <00 A A

It thus remains only that L is complete for the norm || - || 5, and M* is closed in L.
So let (X,), be a Cauchy sequence in L? for the norm || - || p» and take Q% ~ P with
y(Q°%) < oo by (2.6). Then by (4.6), (X,) is still Cauchy in L'(Q?), thus admits a limit
X in L'(Q°). Then we may pick a subsequence (X, )k such that X,, — X a.s. and

1 X; — Xmll; < 27k whenever I, m > ny.

We deduce from (4.5) that | X; — X ||, < liminfy—co [|X; — Xmll; < 27% for [ > ng,
hence || X, — X | — 0. Thus L? is complete. If each X, is in M?, we have further that

o ~ | 1,
p(alX]) < pla|X — Xy| + o Xp|) < EP(ZMX - Xu|) + 5P(205|Xn|),

by the monotonicity and the convexity. The second term is always finite since X, € M?,
while if we take e.g., ng so that | X — X, |5 < 1/2a, (4.4) implies that the first term is
not greater than 1/2. Consequently, X € M A thus M is closed. U

Proof of Theorem 3.5 (1). We already know that Mf is a solid vector subspace of a Banach
lattice M?. Thus to complete (1), we need only to show that M{? is closed in M '5, and the
norm || - || 5 is order-continuous.

Pick a sequence (X,) C M,f and X € M? such that || X — X, |5 = 0. Then note that

I X1gx >3yl < I Xnlgxismills + 1 X — Xullpe Va, N

The second term tends to zero as n — oo regardless to N by assumption, while for each
n, the first term tends to zero as N — oo by Lemma 4.4 (3) since X, € M,f’ . A diagonal
argument then prove that the limit X is in M,f , hence M,f is closed in M 7.

For (3.9), we may assume w.o.l.g that X = 0. So let X, € M,f’, X, — 0 as., and
| X,| < Y| for some Y € M,f, and observe from (3.6) that

[ Xnllp = 1 XnLgyi=nylls + 1 Xngyi<nills < 1Y Lgyisnylls + 1 XnLx,1<nl 5-
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Since Y € Mf, 1Y 1gy)>nyll5 ﬁ) 0 regardless to n by (1) = (2) of Lemma 4.4. For the
second term, note that sup,, || X, 1{x,|<N}lcc = N and X, Igx|<y} — O a.s. for any N.
By (4.7) (order continuity of || - || on L°), we deduce that lim, || X, 1{x,<n;ll; = O for
each N. Then a diagonal argument concludes the proof of (3.9). U

Proof of Theorem 3.5 (2). By the extended Namioka-Klee theorem [8, Th.1], any finite-
valued monotone convex function on a Banach lattice is norm-continuous. On the other
hand, we know from Proposition 4.5 that p is a finite-valued convex risk function on the
Banach lattice M,f C MP and || - || p is o-order continuous on M,f’ . Combining these two

facts, we have that p has the Lebesgue property on Mu'6 . (]

Proof of Theorem 3.5 (3). Let p’ be a Lebesgue extension of p° to a solid space 2~. We
first show that p = p’ on %ﬂM'D Indeed, if X € %ﬂM,f,the sequence Yy, := X1 x|<n)
satisfies ¥, € Z' N M,f N L (thus p(Y,) = p'(Yy)) since solid, |Y,| < |X|and ¥, — X
a.s. by definition. Hence the Lebesgue property of p (resp. p’) on M,f (resp. on Z") shows

p(X) =1lim p(¥y) = lim p(Y,) = p'(X),

Next, we show 2~ C M,f , hence (p, M,f ) is the maximum Lebesgue extension. We
have to show that if X € 27, then limy p(|X |1gx|>n}) = O for all @ > 0 (this makes
sense because p is well-defined on L0 by (3.2)). In fact, since 2~ (and M) is solid,

hmp(aIXI]l{lX|>N}) hmhmp(aleﬂ{N<|X|<k}) = hmhmp @] XLy <ixi<ky)
@ lilsn ,0/(05|X|]1{\X|>N}) 2o.

Here (i) follows from p = p® = p’ on L*°, and (ii) from the Lebesgue property of p’ on 2~
since | X | Ly <ix|<ky T | X |Lgx)>n3 (k T oo)and | X |Lgx>ny 4 Oas. (N 1 00). O

5. PROOF OF THEOREM 3.9 AND THEOREM 3.13
5.1. PROOF OF THEOREM 3.9
We proceed as (1) = (2), (2) = (1) and (3), then (3) = (2).
Proof of “(1) = (2)”. Let X € M,f. By the inequality (4.6), we have for any A € F that
sup Eg[|X|14] < sup Eg[|X|langx>n3]l + sup Eo[lX|langxi<ny]

r(Q)=c y(Q)=c r(Q)=c
=+ Xlgx>n3lls + N sup Q(A).
r(Q)=c

Since X € M,f , Lemma 4.4 implies that for any ¢ > 0 there exists an N, > 0 such
that the first term in the right hand side is less than &/2. On the other hand, since p°
is assumed to satisfy the Lebesgue property on L°°, hence {dQ/dP : y(Q) < c} is
uniformly integrable by Theorem 3.11 (JST), we can choose a §, so that P(A) < &, implies
sup, (gy<a @(A) < &/2N,. Now the result follows from the standard characterization of
uniform integrability. O

The proof of (2) = (1) and (3) is a bit more involved.

Lemma 5.1. Suppose X € M? and {|X|dQ/dP : y(Q) < ¢} is uniformly integrable
forallc > 0. Then forany p € RandY € L™, themap Q — Eg[|X|Y]—y(Q) is level
compact, i.e., Ag :=1{0 € Qy : Eg[|X|Y]—y(Q) > B}iso(L', L°)-compact.
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Proof. Since Ag is convex as Q — Eg[|X|Y]—y(Q) is concave, the claim is equivalent
to saying that Ag is (norm)-closed and uniformly integrable due to the Dunford-Pettis
theorem. We begin with the uniform integrability. Let us fix a Q¢ € Q, and estimate

1d 1 (d d
BollXI¥) = £ [2X11¥ 1wy 52 | < £ 2117 ooy (52 + 520 |

2 \dP dPpP
< A QIY llool X) + ¥ ((Q + Q0)/2)
1
= PQIY llool XD + 5((Q) +7(Qo)). VO € Qy.

Noting that p(2]|Y |leo]X]) < oo since X € MP, we see that Eol[lX|Y] —y(Q) <
PIY llool X 1) + (y(Qo) — y(Q))/2 forall Q € Q,, hence

Q€ dg = y(Q) =2((lY ool XI) = B) + ¥(Qo) =: ba.

Since y(Q) is level-compact by the JST theorem (Theorem 3.11) and the Lebesgue prop-
erty of p|ree = p® on L™, Ag is uniformly integrable.

Next, let (Q0n)n C Ag be a sequence converging in L' to Q, and we prove Q €
Ag. Passing to a subsequence (still denoted by (Q,)), we may suppose that dQ,/dP —
dQ/dP a.s., and since y(Q,) < &4 for all n by what we have shown above, the family
{|X|YdQ,/dP}, is uniformly integrable as well by the assumption (since ¥ € L°).
Therefore, Eg[|X|Y] = lim, Eg, [|X|Y] by the dominated convergence, while y(Q) <
liminf, y(Q,) by the lower semi-continuity. Summing up, we have

Eo[|X[|Y] —y(Q) = limsup(Eg, [|X[Y]—y(Qn)) = B.
n
Thus Q € Ag, obtaining that Ag is closed. (]

Proof of Theorem 3.9: (2) = (3). Given (2), X € MP and Y € L°, Lemma 5.1 shows
that the concave function Q — Eg[|X|Y] — y(Q) is weakly upper semi-continuous on
Q,, and all the upper level sets are weakly compact, hence attains its maximumon Q,,. O

Proof of Theorem 3.9: (2) = (1). Given (2), Lemma 5.1 allows us to apply a minimax
theorem (Theorem A.1) to obtain: for any convex set C C L,

(5.1 jnf, sup (EolIX|Y]=y(Q)) = sup jnf (EollX|Y]—y(Q))
€Coeo, QeQ, Y&C

Indeed, the function g(Q.Y) := y(Q) — Eg[|X|Y] satisfies the assumption of Theo-
rem A.1. We apply this minimax equality to the sets «C; = aconv(lfx|>ny}; N € N).
Observe thatif Ny <--- < Ny, By >0and 1 +---+ B, =1,

Lixi>nay < Bilgxisngy + - Balgxis v,y = Lgxi=nigs
hence limy p(a| X |1gx|>ny) = infyeqc, p(|X|Y), while for each Q0 € Q, (= X €
LY(Q)), infyeac, Eg[|X|Y] = infy Egla|X |1{x}>n1] = 0. Thus (5.1) implies that

lim p(e| X |Tgxj-ny) = inf  sup (Eg[IX[Y]—y(Q))
caCl geg,

= s inf, (EllX|Y]=y(@)) == jnf y(0) =0,

This is exactly (1). O

For the proof of (3) = (2), we need a version of perturbed James’ theorem due to [26].



LEBESGUE EXTENSION: SUMMARY 17

Theorem 5.2 ([26], Theorem 2). Let E be a real Banach space and f : E — R U {400}
be a function which is coercive, i.e.,

SO

Ixi—oo [Ix]

5.2)

Then if for every x* € E*, the supremum

(5.3) sup (x™(x) — f(x))

x€E

is attained, the level set {x € E : f(x) < c} is relatively weakly compact for each c € R.

To apply this theorem, we make a “change of variable”. For any X € M P with X > 1
a.s., we define

(5.4) 7x(Z)=y(Z/X)= suwp (E|(Z/X)Y]- p(Y)), VZell

In view of (2.3), we see that
(5.5) 7x(Z) <00 & 30 € Q, st. Z = XdQ/dP.
(Recall that M? C Noeo, L'(Q) by (4.6)). Moreover,

Lemma 53. IfX € M? with X > 1 a.s., then lim| 2|, 500 7x(Z)/| Z||1 = +00 where
| - |l1 is the L'-norm, i.e., x is coercive function on L.

Proof. By (5.4), for every Z € dom(yx) C LY,

x(Z)=  sup  (E[(Z/X)YX1ix<nmy] — P(YX Lix <n}))
nGN,YELi_o

= sup (E [ZYH{XS,,}] — IS(YX]I{Xsn})) .
neN,YeLf"?

(Remember that we are assuming X > 1 a.s.) On the other hand, for every ¥ € L°°,
E[ZY] =lmE[ZY1(x<p] and p(YX) =1limp(YX1(x<ny)
n n

by the dominated convergence theorem and (4.1) respectively. Consequently,

(5.6) 7x(Z) > E[ZY] - p(YX), VYZ edom(jx)C L', VY € LY.

In particular, taking ¥ = n + 1 (constant), and noting || Z||; = E[Z]if Z > 0 a.s.,
vx (Z o HX
7x ( )2n+1_p((n+ )X)
1Z]1 1Z]1

Making use of the assumption X € M? (< p(a|X|) < oo for any & > 0), we deduce that
7x(Z)/|Z|1 = n forany | Z]||; > p((n + 1)X), which concludes the proof. O

Proof of Theorem 3.9: (3) = (2). Since | X| < |X|v1 < |X|+1and{Q € Q, : y(0) =
¢} is uniformly integrable for any ¢ > 0, it suffices to deduce (2) for X ¢ M P with X > 1
a.s. We apply Theorem 5.2 to yx on the Banach space L!.

By (3),forany Y € L, thereexistsa Qxy € Qy suchthat Eg, , [XY]-y(Qxyy) =
SUpgeo, (Eg[XY] —y(Q)). Letting Zx,y = XdQx,y/dP, (5.4) and (5.5) imply

E[ZxyY]=vx(Zxy) = Egyy[XY] = y(Qxy) = Jup (Eo[XY]—-y(Q))
€Ly
= sup (E[ZY]-yx(2)).
ZeL!

forall Y € L*, i.e., the supremum supz;1(E[ZY]—yx(Z)) is attained forall Y € L*°.
Then by Lemma 5.3, we can apply Theorem 5.2 to deduce that {Z € L' : yx(Z) < ¢} is
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relatively weakly compact in L' (< uniformly integrable by Dunford-Pettis) for all ¢ > 0.
On the other hand, {Z € L' : jx(Z) < c¢} ={XdQ/dP : y(Q) < c} by (5.5) O

5.2. PROOF OF THEOREM 3.13
We begin with a couple of comparison results. Let p° satisfy Assumption 2.1 and (2.7).

Lemma54. Let 2 beasolidspaceand p : £ — R afinite valued convex risk function.
If plroo = p°, then 2 C MP.

Proof. Since p|ro = p® and p is finite on the solid space .2, p(e|X|) < oo, hence

A “.1) A
pa|X ) ="sup p(a|X| A n) = sup p(a| X[ An) < pla]X]) < o0
n n

foralla > 0and X € 2. Thus 2 C MP*. O

Lemma 5.5: Let & be solid and p : Z — R be a finite valued convex risk function.
If 2 C M and p|pos = p°, then p has the Lebesgue property (Le(2")) on X', thus a
fortiori p = pon Z.

Proof. The claim amounts to showing that for any sequence (X,), C Z,

5.7 Y € 2, | Xy <|Y|and X, > X as. = p(X) = liignp(Xn).

We fix such a sequence (X,,) with the limit X as well as Y verifying the condition. Put
By :={Z e Z : |Z| AnlY| 1 |Z]}.

By is the principal band in 2~ generated by ¥ € 2" C M,f (see [2, p.324]). Observe
that By C £ C M (of course) and By is also a band in the Banach lattice MP. Thus

[2, Theorem 8.43] shows that Bjy| is norm-closed in M/, hence (By|,| - ||5) is again
a Banach lattice. By the extended Namioka-Klee theorem, the finite valued monotone
convex function p|p,, on the Banach lattice (By|, || - [|5) is || - || 5-continuous, while | - || 5

is (o-)order continuous on M,f by Theorem 3.5 (1), hence on the subspace Bjy|. The
original sequence (X), its limit X as well as ¥ are all contained in B}y, thus we deduce
p(X) = lim, p(X,). Since (X,) C X is arbitrary, we see that p has the Lebesgue
property (Le(2")) on 2. Then Theorem 3.5 (3) shows that p must agree with pon Z". [

Proof of Theorem 3.13. Put p° := p|p~. By the Fatou property on L>, p° has the robust
representation (2.5) on L with y = yo, and Q, = Q,_, thatis p° = p|p with this
choice of y. Moreover, any of (1) - (3) implies that p° has the Lebesgue property (2.7).
This is trivial in the case of (1), and each of (2) and (3) restricted to L> shows p® has the
Lebesgue property by the original JST theorem. Thus 2" C M p by Lemma 5.4 since p is
finite, and we can use Theorems 3.5 and 3.9 for the choice p°® = p|.

We proceed as (1) = (4) = (3) = (1), and (2) & (3).

(1) = 4) = (3). If (1) holds, Theorem 3.5 (3) shows that 2~ C M,f and p = pla
while “(1) = (3)” of Theorem 3.9 with ¥ = sign(X) implies that SUPgeo,., (EolX] -
Yoo (Q)) is attained for all X € 2~ C M,f. Hence (4) hold, and (4) = (3) is obvious.

(2) & (3) = (1). The solidness of 2" implies that XY = | X |(sign(X)Y) € 2 for any
X € Z andY € L*. Thus given 2 C MP, (2) & X C M,f’ < (3) by Theorem 3.9.
On the other hand, given 2~ C M,f , Lemma 5.5 shows that p has the Lebesgue property,
hence (1). [l
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6. EXAMPLES

Here we examine some typical risk functions deriving the explicit forms of the space M[? .
We begin with a simple remark. Though we defined /5 using the robust representation of p°
on L%, it may be more convenient to use other more explicit formula p° if available. By
Lemma 4.1, we know that / is continuous from below on D,, hence on LY. In particular,

(6.1) p(IX]) =1limp°(|X| An), VX eLO.
n

Note that this formula may not be true for X € L%\ L9, but we need only to consider

positive random variables, or equivalently all | X | with X € L to derive the spaces M,f
and M?.

6.1. UTILITY BASED SHORTFALL RISK

Let/ : R — R be a strictly increasing convex function with /(0) > infy /(x) (thus not
identically constant). We define the associated shortfall risk function by

(6.2) pr(X) :=inf{x e R: E[[(X —x)] <1(0)}, VX eL®.

Then p; satisfies (A1-5) as well as (2.7) and its penalty function is given by

—inf L « (1,42
(6.3) y1(Q) = /{1;1; 3 (Z(O) +E |:l (AdP)iD.
(See [19, Ch.4]). Also, (6.1) implies that
pr(1X[) = supinf{x : E[/(|X| An—x)] <1(0)} <inf{x : E[I(|X|—x)] = [(0)}.

while if p(|X]) < oo, we have E[/(|X| — p(IX[)] < lim, E[/(|X| A n —p(X])] =
limsup, E[/(|X| An—p°(|X| An))] < [(0) by monotone convergence and p°(| X | An) <
p(1X 1), thus

(6.4) pr(IX ) = infx : E[[(|X|—x)] < 1(0)}, X € L°.

In this case, two spaces Mf " and M?! coincide and equal to the Morse subspace asso-
ciated to the Young function ¥ (x) := I(|x]) — [(0), i.e.,

Proposition 6.1. M7 = M? = MY where W(|X|) := I(|x|) — (0).

Proof. 1. M¥ C M,f’. It suffices to show that for any ¢ > 0, the family {XdQ/dP :
¥1(Q) < c} is uniformly integrable. So let us fix ¢ > 0 and X € M¥. Observe that if
71(Q) =< c, then there exists a Ao > 0 such that t (l(O) +E [l*()LQdQ/d]P’)]) <c+1,
and such A ¢ is bounded below by a constant depending only on ¢ and /. Indeed,

1 do 1(0)+1*(Ao)
6.5 1>—({(O+E|[[*(Ao— > =
69 erizg (o[ (o)) = B
by Jensen’s inequality, and taking xo < 0 so that /(x¢) < [(0) (such exists since /(0) >
infy [(x)), (1(0) +1*(A0))/Ag = sup,(x + (1(0) = (x))/Ag) = xo+ (1(0) —I(x0)) /A 0.
hence (6.5) implies A > HO-lx) . A(c). On the other hand, noting that /(«| X |14) =

c+1—x9

Y(|X|)14 + [(0) for any A € F and a > 0, Young’s inequality shows
d
Eglado|X|14] < E[¥ (| X|)14] + (Z(O) +E [Z* (Agﬁ)}) ,
from which we have

+1

EollX|ia] < — E[wa|xiy + <71 < LEW@XDL et
adg o

1
o A(c) o
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for any Q with y;(Q) < c. Since X € MY, the desired uniform integrability follows from
a diagonal argument.

2. MP c MY, hence three spaces agree. This follows from (6.4). Indeed, we have
the implications: p;(a|X|) < oo = Ix € Rst. [(a|X|—x) € L' = [(a]X|/2) <
11(a|X| - x) + 31(x) € L'. We deduce that M? C MY¥. O

Remark 6.2. In definition (6.2), we chose /(0) for the acceptance level so that p;(0) = 0
(and sensitive). If p; is defined with other acceptance level § instead of /(0), we can
normalize it by adding the constant a’(§) := sup{x : [(x) < 8} or equivalently replacing
the function / by x +— I(x + a’(8)). Also, the case [(0) = inf, /(x) corresponds to the
worst case risk function p**™'(X) = esssup X.

6.2. ROBUST SHORTFALL RISK

Let / be as above and fix a set Py of probabilities P < P such that

(6.6) Py is convex and weakly compact in L',

Then we consider a robust shortfall risk function

6.7) p1,po(X) :==inf{x e R: sup Ep[l(X —x)] <I(0)}, X € L.
PeP

The function p; p, on L™ is a convex risk function with the minimal penalty function

1 dQ
6.8 := inf — [ (0 inf Ep|[*
(6.8) V1,po(Q) := inf = ( ( )+P1£790 p[ ( dP)D
with the convention /*(0c0) := oo and dQ = Z%d]? Ligp/ap>0y+00-1{a0/dP>0,dP/dP=0}

(see [19, Corollary 4.119]). Under (6.6), we have further that p; p, has the Lebesgue prop-
erty on L°°. This follows from a robust version of de la Vallée-Poussin theorem due to
[17] (this result is stated there for sets of probability measures, but their proof does not use
the latter fact, and the exactly same proof applies to sets of positive finite measures). Also,
slightly modifying the argument for (6.4), we have

69)  pip,(X]):=inflx eR: sup Epll(IX|— )] <I(0)}. X eLO.
PePy

We introduce a couple of robust analogues of M ¥:
MY(P):={X eL": sup Ep[¥(A|X|)] < 0o, VA > 0}
€
MY(P):={X eL®: lim sup Ep[W(A|X|)Iyx>n;] =0, YA > O}.
N—oo pep
When Py = {IP}, the two spaces coincide with M¥. Now we have:
Proposition 6.3. Assume (6.6). Then

MY (Po) = MJ"™0 < M7 ¢ MY (Py).

Proof. 1. MY (Py) C lel'po. It suffices that if X € MY(Pp) and ¢ > 0, then
{XdQ/dP : y1.p,(Q) < c} is uniformly integrable. With a similar reasoning and no-
tation as Proposition 6.1, we see that y; p,(Q) < c implies the existence of Ag > A(c) =



LEBESGUE EXTENSION: SUMMARY 21

(1(0) = I(x0))/(c + 1 — xo) and Pg € Po such that t (Z(O) + Ep, [1 (/XQ dPQ>]) <
¢ + 1. By Young’s inequality and /(o| X |14) = (x| X|)14 + [(0), we see that
d
Eg[Aoa|X|14] < Ep, [W(e|X|)14] + (1(0) + Ep, [ (AQdPQQ)D

< sup Ep[W(a|X]DIa]+Ag(c+1)
PePg

for all Q with y; p,(Q) <c, A € Fand a > 0. Hence
¢+ 1

sup{ Eg[|X[14] : v1,p,(Q) < ¢} < wA) P

from which the uniform integrability follows by a diagonal technique.

2. MY (Py) D M, Pr.eo .Let X € M, P10 and « > 0. By the definition of M,, Pr.eo , there
is a sequence (N,), C N such that p; p, (noe| X |1gx|>n,3) < 27". Then by (6.7),

sup Ep[l(na|X|1gx)>n,y —27")] < 1(0).
PePy

Noting that ¥ («|X |14,) = [(a|X|14,) —1(0) < n~ ' (na|X |14, —27") + 2 l(2 1) —
[(0) with A, := {|X| > N,} by the convexity, we have

1 -1 27"
sup Ep[W(@|X )L, < — sup Epll(na|X|Ly, —2 ( )—1(0)
PePy nPEP() n—1
[(0 n—1 27"
SQ-F l( )—I(O)—>0+l(0)—l(0):0.
n n n—1

Since o > 0 is arbitrary, we have X € MY (P).
3. MPLPo ¢ MY (Py). If X € MP-Po, we have for every a > 0,

sup Ep[¥(a|X|)] = sup Ep[l(a|X])]—1(0)
PePy PePg

IA

1 1
— sup Ep[lQu|X|—x)] 4+ =I(x) —1(0) < oo.
2P€7’0 2

for x > {1, (@|X|) by (6.9). Thus M?'Po < MY (Py). O
Example 6.4 (Robust Entropic Risk Functions). Let /(x) = e*. Then p; p, is the en-

tropic one, and the associated Young function is ¥, (x) := el — 1. In this case, we have
MY<(Py) = MY (Py), thus M,,"™° = MP-7o_ Indeed, by Holder’s inequality,

sup Ep[e alX lﬂ{\X|>N}] < sup (E [ 206\X|]1/2P(|X| > N)1/2>

PePy Pe

< sup Ep[e®XN'V2 qup P(|1X| > N)/2.
PePy Pep

This and the uniform integrability of Py show that limy suppcp, Ep [e¥lX |]l{‘ x>n =0
for every o > 0 as soon as X € M ¥¢(Py), hence MYe (Po) = M ¥ (Py).

6.3. LAW-INVARIANT CASE

Recall that a convex risk function p® on L™ is called law-invariant if p°(X) = p°(Y)
whenever X and Y have the same distribution. Any law-invariant convex risk function on
L*° has the following representation (Kusuoka’s representation):

(6.10) PX) = sup (/(Ol]vuxmwm—ﬂ(m)

neM((0,1])
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where vy (X) = % fo'l gx (1 — t)dt, the average value at risk at level A (up to change of
sign) with gx (¢) := inf{x : P(X < x) > t}, M1((0, 1]) is the set of all Borel probability
measures on (0, 1] and B is a lower semi-continuous penalty function. Then p° has the
Lebesgue property on L if and only if all the level sets {i : B(u) < c} are relatively
weak* compact in M ((0, 1]) or equivalently tight ([14, Ch. 5] or [22]). In particular, for
any relatively weak* compact convex set M C M((0, 1]),

paa ()= sup [ (N)n(dd)

nemMJ(0,1]

is a law-invariant coherent risk measure on L satisfying the Lebesgue property.
Example 6.5 (AV@R). Forevery A € (0, 1], v), admits the representation:
6.11) vA(X) = sup{Eg[X]: O € P, dQ/dP < 1/2},
for all X € L°°, and since ¥, (| X|) = sup, vi(|X| A n),

A 1
Xl = 020XD = IX1ls, = 71Xz, X =0,
A

hence we have M,? * = MP = L' for every A € (0, 1], and the representation (6.11)
extends to L!. In particular, § has the Lebesgue property on L.

Example 6.6 (Concave Distortions). Let u € M7((0, 1]) and define
pu)i= [ wCOuan.
(0,1]

This type of risk functions are called concave distortion, and it is known that if the proba-
bility space (£2, F, P) is atomless, every law-invariant comonotqnic risk function is written
in this form (see [19, Theorem 4.93]). For p,,, two spaces MP* and MPr coincide. In-
deed, p,(|X]) < oo implies that 9.(]X|) € L1((0, 1], w), hence 9,(]X|) < oo for u-a.e.
t e (0, 1]. Since ﬁ,(|X|ﬂ{‘X|>N}) l, 0as N — oo and ﬁ~(|X|]1{\X|>N}) < v(|X|) S
L'((0,1], ) for pu-ae. t € (0, 1], the dominated convergence theorem shows that

1im/ O (| X |1 x> 8y (dt) :/ lim 0, (| X |1 x)>ny)p(dt) = 0.
N Jo,1] 0,1] N

Repeating the same argument for «| X | (@ > 0) instead of X, we have Mu'6 "= Mbu,

Recall that any finite-valued convex risk function on a solid and rearrangement-invariant
space strictly bigger than L has the Lebesgue property restricted to L°° (Theorem 2.7).
Then it is natural to ask how about the Lebesgue property on the entire space. In our
context, M,f and M? are solid by very definitions, and rearrangement-invariant too if the
original p° is law-invariant, while M? is the maximal solid space on which p is finite-
valued. Thus it is worthwhile to ask if Mf = M? when p° is law-invariant. The answer is
generally no.

Example 6.7 (Law-invariant risk function with M,f cM ’3). Let (£2, F, P) be atomless

and for each n, we define an element of M ((0, 1]) by
en

1 e 1
(6.12) Un(dt) := (l — Z) Py lﬂ(efl,l]([)d[ + ;ejﬂ(efn’efrwrl](t)dt.

Then the family (1), and hence conv(u,;n € N) is uniformly integrable in L ((0, 1], dt)
(& weakly compact in M1 ((0, 1])). Hence the law-invariant coherent risk function

P08 5= sup / 00 (X) i (d1) (: p1XD = sup / ]ﬁx(le)Mn(d/\))

(0,1] (0,1
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has the Lebesgue property on L°°. In this case, M,f M #_Indeed, let X be an exponential
random variable with parameter 1, i.e., Fx(x) =1 —e™* & gx(t) = —log(1 —t). Then

1 A
(X)) = X/(; (—logt)dt =1—1logA.

For each n, f(o,1] 0r(X)pn(dt) = 4 — 245 — L 50 p(X) = sup, f(O,l] O (X)) un(dt) =

4 — % < oo. This shows that X € MP. We next compute limy p(X 1y~ ny3). Since

qXﬂ{X>N}(t) = QX]l{qX(t)>N} and qX(l —[) >N&r<l-— Fx(N) = e_N,

. 1
(X lx>ny) = I/ gx (1 = )ligy 1—)>n3dt
0
={re M —Are ™) log(h Ae M)A,

Thus forn > N + 1,

[ 81 (X Loyt (d1)
(0,1]

1 1
=(1-—- ¢ (e_N—e_Nloge_N)—i-—(Z—i-n— ¢ )
n)e—1 n e—1

1
=14+ ¢ (e_N—e_N loge_N) + - {2— ¢ (1 +e N —e_Nloge_N)}
e—1 n e—1

Hence p(X1¢x>n}) = sup, f(O,l] Or (X x>nypn(dt) = 14+5 (e_N —eNlog e_N).
Consequently, limy o0 p(Xlix>ny) > 1+ limy 25 (e_N —eNlog e_N) = 1. Thus
X &Ml

APPENDIX A. A MINIMAX THEOREM

We have used the following version of minimax theorem which should be a known result,
and is actually an immediate consequence of [21, Theorems 1 and 2]. We could not,
however, find a reference, thus we give here a simple proof.

Theorem A.1. Let C be a convex subset of a topological vector space, and D an arbi-
trary convex set. Suppose we are given a function f : C x D — R such that

(1) foranyy € D, x — f(x,y) is convex and level-compact, i.e., lev<y f(-,y) 1= {x €
C: f(x,y) < a}is compact for each o € R;
(2) foranyx € C, y — f(x,y) is concave on D.

Then we have

(A.1) inf sup f(x,y) = sup inf f(x,y).
x€Cyep yeD x€C

Proof. Note first that “>" is always true whatever C, D and f are. Thus there is nothing

to prove if & := sup,,¢p infxec f(x,y) = 00, hence we assume o < oo.

Forany y € D and 8 € R, we set Ay’3 = {x € C : f(x,y) < B}. Then [21,
Theorem 1] implies that the family {A;*"E}ye p has the finite intersection property for
every ¢ > 0. Noting that each Ag“ is compact by assumption made on f, we have
ﬂgf E-A;H # () (indeed, fixing arbitrary yo € D, we have A;“:: +1£s iompact, A%:: n
A&LS is its non-emp'ty.closed subset for each y €D, ar.ld. (Nyep 45 = (yep (AT N
AS] ) # @). But this is a necessary and sufficient condition for the equality (A.1) by [21,
Theorem 2]. O
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