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Abstract 

 

In many countries, the monetary policy instrument sometimes remains unchanged for a 

long period and shows infrequent responses to exogenous shocks.  The purpose of this 

paper is to provide a new explanation on why the central bank’s policy instrument 

remains unchanged.  In the analysis, we explore how uncertainty on the private agents’ 

expectations affects robust optimal monetary policy.  We apply the Choquet expected 

decision theory to a new Keynesian model.  A main result is that the policymaker may 

frequently keep the interest rate unchanged even when exogenous shocks change output 

gaps and inflation rates.  This happens because a change of the interest rate increases 

additional uncertainty for the policymaker.  To the extent that the policymaker has 

uncertainty aversion, it can therefore be optimal for the policymaker to maintain an 

unchanged policy stance for some significant periods and to make discontinuous 

changes of the target rate.  Our analysis departs from previous studies in that we 

determine an optimal monetary policy rule that allows time-variant feedback parameters 

in a Taylor rule.  We show that if the policymaker has small uncertainty aversion, the 

calibrated optimal stop-go policy rule can predict actual target rates of FRB and ECB 

reasonably well. 
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1. Introduction 

  In monetary economics, it has widely been discussed what policy rules central banks 

follow.  A growing number of studies advocate a variety of monetary policy rules that 

can lead to good performance.  In particular, many argue that macroeconomic 

stabilization should be implemented through a “Taylor rule” in which interest rates are 

adjusted in response to output gap and inflation rate.  However, when we look at 

high-frequency data, the policy instrument sometimes remains unchanged for a long 

period and shows infrequent responses to frequent exogenous shocks.  Figure 1 plots 

daily data of targeted federal fund (FF) rates from January 2001 to December 2007.  It 

is easy to see that the changes of the targeted FF rates were rare from January 2002 to 

June 2004.  Since the Federal Reserve’s Trading Desk keeps the FF rate near a target 

set by the Federal Open Market Committee (FOMC), this implies that the baseline of 

the U.S. short-term interest rate changed infrequently.
1
 

One of the reasons why the changes of the targeted FF rates were infrequent is that 

the FOMC meeting is usually held only eight times a year.  It is the FOMC that 

decides some discontinuous jumps of the targeted rates.  However, except in 2001 and 

2005, the FOMC decided not to change the target rate in most of the meetings (see 

Table 1).  Infrequent FOMC meetings would not be enough to explain less frequent 

changes of the targeted rates.  More infrequent policy changes can be observed for the 

other central banks that face different environments.  For example, Table 2 summarizes 

the number of monetary policy decisions and the number of decisions with no policy 

change in the Bank of Japan, the European Central Bank, and the Bank of England from 

1999 to 2007.  It is easy to see that these central banks changed the targeted policy 

instruments less frequently than the Federal Reserve Board throughout the period. 

Why do the central banks decide not to change the policy targets frequently?  The 

purpose of this paper is to provide a new explanation on why the central bank’s policy 

instrument remains unchanged under uncertainty.  In general, the policymaker faces 

various types of uncertainty when making the policy decision.  This includes 

uncertainty on exogenous shocks and on structural parameters.  However, uncertainty 

on the private agents’ expectations is another uncertainty that the central bank may face.  

Since the expectations affect output gaps and inflation rates, it is important to identify 

how the private agents form their expectations.  However, as recent contribution of 

behavioral economics suggests, it is far from easy to predict what expectations the 

private agents will form. 

                                                   
1
 The realized federal fund rates that are called “effective federal fund rates” show some daily 

fluctuations over time.  However, they only show small fluctuations around the targeted rates. 
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In the following analysis, we explore how uncertainty on the private agents’ 

expectations affects optimal monetary policy in a new Keynesian model.  The 

decision-making theory we use in the analysis is that of expected utility under a 

nonadditive probability measure, that is, the Choquet expected model, developed by 

Gilboa (1987) and Schmeidler (1989).
2
  We apply the Choquet expected decision 

theory to a new Keynesian model.  A main result is that the policymaker may 

frequently keep the interest rate unchanged even when exogenous shocks change output 

gaps and inflation rates.  This happens because a change of the interest rate increases 

uncertainty for the policymaker when how the expectations will react is not well known.  

To the extent that the policymaker has uncertainty aversion, it can therefore be optimal 

for the policymaker to maintain an unchanged policy stance for some significant periods 

and to make discontinuous changes of the target rate. 

In previous literature, there are a large number of studies that focused on model 

uncertainty and the performance of policy rules across different models.  Brainard 

(1967) is a seminal study that explored how the policymaker’s optimal rule is altered 

when faced with parameter uncertainty.  McCallum (1988) has argued for evaluating 

policy proposals in a variety of economic models as a means of assessing their 

robustness.  Using five macroeconomic models, Levin, Wieland, and Williams (2003) 

identify the robust rules that respond to the inflation forecast and the output gap but that 

incorporate a substantial degree of policy inertia.  Using a new Keynesian model, 

Giannoni and Woodford (2003a, 2003b) have analyzed policy rules that are robust to 

misspecification of the disturbance process of a known model, while Kimura and 

Kurozumi (2003) and Levin and Williams (2003b) have focused on whether parameter 

uncertainty leads to more cautious or more aggressive policy responses to shocks when 

the effects of structural parameters on the loss function are taken into account.  

However, none of these studies incorporated Knightian uncertainty. 

Several other studies explored “robust optimal policy rules” under a version of 

Knightian uncertainty, which are designed to be robust in the sense of minimizing the 

worst case scenario when the policymaker believes that the true model is in a 

neighborhood of a given reference model.  These studies include Hansen and Sargent 

(2003), Onatski and Stock (2002), Tetlow and von zur Muehlen (2001), Giannoni 

(2006), and Orphanides and Williams, (2007).  Walsh (2004) has argued that optimal 

monetary policy under Hansen-Sargent framework is equivalent to that of Giannoni and 

Woodford where the optimal policy rule becomes less aggressive under uncertainty.  In 

                                                   
2
 Based on the Gilboa-Schmeidler’s axioms, studies such as Epstein and Wang (1994), Mukerji 

and Tallon (2004), and Fukuda (2008) incorporate Knightian uncertainty in economic models. 
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contrast, Onatski and Stock argued that the max-min approach of robust control 

provides robust monetary policies that are more aggressive than the optimal policies 

absent model uncertainty.
3
  However, unlike ours, none of these studies has reached a 

conclusion that the optimal policy is to keep the policy instrument unchanged for some 

periods. 

Our analysis departs from these previous studies in four important respects.   First, 

instead of restricting ourselves to time-invariant feedback parameters, we determine a 

robust optimal monetary policy rule that allows time-variant feedback parameters.  

This leads to an optimal stop-go policy rule that sometimes responds to output and 

inflation gaps but sometimes does not.  Second, we show that the calibrated optimal 

stop-go policy rules can predict actual target rates of FRB and ECB well if the 

policymaker has small uncertainty aversion.  In literature, Hamilton and Jorà (2002) 

showed that statistical tool for forecasting a discrete-valued time series is useful in 

forecasting the federal fund rates.  Our optimal stop-go policy rule not only supports 

their proposition but also provides theoretical background for the discrete-valued time 

series.  Third, we consider the case where the private agents’ expectations are 

uncertain for the policymaker when changing the policy instrument.  Previous studies 

widely discussed what happens when exogenous shocks or/and structural parameters are 

uncertain.  But few studies discussed when the private agents’ expectations are 

uncertain.  Our result suggests uncertainty on the private agents’ expectations is 

another important uncertainty in a robust control framework.  Fourth, we derive robust 

policy rules based on the Choquet expected utility model rather than on the max-min 

utility model.  In literature, it is known that the two models are essentially the same.  

But in macroeconomic policy analysis, previous studies used the max-min utility model 

almost exclusively.  Our analysis suggests that the Choquet expected utility model is 

an alternative useful framework to derive robust policy rules. 

Our result is similar to that of Dow and Werlang (1992) in that a player chooses the 

status quo under Knightian uncertainty.  Dow and Werlang provide a simple example 

where the optimal portfolio choice can be the status quo under Knightian uncertainty.  

Given that the policy changes are rare, it deserves to pay a special attention to see why 

the central banks prefer the status quo under Knightian uncertainty.  Central bankers 

have multiple objectives and confront a variety of economic circumstances.  They 

know that their actions have significant impacts on the economy, but the timing, 

magnitude, and channels of those impacts are not fully understood.  They, in contrast, 

have a concern that their reputation would deteriorate dramatically if their actions have 

                                                   
3
 Giannoni (2002, 2006) supports this under more general environments. 



 5 

wrong impacts on the economy.  Under the circumstances, it may become desirable for 

the central banks not to change the policy targets when the parameter uncertainty makes 

the impacts uncertain enough.   

In macroeconomics, it has been a conventional wisdom that central banks implement 

monetary policy in a gradual fashion (see, for example, Blinder [1997]).  Many 

researchers claim that this gradualism is due to 'optimal cautiousness', although some 

others suggest alternative interpretations (see, for example, Rudebusch [2005]).  

Interest-rate smoothing or monetary policy inertia is, however, different from monetary 

policy with infrequent changes and some discontinuous jumps.  When using low 

frequency data, the two types of monetary policies may be observationally equivalent.  

But their macroeconomic implications will be different at least in the short-run and may 

be so even in the long-run.  It is practically very important to pay a special attention to 

macroeconomic consequences of the stop-go policy that changes the policy instrument 

infrequently. 

  The paper proceeds as follows.  Section 2 sets up the basic model and section 3 

explains the policy objectives.  Section 4 derives the optimal monetary rules in a 

general framework and section 5 extends them in the case where the nature takes two 

states.  Section 6 shows the calibrated optimal stop-go policy rules and section 7 

checks their robustness.  Section 8 shows that the calibrated optimal stop-go policy 

rules can predict actual rates of MRO set by ECB well.  Section 9 summarizes our 

main results and refers to their implications. 

 

 

2.  The Basic Model 

We consider a simple macro model where the policymaker faces uncertainty on 

average expectations of informed and uninformed private agents.  Except for the 

heterogeneous information structure of the private agents, our basic model follows a 

standard new Keynesian model: 

 

(1)  xt = xt+1
e
 –  (it – t+1

e
) + ut, 

(2)  t =  t+1
e
 + k xt + wt, 

 

where xt = the gap between actual output and the flexible-price equilibrium output level, 

it = the nominal interest rate, and t = the inflation rate.  Subscript t denotes time 

period.  The variables with superscript e, that is, xt+1
e
 and t+1

e
, denote the private 

agents’ average expectations which are weighted average of informed and uninformed 
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private agents’ expectations.   

  All variables are expressed as log deviations from the steady state.  Equation (1) is 

the Euler condition from the representative household’s consumption decision, while 

equation (2) is a new Keynesian Phillips curve.  The variable ut is an exogenous 

demand shock and the variable wt is an exogenous supply shock.  Each shock consists 

of a permanent shock and a temporary shock.  Each permanent shock follows a 

random walk process, while each temporary shock is independently identically 

distributed overtime.  We assume that the policymaker who observed all of the realized 

innovations in period t-1 decides its policy instrument it before observing any realized 

innovations in period t.   

  What is crucial in the following analysis is that the policymaker faces uncertainty on 

how average expectations of the private agents will change when the interest rate 

changes.  In our model, this happens because there are both informed and uninformed 

private agents in the economy.  We assume that the informed private agents have all of 

the policymaker’s information but that the uninformed private agents have no 

information on the exogenous shocks realized in the last period.  The policymaker 

knows their information structures and can infer the expectations of each type of agent.  

But since the number of each type stochastically changes overtime, the policymaker 

cannot see the weight of each type.  This makes average expectations of the private 

agents uncertain for the policymaker. 

 

 

3. The Private Agents’ Expectations 

  In our economy, the informed private agents not only have the same information as 

the policymaker but also know all economic structures including the policymaker’s loss 

function.  Their expectations, Et
I
 xt+1,

 
and Et

I
 t+1, are thus independent of the policy 

decision in period t, where Et
I
 is the conditional expectation operator of the informed 

private agents based on the information in period t.  The uninformed private agents, in 

contrast, have no information of the exogenous shocks realized in the last period, 

although they can observe the policy instrument without noise.  They thus need to 

update their expectations based on Bayesian Kalman filter when the policymaker 

decides its policy instrument.  We denote the conditional expectation operator of the 

uninformed private agents based on the information before and after the policy decision 

in period t by Et,0
UI

 and Et,1
UI

 respectively.  Then, the uninformed private agents update 

their expectations as follows 
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 (3a)  Et,1
UI

 xt+1 = Et,0
UI

 xt+1
 
+ ρ (it – Et,0

UI
 it), 

 (3b)  Et,1
UI

 t+1 = Et,0
UI

 t+1 + χ (it – Et,0
UI

 it). 

 

  Equations (3a) and (3b) indicate that the uninformed private agents update their 

expectations if and only if there is an unexpected policy change.  In our model, the 

uninformed private agents, who cannot observe what exogenous shocks were realized in 

the last period, expect no policy change in advance.  This is because the policymaker 

who decides it at the beginning of period t will change it only if there was a permanent 

shock in period t-1.  This implies that it = it – Et,0
UI

 it where it  it - it-1.   

  For simplicity, the policymaker can observe Et
I
 xt+1, Et

I
 t+1, Et,0

UI
 xt+1,

 
and Et,0

UI
 t+1 

without uncertainty.  However, since the number of each type stochastically changes 

overtime, the policymaker cannot see the weight of each type.  The policymaker has a 

prior that the share of the uninformed private agents is t where 0 < t < 1.  Then 

average expectations of the private agents for the policymaker are written as 

 

 (4a)  xt+1
e
 = xt+1

e0
 – t it, 

 (4b)  t+1
e
 = t+1

e0
 – t  it. 

 

where xt+1
e
  (1-t)Et

I
 xt+1 + t Et,1

UI
 xt+1, t+1

e
  (1-t)Et

I
 t+1 + t Et,1

UI
 t+1, xt+1

e0
  

(1-t)Et
I
 xt+1 + t Et,0

UI
 xt+1, and t+1

e0
  (1-t)Et

I
 t+1 + t Et,0

UI
 t+1. 

  Equations (4a) and (4b) state that how xt+1
e
 and t+1

e
 will change depends on how it 

changes and that there exists uncertainty on the elasticity.  They suggest that the agents 

respond to the policy change sometimes aggressively but sometimes modestly in 

forming the expectation.  Under (3) and (4), the policymaker needs to decide the 

nominal interest rate it knowing that the reaction of the private agents’ expectations is 

highly volatile.  Uncertainty thus arises for xt+1
e
 and t+1

e
 if and only if it  it-1.   

Because of uncertainty on xt+1
e
 and t+1

e
, the policymaker will face uncertainty on 

what value will be realized for xt and t when the nominal interest rate is changed in 

period t.  To distinct the states before and after the policy change, we define x
0

t and 0
t 

as the realized values of xt and t when the nominal interest rate remains unchanged.  

By definition, it holds that 

 

(5)  x
0

t = xt+1
e0

 –  (it-1 - t+1
e0

) + ut, 

   (6)  0
t =  t+1

e0
 + k x

0
t + wt. 

 

Defining  1+ and  k +(k +), equations (1)-(4) then lead to: 
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(7)  xt = x
0

t – (t +) it,  

(8)  t = 0
t – (t + k) it. 

 

where xt and t denote the realized values after the nominal interest rate is determined. 

Equations (7) and (8) determine the equilibrium values of xt and t in our model.  

Because of uncertainty on t, the policymaker cannot see exact values of xt and t in 

period t unless it = 0.  In contrast, the policymaker can see x
0

t and 0
t without 

uncertainty in period t.  However, the perfect information about x
0

t and 0
t is not 

crucial in the following analysis.  What is crucial in the following analysis is that the 

change of the nominal interest rate induces additional model uncertainty for the 

policymaker.   

 

 

4.  The Policy Objectives 

The policymaker chooses its policy instrument so as to achieve the policy objective. 

We suppose that the objective of the policymaker is to set the nominal interest rate at 

each point of time so as to minimize the “expected” value of the following loss 

function: 

 

(9)  Lt = (xt – x*)
2
 + (t - *)

2
 + (it - it-1)

2
.  

 

  In the loss function, loss in period t depends on deviations of output gap and inflation 

rate from their targets x* and * as well as interest rate changes in period t.  

Exogenous parameter  and  are greater than or equal to zero and are treated as 

independent of the specification of the structural equations.   

What makes the following analysis distinctive from the standard minimization 

problem is that we characterize the expected loss minimization of the policymaker by 

the Choquet expectation.  To distinguish it from standard expectation operator E, we 

defined the Choquet expectation operator by E
Q
.  Having aversion to Knightian 

uncertainty, the policymaker chooses its policy instrument it so as to minimize E
Q
 Lt.  

More general representation of the Choquet expectation is extensively discussed in 

Schmeidler (1989). 

Suppose that the random variable t takes n alternative values, 1, 2, ..., n.  Define 

Lj,t  Lt when t = j (j = 1, 2, 3, …, n).  Then, if 0  L1,t  L2,t  L3,t  … Ln,t, the 

Choquet expectation of the loss function is written as 
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(10)   E
Q
 Lt =  



  
1

1 1,1, )()(
n

i j

i

jtiti LL  + Ln,t, 

 

where () is a convex probability capacity (or a convex non-additive probability 

function).
4
 

If () is a probability measure, the problem is degenerated to the traditional expected 

loss minimization problem.  In this case, substituting (7) and (8) into (9), the first-order 

conditions  E
Q
Lt/it =  ELt/it = 0 lead to the time-invariant policy rule such that 

 

(11)  it = 
22

00

)()(

)*)(()*)((

tttt

tttttt

kEE

EkExx








. 

 

This simple monetary policy rule is similar to a Taylor rule in the sense that the 

nominal interest rate is adjusted in response to “output gap” and “inflation rate”.  

Because of uncertainty in t, the second moments of t appear in the denominator of the 

feedback rule.  This reflects a version of Brainard’s effect where the policymaker’s 

optimal rule becomes less aggressive under parameter uncertainty.  It is noteworthy 

that the rule does not depend on how expectations are formed nor what stochastic 

processes the exogenous shocks follow.  However, “output gap” and “inflation rate” in 

(11) are those before the central bank sets the new interest rate.  In addition, unlike 

standard Taylor rules, the coefficient of lagged inflation is always equal to unity.
5
 

 

 

5.  Robust Optimal Policy Rules 

The policy rule (11) is no longer optimal when the policymaker has some aversion to 

uncertainty.  One technical problem in deriving the optimal rule under uncertainty is 

that the “expected” loss function E
Q
Lt is not differentiable.  However, since E

Q
Lt is 

convex in it, it is optimal for the central bank to set it =  if and only if E
Q
Lt/it  

0 when it approaches to  from above and E
Q
Lt/it  0 when it approaches to  

                                                   
4
 Let  be a state space and let () denote the set of all subsets of .  Then, a convex 

probability capacity (or a convex non-additive probability function) is defined as function  : 

()  [0, 1] that satisfies () = 0, () = 1, F  G  (F)  (G) for all F, G  , and 

(FG) + (FG)  (F) + (G) for all F, and G  .  Since it is additive, it is not a 

probability measure unless the last inequality is always satisfied as an equality. 
5
 In previous literature, Levin, Wieland, and Williams (1999) provides strong support for rules 

in which the first-difference of the federal funds rate responds to output and inflation gaps. 
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from below.  This implies that the central bank decides not to change the nominal 

interest rate if and only if  E
Q
 Lt /it  0 as it →+0 and  E

Q
 Lt /it  0 as it → 

-0.  We obtain the following proposition. 

 

Proposition 1: Suppose that the random variable t takes n alternative values such that 

1  2  3  … n.  Then, the central bank decides not to change the nominal 

interest rate if and only if 

 

(12)    1

1

1 111 )()(  


 

n

i jn

i

jIIinin   
 

*)(*)(

*)(*)(
00

00









tt

tt

xx

kxx
 

   n

n

i j

i

jIii  


 

1

1 11 )()( . 

 

where I() is a convex probability capacity in the case where 0  L1,t  L2,t  L3,t  … 

Ln,t and so is II() in the case where L1,t  L2,t  L3,t  … Ln,t  0. 

 

Proof:  Since Lj,t  {x
0
t – ( +j)it – x*}

2
 + {0

t – (j+ k)it – *}
2
 + it

2
 when 

t = j (j = 1, 2, 3, …, n), it holds that Ll,t  Lm,t if and only if [{x
0
t – ( +*l,m)it – 

x*} + {0
t – (*l,m+ k)it – *}] (l–m)it  0 where *l,m  (l+m)/2.  When 

(x
0

t – x*) +  (0
t – *) > 0, this implies that Ll,t  Lm,t as it  0 if and only if 

(l–m)it  0.  Since 1  2  3  … n, this shows that 0  L1,t  L2,t  L3,t  … 

Ln,t as it  -0 and that L1,t  L2,t  L3,t  … Ln,t  0 as it  +0 when (x
0

t – x*) + 

 (0
t – *) > 0. 

  When (x
0

t – x*) +  (0
t – *) > 0, the Choquet expectation (10) therefore implies 

that E
Q
 Lt = 



  
1

1 1,1, )())()((
n

i j

i

jItiti LL   + Ln,t as it  -0 and E
Q
 Lt = 




  
1

1 11,,1 )()(
n

i jn

i

jIItintin LL  + L1,t as it  +0.  Since 

0

,,























ti
t

tm

t

tl

i

L

i

L
= 

–2{(x
0

t – x*) +  (0
t – *)}(l – m), we obtain 

 

0t

Q

t

t i

E L

i
 




= –2{(x

0
t – x*) +  (0

t – *) }  1

1 11
( ) ( )

n i

i i I j j ni
    



 

   
    

– 2{ (x
0

t – x*) + k(0
t –*)}, 
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0t

Q

t

t i

E L

i
 




= –2{(x

0
t–x*) +  (0

t–*) }   1

1

1 111 )()(  


 

n

i jn

i

jIIinin  

– 2{ (x
0

t – x*) + k(0
t –*)}. 

 

These equations imply that when (x
0

t – x*) +  (0
t – *) > 0,  the condition (12) 

holds if and only if  E
Q
 Lt /it  0 as it →+0 and  E

Q
 Lt /it  0 as it → -0.  

  Similarly, we can show that when (x
0

t – x*) +  (0
t – *) < 0, the condition (12) 

holds if and only if  E
Q
 Lt /it  0 as it →+0 and  E

Q
 Lt /it  0 as it → -0.  

This proves the proposition.     [Q.E.D.] 

 

The above result suggests that the policymaker may keep the interest rate unchanged 

even if the exogenous shocks change output gaps and inflation rates.  If both I()and 

II() are the same probability measure, it holds that   n

n

i j

i

jIii  


 

1

1 11 )()(  = 

  1

1

1 111 )()(  


 

n

i jn

i

jIIinin . Consequently, in the absence of uncertainty 

aversion, the necessary and sufficient conditions in the above proposition are never 

satisfied for any measurable parameter set.  However, to the extent that the 

policymaker has uncertainty aversion, that is, when I()and II() are a convex 

probability capacities, the conditions hold for some measurable parameter set.  The 

reason why the policymaker may choose it = 0 is that the policymaker faces additional 

uncertainty unless it = 0.  To the extent that the policymaker has uncertainty aversion, 

it can therefore be optimal to set it = 0 for some measurable range.   

Toe the extent that   1

1

1 111 )()(  


 

n

i jn

i

jIIinin   0, all terms in the 

condition (12) needs to be positive.  In this case, the condition (12) does not hold 

unless (x
0

t - x*)(0
t - *) < 0.  This implies that some conflict between output stability 

and inflation stability is an important source for the policymaker to keep the interest rate 

unchanged.  For example, when x
0

t > x* and 0
t < *, lowering the interest rate 

achieves output stability but sacrifices inflation rate stability.  The tradeoff is a source 

of infrequent changes of the interest rate under uncertainty in our model. 

Unless the condition (12) holds, the central bank changes its interest rate based on a 

feedback rule.  The rule is, however, time-variant in the sense that the feedback 

parameters vary depending on realized exogenous shocks and parameters.  For 

example, note that Ll,t = Lm,t as it → zl,m for all l and m (l  m), where zl,m  
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0 0( *) ( *)

( ) ( )( ) / 2

t t

l m

x x

k

  

     

  

   
.  It is then optimal for the central bank to set it = zl,m 

if and only if E
Q
Lt/it  0 as it →zl,m+0 and E

Q
Lt/it  0 as it →zl,m-0.  In 

contrast, when E
Q
Lt/it is locally differentiable around it = z*, it is optimal for the 

central bank to set it = z* if and only if E
Q
Lt/it = 0 when it = z*.  The general 

time-invariant feedback rule, however, takes highly complicated forms to write them 

down explicitly.  

 

 

6.  The Case of Two States 

The robust monetary policy rules in our model can be understood more explicitly 

when the nature takes only two states: state A and state B.  Suppose that the parameter 

t follows a binomial distribution that takes either A or B, where A > B.  Noting 

that Lj,t  {x
0

t – ( +j)it – x*}
2
 + {0

t – (j+ k)it - *}
2
 + it

2
 when t = j (j = 

A, B), it holds that LA,t < LB, t if and only if [{x
0
t – ( +*)it – x*} + {0

t – (*+ 

k)it - *}] it > 0 where *  (A+B)/2 and A+B  0.   

When the nature takes the two states, we denote the convex probability capacity as 

follows: (A) = (1-) and (B) = 1 – (A) when LA,t > LB, t, and (B) = (1-)(1-) 

and (A) = 1 – (B) when LA,t < LB, t.  A parameter  (> 0) denotes the degree of 

-contamination in the Choquet expectation.  Since the Choquet expectation puts more 

weight on the worst outcome,  is contaminated to be smaller when LA, t < LB, t, so is 

1- when LA, t > LB, t in the Choquet expectation. 

The loss function is then written as 

 

(13) E
Q
 Lt = (1-) [{x

0
t – ( +A)it – x*}

2
 + {0

t – (A+ k)it - *}
2 

]  

+ {1-(1-)} [{x
0
t – ( +B)it – x*}

2
 + {0

t – (B+ k)it - *}
2 

]  

+ it
2
,  when LA,t < LB, t, 

= {1-(1-)(1-)}[{x
0

t – ( +A)it – x*}
2
 + {0

t – (A+ k)it - *}
2 

]
 

+ (1-)(1-) [{x
0

t – ( +B)it – x*}
2
 + {0

t – (B+ k)it - *}
2 

] 

+ it
2
,  when LA,t > LB, t. 

 

  When  = 0, the problem is degenerated to the traditional expected loss minimization 

problem.  When  = 1, the problem is degenerated to the classical mini-max problem 

where the policymaker minimizes only the worst case scenario.  An increase in  

implies that the policymaker becomes less certain whether the subjective distribution is 

true distribution.  Thus, an increase in  can be interpreted as an increase in Knightian 
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uncertainty. 

Unless  = 0, the “expected” loss function E
Q
Lt is not differentiable.  However, the 

proposition in the last section leads to the following corollary. 

 

Corollary:  In the case where the nature takes the two states, the central bank decides 

not to change the nominal interest rate if and only if 

 

(14)  I 
 

*)(*)(

*)(*)(
00

00









tt

tt

xx

kxx
 II. 

 

where I  (1-)A+{1-(1-)}B and II  {1-(1-)(1-)}A + (1-)(1-) B. 

 

Proof:  Recall that (A) = (1-) and (B) = 1 - (A) when LA,t > LB, t, and (B) = 

(1-)(1-) and (A) = 1 - (B) when LA,t < LB,t.  For the probability capacity, the term 

  1

1

1 111 )()(  


 

n

i jn

i

jIIinin  degenerated into I and so does the term 

  n

n

i j

i

jIii  


 

1

1 11 )()(  into II.  This leads to the corollary.  [Q.E.D.]   

 

In the absence of Knightian uncertainty,  is equal to zero, so that there exists no 

measurable range of parameters that satisfy the above inequalities.  However, to the 

extent that  > 0, some measurable range of parameters satisfy the above inequalities.  

Given the parameters, the range is wider as either  or A-B is larger.   

Unless the condition (14) holds, the central bank changes its interest rate based on a 

feedback rule.  The rule is, however, time-variant in the sense that the feedback 

parameters vary depending on realized exogenous shocks and parameters.  If we define 

x,I
2
  (1-)(+A)

2
 + {1-(1-)}(+B)

2
, ,I

2
  (1-)(A+k)

2 
+ {1-(1-)} 

(B+k)
2
, x,II

2
  {1-(1-)(1-)}(+A)

2
 + (1-)(1-)(+B)

2
, and ,II

2
  

{1-(1-)(1-)}(A+k)
2 

+ (1-)(1-)(B+ k)
2
,  we obtain the following proposition. 

 

Proposition 2:  Define  

 

(15)  zA,B  
0 0( *) ( *)

( ) ( ) *

t tx x

k

  

    

  

  
,  
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(16)  zI  2

,

2

,

00 )*)(()*)((

IIx

ItIt kxx








, 

(17)  zII  2

,

2

,

00 )*)(()*)((

IIIIx

IItIIt kxx








. 

 

When (x
0
t – x*) + (0

t – *) > 0, it is optimal for the central bank to set it = zA,B if 

and only if zI < zA,B < zII.  It is also optimal for the central bank to set it = zI if and 

only if 0 < it < zA,B, and to set it = zII if and only if it < 0 or zA,B < it. 

Similarly, when (x
0

t – x*) + (0
t – *) < 0, it is optimal for the central bank to set it 

= zA,B if and only if zII < zA,B < zI.  It is also optimal for the central bank to set it = zI if 

and only if zA,B < it < 0, and to set it = zII if and only if it < zA,B or 0 < it. 

 

Proof:  See Appendix 2. 

 

The monetary policy rules it = zI, it = zII, and it = zA,B are similar to a Taylor rule 

in the sense that the nominal interest rate is adjusted in response to “output gap” and 

“inflation rate”.  Except that it = zA,B, they also reflect a version of Brainard’s effect 

where the policymaker’s optimal rule becomes less aggressive when the variances 

increase.  However, the elasticity of it to output gap and inflation rate not only 

depends on the degree of uncertainty aversion (that is, ) but also differs for different 

ranges of it.  Consequently, the nominal interest rate shows different responses to 

“output gap” and “inflation rate” depending on whether it is positive or not and 

whether it is greater than zA,B or not. 

It is also noteworthy that none of the Taylor type rules is optimal when the condition 

(14) holds.  This implies that the policymaker, who has uncertainty aversion, 

sometimes keeps the interest rate unchanged and sometimes implements discontinuous 

jumps of the interest rate.  This type of stop-go policy is different from standard 

interest-rate smoothing or monetary policy inertia that was regarded as a conventional 

wisdom in macroeconomics.  The macroeconomic consequences for xt and t are also 

different because x t and t take different values depending on whether it was changed or 

not. 

 

 

7.  Predictability of Federal Fund Rates 



 15 

  Until the last section, we have demonstrated that the policymaker who has 

uncertainty aversion may maintain an unchanged policy stance for some significant 

periods and may make discontinuous changes of the target rate following time-variant 

Taylor rule.  The purpose of this section is to examine how well this robust optimal 

monetary policy can predict actual central bank’s policy changes in the United States.  

Specifically, we explore how our stop-and-go Taylor rule can track monthly targeted 

federal fund (FF) rates from January 2001 to December 2007.
6
 

Our model has six constant parameters (, , k, , , and ), two policy targets (x* 

and *), and one random parameter t.  The discount factor  is set equal to 0.999, 

appropriate for interpreting the time interval as one month.  We use the interest rate 

elasticity of the aggregate demand of  = 0.07 and the slope of Phillips curve of k = 

0.02, which imply  = 0.21 and k = 0.06 by quarterly data.
7
  We set a weight on output 

fluctuation of  = 0.01 and a weight on interest change of  = 0 in the loss function.  

We also set the elasticity of the private agents’ expectations of  = 0.25.  For the policy 

targets, we set x* to be 0% and * to be 1.8%, which is lower than average inflation rate 

in the 2000s. 

For the random parameter t, we investigate the case of two states.  As in the last 

section, we consider the convex probability capacity such that (A) = (1-) and (B) 

= 1 - (A) when LA,t > LB, t and that (B) = (1-)(1-) and (A) = 1 - (B) when LA,t 

< LB, t, where  denotes the degree of -contamination in the Choquet expectation.  In 

the benchmark case, we set A = 0.25, B = -0.25,  = 0.5 and  = 0.023.  It is 

noteworthy that we set the parameter  to be very small.  This implies that the 

policymaker’s uncertainty aversion is very small in the benchmark case.  Comparing 

the case where  = 0, we will see that even the very small uncertainty aversion improves 

the predictability of our model. 

Given the parameter values and the policy targets, Corollary and Proposition 2 in the 

last section lead to the time-variant Taylor rule where it responds to “output gap”, x
0

t – 

x*, and “inflation gap”, 0
t – *.  For 0

t, we use monthly data of annual growth rate of 

consumer price index excluding food and energy.  For x
0

t, we use monthly data of 

annual growth rate of Industrial Production Index (total industry excluding 

                                                   
6
 We used target FF rates to predict the policymaker’s decision.  Since effective FF rates are 

highly correlated with effective FF rates, the essential results will remain the same even if we 

use effective FF rates in the following analysis. 
7
 Since  is the inverse of the degree of relative risk aversion in New Keynesian models,  = 

0.21 indicates that the degree of relative risk aversion is about 4.5 which is consistent with 

literature.  The choice of k is also consistent with literature.  For example, Roberts (1995) shows 

that a value for k is 0.075 by quarterly data, while Walsh (2003) uses 0.05 for quarterly data. 
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construction).  We calculated the output gap by using its deviations from 1.5% because 

the Industrial Production Index grew at 1.46% on average from 2000 to 2007.  Both of 

the data series are from OECD Main Economic Indicator.  The use of an industry 

production index for output gap is not necessarily standard in literature.  But since our 

main focus is to predict monthly changes of federal fund rate, the industry production 

index is one of the limited proxies for GDP.  Allowing transmission lag of the 

monetary policy, we use the values of one month ahead for “output gap” and “inflation 

gap” in the following experiments. 

Figure 2 depicts both predicted and actual targeted FF rates from January 2001 to 

December 2007.  The prediction is a dynamic simulation in the sense that it is 

forecasted based on predicted it-1.  We set the initial realized value of it by its realized 

value in January 2001.  We also use realized values of x
0

t and 0
t in the following 

periods.  Although the experiment is based on a simple model and noisy data, our 

stop-and-go Taylor rule could track monthly FF rates remarkably well.  Since our 

model does not incorporate sub-prime shocks, the predicted FF rates could not follow 

sharp decline of FF rates in the second half of 2007.  However, they almost tracked 

sharp decline of FF rates in 2001 and rise of FF rates from late 2004 to early 2006.  

The most noteworthy result is that our model could track infrequent policy changes in 

2002-2003 and 2006-2007 reasonably well.  In 2002 and 2003, FOMC decided not to 

change its target rates in fourteen out of sixteen meetings.  Consequently, actual FF 

rates remained unchanged for significant periods in 2002 and 2003.  The predicted FF 

rates captured this feature well in the figure, although they failed to track stable FF rates 

in early 2003.  They also captured unchanged FF rates from September 2006 to July 

2007. 

The superiority of our model can be seen more clearly when comparing our 

benchmark model with the model where the policymaker has no uncertainty aversion, 

that is,  = 0.  Based on equation (11), Figure 3 depicts predicted FF rates from January 

2001 to December 2007.  The dynamic predictions were made not only for  = 0 but 

also for  = 0.003.  Except for  and , the parameters used for the prediction are the 

same as those in Figure 2.  Even when  = 0, the Taylor rule tracked long-run 

movements of FF rates.  However, we see that the predicted series frequently showed 

significant downward deviations from the actual series in the short-run especially when 

 = 0.  When  = 0, the deviations became serious in 2002 and 2003 when actual FF 

rates remained unchanged for significant periods.  In 2002 and 2003, the predicted 

series fell below zero for significant periods.  After August 2006, they started to 

diverge upward substantially.  Since  = 0 in Figure 2, this suggests that removing 
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uncertainty aversion in the model worsens the predictability dramatically.   

Setting  = 0.003 improves the model predictability.  This indicates that the model 

without uncertainty aversion could track actual FF rates if we allow some benefits from 

interest rate smoothing in the loss function.  However, even when  = 0.003, the 

predicted series showed temporary increases in early 2003, which were followed by 

substantial decline from late 2003 to 2004.  These short-run fluctuations never 

happened in actual FF rates.  The predicted series also showed smaller increases in 

2005 and 2006.   

  The superiority of our model can be also confirmed even when comparing with a 

standard Taylor rule whose coefficients are estimated by ordinary least squares.  The 

standard Taylor rule we used is it = constant + it-1 + x (x
0

t+1 – x*) +  (
0

t+1 – *).  

We estimated the coefficients by ordinary least squares for the sample period from 

January 2001 to December 2007.  Using the estimated coefficients, a dynamic 

prediction is made based on an initial value of it and realized values of x
0

t and 0
t in the 

following periods.
8
  Figure 4 depicts both predicted and actual FF rates from January 

2001 to December 2007.  The standard Taylor rule with estimated coefficients tracked 

actual FF rates well for the first one and half years.  However, it could not track 

unchanged policy decision from 2003 to the first half of 2004 in the dynamic simulation.  

It also under-predicted FF rates in 2006 and 2007. 

 

 

8.  Prediction under Different Degrees of Uncertainty 

In the last section, we showed that our stop-and-go Taylor rule can track monthly FF 

rates very well.  The most noteworthy result is that uncertainty aversion of the 

policymaker is useful in tracking infrequent policy changes in actual FF rates.  In this 

section, we check how different degree of uncertainty will change the time series 

property of predicted FF rates.  In our model, t is the only random structural 

parameter that changes over time.  In our benchmark case, we set A = 0.25 and B = 

-0.25 for the random parameter.  We first examine how the predicted series will change 

when we use alternative combinations of (A, B) = (0.175, -0.175), (0.3, 0.3), and (0.5, 

-0.5).  In all of the combinations, the average value of t is set to be zero.  The 

experiment thus explores how a mean-preserving spread will affect the predicted FF 

rates.   

Figure 5 depicts the predicted FF rates for these alternative sets of A and B from 

                                                   
8
 From the estimation, we obtained the Taylor rule such that it = 0.106 + 0.952 it-1 + 5.726 (x

0
t+1 – 

x*) + 10.251 (0
t+1 – *). 
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January 2001 to December 2007.  Like previous predictions, the dynamic predictions 

are based on an initial value of it and realized values of x
0

t and 0
t in the following 

periods.  However, unlike previous predictions, the initial value of it is chosen so that 

the predicted value is equal to the actual value in August 2001.  It is easy to see that 

the interest rates change most frequently when (A, B) = (0.175, -0.175) and least 

frequently when (A, B) = (0.5, -0.5).  This implies that a mean-preserving spread of t 

will make the interest rates change less frequent.  

In contrast with t, the degree of -contamination changes the policymaker’s aversion 

to uncertainty.  Therefore, given the distribution of t, changes of  will capture 

another type of uncertainty changes.  For the degree of -contamination, we set  = 

0.023 in our benchmark case.  We examine how the predicted series will change when 

we use alternative values of  = 0.01, 0.04, and 0.07.  Figure 6 depicts the interest rates 

for these alternative values of  from January 2001 to December 2007.  Like Figure 5, 

the initial value of it is chosen so that the predicted value is equal to the actual value in 

August 2001.  It is easy to see that the interest rate changes are more infrequent when  

= 0.04 and much more infrequent when  =0.07.  An increase of uncertainty aversion 

will make the interest rates change less frequent.  They are, however, more frequent 

when  = 0.01 for which the policymaker’s uncertainty aversion is negligible.   

  The above results suggest that both a mean-preserving spread of t and an increase of 

uncertainty aversion will make the interest rates change less frequent.  However, in 

predicting actual FF rates, they have different implications.  To see this, we examine 

how the predicted series will change when we use alternative combinations of (A, B, ).  

Specifically, we examine how the predicted series will change when we use alternative 

combinations of (A, B, ) = (0.18, -0.18, 0.06) and (0.4, -0.4, 0.01).  Since (A, B, ) 

= (0.25, -0.25, 0.023) in the benchmark case, the first is a combination that has smaller 

mean-preserving spread of t but larger uncertainty aversion, while the second is a 

combination that has larger mean-preserving spread of t but smaller uncertainty 

aversion.  Figure 7 depicts the interest rates for these two alternative combinations 

from January 2001 to December 2007.  The initial value of it is chosen so that the 

predicted value is equal to the actual value in August 2001.  The combination of (0.18, 

-0.18, 0.06) shows that the predicted series remain constant from 2002 to 2003 and after 

2006 but change more dramatically in the other periods.  This implies that an increase 

of uncertainty aversion makes policy change more infrequent but smaller 

mean-preserving spread of t makes policy changes more dramatic.  In contrast, the 

combination of (0.4, -0.4, 0.01) shows that the predicted series are very flat but have 

frequent policy changes throughout the periods.  This implies that larger 
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mean-preserving spread of t cannot predict unchanged policy that happens only for 

some specific periods.  Larger mean-preserving spread of t is helpful only in making 

the predicted series smooth throughout the period. 

 

 

9. Predictability of ECB’s Targeted Interest Rate 

In section 6, we have demonstrated that our stop-and-go Taylor rule can track 

monthly policy changes in the United States very well.  The purpose of this section is 

to explore whether the stop-and-go Taylor rule can also track policy changes by 

European Central bank (ECB).  Specifically, we investigate how well our robust 

optimal monetary policy can predict monthly interest rates on the main refinancing 

operations (MRO) set by ECB from January 2001 to December 2007.   

As in previous sections, we investigate the case of two states where Corollary and 

Proposition 2 in section 5 lead to the time-variant Taylor rule.  Unlike section 6, we set 

* = 1.775% which implies that ECB has slightly tighter inflation target than Federal 

Reserve Board (FRB) in the loss function.  We also set  = 0.051 and  = 0.03.  

However, to make the following results comparable to those in previous sections, we 

use the exactly same values as those in section 6 for the other parameters.
9
 

For 0
t, we use monthly data of annual growth rate of the Harmonised Index of 

Consumer Prices (all-items excluding energy and food).  For x
0

t, we use monthly data 

of annual growth rate of Industrial Production Index (total industry excluding 

construction).  We calculated the output gap by using its deviations from 1.7% because 

the Industrial Production Index grew at 1.68% on average from 2000 to 2007.  Both of 

the data series are those of all Euro area and are downloaded from Euro Stat.  The 

prediction is a dynamic simulation where MRO rates are forecasted based on an initial 

value of it in January 2001 and realized values of x
0

t and 0
t from January 2001 to 

December 2007.  Like previous sections, it is assumed to respond to one month ahead 

of x
0

t – x* and 0
t – *. 

Figure 8 depicts both predicted and actual rates of MRO from January 2001 to 

December 2007.  Although based on a simple model and noisy data, our stop-and-go 

Taylor rule could track monthly rates of MRO remarkably well.  The prediction 

over-predicted MRO rates in the second half of 2007.  However, the predicted rates are 

very similar to actual rates in the other periods.  In particular, they almost tracked the 

unchanged rates of MRO from 2003 to 2005 as well as the continuous rise of MRO 

                                                   
9
 Specifically, we set k = 0.02, and  = 0.25 for structural parameters, x* = 0%,  = 0.01 and  = 0 

for the loss function, and A = 0.25, B = -0.25, and  = 0.5 for the convex probability capacity. 
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rates in 2006.  From 2002 to 2005, the Governing Council of ECB decided not to 

change its target rates in forty-four out of forty-eight meetings.  Consequently, actual 

rates of MRO remained unchanged for significant periods from 2002 to 2005.  The 

predicted rates of MRO capture this feature well in the figure.  It is noteworthy that we 

used the exactly same values as those in section 6 for most of the parameters.  This 

implies that both FRB’ and ECB’ policy decisions can be described by the same 

stop-and-go Taylor rule with similar feedback parameters. 

The superiority of our model can be seen more clearly when comparing the 

benchmark model with the model where the policymaker has no uncertainty aversion, 

that is,  = 0.  Figure 9 depicts both predicted and actual rates of MRO from January 

2001 to December 2007 in the case where  = 0.  Like section 6, the dynamic 

predictions were made not only for  = 0 but also for  = 0.003.  Except for  and , 

the parameters are the same as those in Figure 8.  Even when  = 0, the Taylor rule 

which is determined by equation (11) tracked long-run movements of MRO rates.  

However, when  = 0, we see that the predicted series frequently showed significant 

downward deviations from the actual series.  In particular, the predicted series fell 

below zero from July 2005 to February 2006.  This suggests that removing uncertainty 

aversion in the model worsens the predictability dramatically.  Setting  = 0.003, that 

is, allowing benefits from interest rate smoothing in the loss function, improves the 

model predictability.  However, even when  = 0.003, they could not track unchanged 

policy from March 2002 to November 2002 and under-predicted MRO rates after 2006.   

The superiority of our model can be also confirmed even when comparing with a 

standard Taylor rule whose coefficients are estimated by ordinary least squares.  Like 

section 6, we estimated the coefficients of the standard Taylor rule by ordinary least 

squares for the sample period from January 2001 to December 2007.
10

  Using the 

estimated coefficients, a dynamic prediction is made based on an initial value of it and 

realized values of x
0

t and 0
t in the following periods.  Figure 10 depicts both predicted 

and actual FF rates from January 2001 to December 2007.  The standard Taylor rule 

with estimated coefficients tracked medium-run and long-run movements of MRO rates 

well.  However, the predicted series under-predicted MRO rates after 2006 in the 

dynamic simulation.  In addition, they failed to detect unchanged policy decision from 

2003 to 2005. 

 

 

                                                   
10

 From the estimation, we obtained the Taylor rule such that it = 0.100 + 0.965 it-1 + 4.180 (x
0

t+1 – 

x*) + 7.442 (0
t+1 – *). 
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10. Concluding Remarks 

In this paper, we explored why the central bank’s policy instrument remains so 

unchanged under uncertainty.  Although infrequent policy changes have been widely 

observed in many central banks, they have not been taken into account in previous 

macro models.  This is true even in previous studies that investigated optimal 

monetary policy under model uncertainty or robust optimal policy rules.  A large 

number of studies agreed that there is clearly much uncertainty over policy multipliers.  

However, most previous studies concluded that multiplier uncertainty may make 

optimal policy more conservative but does not lead to a policy of “doing nothing”.  A 

key departure of our paper from these studies is the introduction of a stop-go monetary 

policy under Knightian uncertainty or a robust control framework.  This increases an 

incentive for the central bank to keep the policy instrument unchanged even when 

exogenous shocks change output gap and inflation rate.  The calibrated optimal 

stop-go policy rules could track actual target rates of FRB and ECB quite well even if 

the policymaker’s uncertainty aversion is very small. 

Needless to say, our stop-go monetary policy is not the only explanation for why the 

central banks’ policy changes are so infrequent.  Infrequent decision-making meetings 

would be one reason why the policy target changes so infrequently.  Infrequent 

observations of macroeconomic data could be another reason.  However, as we 

discussed briefly in the introduction, policy changes are less frequent than what these 

institutional constraints predict.  This paper filled the gaps that the institutional 

constraints could not explain.   
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Appendix: Derivation of Proposition 2 

  In this Appendix, we prove Proposition 2 in section 5.  Suppose that (x
0
t – x*) + 

(0
t – *) > 0.  Then, zA,B  

0 0( *) ( *)

( ) ( )( ) / 2

t t

l m

x x

k

  

     

  

   
 > 0.  It holds that LA,t < 

LB, t if and only if 0 < it < zA,B and that LA,t > LB, t if and only if it < 0 or it > zA,B.  

Equation (14) therefore leads to 
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t

t

Q

i

LE




= –2(1-) [( +A){x

0
t – ( +A)it – x*}  

+ (A+ k){0
t – (A+ k)it - *}

 
]  

–2{1-(1-)} [( +B){x
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] + 2it, 

when 0 < it < zA,B, 

= –2{1-(1-)(1-)}[( +A){x
0

t – ( +A)it – x*} 

+ (A+ k){0
t – (A+ k)it - *}

2 
]

 

–2(1-)(1-) [( +B){x
0

t – ( +B)it – x*} 

+ (B+ k){0
t – (B+ k)it - *}

2 
] + 2it, 

when it < 0 or it > zA,B. 

 

This implies that 
t

t

Q

i
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 > 0 as it approaches to zA,B from below and that 
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This indicates that it is optimal for the central bank to set it = zA,B if and only if (B2) 

holds. 

  In addition, recall that I  (1-)A+{1-(1-)}B, II  {1-(1-)(1-)}A + (1-)(1-) 

B, x,I
2
  (1-)( +A)

2
 + {1-(1-)}( +B)

2
, ,I

2
  (1-)(A+ k)

2 
+ 
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{1-(1-)}(B+ k)
2
, x,II

2
  {1-(1-)(1-)}( +A)

2
 + (1-)(1-)( +B)

2
, and ,II

2
 

 {1-(1-)(1-)}(A+ k)
2 

+ (1-)(1-)(B+ k)
2
.  It thus holds that when 0 < it < 
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t

t
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= 0 if and only if  
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and that when it < 0 or it > zA,B, 
t

t

Q

t

i
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= 0 if and only if  
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. 

 

This proves the first part of Proposition 2.  The second part of Proposition 2 can be 

proved similarly.  We therefore obtain Proposition 2.   
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Table 1. The Number of FOMC Release Dates and No Policy Change Announcement 

 

1991 1992 1993 1994 1995 1996 1997 1998 1999

Number of FOMC meetings 18 12 8 9 8 7 8 9 8

Number of meetings without policy change 9 9 8 3 4 6 7 6 5

2000 2001 2002 2003 2004 2005 2006 2007

Number of FOMC meetings 8 11 8 8 8 8 8 11

Number of meetings without policy change 5 0 7 7 3 0 4 4  

 

 

Table 2. The Number of Meetings and No Policy Change Announcement 

 

(1) Bank of Japan (Monetary Policy Meetings)

1999 2000 2001 2002 2003 2004 2005 2006 2007

Number of Monetary Policy Meetings 19 18 17 16 16 16 15 14 14

Number of meetings without policy change 18 17 12 13 12 15 15 12 13

(2) European Central Bank (The Governing Council)

1999 2000 2001 2002 2003 2004 2005 2006 2007

Number of Government Council meetings 24 24 24 12 12 12 12 12 12

Number of meetings without policy change 19 17 20 11 10 12 11 7 10

(3) Bank of England (The Monetary Policy Committee)

1999 2000 2001 2002 2003 2004 2005 2006 2007

Number of MPC meetings 12 12 13 12 12 12 12 12 12

Number of meetings without policy change 6 10 6 12 9 8 11 10 8

(4) Reserve Bank of Australia (Reserve Bank Board)

1999 2000 2001 2002 2003 2004 2005 2006 2007

Number of RBB meetings 11 11 11 11 11 11 11 11 11

Number of meetings without policy change 10 7 5 9 9 11 10 8 8

(5) Reserve Bank of New Zealand

1999 2000 2001 2002 2003 2004 2005 2006 2007

Number of OCR review meetings 6 8 9 8 8 8 8 8 8

Number of meetings without policy change 5 4 4 4 5 2 5 8 4  
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Figure 1 . Federal Funds Target Rate:
From Dec. 2000 to Dec. 2007
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Figure 2.  Predicted and Actual FF Rates: Benchmark Case 
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Figure 3.  Predicted and Actual FF Rates: Cases of  = 0 
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Figure 4.  Predicted and Actual FF Rates: Case of the estimated coefficients 
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Figure 5.  Predicted and Actual FF Rates for Alternative Combinations of t 
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Figure 6.  Predicted and Actual FF Rates for Alternative Values of  
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Figure 7.  Predicted and Actual FF Rates for Alternative Combinations of t and  
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Figure 8.  Predicted and Actual Rates of MRO: Benchmark Case 
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Figure 9.  Predicted and Actual Rates of MRO: Cases of  = 0 
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Figure 10.  Predicted and Actual Rates of MRO: Case of the estimated coefficients 
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