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Momentum-Space Approach to Asymptotic Expansion

for Stochastic Filtering and other Problems ∗

Masaaki Fujii†,

First version: September 10, 2012

Abstract

This paper develops an asymptotic expansion technique in momentum space. It
is shown that Fourier transformation combined with a polynomial-function approxi-
mation of the nonlinear terms gives a closed recursive system of ordinary differential
equations (ODEs) as an asymptotic expansion of the conditional distribution appear-
ing in stochastic filtering problems. Thanks to the simplicity of the ODE system,
higher order calculation can be performed easily. Furthermore, solving ODEs se-
quentially with small sub-periods with updated initial conditions makes it possible to
implement a substepping method for asymptotic expansion in a numerically efficient
way. This is found to improve the performance significantly where otherwise the ap-
proximation fails badly. The method may be useful for other applications, such as,
option pricing in finance as well as measure-valued stochastic dynamics in general.

Keywords : Asymptotic Expansion, Fourier Transformation, Filtering, Zakai equation,
polynomial-function approximation, measure-valued nonlinear system

1 Introduction

In many areas, researchers frequently encounter the situation where crucial parameters for
their models are not directly observable in our mother nature or in experiments. This is
particularly the case, for examples, in engineering, applied physics, finance and economics.
To get the best estimate of the unobservable from what we can directly observe is the goal
of stochastic filtering. The most famous example with analytical solution is Kalman-Bucy
filter, which assumes both of the signal and observation processes are linear and hence
associated with Gaussian distributions.

However, there are many cases where interested variables follow nonlinear stochastic
processes and their distributions are far from Gaussian. This is particularly the case

∗This research is supported by CARF (Center for Advanced Research in Finance) and the global
COE program “The research and training center for new development in mathematics.” All the contents
expressed in this research are solely those of the authors and do not represent any views or opinions of
any institutions. The authors are not responsible or liable in any manner for any losses and/or damages
caused by the use of any contents in this research.
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for financial problems. In fact, many people were forced to realize the sheer impacts of
non-Gaussianity in the last financial crisis followed by the collapse of Lehman Brothers.
Researchers, practitioners as well as regulators now clearly recognize the importance of
understanding not only the first two moments but also every other details of relevant
distributions. Here, we need to deal with nonlinear filtering problems. Filtering theory
has a long history and is still developing very rapidly, partly helped by the great increase of
computational power. Recently, there appeared a thick volume [2] from Oxford university
press, which contains latest developments and reviews for theoretical as well as numerical
techniques for nonlinear filtering problems. Unfortunately though, they seem to require
very sophisticated mathematical as well as numerical skills and there exist many hurdles
to cross for non-specialists.

In this paper, we propose a simple approximation scheme based on an asymptotic
expansion method in momentum space for nonlinear filtering problems. The method
should be also useful for other financial problems that do not require filtering. Widely
used ”position-space” asymptotic expansion method (See [5], and references therein.) is
transformed into a simpler form in the momentum (or Fourier transformed) apace, and
the resultant dynamics of the characteristic function is given by a closed recursive system
of ordinary differential equations (ODEs). It is shown that the form of ODEs unchanged
for any order of expansion, which allows straightforward numerical implementation for
higher order approximations. Furthermore, dividing the original time horizon into a set
of small sub-periods and solving the ODEs sequentially with updated initial conditions,
which we call substepping method for asymptotic expansion, increases the parameter space
where the approximation is effective. Two simple examples are discussed to demonstrate
how the method works. We also make a brief comment on the possibility that the same
method can be used to analyze other measure-valued nonlinear systems.

2 Preliminaries for Nonlinear Filtering

2.1 Zakai equation

Let (Ω,F ,P) be a probability space with a filtration (Ft)t≥0 satisfying the usual conditions.
We consider n-dimensional signal process X = {Xt, t ≥ 0} and m-dimensional observation
process Y = {Yt, t ≥ 0} following the dynamics of

Xt = µ(t,Xt)dt+ η(t,Xt)dVt + η̄(t,Xt)dWt (2.1)

Yt = h(t,Xt)dt+ dWt (2.2)

with Y0 = 0 and an independent initial distribution forX0. Here V andW are independent
(P,F)-Brownian motions with dimensionality d and m, respectively. µ, h, η and η̄ are
deterministic function of (t, x) 1 and take values in Rn,Rm,Rn×d and Rn×m, respectively.
The functions µ, η and η̄ are assumed to satisfy appropriate conditions so that (2.1) has
a unique solution. The measurable function h is assumed to satisfy the conditions that
makes the following process Z = {Zt, t ≥ 0} be a martingale:

Zt = exp

(
−
∫ t

0
hs(Xs)

⊤dWs −
1

2

∫ t

0
||hs(Xs)||2ds

)
(2.3)

1For simplicity, we frequently use a notation of µt(Xt) and similarly for other functions.
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where ⊤ denotes the transposition. We denote {Yt, t ≥ 0} be the usual augmented fil-
tration generated by the process Y . Our goal of the filtering problem is to obtain the
conditional distribution πt of the signal X at time t given the information available from
observing the process Y in the interval of [0, t]. In other words, for a given arbitrary
bounded function φ, computing

πt(φ) = E
[
φ(Xt)

∣∣∣Yt] . (2.4)

Let us define the measure P̃ by

dP̃
dP

∣∣∣∣∣
Ft

= Zt (2.5)

and the associated inverse relation

dP
dP̃

∣∣∣∣
Ft

= Z̃t (2.6)

where Z̃t = Z−1
t can be written as

Z̃t = exp

(∫ t

0
hs(Xs)

⊤dYs −
1

2

∫ t

0
||h(Xs)||2ds

)
. (2.7)

Note that the process Y becomes a standard Brownian motion in the measure P̃.
We define the unnormalized conditional distribution of X to be the measure-valued

process ρ = {ρt, t ≥ 0}

ρt(φ) = Ẽ
[
Z̃tφ(Xt)

∣∣∣Yt] P̃− a.s. (2.8)

which is Yt-adapted and càdlàg. Here, Ẽ[·] denotes the expectation in the measure P̃. The
desired filtered density function can then be obtained from the relation

πt(φ) =
ρt(φ)

ρt(1)
. (2.9)

It is known that the dynamics of ρ satisfies the following Zakai equation for arbitrary
bounded function φ:

ρt(φ) = ρ0(φ) +

∫ t

0
ρs(Asφ)ds+

∫ t

0
ρs

(
(hs +Bs)

⊤φ
)
dYs (2.10)

with initial value ρ0(φ) = E[φ(X0)] associated with a given distribution of X0. Here, As

is the infinitesimal generator of X at time s

As =

n∑
i=1

µis(x)
∂

∂xi
+

1

2

n∑
i,j=1

(
ηsη

⊤
s (x) + η̄sη̄

⊤
s (x)

)
i,j

∂2

∂xi∂xj
(2.11)

and

Bk
s =

n∑
i=1

(η̄⊤s (x))k,i
∂

∂xi
, k = 1, · · · ,m. (2.12)

For the derivation of the Zakai equation and the other technical details, see [1], for example.
The goal of this paper is to develop a simple scheme to solve the Zakai equation (2.10).
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2.2 Filtered Characteristic Function

Let us consider a function

ψ(ξ, x) = exp
(
iξ⊤x

)
(2.13)

with ξ, x ∈ Rn, where i =
√
−1. If one obtains the conditional expectation of this

function, i.e.,

πt(ψ(ξ, ·)) =
Ẽ
[
exp

(
iξ⊤Xt

)
Z̃t

∣∣∣Yt]
Ẽ
[
Z̃t

∣∣Yt] (2.14)

for each ξ, it enables one to derive the conditional expectation for an arbitrary choice of
φ. This fact can be seen as follows: Let us consider the inverse Fourier transformation
ϕt(·)

ϕt(z) =
1

(2π)n

∫
Rn

e−iξ⊤zπt(ψ(ξ, ·))dnξ (2.15)

which can be evaluated as

ϕt(z) =
1

(2π)n

∫
Rd

1

Ẽ
[
Z̃t

∣∣Yt] Ẽ
[
exp

(
iξ⊤(Xt − z)

)
Z̃t

∣∣∣Yt]dnξ
=

Ẽ
[
δ(Xt − z)Z̃t

∣∣∣Yt]
Ẽ
[
Z̃t

∣∣Yt] . (2.16)

The above function actually corresponds to the conditional density of the Xt since∫
Rd

φ(z)ϕt(z)d
nz =

Ẽ
[
φ(Xt)Z̃t

∣∣∣Yt]
Ẽ
[
Z̃t

∣∣Yt] (2.17)

= πt(φ) . (2.18)

Therefore, {πt(ψ(ξ))} and hence {ρt(ψ(ξ))} contains all the important information one
needs.

3 Asymptotic Expansion in Momentum Space

From the discussion in the previous section, one needs to solve the Zakai equation for
ρt(ψ(ξ)). However, the equation looks quite complicated because of the nonlinearities
arising from the terms ρs(Asψ(ξ)) and ρs((hs +Bs)

⊤ψ(ξ)).

3.1 Perturbed System

In order to make the system tractable, we introduce the perturbation parameter ϵ and
consider the following n-dimensional signal X(ϵ) and the m-dimensional observation Y
processes:

dX
(ϵ)
t =

(
ft + ϵFt(X

(ϵ)
t )

)
dt+

(
νt + ϵσt(X

(ϵ)
t )

)
dVt + ϵγt(X

(ϵ)
t )dWt (3.1)

dYt = ϵHt(X
(ϵ)
t )dt+ dWt (3.2)
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where now ft and νt are n-dimensional deterministic function of time and νν⊤t is assumed to

be positive definite 2. As before, we assume Y0 = 0 and the initial condition ofX
(ϵ)
0 = X0 is

known and given by an independent distribution. Ft(x), σt(x), γt(x) and Ht(x) take values
in Rn, Rn×d, Rn×m and Rm, respectively. Furthermore, these functions are assumed to
be given by smooth and bounded functions to guarantee the existence of unique solution
of X(ϵ). As before, V and W are independent Brownian motion with dimension d and m,
respectively.

As explained in the previous section, we are interested in the unnormalized distribution

ρ(ϵ)(ψ(ξ)) = Ẽ
[
Z̃

(ϵ)
t ψ(ξ,X

(ϵ)
t )

∣∣∣Yt] (3.3)

with

Z̃
(ϵ)
t = exp

(
ϵ

∫ t

0
Hs(X

(ϵ)
s )⊤dYs −

ϵ2

2

∫ t

0
||Hs(X

(ϵ)
s )||2ds

)
(3.4)

and

dP
dP̃

∣∣∣∣
Ft

= Z̃
(ϵ)
t . (3.5)

The corresponding Zakai equation is now becomes

ρ
(ϵ)
t (ψ(ξ)) = ρ0(ψ(ξ)) +

∫ t

0
ρ(ϵ)s

(
A(ϵ)

s ψ(ξ)
)
ds+ ϵ

∫ t

0
ρ(ϵ)s

(
(Hs +Bs)

⊤ψ(ξ)
)
dYs . (3.6)

Here,

Bk
s =

n∑
i=1

(γ⊤s (x))k,i
∂

∂xi
, k = 1, · · · ,m. (3.7)

and the infinitesimal generator is given by

A(ϵ)
s =

n∑
i=1

(
f is + ϵF i

s(x)
) ∂

∂xi
+

n∑
i,j=1

1

2

(
νs + ϵσs(x)

)(
νs + ϵσs(x)

)⊤

ij

∂2

∂xi∂xj

+

n∑
i,j=1

ϵ2
1

2

(
γs(x)γs(x)

⊤
)
ij

∂2

∂xi∂xj
. (3.8)

Our goal is to expand

ρ
(ϵ)
t (ψ(ξ)) = ρ

(0)
t (ψ(ξ)) + ϵρ

(1)
t (ψ(ξ)) + ϵ2ρ

(2)
t (ψ(ξ)) + · · · (3.9)

and obtain each ρ
(j)
t (ψ(ξ)) for j = 0, 1, 2 · · · .

The above asymptotic expansion gives a good approximation of the original model
only when the perturbation terms are small enough, otherwise the above expansion fails
to converge. However, as we shall see later, a simple substepping method for asymptotic
expansion can make the restriction significantly weaker.

2We do not put ϵ on Y since it is observed process.
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3.2 Asymptotic Expansion

We now expand the Zakai equation for each order of ϵ. Note that, for any polynomial
function G of x, one can write

G(x)eiξ
⊤x = G(Dξ)e

iξ⊤x (3.10)

where, G(Dξ) denotes the differential operator obtained by replacing each xj in the func-
tion by (Dξ)j , which is a derivative operator defined by

Dξ =
∂

i∂ξ
. (3.11)

This fact allows to write

ρ
(ϵ)
t (Gψ(ξ)) = G(Dξ)ρ

(ϵ)
t (ψ(ξ)) (3.12)

which is linear for ρ
(ϵ)
t (ψ(ξ)).

In order to avoid nonlinearity, we make use of this property of polynomial functions.
With slight abuse of notations, we treat Ft(x), σt(x), γt(x) and Ht(x) as arbitrary accu-
rately approximated polynomial functions of x (and time) for the corresponding original
functions. By Weierstrass’ polynomial approximation theorem, this is always possible for
any continuous functions within the closed interval. In practice, one can take wide enough
interval within which the signal process resides with probability sufficiently close to one
and an associated polynomial approximation accurate enough for that range.

Then, one can formally write

A(ϵ)
s ψ(ξ, x) =

(
A(0)

s (ξ) + ϵA(1)
s (ξ,Dξ) + ϵ2A

(2)
t (ξ,Dξ)

)
ψ(ξ, x) (3.13)

where

A(0)
s (ξ) = iξ⊤fs −

1

2
ξ⊤(νsν

⊤
s )ξ (3.14)

A(1)
s (ξ,Dξ) = iξ⊤Fs(Dξ)−

1

2
ξ⊤

(
νsσ

⊤
s (Dξ) + σs(Dξ)ν

⊤
s

)
ξ (3.15)

A(2)
s (ξ,Dξ) = −

1

2
ξ⊤

(
σs(Dξ)σ

⊤
s (Dξ) + γs(Dξ)γ

⊤
s (Dξ)

)
ξ (3.16)

and similarly

(Hs(x) +Bs(x))
⊤ψ(ξ, x) =

(
H⊤

s (Dξ) + iξ⊤γs(Dξ)
)
ψ(ξ, x) . (3.17)

These observations lead to the following result:

Theorem 1 Each order of the asymptotic expansion ρ
(j)
t (ψ(ξ)) in

ρ
(ϵ)
t (ψ(ξ)) = ρ

(0)
t (ψ(ξ)) + ϵρ

(1)
t (ψ(ξ)) + ϵ2ρ

(2)
t (ψ(ξ)) + · · · (3.18)

of the unnormalized filtered characteristic function

ρ
(ϵ)
t (ψ(ξ)) = Ẽ

[
exp

(
iξ⊤X

(ϵ)
t

)
Z̃

(ϵ)
t

∣∣∣Yt] (3.19)
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satisfies

dρ
(j)
t (ψ(ξ)) = A

(0)
t (ξ)ρ

(j)
t (ψ(ξ))dt

+
{
A

(1)
t (ξ,Dξ)ρ

(j−1)
t (ψ(ξ)) +A

(2)
t (ξ,Dξ)ρ

(j−2)
t (ψ(ξ))

}
dt

+
(
H⊤

t (Dξ) + iξ⊤γt(Dξ)
)
ρ
(j−1)
t (ψ(ξ))dYt (3.20)

with initial condition ρ
(0)
0 (ψ(ξ)) = ρ0(ψ(ξ)) and the convention that

ρ(j)(ψ(ξ)) ≡ 0 (3.21)

for j < 0.

Considering a special case where there is no observation, one obtains a simple corollary
for a standard unconditional characteristic function.

Corollary 1 Each order of the asymptotic expansion ρ
(j)
t (ψ(ξ)) in

ρ
(ϵ)
t (ψ(ξ)) = ρ

(0)
t (ψ(ξ)) + ϵρ

(1)
t (ψ(ξ)) + ϵ2ρ

(2)
t (ψ(ξ)) + · · · (3.22)

of the characteristic function

ρ
(ϵ)
t (ψ(ξ)) = E

[
exp

(
iξ⊤X

(ϵ)
t

)]
(3.23)

satisfies

dρ
(j)
t (ψ(ξ)) = A

(0)
t (ξ)ρ

(j)
t (ψ(ξ))dt

+
{
A

(1)
t (ξ,Dξ)ρ

(j−1)
t (ψ(ξ)) +A

(2)
t (ξ,Dξ)ρ

(j−2)
t (ψ(ξ))

}
dt

with the convention that

ρ(j)(ψ(ξ)) ≡ 0 (3.24)

for j < 0.

The above result shows that one only has to deal with a set of decoupled ODEs in
terms of momentum {ξ} with a given observation path of Y . It is straightforward to
solve the above equation for each ξ up to a certain ϵ-order, and use discrete Fourier
transformation technique to obtain the density function. In Fourier analysis of smooth
functions, it is well-known that most of the information is carried by small number of
modes. In fact, in an example we provide in a later section, the resultant density function
does not change meaningfully once the number of ξ-modes reaches ∼ 30. This feature
combined with the decoupled dynamics of characteristic function is expected to weaken
the curse of dimensionality significantly, at least compared to typical PDE approaches.

Analytical calculation is also possible. Since the dynamics is linear, one easily obtains
the following results:

Zeroth order

ρ
(0)
t (ψ(ξ)) = e

∫ t
0 A

(0)
s (ξ)dsρ0(ψ(ξ)) (3.25)
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First order

ρ
(1)
t (ψ(ξ)) =

∫ t

0
e
∫ t
s A

(0)
u (ξ)du

{
A(1)

s (ξ,Dξ)ρ
(0)
s (ψ(ξ))ds

+
(
H⊤

s (Dξ) + iξ⊤γs(Dξ)
)
ρ(0)s (ψ(ξ))dYs

}
(3.26)

Higher order (j ≥ 2)

ρ
(j)
t (ψ(ξ)) =

∫ t

0
e
∫ t
s A

(0)
u (ξ)du

{(
A(1)

s (ξ,Dξ)ρ
(j−1)
s (ψ(ξ)) +A(2)

s (ξ,Dξ)ρ
(j−2)
s (ψ(ξ))

)
ds

+
(
H⊤

s (Dξ) + iξ⊤γs(Dξ)
)
ρ(j−1)
s (ψ(ξ))dYs

}
.

(3.27)

In the next section, we explain the inversion method to obtain the density function.

3.3 Density Formula

Let us consider the inverse Fourier transformation of ρ
(ϵ)
t (ψ(ξ)):

ϕ
(ϵ)
t (z) =

1

(2π)n

∫
Rn

e−iξ⊤zρ
(ϵ)
t (ψ(ξ))dnξ . (3.28)

This corresponds to the unnormalized conditional probability density of the signal X
(ϵ)
t

given the observation path of Y (See the discussion in Sec.2.2.). The desired normalized
conditional probability density of the signal is then given by

ϕ̄
(ϵ)
t (z) =

1

c
(ϵ)
t

ϕ
(ϵ)
t (z) (3.29)

where c
(ϵ)
t is a normalization factor defined as(

c
(ϵ)
t

)−1
=

∫
Rn

ϕ
(ϵ)
t (z)dnz . (3.30)

Thus, for applications, it suffices to calculate the expression of ϕ
(ϵ)
t (z).

3.3.1 Gaussian distribution for X0

For simplicity, let us first consider the case where X0 is distributed by a Gaussian law
N (x0; Σ0) with mean x0 and the covariance Σ0 of symmetric positive definite matrix. In
this case, we have

ρ0(ψ(ξ)) =

∫
Rn

eiξ
⊤xn[x;x0,Σ0]d

nx (3.31)

=
1√

(2π)n|Σ0|

∫
Rn

eiξ
⊤x exp

(
−1

2
(x− x0)⊤Σ−1

0 (x− x0)
)
dnx (3.32)

8



where n[x;x0,Σ0] is the probability density function for a random variable with Gaussian
low of N (x0; Σ0), and |Σ0| denotes the determinant of Σ0. The evaluation can be done
easily by considering the variable change from x to η given by

x = x0 + P0η (3.33)

with a matrix P0 satisfying
Σ0 = P0P

⊤
0 . (3.34)

Integration in terms of η easily leads to

ρ0(ψ(ξ)) = exp
(
iξ⊤x0 −

1

2
ξ⊤Σ0ξ

)
. (3.35)

Then, from the result of previous section, we have

ρ
(0)
t = exp

(
iξ⊤xt −

1

2
ξ⊤Σtξ

)
(3.36)

where

xt = x0 +

∫ t

0
fsds (3.37)

Σt = Σ0 +

∫ t

0
νsν

⊤
s ds . (3.38)

Thus, it is clear that X
(0)
t has a Gaussian distribution N (xt; Σt). If the initial position of

X0 is exactly known as X0 = x0, then one clearly has

ρ0(ψ(ξ)) = eiξ
⊤x0 (3.39)

and hence one can simply insert Σ0 = 0 in (3.36).

By the property of the exponential form and (3.26), one can check that ρ
(1)
t (ψ(ξ)) is

given by

ρ
(1)
t (ψ(ξ)) = ρ

(0)
t (ψ(ξ))

(∫ t

0
as(ξ)ds+ bs(ξ)dYs

)
(3.40)

with polynomial functions as(ξ) ∈ R and bs(ξ) ∈ R1×m of ξ

as(ξ) = ρ(0)s (ψ(ξ))−1A(1)
s (ξ,Dξ)ρ

(0)
s (ψ(ξ)) (3.41)

bs(ξ) = ρ(0)s (ψ(ξ))−1
(
Hs(Dξ)

⊤ + iξ⊤γs(Dξ)
)
ρ(0)s (ψ(ξ)) (3.42)

which can be expressed by Hermite polynomials in general.
Thus, the first order correction to the unnormalized conditional density can be ex-

pressed as

ϕ
(1)
t (z) =

1

(2π)n

∫
Rn

e−iξ⊤zρ
(1)
t (ψ(ξ))dnξ (3.43)

=

(∫ t

0
as(Dz)ds+ bs(Dz)

⊤dYs

)
n[z;xt,Σt] . (3.44)
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Here,

Dz = i
∂

∂z
(3.45)

and as(Dz), bs(Dz) denote the derivative operator of z obtained by replacing each ξ in the
functions by Dz.

Repeating the same arguments, one can confirm that ρ
(j)
t (ψ(ξ)) can be written, in

general, as

ρ
(1)
t (ψ(ξ)) = ρ

(0)
t (ψ(ξ))

∫ t

0

∫ sj

0
· · ·

∫ s2

0

(
Γs1,··· ,sj (ξ)ds1ds2 · · · dsj

+Γy1,s2,··· ,sj (ξ) dYs1ds2 · · · dsj
· · ·

+Γy1,y2,··· ,yj (ξ) dYs1dYs2 · · · dYsj
)
+ · · · (3.46)

with certain polynomial functions {Γs1,··· ,sj (ξ), · · · ,Γy1,··· ,yj (ξ)} of ξ with appropriate di-
mensions. The {· · · } denotes the term with integration order of (< j), which stems from
the existence of the ϵ-second order operator A(2). Therefore, the j-th order term of the
unnormalized conditional density is also given by the correction to the Gaussian distribu-
tion:

ϕ
(j)
t (z) =

1

(2π)n

∫
Rn

e−iξ⊤zρ
(j)
t (ψ(ξ))dnξ (3.47)

=

∫ t

0

∫ sj

0
· · ·

∫ s2

0

(
Γs1,··· ,sj (Dz)ds1ds2 · · · dsj

+Γy1,s2,··· ,sj (Dz) dYs1ds2 · · · dsj
· · ·

+Γy1,y2,··· ,yj (Dz) dYs1dYs2 · · · dYsj
)
n[z;xt,Σt] + · · · . (3.48)

In the case of no (or trivial) observation, one can get the asymptotic expansion of uncon-
ditional probability density by putting dY terms zero.

3.3.2 Non-Gaussian distribution for X0

Even when the initial distribution is not exactly Gaussian, if one can approximate it by
the form

ϕ0(z) = (some polynomial function of z)× n[z;x0,Σ0] , (3.49)

then the properties of the inverse transformation given in the previous section still hold
in almost the same way. This is, for example, the case when one approximates the initial
distribution by Gram-Charlier expansions. In the case when (3.49) holds, one can still

write ρ
(0)
t in the form

ρ
(0)
t (ψ(ξ)) = (some polynomial function of ξ)× exp

(
iξ⊤xt −

1

2
ξ⊤Σtξ

)
(3.50)

and it only changes the functions {Γ} in (3.48).
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4 A Direct Application to Kushner-Stratonovich Equation

We can also apply the technique to the Kushner-Stratonovich (KS) equation that de-
scribes the dynamics of the normalized conditional density of πt instead of ρt. Although
it suffices to work on the simpler Zakai equation in filtering problems, we directly treat
KS equation here to demonstrate the fact that the asymptotic expansion can also be ap-
plied to measure-valued non-linear systems. For the setup given in Sec.2.1, the Kushner-
Stratonovich equation is given by

dπt(φ) = πt(Atφ)dt+
{
πt

(
(ht +Bt)

⊤φ
)
− πt(h⊤t )πt(φ)

}
(dYt − πt(ht)dt) (4.1)

with a given initial value π0(φ). This is clearly a nonlinear equation for the measure-valued
process πt. See a textbook [1] for details of the derivation.

Let us now introduce the same perturbed system as in Sec.3.1. Then, one obtains the
KS equation for ψ(ξ, ·) as

dπ
(ϵ)
t (ψ(ξ)) = π

(ϵ)
t (A

(ϵ)
t ψ(ξ))dt

+ϵ
{
π
(ϵ)
t

(
(Ht +Bt)

⊤ψ(ξ)
)
− π(ϵ)t (H⊤

t )π
(ϵ)
t (ψ(ξ))

}
(dYt − ϵπ(ϵ)t (Ht)dt)

(4.2)

By the same polynomial-function approximations, one can rewrite it as

dπ
(ϵ)
t (ψ(ξ)) =

(
A

(0)
t (ξ) + ϵA

(1)
t (ξ,Dξ) + ϵ2A

(2)
t (ξ,Dξ)

)
π
(ϵ)
t (ψ(ξ))dt

+ϵ
{(
H⊤

t (Dξ) + iξ⊤γt(Dξ)
)
π
(ϵ)
t (ψ(ξ))− π(ϵ)t (H⊤

t )π
(ϵ)
t (ψ(ξ))

}
(dYt − ϵπ(ϵ)t (Ht)dt) .

(4.3)

Now, there appears π
(ϵ)
t (Ht) in the equation. This term does no harm since an arbitrary

order j of asymptotic expansion, we need π
(i)
t (Ht) only for i = 0, 1, · · · , j − 1 due to the

additional ϵ-factor. Thus, at the calculation of j-th order expansion, one can use

π
(i)
t (Ht) = Ht(Dξ)π

(i)
t (ψ(ξ))

∣∣∣
ξ=0

(4.4)

where π
(i)
t (ψ(ξ)) are already known for i ≤ j − 1.

Let us give the first few orders of expansions for the KS equation:
Zeroth order

dπ
(0)
t (ψ(ξ)) = A

(0)
t (ξ)π

(0)
t (ψ(ξ))dt (4.5)

with initial value π
(0)
0 (ψ(ξ)) = π0(ψ(ξ)).

First oder

dπ
(1)
t (ψ(ξ)) = A

(0)
t (ξ)π

(1)
t (ψ(ξ))dt

+
{(
H⊤

t (Dξ) + iξ⊤γt(Dξ)
)
π
(0)
t (ψ(ξ))− π(0)t (H⊤

t )π
(0)
t (ψ(ξ))

}
dYt (4.6)
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with π
(1)
0 (ψ(ξ)) = 0.

Second order

dπ
(2)
t (ψ(ξ)) = A

(0)
t (ξ,Dξ)π

(2)
t (ψ(ξ))dt

+
{
A

(1)
t (ξ,Dξ)π

(1)
t (ψ(ξ)) +A

(2)
t (ξ,Dξ)π

(0)
t (ψ(ξ))

−
(
H⊤

t (Dξ) + iξ⊤γt(Dξ)− π
(0)
t (H⊤

t )
)
π
(0)
t (ψ(ξ))π

(0)
t (Ht)

}
dt

+
{(
H⊤

t (Dξ) + iξ⊤γt(Dξ)− π
(0)
t (H⊤

t )
)
π
(1)
t (ψ(ξ))− π(1)t (H⊤

t )π
(0)
t (ψ(ξ))

}
dYt

(4.7)

with initial condition π
(2)
t (ψ(ξ)) = 0.

Although the system of ODEs does not keep the same structure as the unnormalized
distribution ρ, it is clear that one can still perform the perturbation order by order.
Furthermore, from the discussion given in the next section, it is not always necessary to
derive higher order asymptotic expansion for accurate estimation.

5 Substepping Method for Asymptotic Expansion

It is obvious by construction that the accuracy of approximation deteriorates once the
cumulative contributions from perturbation terms

ϵF, ϵσ, ϵγ, ϵH (5.1)

become bigger. This is a common problem of asymptotic expansion methods for various
applications. In particular for the filtering problems, requiring small perturbation terms
seems rather restrictive since it indicates that one can treat only noisy observations (i.e.
small H). In financial applications of the position-space asymptotic expansion, it is known
that one needs higher order approximation to reach enough accuracy for practical use in
long-dated or high-volatility situations. There exists many efforts to obtain higher order
corrections systematically to tackle these problems. See for examples [4, 6, 7] for recent
developments in this direction.

Let us consider the problem in the momentum-space approach. In Theorem 1, we have
seen that the relation

dρ
(j)
t (ψ(ξ)) = A

(0)
t (ξ)ρ

(j)
t (ψ(ξ))dt

+
{
A

(1)
t (ξ,Dξ)ρ

(j−1)
t (ψ(ξ)) +A

(2)
t (ξ,Dξ)ρ

(j−2)
t (ψ(ξ))

}
dt

+
(
H⊤

t (Dξ) + iξ⊤γt(Dξ)
)
ρ
(j−1)
t (ψ(ξ))dYt (5.2)

determines the correction terms with a given initial condition ρ0(ψ(ξ)). Although higher
order calculation is straightforward, there exists simpler and more efficient way to improve
the approximation. An obvious but important feature of (5.2) is the fact that it can be
applied to an arbitrary initial condition ρ0(ψ(ξ)). Since asymptotic expansion typically
works very well for short maturities, the above feature naturally leads to the following
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substepping idea for asymptotic expansion.

(1) Create an appropriate time grid {0 = T0 < T1 < · · · < TN = t} in such a way that the
asymptotic expansion converges well within each sub-period [Ti−1, Ti].
(2) Solve (5.2) of each ξ for s ∈ [T0, T1] up to k-th orders of asymptotic expansions. This
can be first or second order if the stepping size is small enough.
(3) Update the initial condition for the next period [T1, T2] by setting

ρ
(0)
T1

(ψ(ξ))←

 k∑
j=0

ϵjρ
(j)
T1

(ψ(ξ))

 obtained in step(2) . (5.3)

(4) Solve (5.2) for [T1, T2] with the updated initial condition.

(5) Repeat the procedures till the final period to obtain ρ
(j)
TN

(ψ(ξ)).

Although performing the above method analytically by hand is quite laborious due to a
large number of derivative operations, one can do it quite efficiently in numerical imple-
mentations. This is because amount of procedures required for dt and dY integration does
not change in the above operations. In fact, one obtains accurate results faster by per-
forming finer substepping with lower-order approximation than performing higher-order
approximation without substepping.

The substepping method may be very useful for general measure-valued nonlinear
equations. Although it is tedious to obtain the asymptotic expansion for complicated
dynamics, it is definitely possible for the first few orders as we have shown in the example
given in the previous section. If the approximation works well, at least within a very short
period, the above numerical procedures will extend the effective region for the asymptotic
expansion. If it is applied to a standard unconditional characteristic function, it should
also offer an efficient option pricing method, particularly for long-dated and high-volatile
setups.

6 Examples

6.1 Analytical Application to CIR Process

Now, let us first consider the approximation of one-dimensional CIR process with no
filtering issue, which helps to give a concrete image how analytical procedures work. We
study

dXt = θ(µ−Xt)dt+ σ
√
XtdVt (6.1)

with X0 = µ. All the parameters θ, µ and σ are positive constants satisfy 2θµ > σ2. Then,
the probability density of X is known to have a non-central chi-squared distribution.

For asymptotic expansion, we treat it as the following perturbed system: 3

dX
(ϵ)
t = ϵθF (X

(ϵ)
t )dt+ σ

(√
µ+ ϵR(X

(ϵ)
t )

)
dVt (6.2)

3One needs to put ϵ = 1 at the end for the comparison to the original model.
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with X
(ϵ)
0 = µ. Here, we have defined

F (x) = µ− x (6.3)

R(x) = Taylor expansion at (x = µ) of (
√
x−√µ) . (6.4)

In this example, we are going to adopt the 3rd-order expansion for R(x). Note that,
Taylor expansion provides a good polynomial approximation only when the process X
resides near µ. If volatility is very high, it may be better to perform a different method,
such as the minimization of the least square differences for appropriate range. We shall
see some examples in the next section. Systematic strategy for determining the optimal
choice of polynomial function remains as an important future work.

Then, the infinitesimal generator is given by

A(ϵ) = ϵθF (x)
∂

∂x
+

1

2
σ2

(√
µ+ ϵR(x)

)2 ∂2

∂x2
(6.5)

and hence

A(0)(ξ) = −1

2
ξ2σ2µ (6.6)

A(1)(ξ,Dξ) = iξθF (Dξ)− ξ2σ2
√
µR(Dξ) (6.7)

A(2)(ξ,Dξ) = −
1

2
ξ2σ2R2(Dξ) . (6.8)

From Corollary 1, analytical calculation can be performed as follows:

6.1.1 Zeroth order

We have

dρ
(0)
t (ψ(ξ)) = A(0)(ξ)ρ

(0)
t (ψ(ξ))dt (6.9)

with ρ
(0)
0 (ψ(ξ)) = eiξµ. Thus, it gives

ρ
(0)
t (ψ(ξ)) = exp

(
iξµ− 1

2
ξ2σ2µt

)
. (6.10)

Then, one obtains the zeroth order density function as

ϕ
(0)
t (z) =

1√
2πΣt

exp

(
−(µ− z)2

2Σt

)
(6.11)

with the definition of Σt = µσ2t.

6.1.2 First order

The first order correction is given by

ρ
(1)
t (ψ(ξ)) =

∫ t

0
e(t−s)A(0)(ξ)A(1)(ξ,Dξ)ρ

(0)
s (ψ(ξ))ds . (6.12)
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By straightforward differential operations lead to(
ρ(0)s (ψ(ξ))

)−1
A(1)(ξ,Dξ)ρ

(0)
s (ψ(ξ))

=
1

8
sσ2(8θµ+ σ2)ξ2 − 1

16
isσ4(8µ+ 3sσ2)ξ3

−1

8
s2µσ6ξ4 +

1

16
is3µσ8ξ5 . (6.13)

Thus, one has

ρ
(1)
t (ψ(ξ)) = ρ

(0)
t

(
a2ξ

2 + a3ξ
3 + a4ξ

4 + a5ξ
5
)

(6.14)

and also

ϕ
(1)
t (z) =

1

2π

∫
R
e−iξzρ

(1)
t (ψ(ξ))dξ

=

(
−a2

∂

∂z2
− ia3

∂3

∂z3
+ a4

∂4

∂z4
+ ia5

∂5

∂z5

)
ϕ
(0)
t (z) (6.15)

with the coefficients defined by

a2 =
1

16
t2σ2(8θµ+ σ2), a3 = −

1

16
it2σ4(4µ+ tσ2) (6.16)

a4 = −
1

24
t3µσ6, a5 =

1

64
it4µσ8 . (6.17)

Higher order calculation follows similarly with the help of analytical software if neces-
sary. In Figs. 1 and 2, we have given numerical results up to 3rd order asymptotic expan-
sions without substepping compared with the exact non-central chi-squared distribution.
When volatility is large, there appear sizable deviation from the correct distribution for
small x. This is understandable because Taylor expansion near the origin is not accurate.
Except a neighbor of the origin and (x < 0), one can see that the approximation well
reproduces the desired density function.

6.2 A Numerical Application to Beneš Filter

Now, we study an example of Beneš filter, where the drift of the signal process is nonlinear.
This is a special example for which there exists an exact solution in the class of non-
Gaussian filtering problems, and hence quite useful to test the current method. In the
class of Beneš filter [3], we choose a following one-dimensional example:

dXt = f(Xt)dt+ σdVt (6.18)

dYt =
(
h1Xt + h2

)
dt+ dWt (6.19)

with X0 = Y0 = 0, where f(x) is given by

f(x) = aσ tanh
(
a
x

σ

)
. (6.20)
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Here, a, σ, h1 and h2 are all constants. In this case, the exact filtered density of Xt is given
by

πexactt (z)

=
1

nt
cosh

(
a
z

σ

)
exp

(
−h1
2σ

coth(th1σ)z
2

+
(
h1

∫ t

0

sinh(sh1σ)

sinh(th1σ)
dYs +

h2
σ sinh(th1σ)

− h2
σ

coth(th1σ)
)
z

)
(6.21)

where nt is the normalization factor to guarantee∫
R
πexactt (z)dz = 1 . (6.22)

For this problem, we setup the following perturbed approximation: 4

dX
(ϵ)
t = ϵF (X

(ϵ)
t )dt+ σdVt (6.23)

dYt = ϵH(X
(ϵ)
t )dt+ dWt (6.24)

with X
(ϵ)
0 = Y0 = 0. Here, we use

H(x) = h1x+ h2 (6.25)

F (x) = (polynomial approximation of) f(x) . (6.26)

We explain the details of polynomial approximation later.
The infinitesimal generator contains only up to ϵ-first order term. We have

A(ϵ) = ϵF (x)
∂

∂x
+

1

2
σ2

∂2

∂x2
(6.27)

and

A(0)(ξ) = −1

2
ξ2σ2 (6.28)

A(1)(ξ,Dξ) = iξF (Dξ) (6.29)

From Theorem 1, one needs to solve

ρ
(j)
t (ψ(ξ)) =

∫ t

0
e−

1
2
(t−s)ξ2σ2

{
iξF (Dξ)ρ

(j−1)
s (ψ(ξ))ds+

(
h1Dξ + h2

)
ρ(j−1)
s (ψ(ξ))dYs

}
(6.30)

starting from the zeroth order solution:

ρ
(0)
t (ψ(ξ)) = exp

(
−1

2
tξ2σ2

)
. (6.31)

4As before, one needs to put ϵ = 1 at the end for the comparison to the original model.
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6.2.1 Polynomial-function approximation

We now discuss how to obtain the polynomial approximation F (x) for the nonlinear drift
of the signal:

f(x) = aσ tanh(ax/σ) . (6.32)

Due to the normalization by σ, we can roughly expect∣∣∣∣Xt

σ

∣∣∣∣ . 1 (6.33)

for t ∈ [0, 1]. This implies that Taylor expansion around x = 0 is a natural candidate of
F (x) when |a| . 1. When |a| & 1, the two plateaus of f(x) start to play an important
role in the range (6.33). Unfortunately, however, Taylor expansion does not reproduce the
plateaus but strongly diverging behavior within the range (6.33) instead, which destabilizes
the numerical result. Thus, we take [−5σ, 5σ] range with a step size of 0.2σ, and carry out
least-square method (LSM) to fit a 11-dimensional odd function for F (x). We also adopt
the weight function g(x) defined as

g(x) = exp
(
−w x2

2σ2

)
(6.34)

with various factor w. Here, w = 0 corresponds to a pure LSM in the 5σ range and the
polynomial function well recovers the two plateaus of f(x) in the wide range, while it has
a relatively poor fit around the origin. On the other hand, higher w gives finer fit and
hence finer description of the density near x = 0. In this case, however, if one continues to
increase w it starts to destabilize the numerical result as in the case for Taylor expansion.
Thus, we need to take a balance of this trade-off, especially when |a| > 1.

6.2.2 Numerical Results

In the following numerical examples, we take t = 1 as the maturity and use 1, 000 steps to
create the sample observation (and signal) path. We then integrate (6.30) with the same
time step dt = 10−3 with a given path of Y . For differentiation, we use a standard finite
difference method. Finally, a discrete Fourier transformation is used to obtain the density
function.

In the first numerical example given in Fig. 3, we have used a set of parameters
{a = 0.8, σ = 0.5, h1 = 0.8, h2 = 0.5}, and a sample path of Y given in the top graph. We
have used w = 2.0 for getting coefficients of polynomial function F (x). The middle graph
for the conditional density functions contains the exact one denoted by a red line labeled
as ”Benes”, estimated conditional densities from (0th, 3rd, 20th)-order asymptotic expan-
sion without substepping method, and those from 1st order expansion with (100, 1000)
sub-periods. One can clearly see the benefit of substepping method explained in Sec. 5:
Although there is no clear improvement from 3rd to 20th order approximation, the substep-
ping method with small sub-period provides almost exact fit to the true density function.

In Fig. 4, we have used h1 = 10.0, which is an example of small-noise observation.
Since a = 0.5 is relatively small, polynomial approximation for f(x) is quite accurate
(w = 2.0). The calculation has been performed with substepping method with (100, 125,
200, 1,000) sub-periods. Fine substepping gives almost exact density even in this case. In
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particular, the significant reduction of the variance of the conditional density due to high
quality information provided by the observation process is well reproduced by the repeated
application of asymptotic expansion. In this example, approximation without substepping
is too unstable and gives only meaningless numerical results. As suggested in Sec. 5, the
size of perturbation terms itself does not seem to be a relevant problem for asymptotic
expansion as long as we have accurate enough polynomial function approximation and the
substepping method.

When one increases a, f(x) becomes like a step function and makes it difficult to
achieve accurate polynomial approximation for the relevant range. Here, the choice of
LSM weight w starts to affect the estimated density. In Fig. 5, we have studied the case
of a = 1.5 with several choice of w. Here, all the calculations were done with substepping
method with 1000 sub-periods. The estimated density are stable for w = 0.5 ∼ 2.5, it
starts to give completely meaningless results for higher w. Note that, the impacts of LSM
weight is highly dependent on the order of the polynomial function. As is easily guessed,
the change of estimated density is more significant when lower order polynomials are used.
In Fig. 6, we have done similar analysis for an example of a = 2.0, which reveals more
clearly separated two peaks.

Remark :
In the above examples, we have used time-independent function for F (x). However, when
there exists a significant drift for the signal process, such as large |a| in the above ex-
ample, making the polynomial functions time dependent is quite likely to provide better
estimation. If we have the information about the evolution of the conditional mean, we can
change the center of polynomial-function approximation to replicate the original nonlinear
function more accurately in the relevant region. Initial guess can be obtained by extended
Kalman-Bucy filter or time independent F (x) in the current method, for examples.

7 Conclusions and Discussions

In the paper, we have developed an asymptotic expansion technique in momentum space.
Fourier transformation combined with polynomial-function approximation gives a closed
recursive system of ODEs as an asymptotic expansion for the unnormalized conditional
characteristic function. Thanks to the simplicity of the ODE system, higher order calcu-
lation can be performed easily. It also allows an efficient implementation of substepping
method of asymptotic expansion. As long as polynomial approximation of the nonlinear
terms is accurate, the size of nonlinear terms ceases to be a big obstacle for obtaining an
accurate estimation. Applications to more realistic multi-dimensional filtering problems as
well as other (financial) problems, such as option pricing, are left for the future research.

Let us make a brief comment on the remaining problems and possible future directions
of research. As one can see, the method still suffers from the curse of dimensionality
although it should be significantly weaker than typical PDE approaches. In asymptotic
expansion method in the position space, the problem of dimensionality does not exist. This
is one clear advantage to work in the position space. On the other hand, the substepping
method looks difficult to implement for the latter, which limits the applicable parameter
space unless higher order correction terms converge well. It will be quite beneficial if there
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is any way to combine the advantages from the both sides.
Since we can only use finite order polynomials, the estimated density depends how they

are calibrated. Although one can check it by actually performing various numerical tests,
it is desirable to have sound systematic strategy. Related to this problem, when one has
nonlinear terms difficult to fit by polynomials, the idea of change-of-variable developed
in [8] may be proved to be useful. Suppose, one defines a new process X̃ by using some
function Ψ(·) as

X̃t = Ψ(Xt) . (7.1)

If X̃ has drift and diffusion terms that are well approximated by polynomial functions,
one can get more accurate estimation of

ρ̃t(ξ) = E
[
eiξ

⊤X̃t

]
(7.2)

and hence also its density

ϕ̃t(z) =
1

(2π)n

∫
Rn

e−iξ⊤zρ̃t(ξ)d
nξ . (7.3)

Then, one can recover the density of the original Xt as

ϕt(z) = ϕ̃
(
Ψ(z)

)∣∣∣J(z)∣∣∣ (7.4)

where |J | denotes the determinant of a Jacobian matrix with the elements of (∂Ψi(z)/∂zj).
Thus some of the errors can be absorbed if there exists an appropriate choice of Ψ. The
research for this direction also looks worth pursuing.
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Figure 1: t = 3, µ = 1, σ = 0.15, θ = 0.1. (Black, Green, Blue, Purple) lines denote
(0th, 1st, 2nd, 3rd) order approximation of asymptotic expansion, respectively. Red line
denotes the exact density function given by a non-central chi-squared distribution. The
second graph represents the difference from the exact density function.
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Figure 2: t = 3, µ = 1, σ = 0.33, θ = 0.1. (Black, Green, Blue, Purple) lines denote
(0th, 1st, 2nd, 3rd) order approximation of asymptotic expansion, respectively. Red line
denotes the exact density function given by a non-central chi-squared distribution. The
second graph represents the difference from the exact density function.
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Figure 3: t = 1, dt = 10−3, a = 0.8, σ = 0.5, h1 = 0.8, h2 = 0.5 with polynomial function
fitted with w = 2.0. From top to bottom, the sample path, exact and approximated
density functions, and the difference of the approximated densities from the exact one. In
the middle graph, a red line labeled by ”Benes” denotes the exact density function.
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Figure 4: t = 1, dt = 10−3, a = 0.5, σ = 0.5, h1 = 10.0, h2 = 0.5 with polynomial function
fitted with w = 2.0. From top to bottom, the sample path, exact and approximated
density functions, and the difference of the approximated densities from the exact one. In
the middle graph, a red line labeled by ”Benes” denotes the exact density function.
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Figure 5: t = 1, dt = 10−3, a = 1.5, σ = 0.5, h1 = 0.7, h2 = 0.5 with 1, 000 substeps
with 1st order asymptotic expansion. From top to bottom, the sample path, exact and
approximated density functions, and the difference of the approximated densities from the
exact one. In the middle graph, a red line labeled by ”Benes” denotes the exact density
function.
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Figure 6: t = 1, dt = 10−3, a = 2.0, σ = 0.5, h1 = 1.0, h2 = 0.5 with 1, 000 substeps
with 1st order asymptotic expansion. From top to bottom, the sample path, exact and
approximated density functions, and the difference of the approximated densities from the
exact one. In the middle graph, a red line labeled by ”Benes” denotes the exact density
function.
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