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Abstract 

  

 We investigate allocation problems that generalize auction and bargaining, namely 

multiunit exchanges, where both a central planner and participants bring homogeneous 

commodities to sell altogether, and there exist restrictions on feasible allocations. We 

characterize the optimal mechanism in terms of revenue-maximization under dominant 

strategy incentive compatibility and ex-post individual rationality. We introduce 

modified virtual valuation, and show that, irrespective of the restrictions, the 

optimization can be replaced with the maximization of the sum of modified virtual 

valuations. We apply this result to an important class of allocation problems for 

heterogeneous items with single-item demands based on Mussa and Rosen (1978). 
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1. Introduction 

 

 This paper investigates the problem of optimal design of trading mechanisms with 

asymmetric information, which generalizes auction and bargaining, namely multiunit 

exchange, under the standard assumptions such as quasi-linearity, private values, 

independent type distributions, risk-neutrality, and no externality. We assume 

single-dimensional type spaces. Multiple homogeneous commodities are allocated 

among players (participants). The central planner designs the trading mechanism in 

order to maximize his expected revenue in a consistent manner with the incentive 

constraints of dominant strategy incentive compatibility and ex post individual 

rationality. 

 We demonstrate an approach to extend the basic concepts explored by Myerson 

(1981) and Myerson and Satterthwaite (1983) such as virtual valuations from a limited 

class of single-unit allocation problems to a more general class of multiunit allocation 

problems with restrictions on the set of feasible allocations3. The present paper has the 

following two substantial points of generalization from auction and bargaining: 

(i) Both the central planner and the participants bring commodities to sell altogether at 

the same time. Each participant possesses multiple units as his initial endowment, which 

he has the option to sell instead of purchasing additional units. Moreover, he has the 

outside option not to participate in the allocation problem and instead consume his 

initial endowment by himself. 

(ii) Feasible allocations that the central planner can select are restricted to a particular 

subset of commodity bundle profiles. 

The point (i) implies that the central planner earns his revenue not only by selling 

his endowment but also by exploiting brokerage fee for assisting the exchanges across 

players. Based on this point of generalization, this paper investigates the optimal 

mechanism design not only for the auction framework but also for the more general 

framework termed multiunit exchange, which combines auction with bargaining a la 

                                                      
3 There exist previous works concerning optimal multi-object auction in terms of the central 
planner’s revenue such as Maskin and Riley (1989), Palfrey (1983), Branco (1996), Monteiro (2002), 
Ulku (2009), and Edelman and Schwarz (2010). 



3 
 

Myerson and Satterthwaite (1983).4 Hence, this paper regards the central planner as the 

hybrid of a seller and an intermediary who monopolistically provides a platform that 

enables transaction among players. 

The outside opportunity value that each player can obtain by consuming his initial 

endowment by himself could be dependent on his type. This type-dependence makes it 

non-trivial to incentivize each player to participate in the allocation problem at all times, 

because he (she) might require the central planner to pay the excessive bargaining rent 

induced by his outside option whose value is unknown to the central planner. Hence, we 

make a modification of the key concept termed virtual valuation in the optimal auction 

design literature; we replace the virtual valuation for each player with the valuation 

reduced not only by his informational rent but also by his bargaining rent, which is 

termed the modified virtual valuation (MVV). In this case, the single-unit term of MVV, 

i.e., modified unit virtual valuation (MUVV), implies marginal revenue if this player 

purchases additional units, whereas it implies marginal cost if he sells his endowment. 

With this concept replacement, we can show a characterization result according to 

the similar method to Myerson (1981) and Myerson and Satterthwaite (1983); the 

optimization problem in terms of the central planner’s revenue can be replaced with the 

problem of maximizing the expected sum of the participants’ MVVs in terms of 

non-decreasing allocation rule. Importantly, this characterization result holds 

irrespective of what kind of restrictions are imposed on the set of feasible allocations, as 

implied by the point (ii). 

We then demonstrate a tractable manner of constructing the optimal exchange 

mechanism; we show a mild condition termed monotonicity concerning MUVV, which 

could be sufficient for the regularity property on the trading environment that makes it 

much easier to construct the optimal mechanism. With this regularity, the optimization 

problem can be replaced with the much simpler problem of maximizing the sum of the 

participants’ MVVs in terms of allocation in the ex post term. 

 By utilizing these results, we can investigate an important class concerning 

exchanges of multiple heterogeneous items associated with the multiplicative structure 

explored by Mussa and Rosen (1978); these heterogeneous items can be treated like 

                                                      
4  For other related works to bargaining with asymmetric information, see Chatterjee and  
Samuelson (1983) and Segal and Whinston (2011). 
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different bundles of a homogeneous commodity. We assume single-item demands in that 

each player demands at most a single item. We show that the allocation problem for 

heterogeneous items with single-item demands can be replaced with a particular 

multiunit exchange problem with restrictions on feasible allocations; we demonstrate a 

tractable manner of constructing the optimal trading mechanism, which could be 

regarded as generalizing Theorem 4 in Myerson and Satterthwaite (1983) and the 

arguments on optimal sponsored search auctions by Edelman and Schwarz (2010). 

 The companion paper by Matsushima (2012) firstly investigated multi-object 

exchange mechanisms as unifying auction and bargaining, which focused on the 

achievement of efficiency instead of revenue-maximization. Milgrom (2007) and 

Cramton (2011) are also related to the present paper. 

 The organization of this paper is as follows. Section 2 shows the basic model. 

Section 3 defines the optimization problem for the central planner’s revenue, defines the 

concept of modified virtual valuation (MVV), and shows a characterization result for 

optimal mechanism design. Section 4 introduces the regularity condition, and provides 

the monotonicity condition on modified unit virtual valuations (MUVVs) that is 

sufficient for this regularity. Section 5 investigates the allocation problems for multiple 

heterogeneous items with single-item demands. Section 6 concludes. 
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2. The Model 

 

 We investigate an allocation problem termed multiunit exchange, in which both a 

central planner and participants bring homogeneous commodities to sell altogether, and 

there exist some restrictions on the set of feasible allocations. Let {1,..., }N n  denote 

the set of all players (participants), where 2n  . Each player i N  has a type 

[0,1]i   in a single-dimensional type space that is randomly and independently 

determined according to a probability density function ( ) 0i ip   , 5  where 

1

0

( ) 1
i

i ip d


 


 . Let us denote by 
0

( ) ( )
i

i

i i i i

s

P p s ds





   the associated cumulative 

distribution. There exist e  units of the homogenous commodity to be traded, where e  

is a fixed positive integer. Each player i N  possesses ie  units of this commodity as 

his initial endowment, where ie  is a non-negative integer. We assume that i
i N

e e


 ; 

the central planner possesses the remaining 0 i
i N

e e e


   units. An allocation is 

defined as a vector of non-negative integers 1( )n
i ia a  , where i

i N

a e


 ; each player 

i N  is assigned ia  units, whereas the central planner is assigned the remaining 

i
i N

e a


  units. Let us denote by A  the set of all allocations. Each player 'i s  payoff 

function has a quasi-linear and risk-neutral form with private values, i.e., ( , )i i i iv a s  , 

where is R  denotes the monetary transfer to him from the central planner, and 

:{0,..., } [0,1]iv e R   denotes his valuation function. 6  We assume that it is 

differentiable in [0,1]i  . We assume that 

(1)   (0, ) 0i iv    for all [0,1]i  , and ( ,0) 0i iv a   for all {0,..., }ia e . 

                                                      
5 Most previous works concerning optimal multi-object auction design such as Branco (1996), 
Monteiro (2002), Athey and Elison (2011), Edelman and Schwarz (2011), and Ulku (2009) 
commonly assumed single-dimensional type spaces. 
6 The central planner has zero valuation for any commodity bundle 
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We define the unit valuation for player i N  associated with ( , ) [0,1] {1,..., }i ia e    

by 

   ( , ) ( , ) ( 1, )i i i i i i i i iw a v a v a     , 

implying player 'i s  valuation for the ( )ia -th unit consumption. 

 

Assumption 1: For every i N , every [0,1]i  , and every {1,..., }ia e , 

(2)   ( , ) 0i i iw a   , 

and 

(3)   
( , )

0i i i

i

w a 






. 

 

 The inequalities (2) imply free disposal in that his valuation for any unit 

consumption is non-negative. From (2), it follows that 

(4)   ( , )i i iv a   is non-decreasing in {0,..., }ia e . 

The inequalities (3) imply that the higher each player’s type is, the higher his unit 

valuation is. From (3), it follows that 

(5)   
( , )i i i

i

v a 





 is non-decreasing in {0,..., }ia e . 

From (3), it follows that iv  satisfies increasing difference in that for every 

2( , ) {0,..., }i ia a e   and every 2( , ) [0,1]i i   , 

(6)   ( , ) ( , ) ( , ) ( , )i i i i i i i i i i i iv a v a v a v a          if i ia a  and i i  . 

From (3), it follows that 

(7)   
( , )

0i i i

i

v a 






 for all {1,..., }ia e . 

 A direct revelation mechanism, shortly a mechanism, is defined as ( , )f x , where 

( ) : [0,1]n
i i Nf f A   is an allocation rule, ( ) : [0,1]n n

i i Nx x R   is a payment 

rule, : [0,1] {0,..., }n
if e , and :[0,1]n

ix R . We denote by F  the set of all 

allocation rules. We denote by X  the set of all payment rules. We require dominant 

strategy incentive compatibility as follows. 
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Dominant Strategy Incentive compatibility (DIC): For every i N  and every 

[0,1]n , 

   ( ( ), ) ( ) ( ( , ), ) ( , )i i i i i i i i i i i iv f x v f x             for all [0,1]i . 

 

 Let us denote by F F  the set of all allocation rules f  satisfying that for every 

i N , if  is non-decreasing in [0,1]i  . 

 

Lemma 1: With Assumption 1, a mechanism ( , )f x  satisfies DIC if and only if 

f F  , 

and for every ( , ) [0,1]ni N   , 

(8)   
0

( ( , ), )
( ) ( ( ), ) ( )

i

i

i i i i i
i i i i i i i

is

v f s s
x ds v f D

s

    





  

 , 

where 1:[0,1]n
iD R   is an arbitrary function. 

 

Proof: It is clear from the envelope theorem in the auction theory literature (See 

Milgrom (2004) and Krishna (2010), for instance) that the equalities (8) are necessary 

for ( , )f x  to satisfy DIC. Moreover, if ( , )f x  satisfies DIC, then, for every 

1( , ) [0,1]n
i    , 

( ( ), ) ( ( , ), ) ( , ) ( )i i i i i i i i i i i iv f v f x x             

( ( ), ) ( ( , ), )i i i i i i i iv f v f        , 

which along with (6) implies f F  . 

  Suppose that ( , )f x  satisfies f F   and (8). Then, from (5) and (7), it follows 

that for every i N , and every 2( , ) [0,1]i i   , if i i  , then 

   ( ( ), ) ( ) { ( ( , ), ) ( , )}i i i i i i i i i i i iv f x v f x              

( ( , ), )
( ( ), ) ( ( ), )

i

i i

i i i i i
i i i i i i i

is

v f s s
ds v f v f

s





    



   
 , 

which implies that 
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   ( ( ), ) ( ) ( ( , ), ) ( , )i i i i i i i i i i i iv f x v f x              . 

In the same manner, it follows that 

   ( ( ), ) ( ) { ( ( , ), ) ( , )}i i i i i i i i i i i iv f x v f x              

( ( , ), )
( ( , ), ) ( ( , ), )

i

i i

i i i i i
i i i i i i i i i i i

is

v f s s
ds v f v f

s





      
 



     
 , 

which implies that 

   ( ( ), ) ( ) ( ( , ), ) ( , )i i i i i i i i i i i iv f x v f x             . 

Hence, we have proven that ( , )f x  satisfies DIC. 

Q.E.D. 

 

Each player has the outside option not to participate in the allocation problem and 

instead consume his initial endowment by himself. Each player can exercise this option 

at any time in the ex post stage. Hence, we require for a mechanism ex post individual 

rationality (EPIR) in that any player never wants to exercise this option in the ex post 

stage; the mechanism guarantees him at least the same value as his type-dependent 

outside opportunity value that is given by ( , )i i iv e  . 

 

Ex Post Individual Rationality (EPIR): For every i N  and every [0,1]n , 

   ( ( ), ) ( ) ( , )i i i i i i iv f x v e     . 

 

Let us fix an arbitrary subset Â A  as the set of feasible allocations; we assume 

that the profile of the players’ initial endowments is feasible, i.e., ˆ( )i i Ne A  . An 

allocation rule f F  is said to be feasible if 

ˆ( )f A   for all [0,1]n . 

Let us denote by a non-empty subset F̂ F  the set of all feasible allocation rules. We 

assume that the central planner is restricted to select any allocation rule f  from this 

subset F̂ . 
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3. Revenue-Maximization 

 

 The central planner attempts to maximize his expected revenue by selecting any 

mechanism under the constraints of DIC and EPIR. We define the optimization problem 

concerning the central planner’s expected revenue as 

(9)   
ˆ( , )

max [ ( )]i
f x F X

i N

E x 
  

  subject to DIC and EPIR. 

Let us define the virtual valuation for player i N  associated with 

( , ) {0,..., } [0,1]i ia e    as 

   
1 ( ) ( , )

( , ) ( , )
( )
i i i i i

i i i i i i
i i i

P v a
u a v a

p

  
 

 
 


. 

We further define the modified virtual valuation (MVV) for player i N  associated 

with ( , ) {0,..., } [0,1]i ia e    as 

   *( , ) ( , )i i i i i iu a u a          if i ia e , 

and 

   * ( , ) ( , )1
( , ) ( , ) { }

( )
i i i i i i

i i i i i i
i i i i

v e v a
u a u a

p

  
  

 
  

 
 if i ia e . 

Note that the value of 

( , ) ( , )1
{ }

( )
i i i i i i

i i i i

v e v a

p

 
  

 


 
 

implies player 'i s  bargaining rent induced by his outside option. When the central 

planner assigns to player i  lesser than his initial endowment, in order to prevent him 

from exercising his outside option, the central planner has to make up for the loss that 

this player takes by paying back to him this bargaining rent. 

 

Theorem 2: With Assumption 1, a mechanism ( , )f x  is the solution to the optimization 

problem (9) if and only if 

ˆf F F  , 

(10)   * *[ ( ( ), )] [ ( ( ), )]i i i i i i
i N i N

E u f E u g   
 

   for all ˆg F F  , 

and x  is given by (8), where for every i N  and every 1[0,1]n
i 

  , 
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(11)   ( ) max{ ( , )
i

i i i i iD v e


  
0

( ( , ), )
}

i

i

i i i i i
i

is

v f s s
ds

s

 






 , 

that is, 

(12)   
0

( ( , ), )
( ) ( ( ), )

i

i

i i i i i
i i i i i

is

v f s s
x ds v f

s

   




 

  

0

( ( , ), )
max{ ( , ) }

i

i
i

i i i i i
i i i i

is

v f s s
v e ds

s





 




 

 . 

 

Proof: It is clear from Lemma 1 that if ( , )f x  is the solution to the optimization 

problem (9), it must satisfy ˆf F F  , (8), and (11). 

 Suppose that ˆf F F  . For each i N  and each 1[0,1]n
i 

  , let us define 

( ) [0,1]i i    by 

( ) 1i i      if ( )i if e   for all [0,1]i  , 

( ) 0i i      if ( )i if e   for all [0,1]i  , 

and 

( ( ), )i i i i if e      and ( )i if e   for all [0, ( ))i i i    otherwise. 

Player i  is assigned less than his initial endowment if and only if ( )i i i   . From 

(1), it follows that ( )i i i    maximizes the value of 

   
0

( ( , ), )
( , )

i

i

i i i i i
i i i i

is

v f s s
v e ds

s

  






 . 

Hence, from (11), 

   
( )

0

( , ) ( ( , ), )
( ) { }

i i

i

i i i i i i i i
i i i

i is

v e s v f s s
D ds

s s

  







 
 

  , 

and therefore, 

0

( ( , ), )
( ) ( ( ), )

i

i

i i i i i
i i i i i

is

v f s s
x ds v f

s

   




 

  

( )

0

( , ) ( ( , ), )
{ }

i i

i

i i i i i i i i
i

i is

v e s v f s s
ds

s s

  





 
 

  . 
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Let us specify :{0,..., } [0,1]iz e R   by 

   ( , ) 0i i iz a         if i ia e , 

and 

   ( ,
( , ) ( , )

) i i i i i i

i i
i i i

v e a
z a

v 
 

  


 
   if i ia e , 

implying player 'i s  bargaining rent, i.e., 

   * ( , )
( , ) ( , )

( )
i i i

i i i i i i
i i

z a
u a u a

p

 


  . 

Hence, 

  

1

0 0

( ( , ), )
[ ( ) | ] { ( ( ), )} ( )

i

i i

i i i i i
i i i i i i i i i

is

v f s s
E x ds v f p d

s





     


 


 

   

  

1

0

( ( ), )
i

i i i iz f d


  


   

  

1

0

( ( ), ) 1 ( ) ( ( ), )
[ { } ( ( ), ) ] ( )

( ) ( )
i

i i i i i i i i
i i i i i i

i i i i i

v f P z f
v f p d

p p

       
  

 
  

  

1

0

( ( ), )
{ ( ( ), ) } ( )

( )
i

i i i
i i i i i i

i i

z f
u f p d

p

    


    

1
*

0

( ( ), ) ( )
i

i i i i i iu f p d


   


   . 

From these observations, we have proven that 

*[ ( )] [ ( ( ), )]i i i
i N i N

E x E u f  
 

   . 

Clearly, the inequalities (10) imply the solution to the optimization problem (9). 

Q.E.D. 

 

From the proof of Theorem 2, it must be noted that the expected revenue induced 

by the solution ( , )f x  to the optimization problem (9) is equivalent to the expected 

value of the sum of the players’ MVVs, i.e., 

   *[ ( )] [ ( ( ), )]i i i
i N i N

E x E u f  
 

   . 
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It is substantial in this paper to note that Theorem 2 generally holds irrespective of what 

kind of restrictions are imposed on the set of feasible allocations Â . This generality 

plays a crucial role in investigating an important class of allocation problems with 

multiple heterogeneous items, the detail of which will be explained in Section 5. 
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4. Regularity 

 

 The optimization problem (9) is said to be regular if there exists a feasible and 

non-decreasing allocation rule ˆf F F   such that 

(13)   * *( ( ), ) ( , )i i i i i i
i N i N

u f u a  
 

   for all ˆa A  and all [0,1]n . 

With regularity, we can replace (10) with (13), which can simplify the optimization 

problem; from Theorem 2, it is clear that a mechanism ( , )f x  is the solution to the 

optimization problem (9) if and only if ˆf F F   and it satisfies (12) and (13). Based 

on this observation, this section will demonstrate a sufficient condition for this 

regularity. 

 We define the unit virtual valuation for player i N  associated with each 

( , ) [0,1] {1,..., }i ia e    as 

   ( , ) ( , ) ( 1, )i i i i i i i i iy a u a u a     . 

We further define the modified unit virtual valuation (MUVV) for player i N  

associated with each ( , ) [0,1] {1,..., }i ia e    as 

   * * *( , ) ( , ) ( 1, )i i i i i i i i iy a u a u a     . 

Note that 

   * 1 ( ) ( , )
( , ) ( , )

( )
i i i i i

i i i i i i
i i i

P w a
y a w a

p

  
 

 
 


  if i ia e , 

and 

   * ( ) ( , )
( , ) ( , )

( )
i i i i i

i i i i i i
i i i

P w a
y a w a

p

  
 


 


  if i ia e . 

The above defined MUVV implies marginal revenue, 

{(1 ( ) ( )}

( )

i i i i
i

i i

P w

p

 








, if player 

i  purchases additional units ( i ia e ), whereas it implies marginal cost 



14 
 

{ ( ) ( )}

( )

i i i i
i

i i

P w

p

 







 if he sells his endowment ( i ia e ). We assume the following mild 

properties of monotonicity for MUVV.7 

 

Assumption 2: For every i N , 

(14)   *( , )i i iy a   is non-increasing in {0,..., 1}ia e   for all [0,1]i  , 

(15)   *( , )i i iy a   is non-decreasing in [0,1]i   for all {0,..., }ia e . 

 

Theorem 3: With Assumptions 1 and 2, the optimization problem (9) is regular. 

 

Proof: Suppose that there exists no allocation rule that is included in F̂ F  and 

satisfies (13). Then, there exists ˆf F  that satisfies (13) but is not included in F . 

Without loss of generality, we can assume that there exist i N , [0,1]n , and 

i i    such that 

   ( ) ( , )i i i if f   , 

   * *( ( ), ) ( ( , ), )j j j j j j j j
j N j N

u f u f    
 

  , 

and 

   * *

\{ }

( ( ), ) ( ( ), )i i i j j j
j N i

u f u f   


    

   

* *

\{ }

( ( , ), ) ( ( , ), )i i i i i j j j j j
j N i

u f u f      


     . 

We can also assume without loss of generality that one of the last two inequalities 

strictly holds. Hence, it follows that 

   * * * *( ( ), ) ( ( , ), ) ( ( ), ) ( ( , ), )i i i i i i i i i i i i i i i iu f u f u f u f                , 

that is, 

    
( ) ( )

* *

( , ) ( , )

( , ) ( , )
i i

i i i i i i i i

f f

i i i i i i
a f a f

y a y a
 

   

 
   

  . 

                                                      
7 The requirement in Assumption 2 is independent of the specification of Â . 
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This implies i i  , because of (15). This is a contradiction. 

Q.E.D. 
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5. Heterogeneous Items 

 

 This section investigates an important class of allocation problems concerning 

multiple (not homogeneous but) heterogeneous items that is associated with the 

multiplicative structures explored by Mussa and Rosen (1978).8 We will demonstrate a 

tractable manner for modeling this class as a special case of the analysis in the previous 

sections. 

 Let us denote by {1,..., }L m  a finite and nonempty set of heterogeneous items, 

where m n . Each player i N  possesses a single item il L  as his initial 

endowment, where 

   i jl l  for all i N  and all \{ }j N i . 

According to Mussa and Rosen, let us denote by ( ) {0}q l R   the quality of each 

item l L ; each player i  with type i  has valuation for each item l  that is 

expressed by a linear form of 

( ) iq l  . 

For convenience, we assume that 

   (1) (2) ( )q q q m     . 

The central planner attempts to maximize his expected revenue on the assumption of 

single-item demands in that each player is assigned just a single item. 

We can model the above problem as a special case of our allocation problems in the 

following manner. For convenience of arguments, we assume that there exist a positive 

real number 0   and a non-negative integer ( )e l  for each l L  such that 

  ( ) ( )q l e l  for all l N .9 

We can treat each item l L  just like the bundle of ( )q l  units of some homogeneous 

commodity. Let us specify 

                                                      
8 There are related works to Mussa and Rosen in auction theory such as Edelman, Ostrovsky, and 
Schwarz (2007), Varian (2007), Gershkov and Moldovanu (2009), Edelman and Schwarz (2010), 
and Athey and Ellison (2011). 
9 However, we can eliminate this assumption without any substantial change, because any profile of 

qualities ( ( ))l Lq l   can be approximately described by a well-selected ( ,( ( )) )l Le l  . 
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1

( )
m

l

e e l


 , and ( )i ie e l  for all i N . 

The set of feasible allocations Â  is specified as the subset of A  such that ˆa A  if 

and only if there exists a function : N L   satisfying that 

   ( ) ( )i j   for all i N  and all \ { }j N i , 

and 

   ( ( ))ia e i  for all i N .10 

Each player 'i s  valuation function iv  is specified as 

   ( , )i i i i iv a a    for all ( , ) {0,..., } [0,1]i ia e   . 

From the above specifications, it follows that 

   ( , )i i i iw a    for all ( , ) {1,..., } [0,1]i ia e   , 

   * 1 ( )
( , ) { }

( )
i i

i i i i i
i i

P
u a a

p

  



     if i ia e , 

   * ( )
( , ) [ { } ]

( ) ( )
i i i

i i i i i
i i i i

P e
u a a

p p

  
 

     if i ia e , 

   * 1 ( )
( , ) { }

( )
i i

i i i i
i i

P
y a

p

  



      if i ia e , 

and 

   * ( )
( , ) { }

( )
i i

i i i i
i i

P
y a

p

  


      if i ia e . 

Assumption 1 and (14) automatically hold. We assume that the property (15) holds in 

the strict sense, i.e., *( , )i i iy a   is increasing in i . 

 Based on the replacement of the allocation problem for multiple heterogeneous 

items with the allocation problem for multiple homogeneous commodities with 

restrictions on the set of feasible allocations in the above manner, the solution to the 

central planner’s revenue-maximization in the former problem could be well described 

by the solution ˆ ˆ( , ) ( , )f x f x  to the optimization problem (9) in the latter problem. 

Since *( , )i i iy a   is increasing in i , we can assume without loss of generality that for 

                                                      
10 Note that the profile of their initial endowments is feasible. 
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every i N , there exists 1ˆ : [0,1] [0,1]n
i L    such that ˆ ( , )i il   is decreasing in 

l L , and for every [0,1]n , 

   ˆ ( ) (1)if e         if ˆ (1, )i i i   , 

   ˆ ( ) 0if          if ˆ ( , )i i im   , 

and for every {2,..., }l m , 

   ˆ ( ) ( )if e l         if ˆ ˆ( 1, ) ( , )i i i i il l        . 

Let us call ˆ ( , )i il   the ( )l th  pivotal type for player i ; he obtains item l  or any 

better item if and (almost) only if his type is greater than ˆ ( , )i il  . 

 

Theorem 4: For every i N , every [0,1]n , and every {2,..., }l m , let us suppose 

that ˆ ( ) ( )if q l  . Then, it follows that 

   ˆ ( ) 0ix           if ˆ ( )i if e  , i.e., il l , 

   
1

ˆˆ ( ) { ( ) ( 1)} ( , )
il

i i i
k l

x q k q k k  





      if ˆ ( )i if e  , i.e., il l , 

and 

   
1

ˆˆ ( ) { ( ) ( 1)} ( , )
i

l

i i i
k l

x q k q k k  





     if ˆ ( )i if e  , i.e., il l . 

 

Proof: From (12) and ˆ ( ) ( )if q l  , it follows that 

   ˆ ˆˆ ( ) { ( ) ( 1)} ( , ) { ( ) ( 1)} ( , )
i

m m

i i i i i
k l k l

x e k e k k e k e k k       
 

        , 

which along with ( ) ( )q k e k  implies this theorem. 

Q.E.D. 

 

 If each player i  purchases a better item il l  than his initial endowment, then he 

pays the pivotal type ˆ ( , )i ik   for any item k  between his initial endowment and 

his purchased item ( il k l  ) multiplied by the increase in quality ( ) ( 1)q k q k  . If 
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each player i  purchases a worse item il l  than his initial endowment, then he earns 

the pivotal type ˆ ( , )i ik   for any item k  between his initial endowment and his 

purchased item ( il k l  ) multiplied by the increase in quality ( ) ( 1)q k q k  . 

 Let us investigate a more special case in which there exists a positive integer 

{1,..., }m m  such that 

m n , 

   ( ) 0q l   for all { 1,..., }l m m  , 

and 

( ) 0q l   for all {1,..., }l m  . 

Any item that is included in {1,..., }m  implies a non-trivial item, while any item that is 

included in { 1,..., }m m  implies a null item. For each i N  and each 1[0,1]n
i 

  , 

let us define ( ) \{ }ij N i   as the player who has the ( )m -th highest MUVV among 

all players except for player i ; 

   * *
( )(1, ) (1, )

ii h i jy y  


  for at least m  players h  in \{ }N i , 

and 

   * *
( )(1, ) (1, )

ii h i jy y  


  for at least n m   players h  in \{ }N i . 

Let us define ( ) [0,1]i i    by 

   * *
( ) ( )(1, ( )) (1, )

i ii i i j jy y    
     if *

( ) ( )(1, ) 0
i ij jy  

 
 , 

and 

   *(1, ( )) 0i i iy         if  *
( ) ( )(1, ) 0

i ij jy  
 

 . 

Note that player i  has the ( )m -th highest or even higher MUVV if and only if 

   ( )i i i    . 

Hence, it follows from Theorem 4 that 

   ˆ ( , ) ( )i i i im       for all i N , 

implying that any player i  is assigned a non-trivial item if and (almost) only if his type 

is greater than ( )i i  . 

It must be noted that if any non-trivial item has the same quality, i.e., 

   ( ) (1)q l q  for all {1,..., }l m  , 
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then it follows that 

   ˆ ( ) 0ix        if ˆ ( )i if e  , 

   ˆ ( ) (1) ( )i i ix q       if ˆ ( )i if e  , 

and 

   ˆ ( ) (1) ( )i i ix q        if ˆ ( )i if e  . 

This case can be regarded this case as a generalization of Theorem 4 in Myerson and 

Satterthwaite (1983). The interpretation is as follows; the central planner bids the price 

(1) ( )i iq    to any player i  who has a non-trivial item. This player sells his item to 

the central planner if and (almost) only if his type i  is less than ( )i i  . On the 

other hand, the central planner asks the price (1) ( )i iq    to any player i  who has 

only a null item. This player purchases a non-trivial item from the central planner if and 

(almost) only if his type i  is greater than ( )i i  . 

 Let us further specify the allocation problem for multiple heterogeneous items as 

the problem of auction with single-item demands, where we assume that all players 

have only null items, i.e., 

   0ie   for all i N . 

It is clear in this case that for every [0,1]n , every i N , every \{ }j N i , and 

{1,..., }l m , 

   
1 ( )1 ( )

( ) ( )
j ji i

i j
i i j j

PP

p p

 
 


      if ˆ ˆ( ) ( )i jf f  . 

Hence, the ( )l th  pivotal type ˆ ( , )i il   is regarded as the type i  such that 

1 ( )

( )
i i

i
i i

P

p





  is equivalent to the ( )l th  largest 

1 ( )

( )
j j

j
j j

P

p







  among the other 

players j i . Let us define (0,1)i   by 

   
1 ( )

0
( )

ii
i

ii

P

p





  , 

implying the reserve price for player i . Clearly, 

   ˆ ( ) 0if           if ii  . 
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Hence, it follows that for every ( , ) [0,1]ni N   , 

   ˆ ( ) 0ix           if ˆ ( ) 0if   , 

and for every {1,..., }l m , 

   ˆˆ ( ) { ( ) ( 1)} ( , )
m

i i i
k l

x q k q k k  


     if ˆ ( )if l  . 

The optimal mechanism ˆ ˆ( , )f x  in this case can be regarded as a generalization of the 

optimal sponsored search auction addressed by Edelman and Schwarz (2010); the 

asymmetry in terms of type distribution is explicitly taken into account in the present 

paper. 
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6. Conclusion 

 

 This paper investigated the allocation problems termed multiunit exchanges with 

restrictions on the set of feasible allocations, where both the central planner and the 

participants brought homogeneous commodities to sell altogether. We introduced the 

concept termed modified virtual valuation (MVV), which was defined as the valuation 

minus the bargaining rent as well as the informational rent, the unit term of which 

(MUVV) implied a hybrid of marginal revenue and marginal cost. We made standard 

assumptions such as quasi-linearity, private values, independent type distributions, 

risk-neutrality, and no externality. We then demonstrated a tractable characterization of 

the optimal mechanism design in terms of the central planner’s expected revenue under 

the constraints of dominant strategy incentive compatibility and ex post individual 

rationality. With a mild monotonicity assumption, irrespective of the restrictions 

imposed on the set of feasible allocations, this optimization problem could be replaced 

with the maximization of the sum of MVVs in the ex post term. Hence, we could 

successfully apply these results to an important class of allocation problems for multiple 

heterogeneous items with single-item demands that was associated with the 

multiplicative structure explored by Mussa and Rosen (1978). 

 This paper required incentive compatibility and individual rationality in the ex-post 

term. Gershkov et al (2012) showed that any Bayesian incentive compatible mechanism 

with interim individual rationality could be implemented by a dominant strategy 

incentive compatible mechanism with interim individual rationality. However, it is not 

necessarily possible for any Bayesian incentive compatible mechanism with interim 

individual rationality to be implemented by a dominant strategy incentive compatible 

mechanism with ex-post individual rationality. Hence, the effect of replacing the ex-post 

term with the interim term on the optimization problem remains unsolved. 
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