
 

 

 

 

 

 

C A R F  W o r k i n g  P a p e r 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CARF is presently supported by Bank of Tokyo-Mitsubishi UFJ, Ltd., Dai-ichi Mutual Life 
Insurance Company, Meiji Yasuda Life Insurance Company, Nomura Holdings, Inc. and 
Sumitomo Mitsui Banking Corporation (in alphabetical order). This financial support enables 
us to issue CARF Working Papers. 

 
 

 

 

 

 

 

 

 

CARF Working Papers can be downloaded without charge from: 
http://www.carf.e.u-tokyo.ac.jp/workingpaper/index.cgi 

 

 

 

 

Working Papers are a series of manuscripts in their draft form.  They are not intended for 
circulation or distribution except as indicated by the author.  For that reason Working Papers may 
not be reproduced or distributed without the written consent of the author. 

  
CARF-F-311 

 
 

 Momentum-Space Approach to Asymptotic Expansion for  
Stochastic Filtering 

  
 
 

Masaaki Fujii 
The University of Tokyo  

 
First version: September 10, 2012 
Current version: March 24, 2013 



Noname manuscript No.
(will be inserted by the editor)

Momentum-Space Approach to Asymptotic Expansion for
Stochastic Filtering ⋆

Masaaki Fujii

1st version: September 10, 2012/ Current version: March 24, 2013

Abstract This paper develops an asymptotic expansion technique in momentum
space for stochastic filtering. It is shown that Fourier transformation combined with
a polynomial-function approximation of the nonlinear terms gives a closed recursive
system of ordinary differential equations (ODEs) for the relevant conditional distri-
bution. Thanks to the simplicity of the ODE system, higher order calculation can be
performed easily. Furthermore, solving ODEs sequentially with small sub-periods with
updated initial conditions makes it possible to implement a substepping method for
asymptotic expansion in a numerically efficient way. This is found to improve the per-
formance significantly where otherwise the approximation fails badly. The method is
expected to provide a useful tool for more realistic financial modeling with unobserved
parameters, and also for problems involving nonlinear measure-valued processes.

Keywords Zakai equation · polynomial-function approximation · measure-valued
process

1 Introduction

In many areas, researchers frequently encounter the situation where crucial parameters
for their models are not directly observable in our mother nature or in experiments.
This is particularly the case, for example, in engineering, applied physics, finance and
economics. To get the best estimate of the unobservable from what we can directly
observe is the goal of stochastic filtering. The most famous example with analyti-
cal solution is Kalman-Bucy filter [Bucy (1959), Kalman (1960), Kalman and Bucy
(1961)], which assumes that both of the signal and observation processes are linear
and hence is associated with Gaussian distribution.

However, there are many cases where interested variables follow nonlinear stochas-
tic processes and their distributions are far from Gaussian. This is particularly the
case for financial problems. In fact, many people were forced to realize the sheer im-
pacts of non-Gaussianity in the last financial crisis followed by the collapse of Lehman
Brothers. Researchers, practitioners as well as regulators now clearly recognize the im-
portance of not only the first two moments but also every other detail of the relevant
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distribution. Here, we need to deal with nonlinear filtering problems. Filtering theory
has a long history and is still developing very rapidly, partly helped by the great
increase of computational power. Recently, there appeared a thick volume edited by
Crisan and Rozovskǐi (2011) from Oxford university press, which contains latest de-
velopments and reviews for theoretical as well as numerical techniques for nonlinear
filtering problems. In particular, the article written by Frey and Runggaldier in the
same volume gives a nice review of applications to various financial valuation problems
under partial observation.

In this paper, we propose a simple approximation scheme based on an asymp-
totic expansion method in momentum space for nonlinear filtering problems. The
method should be also useful for other financial problems that do not require fil-
tering. Widely used ”position-space” asymptotic expansion method (See, Takahashi
(1999), and references therein.) is transformed into a simpler form in the momentum
(or Fourier transformed) apace, and the resultant dynamics of the characteristic func-
tion is given by a closed recursive system of ordinary differential equations (ODEs). It
is shown that the form of ODEs unchanged for any order of expansion, which allows
straightforward numerical implementation for higher order approximations. Further-
more, dividing the original time horizon into a set of small sub-periods and solving the
ODEs sequentially with updated initial conditions, which we call substepping method
for asymptotic expansion, increase the parameter space where the approximation is
effective. Two simple examples are discussed to demonstrate how the method works.
We also make a brief comment on the possibility that the same method can be used
to analyze other measure-valued nonlinear systems.

2 Preliminaries for Nonlinear Filtering

2.1 Zakai equation

Let (Ω,F ,P) be a probability space with a filtration (Ft)t≥0 satisfying the usual con-
ditions. We consider n-dimensional signal processX = {Xt, t ≥ 0} andm-dimensional
observation process Y = {Yt, t ≥ 0} following the dynamics of

dXt = µt(Xt)dt+ ηt(Xt)dVt + η̄t(Xt)dWt (1)

dYt = ht(Xt)dt+ dWt (2)

with Y0 = 0 and an independent initial distribution for X0. Here V and W are
independent (P,F)-Brownian motions with dimensionality d and m, respectively. µ,
h, η and η̄ are deterministic functions of (t, x) and take values in Rn,Rm,Rn×d and
Rn×m, respectively. The functions µ, η and η̄ are assumed to satisfy appropriate
conditions so that (1) has a unique solution. The measurable function h is assumed to
satisfy the conditions that make the following process Z = {Zt, t ≥ 0} be a martingale:

Zt = exp

(
−
∫ t

0

hs(Xs)
⊤dWs −

1

2

∫ t

0

||hs(Xs)||2ds
)

where ⊤ denotes the transposition. We denote {Yt, t ≥ 0} be the usual augmented
filtration generated by the process Y . Our goal of the filtering problem is to obtain the
conditional distribution πt of the signal X at time t given the information available
from observing the process Y in the interval of [0, t]. In other words, for a given
arbitrary bounded function φ, compute

πt(φ) = E
[
φ(Xt)

∣∣∣Yt] .
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Let us define the measure P̃ by

dP̃
dP

∣∣∣∣∣
Ft

= Zt

and the associated inverse relation

dP
dP̃

∣∣∣∣
Ft

= Z̃t

where Z̃t = Z−1
t can be written as

Z̃t = exp

(∫ t

0

hs(Xs)
⊤dYs −

1

2

∫ t

0

||hs(Xs)||2ds
)
.

Note that the process Y becomes a standard (P̃,F)-Brownian motion.

We define the unnormalized conditional distribution ofX to be the measure-valued
process ρ = {ρt, t ≥ 0}

ρt(φ) = Ẽ
[
Z̃tφ(Xt)

∣∣∣Yt] P̃− a.s.

which is Yt-adapted and càdlàg. Here, Ẽ[·] denotes the expectation in the measure P̃.
The desired filtered density function can then be obtained from the relation

πt(φ) =
ρt(φ)

ρt(1)
.

It is known that the dynamics of ρ satisfies the following Zakai equation for arbitrary
smooth bounded function φ:

ρt(φ) = ρ0(φ) +

∫ t

0

ρs(Asφ)ds+

∫ t

0

ρs

(
(hs +Bs)

⊤φ
)
dYs (3)

with initial value ρ0(φ) = E[φ(X0)] associated with a given distribution of X0. Here,
As is the infinitesimal generator of X at time s

As =
n∑

i=1

µi
s(x)

∂

∂xi
+

1

2

n∑
i,j=1

(
ηsη

⊤
s (x) + η̄sη̄

⊤
s (x)

)
i,j

∂2

∂xi∂xj

and

Bk
s =

n∑
i=1

(η̄⊤s (x))k,i
∂

∂xi
, k = 1, · · · ,m.

For the derivation of the Zakai equation and the other technical details, see Bain and
Crisan (2008), for example. The goal of this paper is to develop a simple scheme to
solve the Zakai equation (3).
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2.2 Filtered Characteristic Function

Let us consider a function

ψ(ξ, x) = exp
(
iξ⊤x

)
with ξ, x ∈ Rn, where i =

√
−1. If one obtains the conditional expectation of this

function, i.e.,

πt(ψ(ξ, ·)) =
Ẽ
[
exp

(
iξ⊤Xt

)
Z̃t

∣∣∣Yt]
Ẽ
[
Z̃t

∣∣Yt]
for each ξ, one can derive the conditional expectation for an arbitrary choice of φ.
This fact can be seen as follows: Let us consider the inverse Fourier transformation
ϕt(·)

ϕt(z) =
1

(2π)n

∫
Rn

e−iξ⊤zπt(ψ(ξ, ·))dnξ

which can be evaluated as

ϕt(z) =
1

(2π)n

∫
Rd

1

Ẽ
[
Z̃t

∣∣Yt] Ẽ
[
exp

(
iξ⊤(Xt − z)

)
Z̃t

∣∣∣Yt]dnξ
=

Ẽ
[
δ(Xt − z)Z̃t

∣∣∣Yt]
Ẽ
[
Z̃t

∣∣Yt] ,

where δ(·) denotes a n-dimensional Dirac delta function. The above function actually
corresponds to the conditional density of the Xt since

∫
Rd

φ(z)ϕt(z)d
nz =

Ẽ
[
φ(Xt)Z̃t

∣∣∣Yt]
Ẽ
[
Z̃t

∣∣Yt]
= πt(φ) .

Therefore, {πt(ψ(ξ))} and equivalently {ρt(ψ(ξ))} contain all the important informa-
tion one needs. In fact, many of the financial valuation problems with partial informa-
tion end up with calculating an integration with the conditional density ϕt(dz) (See,
Frey and Runggaldier (2011) for a review.).

3 Asymptotic Expansion in Momentum Space

From the discussion in the previous section, we want to solve the Zakai equation for
the characteristic function ρt(ψ(ξ)). Although one can directly approximate the Zakai
equation for a specific problem, it would be uneconomical. This is because the form
of Zakai equation depends on the target function φ for which one takes conditional
expectation even in a common signal-observation system.
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3.1 Perturbed System

In order to make the system tractable, we replace the parameters in the original
system in (1) and (2) by

µt(x)→ ft + ϵFt(x) ηt(x)→ νt + ϵσt(x)

η̄t(x)→ ϵγt(x) ht(x)→ ϵHt(x)

and consider the n-dimensional signal and the m-dimensional observation processes
as

dX
(ϵ)
t =

(
ft + ϵFt(X

(ϵ)
t )

)
dt+

(
νt + ϵσt(X

(ϵ)
t )

)
dVt + ϵγt(X

(ϵ)
t )dWt

dYt = ϵHt(X
(ϵ)
t )dt+ dWt .

Here, ft ∈ Rn and νt ∈ Rn×d are deterministic functions of time and νtν
⊤
t is assumed

to be positive definite. Note that the signal process is now a function of ϵ, which is
emphasized by a superscript ”(ϵ)”. As one can see, in the limit of ϵ ↓ 0, the system
yields a free decoupled Gaussian signal process for which the density function is
exactly known. In the following, we try to expand the conditional density around it
by taking into account state-dependent and observation effects perturbatively.

As explained in the previous section, we are interested in the unnormalized distri-
bution

ρ(ϵ)(ψ(ξ)) = Ẽ
[
Z̃

(ϵ)
t ψ(ξ,X

(ϵ)
t )

∣∣∣Yt]
with

Z̃
(ϵ)
t = exp

(
ϵ

∫ t

0

Hs(X
(ϵ)
s )⊤dYs −

ϵ2

2

∫ t

0

||Hs(X
(ϵ)
s )||2ds

)
and

dP
dP̃

∣∣∣∣
Ft

= Z̃
(ϵ)
t .

The corresponding Zakai equation becomes

ρ
(ϵ)
t (ψ(ξ)) = ρ0(ψ(ξ)) +

∫ t

0

ρ(ϵ)s

(
A(ϵ)

s ψ(ξ)
)
ds+ ϵ

∫ t

0

ρ(ϵ)s

(
(Hs +Bs)

⊤ψ(ξ)
)
dYs, (4)

where conditional distribution ρ is now also a function of ϵ. Here,

Bk
s =

n∑
i=1

(γ⊤s (x))k,i
∂

∂xi
, k = 1, · · · ,m.

and the infinitesimal generator is given by

A(ϵ)
s =

n∑
i=1

(
f is + ϵF i

s(x)
) ∂

∂xi
+

n∑
i,j=1

1

2

(
νs + ϵσs(x)

)(
νs + ϵσs(x)

)⊤

ij

∂2

∂xi∂xj

+

n∑
i,j=1

ϵ2
1

2

(
γs(x)γs(x)

⊤
)
ij

∂2

∂xi∂xj
.

Our goal is to expand

ρ
(ϵ)
t (ψ(ξ)) = ρ

[0]
t (ψ(ξ)) + ϵρ

[1]
t (ψ(ξ)) + ϵ2ρ

[2]
t (ψ(ξ)) + · · · (5)

and obtain ρ
[j]
t (ψ(ξ)), j = {0, 1, 2, · · · } up to an arbitrary order. Here, we have defined

ρ
[j]
t (ψ(ξ)) :=

1

j!

∂j

∂ϵj
ρ
(ϵ)
t (ψ(ξ))

∣∣∣∣
ϵ=0

.
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3.2 Recursive system for Asymptotic Expansion

We now expand the Zakai equation for each order of ϵ. Note that, for any polynomial
function G of x, one can write

G(x)eiξ
⊤x = G(Dξ)e

iξ⊤x

where, G(Dξ) denotes the differential operator obtained by replacing each xj in the
function by (Dξ)j , which is a derivative operator defined as

Dξ =
∂

i∂ξ
.

This fact allows one to write

ρ
(ϵ)
t (Gψ(ξ)) = G(Dξ)ρ

(ϵ)
t (ψ(ξ))

which is linear for ρ
(ϵ)
t (ψ(ξ)).

In order to avoid nonlinearity, we make use of this property of polynomial func-
tions. With slight abuse of notations, we treat Ft(x), σt(x), γt(x) and Ht(x) as ar-
bitrary accurately approximated polynomial functions of x (and time) for the corre-
sponding original functions. By Weierstrass’ polynomial approximation theorem, this
is always possible for any continuous function within a closed interval. In practice, one
can take wide enough interval within which the signal process resides with probability
sufficiently close to one and an associated polynomial approximation accurate enough
for that range.

Then, one can formally write

A(ϵ)
s ψ(ξ, x) =

(
A[0]

s (ξ) + ϵA[1]
s (ξ,Dξ) + ϵ2A

[2]
t (ξ,Dξ)

)
ψ(ξ, x) (6)

where

A[0]
s (ξ) = iξ⊤fs −

1

2
ξ⊤(νsν

⊤
s )ξ

A[1]
s (ξ,Dξ) = iξ⊤Fs(Dξ)−

1

2
tr
[
ξξ⊤

(
νsσ

⊤
s (Dξ) + σs(Dξ)ν

⊤
s

)]
A[2]

s (ξ,Dξ) = −
1

2
tr
[
ξξ⊤

(
σs(Dξ)σ

⊤
s (Dξ) + γs(Dξ)γ

⊤
s (Dξ)

)]
and similarly

(Hs(x) +Bs(x))
⊤ψ(ξ, x) =

(
H⊤

s (Dξ) + iξ⊤γs(Dξ)
)
ψ(ξ, x) . (7)

Substituting (5), (6) and (7) into the Zakai equation (4), one can easily confirm the
following result.

Theorem 1 An arbitrary order of the asymptotic expansion ρ
[j]
t (ψ(ξ)), j ∈ {0, 1, 2, · · · }

ρ
(ϵ)
t (ψ(ξ)) = ρ

[0]
t (ψ(ξ)) + ϵρ

[1]
t (ψ(ξ)) + ϵ2ρ

[2]
t (ψ(ξ)) + · · · (8)

of the unnormalized filtered characteristic function

ρ
(ϵ)
t (ψ(ξ)) = Ẽ

[
exp

(
iξ⊤X

(ϵ)
t

)
Z̃

(ϵ)
t

∣∣∣Yt]
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satisfies

dρ
[j]
t (ψ(ξ)) = A

[0]
t (ξ)ρ

[j]
t (ψ(ξ))dt

+
{
A

[1]
t (ξ,Dξ)ρ

[j−1]
t (ψ(ξ)) +A

[2]
t (ξ,Dξ)ρ

[j−2]
t (ψ(ξ))

}
dt

+
(
H⊤

t (Dξ) + iξ⊤γt(Dξ)
)
ρ
[j−1]
t (ψ(ξ))dYt (9)

with initial conditions ρ
[0]
0 (ψ(ξ)) = ρ0(ψ(ξ)), ρ

[j]
0 (ψ(ξ)) = 0 (j ≥ 1) and the conven-

tion that

ρ[k](ψ(ξ)) ≡ 0

for k < 0.

Considering a special case where there is no observation, one obtains a simple
corollary for a standard unconditional characteristic function.

Corollary 1 An arbitrary order of the asymptotic expansion ρ
[j]
t (ψ(ξ)), j ∈ {0, 1, 2, · · · }

ρ
(ϵ)
t (ψ(ξ)) = ρ

[0]
t (ψ(ξ)) + ϵρ

[1]
t (ψ(ξ)) + ϵ2ρ

[2]
t (ψ(ξ)) + · · · (10)

of the characteristic function

ρ
(ϵ)
t (ψ(ξ)) = E

[
exp

(
iξ⊤X

(ϵ)
t

)]
satisfies

dρ
[j]
t (ψ(ξ)) = A

[0]
t (ξ)ρ

[j]
t (ψ(ξ))dt

+
{
A

[1]
t (ξ,Dξ)ρ

[j−1]
t (ψ(ξ)) +A

(2)
t (ξ,Dξ)ρ

[j−2]
t (ψ(ξ))

}
dt

with initial conditions ρ
[0]
0 (ψ(ξ)) = ρ0(ψ(ξ)), ρ

[j]
0 (ψ(ξ)) = 0 (j ≥ 1) and the conven-

tion that

ρ[k](ψ(ξ)) ≡ 0

for k < 0.

The above result shows that one only has to deal with a set of decoupled ODEs in
terms of momentum {ξ} with a given observation path of Y . It is straightforward to
solve the above equation for each ξ up to a certain ϵ-order, and use discrete Fourier
transformation technique to obtain the density function. In Fourier analysis of smooth
functions, it is well-known that most of the information is carried by small number
of modes. In fact, in an example we provide in a later section, the resultant density
function does not change meaningfully once the number of ξ-mode reaches ∼ 30. This
feature combined with the decoupled dynamics of characteristic function is expected
to weaken the curse of dimensionality significantly, at least compared to typical PDE
approaches.

Analytical calculation is also possible. Since the dynamics is linear, one easily
obtains the following results:

Zeroth order

ρ
[0]
t (ψ(ξ)) = e

∫ t
0
A[0]

s (ξ)dsρ0(ψ(ξ)) (11)
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First order

ρ
[1]
t (ψ(ξ)) =

∫ t

0

e
∫ t
s
A[0]

u (ξ)du
{
A[1]

s (ξ,Dξ)ρ
[0]
s (ψ(ξ))ds

+
(
H⊤

s (Dξ) + iξ⊤γs(Dξ)
)
ρ[0]s (ψ(ξ))dYs

}
(12)

Higher order (j ≥ 2)
Using the lower order results, an arbitrary order of the expansion can be expressed
recursively as

ρ
[j]
t (ψ(ξ)) =

∫ t

0

e
∫ t
s
A[0]

u (ξ)du
{(
A[1]

s (ξ,Dξ)ρ
[j−1]
s (ψ(ξ)) +A[2]

s (ξ,Dξ)ρ
[j−2]
s (ψ(ξ))

)
ds

+
(
H⊤

s (Dξ) + iξ⊤γs(Dξ)
)
ρ[j−1]
s (ψ(ξ))dYs

}
.

(13)

Rigorous mathematical proofs of the validity and convergence of the above asymp-
totic expansion when taking ϵ ↓ 0 are beyond the scope of the current work. However,
for a given observation path Y , it is likely to be proved by a similar line of argu-
ments for the asymptotic expansion in position space without filtering problem given
in Takahashi (1999), which is based on the results of Yoshida (1992a, 1992b, 1997)
and Ikeda and Watanabe (1989). In the next section, we explain the inversion method
to obtain the density function.

3.3 Density Formula

In this section, we provide a strategy to obtain an analytical expression of the fil-
tered density. Although this is not necessary if one is only interested in numerical
implementation with discrete Fourier transformation, the analytical expression can
be quite useful for various applications in finance. In particular, a model calibration
and quick response to a client request of price indication require very fast evaluation.

Let us consider the inverse Fourier transformation of ρ
(ϵ)
t (ψ(ξ)):

ϕ
(ϵ)
t (z) =

1

(2π)n

∫
Rn

e−iξ⊤zρ
(ϵ)
t (ψ(ξ))dnξ .

This corresponds to the unnormalized conditional probability density of the signal

X
(ϵ)
t given the observation path of Y (See the discussion in Sec.2.2.). The desired

normalized conditional probability density of the signal is then given by

ϕ̄
(ϵ)
t (z) =

1

c
(ϵ)
t

ϕ
(ϵ)
t (z)

where c
(ϵ)
t is a normalization factor defined as

(
c
(ϵ)
t

)−1

=

∫
Rn

ϕ
(ϵ)
t (z)dnz .

Thus, for applications, it suffices to calculate the expression of ϕ
(ϵ)
t (z).
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3.3.1 Gaussian distribution for X0

For simplicity, let us first consider the case where X0 is distributed by a Gaussian
law N (x0;Σ0) with mean x0 and the covariance Σ0 of a symmetric positive definite
matrix. In this case, we have

ρ0(ψ(ξ)) =

∫
Rn

eiξ
⊤xn[x;x0, Σ0]d

nx

=
1√

(2π)n|Σ0|

∫
Rn

eiξ
⊤x exp

(
−1

2
(x− x0)⊤Σ−1

0 (x− x0)
)
dnx

where n[x;x0, Σ0] is the probability density function for a random variable with Gaus-
sian low of N (x0;Σ0), and |Σ0| denotes the determinant of Σ0. The evaluation can
be done easily by considering the variable change from x to η given by

x = x0 + P0η

with a matrix P0 satisfying

Σ0 = P0P
⊤
0 .

Integration in terms of η leads to

ρ0(ψ(ξ)) = exp
(
iξ⊤x0 −

1

2
ξ⊤Σ0ξ

)
.

Then, from (11) of the previous section, we have

ρ
[0]
t (ψ(ξ)) = exp

(
iξ⊤xt −

1

2
ξ⊤Σtξ

)
(14)

where

xt = x0 +

∫ t

0

fsds

Σt = Σ0 +

∫ t

0

νsν
⊤
s ds .

Thus, it is clear that X
[0]
t has a Gaussian distribution N (xt;Σt). If the initial position

of X0 is exactly known as X0 = x0, then one clearly has

ρ0(ψ(ξ)) = eiξ
⊤x0

and hence one can simply insert Σ0 = 0 in (14).

By the property of the exponential form and (12), one can check that ρ
[1]
t (ψ(ξ))

is given by

ρ
[1]
t (ψ(ξ)) = ρ

[0]
t (ψ(ξ))

(∫ t

0

as(ξ)ds+ bs(ξ)dYs

)
(15)

with polynomial functions as(ξ) ∈ R and bs(ξ) ∈ R1×m of ξ

as(ξ) = ρ[0]s (ψ(ξ))−1A(1)
s (ξ,Dξ)ρ

[0]
s (ψ(ξ))

bs(ξ) = ρ[0]s (ψ(ξ))−1
(
Hs(Dξ)

⊤ + iξ⊤γs(Dξ)
)
ρ[0]s (ψ(ξ))

which can be expressed by Hermite polynomials in general.
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Thus, the first order correction to the unnormalized conditional density can be
expressed as

ϕ
[1]
t (z) :=

1

(2π)n

∫
Rn

e−iξ⊤zρ
[1]
t (ψ(ξ))dnξ

=

(∫ t

0

as(Dz)ds+ bs(Dz)
⊤dYs

)
n[z;xt, Σt] . (16)

Here,

Dz := i
∂

∂z

and as(Dz), bs(Dz) denote the derivative operator of z obtained by replacing each ξ
in the functions by Dz.

Repeating the same arguments, one can see that ρ
[j]
t (ψ(ξ)) can be given, as a

generalization of (15), by

ρ
[j]
t (ψ(ξ)) = ρ

[0]
t (ψ(ξ))

∫ t

0

∫ sj

0

· · ·
∫ s2

0

(
Γs1,··· ,sj (ξ)ds1ds2 · · · dsj

+Γy1,s2,··· ,sj (ξ) dYs1ds2 · · · dsj
· · ·

+Γy1,y2,··· ,yj (ξ) dYs1dYs2 · · · dYsj
)
+ · · · (17)

with certain polynomial functions {Γs1,··· ,sj (ξ), · · · , Γy1,··· ,yj (ξ)} of ξ with appropriate
dimensions. The {· · · } denotes the term with integration order of (< j), which stems
from the existence of the ϵ-second order operator A[2]. Then, as a generalization of
(16), the j-th order term of the unnormalized conditional density is also given by the
correction to the Gaussian distribution:

ϕ
[j]
t (z) :=

1

(2π)n

∫
Rn

e−iξ⊤zρ
[j]
t (ψ(ξ))dnξ

=

∫ t

0

∫ sj

0

· · ·
∫ s2

0

(
Γs1,··· ,sj (Dz)ds1ds2 · · · dsj

+Γy1,s2,··· ,sj (Dz) dYs1ds2 · · · dsj
· · ·

+Γy1,y2,··· ,yj (Dz) dYs1dYs2 · · · dYsj
)
n[z;xt, Σt] + · · · . (18)

In the case of no (or trivial) observation, one can get the asymptotic expansion of
unconditional probability density by putting dY terms zero.

3.3.2 Non-Gaussian distribution for X0

Even when the initial distribution is not exactly Gaussian, if one can approximate it
by the form

ϕ0(z) = (some polynomial function of z)× n[z;x0, Σ0] , (19)

then the properties of the inverse transformation given in the previous section still
hold in almost the same way. This is, for example, the case when one approximates
the initial distribution by Gram-Charlier expansions. In the case when (19) holds, one

can still write ρ
[0]
t in the form

ρ
[0]
t (ψ(ξ)) = (some polynomial function of ξ)× exp

(
iξ⊤xt −

1

2
ξ⊤Σtξ

)
and it only changes the functions {Γ} in (17) and (18).
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4 A Direct Application to Kushner-Stratonovich Equation

We can also apply the technique to the Kushner-Stratonovich (KS) equation that
describes the dynamics of the normalized conditional density of πt instead of ρt.
Although it suffices to work on the simpler Zakai equation in filtering problems, we
directly treat KS equation here to demonstrate the fact that the asymptotic expansion
can also be applied to measure-valued non-linear systems. For the setup given in
Sec.2.1, the Kushner-Stratonovich equation is given by

dπt(φ) = πt(Atφ)dt+
{
πt

(
(ht +Bt)

⊤φ
)
− πt(h⊤t )πt(φ)

}
(dYt − πt(ht)dt)

with a given initial value π0(φ). This is clearly a nonlinear equation for the measure-
valued process πt. See a textbook Bain and Crisan (2008) for details of the derivation.

Let us now introduce the same perturbed system as in Sec.3.1. Then, one obtains
the KS equation for ψ(ξ, ·) as

dπ
(ϵ)
t (ψ(ξ)) = π

(ϵ)
t (A

(ϵ)
t ψ(ξ))dt

+ϵ
{
π
(ϵ)
t

(
(Ht +Bt)

⊤ψ(ξ)
)
− π(ϵ)

t (H⊤
t )π

(ϵ)
t (ψ(ξ))

}
(dYt − ϵπ(ϵ)

t (Ht)dt)

By the same polynomial-function approximations, one can rewrite it as

dπ
(ϵ)
t (ψ(ξ)) =

(
A

[0]
t (ξ) + ϵA

[1]
t (ξ,Dξ) + ϵ2A

[2]
t (ξ,Dξ)

)
π
(ϵ)
t (ψ(ξ))dt

+ϵ
{(
H⊤

t (Dξ) + iξ⊤γt(Dξ)
)
π
(ϵ)
t (ψ(ξ))− π(ϵ)

t (H⊤
t )π

(ϵ)
t (ψ(ξ))

}
(dYt − ϵπ(ϵ)

t (Ht)dt) .

(20)

As before, we try to expand the solution as

π
(ϵ)
t (ψ(ξ)) = π

[0]
t (ψ(ξ)) + ϵπ

[1]
t (ψ(ξ)) + ϵ2π

[2]
t (ψ(ξ)) + · · · (21)

with the definition

π
[j]
t (ψ(ξ)) :=

1

j!

∂j

∂ϵj
π
(ϵ)
t (ψ(ξ))

∣∣∣∣
ϵ=0

. (22)

Note that there appears π
(ϵ)
t (Ht) in (20). This term does no harm since an arbitrary

order j of asymptotic expansion, we need π
[i]
t (Ht) only for i = 0, 1, · · · , j − 1 due to

the additional ϵ-factor. Thus, at the calculation of j-th order expansion, one can use

π
[i]
t (Ht) = Ht(Dξ)π

[i]
t (ψ(ξ))

∣∣∣
ξ=0

where π
[i]
t (ψ(ξ)) are already known for i ≤ j − 1.

Let us give the first few orders of expansions for the KS equation:
Zeroth order

dπ
[0]
t (ψ(ξ)) = A

[0]
t (ξ)π

[0]
t (ψ(ξ))dt (23)

with initial value π
[0]
0 (ψ(ξ)) = π0(ψ(ξ)).

First oder

dπ
[1]
t (ψ(ξ)) = A

[0]
t (ξ)π

[1]
t (ψ(ξ))dt

+
{(
H⊤

t (Dξ) + iξ⊤γt(Dξ)
)
π
[0]
t (ψ(ξ))− π[0]

t (H⊤
t )π

[0]
t (ψ(ξ))

}
dYt (24)
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with π
[1]
0 (ψ(ξ)) = 0.

Second order

dπ
[2]
t (ψ(ξ)) = A

[0]
t (ξ,Dξ)π

[2]
t (ψ(ξ))dt

+
{
A

[1]
t (ξ,Dξ)π

[1]
t (ψ(ξ)) +A

[2]
t (ξ,Dξ)π

[0]
t (ψ(ξ))

−
(
H⊤

t (Dξ) + iξ⊤γt(Dξ)− π[0]
t (H⊤

t )
)
π
[0]
t (ψ(ξ))π

[0]
t (Ht)

}
dt

+
{(
H⊤

t (Dξ) + iξ⊤γt(Dξ)− π[0]
t (H⊤

t )
)
π
[1]
t (ψ(ξ))− π[1]

t (H⊤
t )π

[0]
t (ψ(ξ))

}
dYt

(25)

with initial condition π
[2]
t (ψ(ξ)) = 0.

Although the system of ODEs does not keep the same structure as the unnormalized
distribution ρ, it is clear that one can still perform the perturbation order by order.
Furthermore, from the discussion given in the next section, it is not always necessary
to derive higher order asymptotic expansion for accurate estimation.

5 Substepping Method for Asymptotic Expansion

It is obvious by construction that the accuracy of approximation deteriorates once
the cumulative contributions from perturbation terms

ϵF, ϵσ, ϵγ, ϵH

become significant. This is a common problem of asymptotic expansion methods for
various applications. In particular for the filtering problems, requiring small pertur-
bation terms seems rather restrictive since it indicates that one can treat only noisy
observations (i.e. small h). In financial applications of the position-space asymptotic
expansion, it is known that one needs higher order approximation to reach enough
accuracy for practical use in long-dated or high-volatility environments. There exist
many efforts to obtain higher order corrections systematically to tackle these prob-
lems. See, for example, Takahashi and Takehara (2007), Takahashi et al. (2010), and
Li (2010) for recent developments in this direction.

Let us consider the problem in the momentum-space approach. In Theorem 1,
we have seen that the equation (9) determines the correction terms with a given
initial condition ρ0(ψ(ξ)). Although higher order calculation is straightforward, there
exists a simpler and more efficient way to improve the approximation. An obvious
but important feature of (9) is that the recursion can be started from an arbitrary
initial distribution ρ0(ψ(ξ)). Since asymptotic expansion generally works very well for
short maturities, the above feature naturally leads to the following substepping idea
for asymptotic expansion.

(1) Create an appropriate time grid {0 = T0 < T1 < · · · < TN = t} in such a way
that the asymptotic expansion converges well within each sub-period [Ti−1, Ti].
(2) Solve (9) of each ξ for s ∈ [T0, T1] up to the k-th order of the asymptotic expansion.
This can be the second (or even the first) order if the stepping size is small enough.
(3) Update the initial condition for the next period [T1, T2] by setting

ρ
[0]
T1
(ψ(ξ))←

 k∑
j=0

ϵjρ
[j]
T1
(ψ(ξ))

 obtained in step(2) . (26)
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(4) Solve (9) for [T1, T2] with the updated initial condition.

(5) Repeat the procedures till the final period to obtain ρ
[j]
TN

(ψ(ξ)).

Although performing the above method analytically by hand is quite laborious due
to a large number of derivative operations, one can do it quite efficiently in numer-
ical implementations. This is because amount of procedures required for dt and dY
integration does not change in the above operations. In fact, one obtains accurate
results faster by performing finer substepping with lower-order approximation than
performing higher-order approximation without substepping.

The substepping method may be very useful for general measure-valued nonlinear
equations. Although it is tedious to obtain the asymptotic expansion for complicated
dynamics, it is definitely possible for the first few orders as we have demonstrated by
using the Kushner-Stratonovich equation. If the approximation works well, at least
within a very short period, the above numerical procedures will extend the effective
region for the asymptotic expansion. If it is applied to a standard unconditional char-
acteristic function, it should also offer an efficient option pricing method, particularly
for long-dated and high-volatile setups.

6 Examples

6.1 Analytical Application to CIR Process

Let us first consider the approximation of one-dimensional CIR process with no fil-
tering issue, which helps to obtain a concrete image how analytical procedures work.
We study

dXt = θ(µ−Xt)dt+ σ
√
XtdVt

with X0 = µ. All the parameters θ, µ and σ are positive constants satisfying 2θµ >
σ2. Then, the probability density of Xt is known to have a non-central chi-squared
distribution.

For asymptotic expansion, we treat it as the following perturbed system: 1

dX
(ϵ)
t = ϵθF (X

(ϵ)
t )dt+ σ

(√
µ+ ϵR(X

(ϵ)
t )

)
dVt

with X
(ϵ)
0 = µ. Here, we have defined

F (x) = µ− x
R(x) = Taylor expansion at (x = µ) of (

√
x−√µ) .

In this example, we are going to adopt the 3rd-order expansion for R(x). Note that,
Taylor expansion provides a good polynomial approximation only when the process
X resides near µ. If volatility is very high, it may be better to perform a different
method, such as the minimization of the least square difference for appropriate range.
We shall see some examples in the next section. Systematic strategy for determining
the optimal choice of polynomial function remains as an important future work.

Then, the infinitesimal generator is given by

A(ϵ) = ϵθF (x)
∂

∂x
+

1

2
σ2

(√
µ+ ϵR(x)

)2 ∂2

∂x2

1 One needs to put ϵ = 1 at the end for the comparison to the original model.
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and hence

A[0](ξ) = −1

2
ξ2σ2µ

A[1](ξ,Dξ) = iξθF (Dξ)− ξ2σ2√µR(Dξ)

A[2](ξ,Dξ) = −
1

2
ξ2σ2R2(Dξ) .

From Corollary 1, analytical calculation can be performed as follows:

6.1.1 Zeroth order

We have

dρ
[0]
t (ψ(ξ)) = A[0](ξ)ρ

[0]
t (ψ(ξ))dt

with ρ
[0]
0 (ψ(ξ)) = eiξµ. Thus, it gives

ρ
[0]
t (ψ(ξ)) = exp

(
iξµ− 1

2
ξ2σ2µt

)
.

Then, one obtains the zeroth order density function as

ϕ
[0]
t (z) =

1√
2πΣt

exp

(
− (µ− z)2

2Σt

)
with the definition of Σt = µσ2t.

6.1.2 First order

The first order correction is given by

ρ
[1]
t (ψ(ξ)) =

∫ t

0

e(t−s)A[0](ξ)A[1](ξ,Dξ)ρ
[0]
s (ψ(ξ))ds .

By straightforward differential operations lead to(
ρ[0]s (ψ(ξ))

)−1

A[1](ξ,Dξ)ρ
[0]
s (ψ(ξ)) =

1

8
sσ2(8θµ+ σ2)ξ2 − 1

16
isσ4(8µ+ 3sσ2)ξ3

−1

8
s2µσ6ξ4 +

1

16
is3µσ8ξ5 .

Then, following the procedures of Sec. 3.3, one obtains

ρ
[1]
t (ψ(ξ)) = ρ

[0]
t

(
a2ξ

2 + a3ξ
3 + a4ξ

4 + a5ξ
5
)

and also

ϕ
[1]
t (z) =

1

2π

∫
R
e−iξzρ

[1]
t (ψ(ξ))dξ

=

(
−a2

∂

∂z2
− ia3

∂3

∂z3
+ a4

∂4

∂z4
+ ia5

∂5

∂z5

)
ϕ
[0]
t (z)

with the coefficients defined by

a2 =
1

16
t2σ2(8θµ+ σ2), a3 = − 1

16
it2σ4(4µ+ tσ2)

a4 = − 1

24
t3µσ6, a5 =

1

64
it4µσ8 .
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Higher order expressions follow similarly with the help of analytical software if nec-
essary. In Figs. 1 and 2, we have given numerical results up to ϵ-3rd order asymptotic
expansions without substepping compared with the exact non-central chi-squared dis-
tribution. When volatility is large, there appears sizable deviation from the correct
distribution for small x. This is understandable because Taylor expansion near the
origin is not accurate. Except a neighbor of the origin and (x < 0), one can see that
our approximation reproduces the desired density function well.

6.2 A Numerical Application to Beneš Filter

Next, as the second example, we study the Beneš filter [Beneš (1981)], where the
drift of the signal process is nonlinear. This is a special case for which there exists an
exact solution in the class of non-Gaussian filtering problems, thus it is quite useful
for testing the current method. In the class of Beneš filter, we choose a following
one-dimensional example:

dXt = f(Xt)dt+ σdVt

dYt =
(
h1Xt + h2

)
dt+ dWt

with X0 = Y0 = 0, where f(x) is given by

f(x) = aσ tanh
(
a
x

σ

)
.

Here, a, σ, h1 and h2 are all constants. In this case, the exact filtered density of Xt is
given by

πexact
t (z)

=
1

nt
cosh

(
a
z

σ

)
exp

(
−h1
2σ

coth(th1σ)z
2

+
(
h1

∫ t

0

sinh(sh1σ)

sinh(th1σ)
dYs +

h2
σ sinh(th1σ)

− h2
σ

coth(th1σ)
)
z

)
where nt is the normalization factor to guarantee∫

R
πexact
t (z)dz = 1 .

For this problem, we setup the following perturbed approximation: 2

dX
(ϵ)
t = ϵF (X

(ϵ)
t )dt+ σdVt

dYt = ϵH(X
(ϵ)
t )dt+ dWt

with X
(ϵ)
0 = Y0 = 0. Here, we use

H(x) = h1x+ h2

F (x) = (polynomial approximation of) f(x) .

We explain the details of polynomial approximation later.
The infinitesimal generator contains only up to ϵ-first order term. We have

A(ϵ) = ϵF (x)
∂

∂x
+

1

2
σ2 ∂

2

∂x2
2 As before, one needs to put ϵ = 1 at the end for the comparison to the original model.



16 Masaaki Fujii

and

A[0](ξ) = −1

2
ξ2σ2 , A[1](ξ,Dξ) = iξF (Dξ) .

From Theorem 1, one needs to solve the recursion for (j ≥ 1)

ρ
[j]
t (ψ(ξ)) =

∫ t

0

e−
1
2 (t−s)ξ2σ2

{
iξF (Dξ)ρ

[j−1]
s (ψ(ξ))ds+

(
h1Dξ + h2

)
ρ[j−1]
s (ψ(ξ))dYs

}
(27)

starting from the zeroth order solution:

ρ
[0]
t (ψ(ξ)) = exp

(
−1

2
tξ2σ2

)
.

6.2.1 Polynomial-function approximation

Here, we discuss how to obtain the polynomial approximation F (x) for the nonlinear
drift of the signal:

f(x) = aσ tanh(ax/σ) .

Due to the normalization by σ, we can roughly expect∣∣∣∣Xt

σ

∣∣∣∣ . 1 (28)

for t ∈ [0, 1]. This implies that Taylor expansion around x = 0 is a natural candidate
for F (x) when |a| . 1. When |a| & 1, the two plateaus of f(x) start to play an
important role in the range (28). Unfortunately, however, Taylor expansion does not
reproduce the plateaus but strongly diverging behavior within the range (28) instead,
which destabilizes the numerical result. Thus, we take [−5σ, 5σ] range with a step
size of 0.2σ, and carry out least-square method (LSM) to fit a 11-dimensional odd
function for F (x). We also adopt the weight function g(x) defined as

g(x) = exp
(
−w x2

2σ2

)
with various factor w. Here, w = 0 corresponds to a pure LSM in the 5σ range and
the polynomial function well recovers the two plateaus of f(x) in a wide range, while
it has a relatively poor fit around the origin. On the other hand, higher w gives finer
fit and hence finer description of the density near x = 0. In this case, however, if one
continues to increase w it starts to destabilize the numerical result as in the case for
Taylor expansion. Thus, we need to take a balance of this trade-off, especially when
|a| > 1.

6.2.2 Numerical Results

In the following numerical examples, we take t = 1 as the maturity and use 1, 000
steps to create the sample observation (and signal) path. We then integrate (27) with
the same time step dt = 10−3 for a given path of Y . For differentiation, we use a
standard finite difference method. Finally, a discrete Fourier transformation is used
to obtain the density function.

In the first numerical example given in Fig. 3, we have used a set of parameters
{a = 0.8, σ = 0.5, h1 = 0.8, h2 = 0.5}, and a sample path of Y given in the top graph.
We have used w = 2.0 for getting coefficients of polynomial function F (x). The
middle graph for the conditional density functions contains the exact one denoted by
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a red line labeled as ”Benes”, estimated conditional densities from (0th, 3rd, 20th)-
order asymptotic expansion without substepping method, and those from 1st order
expansion with substepping method of (100, 1000) sub-periods 3. One can clearly see
the benefit of substepping method explained in Sec. 5; Although there is no clear
improvement from 3rd to 20th order approximation, the substepping method with
small sub-period provides almost exact fit to the true density function.

In Fig. 4, we have used h1 = 10.0, which is an example of small-noise observation.
Since a = 0.5 is relatively small, polynomial approximation for f(x) is quite accurate
(w = 2.0). The calculation has been performed with substepping method of (100, 125,
200, 1,000) sub-periods. Fine substepping gives almost exact density even in this case.
In particular, the significant reduction of the variance of the conditional density due
to high quality information provided by the observation process is well reproduced
by the repeated application of asymptotic expansion. In this example, approximation
without substepping is too unstable and gives only meaningless numerical results.
As suggested in Sec. 5, the size of perturbation terms itself does not seem to be
a relevant problem for asymptotic expansion as long as we have accurate enough
polynomial function approximation and the substepping method.

When one increases a, f(x) becomes like a step function and makes it difficult to
achieve accurate polynomial approximation for the relevant range. Here, the choice
of LSM weight w starts to affect the estimated density. In Fig. 5, we have studied
the case of a = 1.5 with several choice of w. Here, all the calculations were done with
substepping method of 1000 sub-periods. The estimated density is stable for w =
0.5 ∼ 2.5, but becomes unstable for higher w. Note that, the impacts of LSM weight
are highly dependent on the order of the polynomial function. As is easily guessed,
the change of estimated density is more significant when lower order polynomials are
used. In Fig. 6, we have done similar analysis for an example of a = 2.0, which reveals
more clearly separated two peaks of the filtered density.

Remark :
In the above examples, we have used time-independent function for F (x). However,
when there exists a significant drift for the signal process, such as large |a| in the above
example, making the polynomial function time dependent is quite likely to improve
the approximation. If we have the information about the evolution of the conditional
mean, we can change the center of polynomial-function approximation to replicate
the original nonlinear function more accurately in the relevant region. Initial guess
can be obtained by extended Kalman-Bucy filter or by time independent F (x) in the
current method, for example.

7 Concluding Remarks

In the paper, we have developed an asymptotic expansion technique in momen-
tum space. Fourier transformation combined with polynomial-function approximation
gives a closed recursive system of ODEs as an asymptotic expansion for the unnormal-
ized conditional characteristic function. Thanks to the simplicity of the ODE system,
higher order calculation can be performed easily. It also allows an efficient imple-
mentation of substepping method of asymptotic expansion. As long as polynomial
approximation of the nonlinear terms is accurate, the size of nonlinear terms ceases
to be a big obstacle for obtaining an accurate estimation. Applications to more realis-
tic multi-dimensional filtering problems as well as other (financial) problems, such as

3 First order expansion is good enough for short period since the infinitesimal generator contains
no 2nd order term.
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option pricing (with some unobservable parameters), are left for the future research.

Let us make a brief comment on the remaining problems and possible future di-
rections of research to address these issues. As one can see, the method still suffers
from the curse of dimensionality. However, encouragingly, there exist a large number
of works to ameliorate the higher dimensional integration problem. See, for example,
Griebel and Holtz (2010), Reisinger and Wittum (2007), Reisinger and Wissmann
(2012) and Schröder et al. (2012). Especially, in Reisinger and Wissmann, the au-
thors make use of the low effective dimensions of financial problems arising from a
high correlation in the market. Although they have worked in restrictive model as-
sumptions, they succeeded to approximate a high dimensional PDE by a series of low
dimensional PDE. Applications and improvement of these techniques by combining
the asymptotic expansion developed in this paper look quite interesting.

Since we can only use finite order polynomials in practice, the quality of the
estimation highly depends on the accuracy of polynomial approximation. When one
has nonlinear terms difficult to fit by polynomials, the idea of change-of-variable
developed in Takahashi and Toda (2012) may be proved to be useful. Suppose, one

defines a new process X̃ by using some function Ψ(·) as

X̃t = Ψ(Xt) .

If X̃ has drift and diffusion terms that are easier to be approximated by polynomial
functions, one can get more accurate estimation of

ρ̃t(ξ) = E
[
eiξ

⊤X̃t

]
and hence also its density

ϕ̃t(z) =
1

(2π)n

∫
Rn

e−iξ⊤z ρ̃t(ξ)d
nξ .

Then, one can recover the density of the original Xt by

ϕt(z) = ϕ̃
(
Ψ(z)

)∣∣∣J(z)∣∣∣
where |J | denotes the determinant of a Jacobian matrix with the elements of (∂Ψi(z)/∂zj).
Thus some of the errors can be absorbed if there exists an appropriate choice of Ψ .

Another possible solution is to use Fourier series expansion directly for nonlinear
functions in the infinitesimal generator and observation process 4. Although it effec-
tively increases the order of integration and hence slows down the calculation, some
functions, such as step function, are known to allow accurate approximation by rela-
tively a small number of terms. Suppose for example, some function g has a Fourier
expansion as

g(x) =
∑
n

g̃ne
−iξ⊤n x .

where {ξn} is a series of discretized momentum, and {gn} is a set of corresponding
coefficients. Then, one has

E[g(x)eiξ
⊤
mx] =

∑
n

g̃nE[ei(ξm−ξn)x] .

4 Note that, one have to resort to discrete Fourier transformation for numerical implementation
anyway.
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Since all the nonlinear functions are included in the perturbation terms, one can write

the dynamics of ρ
[j]
t (ψ(ξ)) in terms of {ρ[k]t (ψ(ξn)}n with k = {j − 1, j − 2}. As a

result, it is still linear for the highest expansion order and can be treated similarly
as in Theorem 1. This technique may be crucial for financial applications where stiff
payoff functions are common. Detailed studies of these points are also among our
research topics in the future.
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Fig. 1 t = 3, µ = 1, σ = 0.15, θ = 0.1. (Black, Green, Blue, Purple) lines denote (0th, 1st, 2nd,
3rd) order approximation of asymptotic expansion, respectively. Red line denotes the exact density
function given by a non-central chi-squared distribution. The second graph represents the difference
from the exact density function.

Fig. 2 t = 3, µ = 1, σ = 0.33, θ = 0.1. (Black, Green, Blue, Purple) lines denote (0th, 1st, 2nd,
3rd) order approximation of asymptotic expansion, respectively. Red line denotes the exact density
function given by a non-central chi-squared distribution. The second graph represents the difference
from the exact density function.
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Fig. 3 t = 1, dt = 10−3, a = 0.8, σ = 0.5, h1 = 0.8, h2 = 0.5 with polynomial function fitted with
w = 2.0. From top to bottom, the sample path, exact and approximated density functions, and the
difference of the approximated densities from the exact one. In the middle graph, a red line labeled
by ”Benes” denotes the exact density function.
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Fig. 4 t = 1, dt = 10−3, a = 0.5, σ = 0.5, h1 = 10.0, h2 = 0.5 with polynomial function fitted with
w = 2.0. From top to bottom, the sample path, exact and approximated density functions, and the
difference of the approximated densities from the exact one. In the middle graph, a red line labeled
by ”Benes” denotes the exact density function.
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Fig. 5 t = 1, dt = 10−3, a = 1.5, σ = 0.5, h1 = 0.7, h2 = 0.5 with 1, 000 substeps with 1st order
asymptotic expansion. From top to bottom, the sample path, exact and approximated density func-
tions, and the difference of the approximated densities from the exact one. In the middle graph, a
red line labeled by ”Benes” denotes the exact density function.
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Fig. 6 t = 1, dt = 10−3, a = 2.0, σ = 0.5, h1 = 1.0, h2 = 0.5 with 1, 000 substeps with 1st order
asymptotic expansion. From top to bottom, the sample path, exact and approximated density func-
tions, and the difference of the approximated densities from the exact one. In the middle graph, a
red line labeled by ”Benes” denotes the exact density function.


