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A New Technique for Proving the Existence of Monetary

Equilibria in Matching Models with Divisible Money∗

Kazuya Kamiya†and Takashi Shimizu‡

June 2005

Abstract

This paper develops a new technique for proving the existence of monetary equilibria in money
search models. In money search models with divisible money, the set of equilibria, if it exists, is at
least one-dimensional. We develop a method to prove the existence of such a set in a fairly simple
way. That is, we first find an endpoint of the set of equilibria and then we prove the existence of
a continuum of the set of equilibria from this endpoint. Solving for these equilibria is complicated
otherwise than using our method. Thus, our technique is simple but very powerful. Further,
we consider a rather complicated bargaining procedure that allows us to prove the existence of
equilibria in money search model with perfectly divisible goods and money.

Keywords: Real Indeterminacy, Matching Model, Money, Existence of Monetary Equilibria.
Journal of Economic Literature Classification Number: C78, D51, D83, E40.

1 Introduction

In order to prove the existence of equilibria, fixed point theorems have usually been used

in both game theory and general equilibrium theory; for example, the existence of Nash

equilibria can be directly proved by Kakutani’s fixed point theorem and, converting the

equilibrium conditions into a mapping from a compact set to itself, the existence of

general equilibrium prices follows from Brouwer’s or Kakutani’s fixed point theorem.

As contrasted with these theories, fixed point theorem has seldom been used in money

search models, because we cannot discern whether the equilibrium is monetary or

non-monetary.1 Non-monetary equilibrium is the equilibrium without monetary trades

and always exists in such models. What we show in this paper is the existence of
∗This paper is based on the second half of “Real Indeterminacy of Stationary Equilibria in Matching Models with

Media of Exchange.” This research is financially supported by Grant-in-Aid for Scientific Research from JSPS and
MEXT. The second author also acknowledges the financial support by Zengin Foundation for studies on Economics and
Finance. Of course, any remaining error is our own.

†Faculty of Economics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 JAPAN (E-mail: kkamiya@e.u-tokyo.ac.jp)
‡Faculty of Economics, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 JAPAN (E-mail:

tshimizu@ipcku.kansai-u.ac.jp)
1Notable exceptions are Aiyagari and Wallace [1] and Zhu [13], [14].
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the equilibrium with monetary trade, so called, “monetary equilibrium.” Of course,

some sophisticated technique would prevent finding a non-monetary equilibrium even

when fixed point theorems are used. However, even with such a technique, equilibrium

strategies cannot explicitly be found.

Therefore, instead of using fixed point theorems, the existence of monetary equilibria

has typically been proved by explicitly finding a equilibrium strategy in which monetary

trades occur. (See, for example, Kiyotaki and Wright [9], Trejos and Wright [11], and

Green and Zhou [4].) That is, we first guess the strategy of a monetary equilibrium

and, then verify the incentive condition. More precisely, first we pick a strategy in

which monetary trades occur, second we solve the Bellman equation corresponding to

the strategy, and finally, given the value function obtained in the second step, we check

the incentive to play the strategy.

In early papers, such as Kiyotaki and Wright [9], both goods and money are assumed

to be indivisible and an agent is assumed to be able to hold at most one unit of

them. Thus it is not very difficult to use the above method of “guess and verify.” By

the assumptions, the equilibrium price, if it exists, is trivially unity in these models.

Subsequently, relaxing these assumptions, Shi [10], Trejos and Wright [11] and Green

and Zhou [4] present models in which equilibrium prices are endogenously determined.

However, they make much effort at solving the Bellman equations, since these equations

have quite complicated structure.2

It is known that in money search models with divisible money there exists a contin-

uum of monetary equilibria. More precisely, the equilibrium has the property of one

degree of freedom. Moreover, there typically exist equilibria in which most of agents

do not have money while a few agents have large amounts of money, and in the limit of

such equilibria, no agents has money. Note that the limit point is not an equilibrium,

since the total amount of money is zero while the exogenously given amount of money

is positive. Note that any point close to the limit point can be an equilibrium. For the

details, see Sections 2, 3, and 4.

By fully exploiting the above property, we present a new technique for proving the

existence of equilibria in money search models with divisible money. Suppose there is

a money search model where the existence of equilibrium has not been proved. Let us

pick the point where no agent has any money. This could be the endpoint of the set

of equilibria. Since the Bellman equation is typically quite simple at the point, then
2Kamiya and Sato [7] find a dual-price equilibrium in Green and Zhou’s model. To obtain the equilibrium, they

analyze a quite complicated fifth order polynomial equations.
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it is easy to obtain a solution with a positive value of money, if it exists. In showing

the regularity at the solution and applying the implicit function theorem, it can be

extended to solutions in which some agents has money.

Zhu [14] shows the existence of equilibria in a divisible money version of Camera

and Corbae [3]’s model. In the paper, since a fixed point theorem is indirectly used, the

equilibrium strategy cannot be explicitly found. Moreover, quite complicated nature of

the technique seems to limit the applicability to other models. Our technique is simple

but very powerful; our technique is sufficiently general to apply to quite complicated

models, and equilibrium strategies are always explicitly found. Indeed, in Section 3, we

show the existence of stationary equilibrium in a new model, where both money and

goods are perfectly divisible, and the bargaining procedure is rather complicated.

The plan of this paper is as follows. In Section 2, we present a simple model and

explain the technique. Then in Section 3, we apply it to a new model with divisible

money and divisible goods, and in Section 4 we discuss our technique in general. In

Section 5, we conclude the paper with some discussion.

2 A Simple Example

We first investigate a simple model, which can be considered as a simplified version

of Zhou [12]’s model. We first find an endpoint of the set of equilibria, and then we

show the existence of the following set of equilibria from this endpoint. We adopt this

model because it has a simple and typical structure of the set of equilibria, although

the existence of monetary equilibria can be directly obtained.

There is a continuum of agents with a mass of measure one. There are k types

of agents with equal fractions and the same number of types of goods. Let κ be the

reciprocal of k. A type i − 1 agent can produce just one unit of type i good and the

production cost is c > 0. (We assume that a type k agent produces type 1 good.) A

type i agent obtains utility u > c only when she consumes one unit of type i good. Time

is continuous and pairwise random matchings take place according to Poisson process

with parameter µ > 0. For every matched pair, the seller posts a take-it-or-leave-it

price offer without knowing the amount of the buyer’s money holdings. Let M > 0 be

the nominal stock of fiat money, and γ > 0 is a discount rate.

The conditions for a stationary equilibrium are (i) each agent maximizes the ex-

pected value of utility-streams, i.e., the Bellman equation is satisfied, (ii) the money

holdings distribution of the economy is stationary, i.e., time-invariant, and (iii) the
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total amount of money the agents have is equal to M . Since the rigorous definition is

rather complicated, then, instead, we present the conditions for stationary equilibria

with a specific strategy.

In what follows, we focus on a stationary distribution of money holdings of the

agents with the support {0, p} for some p > 0. For simplicity, we assume that money

holdings of the agents are in [0, 2p).3 Thus the money holdings distribution can be

expressed by hn for n = 0, 1, the measure of the set of agents with money holding np.

Of course, h must satisfy

h0 + h1 = 1, (1)

hn ≥ 0, n = 0, 1. (2)

We focus on the equilibrium with the following strategy:

• a seller with money holding η ∈ [0, p) offers p,

• a seller with money holding η ∈ [p, 2p) chooses no trade, and

• a buyer with money holding η accepts offer prices less than or equal to η.

According to the strategy specified above, a type i agent without money makes a

sale when she meets a type i + 1 agent with money. The measure of agents with 0 is

h0 and the probability that they can make a sale is µκh1, and thus the set of agents

with measure µκh0h1 moves out from 0, i.e., it is an outflow at 0 as well as an inflow at

p. On the other hand, a type i agent with p makes a purchase when she meets a type

i − 1 agent without money. The probability that they can make a purchase is µκh0,

and thus the set of agents with measure µκh1h0 moves out from p, i.e., it is an outflow

at p as well as an inflow at 0. The stationary condition for h = (h0, h1) requires that

the time rate of inflow should be equal to the time rate of outflow at n = 0 and n = 1.

Both conditions are the same and expressed as follows:

µκh0h1 = µκh0h1.

This is clearly an identity, and therefore any h satisfying (1) and (2) can be a stationary

distribution. On the other hand, p is determined by

M = ph1. (3)

3Without this assumption, we can prove a similar result. See Zhou [12] and Kamiya et al. [6].
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Let the value function be denoted by V : R+ → R. Next, we consider the values at

{0, p}. We denote the value at np by Vn, i.e., Vn = V(np), then the Bellman equation

is as follows:

G0 = V0 − 1

φ + 2
[h1 (V1 − c) + h0V0 + V0] = 0, (4)

G1 = V1 − 1

φ + 2
[V1 + h0 (u + V0) + h1V1] = 0, (5)

where φ = γ
µκ

.

The incentive conditions to play the strategy in (4) and (5) are as follows:

− c + V1 ≥ V0, (6)

u + V0 ≥ V1. (7)

The first inequality is the condition that an agent with no money has incentive to sell

her production good. The second inequality is the condition that an agent with p has

incentive to accept an offer price p. Note that defining V(η) = V�η/p� the incentive

conditions at the other η follow from the above conditions, where �n� is the largest

integer less than or equal to n. (See Zhou [12].) We should also note that the Bellman

equation at η /∈ (0, p)∪(p, 2p) is satisfied. Therefore a stationary monetary equilibrium,

in which all agents choose the strategy described above, is defined as (h0, h1, V0, V1, p)

satisfying (1)-(7). Note that

Remark 1 We should also check the incentive for agents not to offer non-integer mul-

tiple of p. Since we defined V(η) = V�η/p�, it is clearly satisfied. (See also Zhou [12].)

Note that similar arguments apply to a general model. See Remark 3 in Section 4.

The first step in our technique is to find a point at h0 = 1 satisfying all conditions

except (3). The Bellman equation at the point is as follows:

V0 − 1

φ + 2
[V0 + V0] = 0,

V1 − 1

φ + 2
[V1 + (u + V0)] = 0.

Since this system of equation is much simpler than (4) and (5), the solution is easily

obtained as V0 = 0, V1 = 1
φ+1

u.

Next, we check if this value function satisfies the equilibrium conditions except (3)

at (h0, h1) = (1, 0). Clearly, (7) is satisfied with strict inequality for any u and φ. The
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necessary and sufficient condition for (6) is

φ + 1 ≤ u

c
. (8)

In what follows, we assume that (8) holds with strict inequality.

Clearly, this solution does not satisfy (3) for any p > 0. Then the last step of

our technique is to slightly extend the point so that (3) is satisfied. To be more

precise, we find (h0, h1) = (1− ε, ε) and corresponding (V0, V1) satisfying all conditions

for stationary equilibrium for a sufficiently small ε > 0. Clearly, (3) is satisfied for

p = M
ε

> 0. To find such a point, we can simply apply the implicit function theorem.

More precisely, the regularity of the system of equations (4) and (5) at h0 = 1 is

satisfied as follows:

det

(∂G0

∂V0

∂G0

∂V1
∂G1

∂V0

∂G1

∂V1

)
h0=1

= det

(
1 − 1

φ+2
(1 + h0) − 1

φ+2
(1 − h0)

− 1
φ+2

h0 1 − 1
φ+2

(2 − h0)

)
h0=1

= det

(
φ

φ+2
0

− 1
φ+2

φ+1
φ+2

)

	= 0.

Then, by the implicit function theorem, (V0, V1) satisfying (4) and (5) can be written

as C1 functions of ε, (V0(ε), V1(ε)). It remains to show that this solution satisfies the

incentive condition (6). Because (8) is satisfied with strict inequality, this condition

is still satisfied for a sufficiently small ε > 0. This concludes that (h0, h1, V0, V1, p) =

(1 − ε, ε, V0(ε), V1(ε),
M
ε
) is a stationary monetary equilibrium for a sufficiently small

ε > 0.

Note that the point at h0 = 1 is not a “non-monetary” equilibrium, since fiat money

has positive value, i.e., V1 > 0. In other words, agents have incentive to use money if

they have.

Simple systems of inequalities as considered above can be solved directly, but in

the cases where the models are more complex, the system may not be solved directly.

However, our technique is applicable to complicated models as we show in Section 3.

3 A Model with Divisible Goods

In this section, we apply our method to a new model. We adopt the same environment

as the previous section besides the following three environments:
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(i) We assume that money holdings of the agents are in [0, (N+1)p) for some positive

integer N , where N is exogenously given. Thus money holdings distributions have the

support {0, p, . . . , Np}.
(ii) We assume that commodity goods are perfectly divisible. Let C(q) = q be the

cost function and U(q) = q
1
2 be the utility function.

(iii) When a type i agent (i.e. a seller of good i + 1) meets a type i + 1 agent (a

buyer of good i + 1), one of the following events occurs: (1) with probability 1
2
, the

former can make a take-it-or-leave-it offer (ds, qs), a pair of an amount of fiat money

and a quantity of good, (2) with probability 1
2
, the latter can make a take-it-or-leave-it

offer (db, qb). Moreover, we assume that an agent can observe the type and the current

money holdings of the matched agent at the beginning of the bargaining.

We search for a monetary equilibrium in which there exists p > 0 such that

• a seller with money holding η < Np always offers (p, qs) for some qs > 0. The

offer is accepted by any buyer with money holdings more than or equal to p,

• a seller with money holding η ≥ Np offers no trade, and

• a buyer with money holding more than or equal to p always offers (p, qb) for some

qb > 0. The offer is accepted by any seller with money holdings less than Np.

Although the off-equilibrium strategy is not completely specified in the above, it will

be determined by the value function. Note that the above is sufficient for finding the

equilibrium value function. Then the stationary condition for h = (h0, h1, . . . , hN ) is

N∑
n=0

hn − 1 = 0, (9)

µκ [h1(1 − hN) − h0(1 − h0)] = 0, (10)

µκ [{hn−1(1 − h0) + hn+1(1 − hN )} − hn {(1 − h0) + (1 − hN)}] = 0, 1 ≤ n ≤ N − 1,
(11)

µκ [hN−1(1 − h0) − hN (1 − hN )] = 0. (12)

Note that (10), (11), and (12) correspond to the stationarity at n = 0, n = 1, . . . , N−1,

and n = N , respectively. As in the previous section, it is easily verified that two

equations among them are redundant. Thus in what follows we focus on (9) and (11).
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Let

F0 =

N∑
n=0

hn − 1 = 0,

Fn = {hn−1(1 − h0) + hn+1(1 − hN )} − hn {(1 − h0) + (1 − hN )} = 0, 1 ≤ n ≤ N − 1.

Then we obtain the following stationary distribution from the stationary condition:

hn = h0

(
1 − h0

1 − hN

)n

, n = 1, . . . , N, (13)

where hN is determined so that

hN(1 − hN)N = h0(1 − h0)
N . (14)

Clearly, for any h0 ∈ [0, 1], there exist h1, . . . , hN ∈ [0, 1] satisfying (13) and (14). In

other words, for any h0 ∈ [0, 1], there is the corresponding distribution h satisfying the

stationary condition.

Next, by the barging procedure, on the equilibrium path, a seller offers (p, qn
s ) to

the matched buyer with np, where qn
s satisfies

U(qn
s ) = Vn − Vn−1. (15)

Similarly, a buyer bids (p, qn
b ) to the matched seller with np, where qn

b satisfies

C(qn
b ) = Vn+1 − Vn. (16)

Then the Bellman equation can be written as follows:

G0 = V0 − 1

φ + 2

{
1

2

N∑
n′=1

hn′(V1 − C(qn′
s )) +

1

2
h0V0 +

1

2
V0 + V0

}
= 0,

Gn = Vn − 1

φ + 2

{
1

2

N∑
n′=1

hn′(Vn+1 −C(qn′
s )) +

1

2
h0Vn

+
1

2
Vn +

1

2

N−1∑
n′=0

hn′(Vn−1 + U(qn′
b )) +

1

2
hNVn +

1

2
Vn

}
= 0, n = 1, . . . , N − 1,

GN = VN − 1

φ + 2

{
VN +

1

2

N−1∑
n′=0

hn′(VN−1 + U(qn′
b )) +

1

2
hNVN +

1

2
VN

}
= 0.

As in the previous section, we investigate a solution at h0 = 1. First, from (13) and

(14), h0 = 1 implies h1 = · · · = hN = 0. Then, using (16), the Bellman equation is
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written as follows:

G0 = V0 − 1

φ + 2

{
1

2
V0 +

1

2
V0 + V0

}
= 0,

Gn = Vn − 1

φ + 2

{
1

2
Vn +

1

2
Vn +

1

2
[Vn−1 + U(V1 − V0)] +

1

2
Vn

}
= 0, n = 1, . . . , N − 1,

GN = VN − 1

φ + 2

{
VN +

1

2
[VN−1 + U(V1 − V0)] +

1

2
VN

}
= 0.

we obtain q0
b = A2, V0 = 0, and

Vn = A2

n−1∑
k=0

Ak, n = 1, . . . , N, (17)

where A =
(

1
2φ+1

)
.4 Let y∗ = (h0, · · · , hN , V0, · · · , VN ).

In this paper, we only investigate the case N = 2. Let

y∗ =
(
(1, 0, 0),

(
0, A2, A2(1 + A)

))
.

Let Ψ : R
3 × R

3 → R
2 × R

3 be defined as

Ψ ((h0, h1, h2), (V0, V1, V2)) = (F0, F1, G0, G1, G2)(h0, h1, h2, V0, V1, V2).

Let y = (h, V ) and denote by detDΨ(y) the Jacobian of Ψ with respect to

(h1, h2, V0, V1, V2) at y. Then the next step is to verify that detDΨ(y∗) 	= 0 at y∗.
Indeed, det DΨ(y∗) is calculated as follows:

det DΨ(y∗) = det

(
Υ1 0
Υ2 Υ3

)
,

where

det Υ1 = det

⎛
⎝ 1 1 1
−1 1 0
0 −1 1

⎞
⎠

= 3,

and

det Υ3 = det

⎛
⎜⎝

− φ
φ+2

0 0

− 1
φ+2

− 1
4A

φ+1
φ+2

+ 1
4A

0

− 1
2(φ+2)

− 1
4A

− 1
2(φ+2)

+ 1
4A

−φ+1
φ+2

⎞
⎟⎠

=
φ(φ + 1)

(φ + 2)2

(
φ + 1

φ + 2
+

1

4A

)
.

4The other solution is q0
b = 0 and Vn = 0, n = 0, . . . ,N .
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Then det DΨ(y∗) 	= 0. By the implicit function theorem, a solution to Ψ(y) = 0

can be written as a C1 function of ε > 0, where h0 = 1 − ε. Note that, it

follows from (13) that, for a sufficiently small ε > 0, the corresponding y(ε) =

((1 − ε, h1(ε), h2(ε)), (V0(ε), V1(ε), V2(ε))) satisfies h1(ε) > 0 and h2(ε) > 0.

Next, we verify that all the incentive conditions are satisfied at h0 = 1 with strict

inequalities. It follows that, for a sufficiently small ε > 0, the corresponding y(ε)

satisfies the incentive conditions.

In case of N = 2, the relevant incentive conditions are as follows:

(a) incentive for a buyer with ip to offer p to a seller with jp, where i = 1, 2 and

j = 0, 1,

(b) incentive for a buyer with 2p to offer p to a seller with 0,

(c) incentive for a seller with ip to offer p to a buyer with jp, where i = 0, 1 and

j = 1, 2,

(d) incentive for a seller with 0 to offer p to a buyer with 2p.

Remark 2 As in the model in the previous section, defining V(η) = V�η/p� for η ∈
(0, p) ∪ (p, 2p), we should show (i) the incentive not to offer a noninteger multiple of

p, (ii) the incentive to take the strategy at η ∈ (0, p) ∪ (p, 2p), which is only partially

specified in the above, and (iii) the Bellman equation is satisfied at η ∈ (0, p)∪ (p, 2p).

(i) clearly follows from the above incentive conditions and the definition of V . (ii) and

(iii) are also easily follow from them.

For example, consider an agent with money holdings 1.5p. Suppose she is a buyer

and makes an offer to a seller with η. Her optimal offer is determined by

max
(d,q)

U(q) + V(1.5p − d)

s.t.C(q) = V(η + d) − V(η)

η + d < 3p, 0 ≤ d ≤ 1.5p.

On the equilibrium path, the money holdings of the sellers are either 0, p, or 2p. Thus we

should investigate the cases of η = 0, p, 2p in order to check the Bellman equation. We

investigate the incentive for her to offer p instead of d̃ ∈ (0, p). Let q(pb,k) be the quantity

of the commodity good such that the seller with kp is indifferent between accepting
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(pb, q(pb,k)) and rejecting it. Then, since V is a step function, q(d̃,k) is determined by

q(d̃,k) = V
(
kp + d̃

)
− V(kp) = Vk − Vk = 0.

Thus offering d̃ is not better than no trade. Similarly, an offer price d̃ ∈ (p, 1.5p) is not

better than p. Therefore, we need to show that she prefers offering p to no trade, i.e.,

U
(
q(p,k)

)
+ V0 ≥ V1. (18)

(18) is the same as the condition that a buyer with p prefers offering p to no trade.

Clearly, (18) is a special case of (a). Similar arguments apply to the case that the agent

with 1.5p is a buyer, to the case that her partner offers, and to the case that she is

a seller. Thus the Bellman equation at 1.5p is the same as that at p. Of course, this

argument applies to agents with any money holdings.

Note that similar arguments apply to a general model. See Remark 3 in Section 4.

As for (a), the strict incentive condition is

u (Vi+j − Vj) + Vi−1 − Vi > 0.

Since

u (Vi+j − Vj) + Vi−1 − Vi = A1+.5j
(
1 −Ai−.5j

)
≥ A1+.5j

(
1 − A.5

)
,

the strict incentive is always satisfied.

As for (b), the strict incentive condition is

u (V1 − V0) + V1 − u (V2 − V0) + V0 > 0.

Thus by (a), a sufficient condition is

V2 − u (V2 − V0) + V0 > 0.

Clearly,

V2 − u (V2 − V0) + V0 = A2(1 + A)

(
1 − 1

A(1 + A).5

)

is strictly positive when A is sufficiently close 1, i.e., φ is sufficiently small. Then the

strict incentive condition is satisfied for a sufficiently small φ.
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Similarly, we can verify that (c) and (d) hold for a sufficiently small φ. In other

words, for a sufficiently small φ, y(ε) is a monetary equilibrium when ε is sufficiently

small.

For N > 2, similar arguments can be applied. However, the incentive at h0 = 1 is

not strict in some cases. Thus we need to choose strategies which the agents prefer

even for h0 = 1 − ε.

4 The Technique in a General Model

In this section we extend our technique to more general environment. The model we

consider in this section is similar to one in Kamiya and Shimizu [8]. (In what follows,

we call KS.)

4.1 A General Model

There is a continuum of agents with a mass of measure one. There are k ≥ 3 types

of agents with equal fractions and the same number of types of goods. Let κ be the

reciprocal of k. A type i good is produced by a type i−1 agent. A type i agent obtains

some positive utility only when she consumes type i good. We make no assumption on

the divisibility of goods. We assume that fiat money is durable and perfectly divisible.

Time is continuous, and pairwise random matchings take place according to Poisson

process with parameter µ > 0.

We confine our attention to the case that, for some positive number p, all trades

occur with its integer multiple amounts of money. In what follows, we focus on a

stationary distribution of economy-wide money holdings on {0, . . . , N} expressed by

h = (h0, . . . , hN ), where hn is the measure of agents with np amount of money, and N <

∞ is the upper bound of the distribution. Our model includes the case of exogenously

determined N as well as the case of endogenously determined N . Of course, hn ≥ 0

and
∑N

n=0 hn = 1 hold. Let M > 0 be a given nominal stock of money. Since p is

uniquely determined by
∑N

n=0 pnhn = M for a given h for h0 	= 1, then, deleting p from

{0, p, . . . , Np}, the set {0, . . . , N} can be considered as the state space.

Since we adopt a general framework, various types of bargaining procedures are

allowed.5 An agent with n, or an agent with np amount of money, chooses an action

in An = {an1, . . . , ansn}. Let A = ΠN
n=0An. For example, an action consists of an

5See Subsection 3 for the details.
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offer price and a reservation price. Throughout the paper, we confine our attention

to the stationary equilibrium in which all agents choose pure strategies. As for mixed

strategy equilibrium, see KS. Let S =
∑N

n=0 sn. Given an equilibrium action profile

a = (a0, . . . , aN), where an is the action taken at np in the equilibrium, define α(a) =

{(n, j) | an = anj}.
The monetary transition resulted from transaction among a matched pair is de-

scribed by a function f . When an agent with money holdings np and action anj meets

an agent with n′p and an′j′ , their states, i.e., money holdings, become (n+f(n, j; n′, j′))p
and (n′ − f(n, j; n′, j′))p, respectively. That is f maps an ordered pair (n, j; n′, j′) to a

non-negative integer f(n, j; n′, j′). Here “ordered” means, for example, that the former

is a seller and the latter is a buyer. When N is exogenously determined, we assume

N ≥ n + f(n, j; n′, j′) and n′ − f(n, j; n′, j′) ≥ 0.

When N is endogenously determined, we assume the latter condition while the former

one should be satisfied on the equilibrium path.

Let θ ∈ R
L be the parameters of the model.

We adopt Bellman equation approach. Let Vn be the value of state n, n = 0, . . . , N .

The variables in the model are denoted by x = (h, V, a). Let Wnj(x; θ) be the value of

action j at state n. Thus, in equilibria, Wnj(x; θ) = Vn holds for (n, j) ∈ α(a). Note

that Wnj(x; θ) includes the utility and/or the production cost of perishable goods.

4.2 A Property of the Stationary Condition

We define

hnj =

{
hn if anj = an,

0 if anj 	= an.

Then by the random matching assumption and the definition of f , the inflow In into

state n and the outflow On from state n are defined as follows:

In(h, a; θ) = µκ

⎡
⎣ ∑

(i,j,i′,j′)∈Xn

hijhi′j′ +
∑

(i,j,i′,j′)∈X ′
n

hijhi′j′

⎤
⎦ ,

On(h, a; θ) = µκ

⎡
⎣ ∑

(j,i′,j′)∈Yn

hnjhi′j′ +
∑

(j,i′,j′)∈Y ′
n

hnjhi′j′

⎤
⎦ ,
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where

Xn = {(i, j, i′, j′) | f(i, j; i′, j′) > 0, i + f(i, j; i′, j′) = n},
X ′

n = {(i, j, i′, j′) | f(i, j, i′, j′) > 0, i′ − f(i, j; i′, j′) = n},
Yn = {(j, i′, j′) | f(n, j; i′, j′) > 0},
Y ′

n = {(j, i′, j′) | f(i′, j′; n, j) > 0}.

We denote In−On by Dn. Then the condition for stationarity is Dn = 0 for n = 0, . . . , N

and
∑N

n=0 hn = 1. Clearly,
∑N

n=0 Dn = 0 holds as an identity, and thus at least one

equation is redundant. The following theorem shows that one more equation is always

redundant.

Theorem 1 (Kamiya and Shimizu [8]) For any a,

N∑
n=0

nDn(h, a; θ) = 0, (19)

is an identity.

Suppose that two agents, say a buyer and a seller, meet and a monetary trade

occurs. Then the amount of money the buyer pays is equal to that of the seller obtains;

in other words, the amount of money before trade is equal to that of after trade.

Since this holds in each trade, the total amount of money before trades, expressed by∑N
n=0 pnOn(h, a; θ), is equal to the total amount of money after trades, expressed by∑N
n=0 pnIn(h, a; θ), and thus

∑N
n=0 nDn(h, a; θ) = 0 always holds.

Together with the other identity
∑N

n=0 Dn(h, a) = 0, the above theorem implies

that h is a stationary distribution if and only if Dn(h, a; θ) = 0, n = 2, . . . , N, and∑N
n=0 hn = 1 hold. Namely, the condition for stationarity has at least one-degree of

freedom. This is the main cause of the indeterminacy.

Now the equilibrium condition is expressed as follows:

Definition 1 Given θ, x = (h, V, a) ∈ R
N+1×R

N+1
+ ×A is a (pure strategy) stationary
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equilibrium if it satisfies the following:

h0 	= 1, (20)
N∑

n=0

hn − 1 = 0, (21)

Dn(h, a; θ) = 0, n = 1, . . . , N − 1 (22)

Vn − Wnj(x; θ) = 0, (n, j) ∈ α(a) (23)

Vn − Wnj(x; θ) ≥ 0, (n, j) /∈ α(a). (24)

(h, V ) is called a stationary equilibrium for a and θ if (h, V, a) is a stationary equilibrium

for θ. A stationary equilibrium is called a monetary equilibrium if Vn −V0 > 0 for some

n > 0.

(20) is required for the existence of p > 0 satisfying

N∑
n=0

pnhn = M. (25)

(21)-(22) is the stationary condition. Note that, because of Theorem 1, the stationary

conditions at n = 1 and N are dropped. (23) is the condition that the equilibrium

strategy indeed realizes the value. (24) is the relevant incentive condition.6 We define

F0 =

N∑
n=0

hn − 1,

Fn = Dn(h, a; θ), n = 1, . . . , N − 1

Gn = Vn − Wnj(x; θ), (n, j) ∈ α(a)

Remark 3 In addition to the above equilibrium conditions, the following conditions

are typically required to be an “equilibrium” in most of matching models with money:

(i) the incentive not to choose an action out of our action space,7 and (ii) the incentive

to take the equilibrium strategy at state η /∈ {0, p, . . . , Np}. However, they are not

very restrictive, for KS presents a sufficient condition to assure that (i) and (ii) hold,

and it is satisfied in all of the matching models with divisible money known so far, such

as Zhou [12]’s model, a divisible money version of Camera and Corbae [3]’s model, and
6For the other incentive conditions, see the discussion in Subsection 3.
7For example in Section 3, a seller may offer a price which is not an integer multiple of p.
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a divisible money version of Trejos and Wright [11]’s model, as well as the models in

Section 2 and 3.

4.3 The Technique

KS shows that there is real indeterminacy of stationary equilibria under some global

regularity conditions which restrict the global structure of the set of equilibria. In this

paper, we only utilize the local structure of stationary equilibria around h0 = 1.

Given a and θ, let Ψ : R
N+1 × R

N+1 → R
N × R

N+1 be defined as

Ψ ((h0, . . . , hN), (V0, . . . , VN)) = (F0, . . . , FN−1, G0, . . . , GN )(h0, . . . , hN , V0, . . . , VN , a; θ).

Denote by det DΨ(h, V ) the determinant of the following (2N + 1)× (2N + 1) matrix:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂F0

∂h1
(h, V ) . . . ∂F0

∂hN
(h, V ) ∂F0

∂V0
(h, V ) . . . ∂F0

∂VN
(h, V )

...
...

...
...

∂FN−1

∂h1
(h, V ) . . . ∂FN−1

∂hN
(h, V ) ∂FN−1

∂V0
(h, V ) . . . ∂FN−1

∂VN
(h, V )

∂G0

∂h1
(h, V ) . . . ∂G0

∂hN
(h, V ) ∂G0

∂V0
(h, V ) . . . ∂G0

∂VN
(h, V )

...
...

...
...

∂GN

∂h1
(h, V ) . . . ∂GN

∂hN
(h, V ) ∂GN

∂V0
(h, V ) . . . ∂GN

∂VN
(h, V )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, our technique proceeds by the following steps:

(1) Find a candidate strategy a for a stationary monetary equilibrium.

(2) Setting (h0, h1, . . . , hN ) = (1, 0, . . . , 0), obtain V satisfying (23). Denote (h, V ) =

((1, 0, . . . , 0), V ) by y∗.

(3) Verify that detDΨ(y∗) is nonzero. Then, by the implicit function theorem, there

are C1 functions (h1(ε), . . . , hN (ε), V0(ε), . . . , VN(ε)) which, together with h0 =

1 − ε, a, and θ, satisfies (20)-(23) for a sufficiently small ε > 0. Denote y∗(ε) =

(1 − ε, h1(ε), . . . , hN(ε), V0(ε), . . . , VN (ε)).

(4) Verify that hn(ε) ≥ 0 for n = 1, 2, . . . , N for sufficiently small ε > 0.

(5) Verify the incentive condition (24) for a sufficiently small ε > 0.

The advantage of our technique is that it is applicable to various models, since the

Bellman equations are typically simple at h0 = 1.
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5 Concluding Remarks

5.1 The Case of Indivisible Money

The above argument can be easily applied to models with indivisible money. Suppose

∆ is the minimum unit of fiat money, i.e., the reciprocal of ∆ stands for the degree

of divisibility of money. The set of admissible prices is {0,∆, 2∆, . . .}. From (25),

it follows that among a continuum of stationary money holdings distributions only a

finite number of them, if any, are in the set. Of course, the smaller ∆ is, the larger

the number of admissible stationary money holdings distributions is. Therefore, for

sufficiently small ∆, we can find stationary equilibrium in the neighborhood of h0 = 1.

5.2 General Structure of Stationary Equilibria

In the above discussion, there exists a one-dimensional manifold, a set of stationary

equilibria, with the endpoint corresponding to h0 = 1. In this case, following the

manifold, we can find its whole structure; especially, equilibria with h0 not close to

one can be obtained. For the methods to follow one-dimensional manifolds, see, for

example, Allgower and Georg [2]. See also Herings, Talman and Yang [5]; they present

a method to follow a continuum of price constrained equilibria.
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