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Abstract 

 

We investigate the moral hazard problem in which the principal delegates multiple 

tasks to two agents. She imperfectly monitors the action choices by observing the public 

signals that are correlated through the macro shock and that satisfy conditional 

independence. When the number of tasks is sufficiently high, relative performance 

evaluation functions effectively for unique implementation, where the desirable action 

choices are supported by an approximate Nash equilibrium, and any approximate Nash 

equilibrium virtually induces the first-best allocation. Thus, this is an extremely 

effective method through which the principal divides the workers into two groups and 

makes them compete with each other. 

 

Keywords: Multitask Agency, Moral Hazard, Relative Performance Evaluation, Unique 

Implementation, Group Incentives. 

JEL Classification Numbers: D20, D80, J33, L23 
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1. Introduction 

 

This paper investigates the agency problem in which a principal delegates multiple 

tasks to two agents. In this case, the principal is faced with a moral hazard problem as 

she is unable to directly observe the action choices adopted by the agents for their 

respective tasks, but can only imperfectly monitor them by observing the public signal 

for each task that is drawn randomly and is dependent on the action choice for the task. 

In order to incentivize the agents to adopt the desirable action choices for all the tasks, 

the principal designs a punishment rule that is dependent on the observed public signals. 

Based on this, the principal decides whether or not she should fine each agent a 

monetary amount. 

In this paper, we will show that as compared with a case in which only few tasks are 

delegated to each agent, it is easier for the principal to incentivize the agents when a 

large number of tasks are delegated. This statement implies the following. Consider a 

case in which the principal hires multiple workers and assigns each worker a single task. 

Instead of contracting with each worker individually, the principal divides them into 

two working groups and regards these groups as the agents with whom she makes a 

contract. Therefore, the members of each group agree to jointly adopt the action choices 
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for their tasks and maximize the sum of their expected payoffs. In this paper, we show 

that the establishment of such working groups along with relative performance 

evaluation might be an extremely effective method enabling the principal to resolve the 

moral hazard problem. 

We assume that the public signals are correlated through a randomly drawn macro 

shock; the realization of this shock is unobservable by the agents and the principal. The 

public signals for all the tasks depend not only on this common macro shock but also on 

their respective private factors; these factors are also unobservable by the agents and the 

principal. In this case, we assume conditional independence, i.e., given the occurrence 

of a macro shock, the public signals are drawn randomly and independently. 

We specify a punishment rule on the basis of the concept of relative performance 

evaluation as follows. Each agent’s performance is measured by the proportion of tasks 

performed by him/her for which good public signals occur. If an agent’s performance is 

unsatisfactory as compared with that of the other agent, the principal will fine this agent 

according to the relative performance evaluation method. However, if an agent’s 

performance is almost identical to that of the other agent, but sufficiently unsatisfactory 

in the absolute sense, the principal will fine this agent according to the absolute 

performance evaluation method. 
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In this paper, we show that the concept of relative performance evaluation functions 

very effectively, particularly when the number of tasks is sufficiently large. Note that 

according to the Law of Large Numbers, the private factors for all the tasks delegated to 

each agent can cancel out each other. This implies that by using the relative 

performance evaluation method, the principal can almost perfectly detect whether or not 

an agent deviated from the desirable action choices, as long as the other agent adopts the 

desirable action choices for all the tasks assigned to him/her. Hence, it follows that the 

agents have an incentive to adopt the desirable action choices for all the tasks as an 

approximate Nash equilibrium, where each agent’s gains from the deviation are either 

negligible or less than zero. 

Moreover, note that each agent is incentivized to perform slightly better than the 

other agent whenever the latter deviates from the desirable action choices for a 

non-negligible number of the tasks. By doing so, the agent can almost certainly escape 

the punishment based on the absolute performance evaluation method and consequently 

help the principal in detecting the deviation of the other agent. This implies that unique 

implementation is virtually possible, i.e., any approximate Nash equilibrium can induce 

the agent to adopt the desirable action choices for almost all the tasks. 

Many previous works have studied relative performance evaluation in the context of 
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the moral hazard problem, for instance, Holmstrom (1982), Lazear and Rosen (1981), 

Green and Stokey (1983), and Nalebuff and Stiglitz (1983). However, these studies 

generally investigated the case in which each agent is delegated a single task.3 They 

showed that in comparison with independent evaluation, relative performance 

evaluation provides for better risk sharing. However, the presence of the private factors 

generally prevents relative performance evaluation from achieving the first-best 

allocation even in the approximate sense, i.e., from achieving the desirable action 

choices without any substantial welfare loss that is caused by the risk-averse agents’ 

risk sharing. In contrast, this paper shows that relative performance evaluation can 

virtually achieve the first-best allocation when the number of tasks is sufficiently large 

and conditional independence is assumed; this is because the private factors can be 

cancelled out. 

This permissive result is robust with respect to the agents’ limited liability 

constraints. In fact, in cases where the principal can perfectly monitor the agents’ action 

choices and the number of tasks is sufficiently large, whenever the upper bound of the 

monetary fine is large enough to incentivize the agents, the principal can generally 

incentivize them even when faced with the moral hazard problem with imperfect 
                                                 
3 An exception is Franckx, D’Amato, and Brose (2004), which extended Lazear and Rosen 
(1981) to a multitask setting. See also Battaglini (2005). 
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monitoring.4 

Several works, such as Mookherjee (1984), Demski and Sappington (1984), Ma 

(1988), and Battaglini (2005), have investigated unique implementation in the context 

of the moral hazard problem. When each agent is delegated only a few tasks and there 

exist private factors with regard to these tasks, the concept of relative performance 

evaluation does not function effectively for unique implementation. Hence, instead of 

employing this concept, these papers demonstrated alternative concepts of mechanism 

design in order to eliminate the unwanted equilibria; some of these were related to the 

concepts of mechanism design that were explored in the adverse selection literature 

regarding the implementation of social choice functions.5 In contrast, this paper shows 

that if a sufficiently large number of tasks are delegated, relative performance 

evaluation can compel each agent to “blow the whistle” with regard to the other agent’s 

deviation in exchange for an exemption from the punishment based on the absolute 

performance evaluation method; thus, this will be the driving force behind the relative 

performance evaluation method and would enable the principal to eliminate any 

unwanted equilibria. 

                                                 
4 Legros and Matsushima (1991) investigated mechanism design in the context of the moral 
hazard problem for partnerships with limited liability. 
5 See, for instance, Moore (1992), Palfrey (1992), Osborne and Rubinstein (2004, Chapter 10), 
and Maskin and Sjöström (2002). 
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In the agency literature, several studies such as Varian (1990), Holmstrom and 

Milgrom (1990), and Itoh (1993) have analyzed cases in which there exist multiple 

workers and demonstrated the superiority of group decisions over individual decisions. 

In these studies, it was assumed that the members of each group mutually observe their 

action choices and design a side contract contingent on these choices; this contract is 

enforceable in non-judicial ways such as word of honor. For example, Tirole (1992) 

explains the manner in which the hidden side-contracting technology can be specified. 

Generally, these works only studied the behavior of a group that includes all the 

workers; nevertheless, in case of the occurrence of a macro shock, even this group has 

the incentive to deviate. In contrast, this paper examines a case in which there exist two 

separate groups that are identical in terms of the number of members and that compete 

with each other based on relative performance evaluation—which functions effectively, 

particularly when a macro shock occurs.  

Moreover, some previous works regarding multitask incentives used the Law of 

Large Numbers to cancel out the private factors. For instance, see bundling goods by a 

monopolist (Armstrong (1999)), multimarket contact (Matsushima (2001)), and linking 

mechanisms (Jackson and Sonnenschein (2005) and Matsushima, Miyazaki, and Yagi 

(2006)). 
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 This paper is organized as follows. Section 2 presents the model. Section 3 

specifies a punishment rule based on relative performance evaluation. The main 

theorem and its logical core are presented in section 4. Section 5 provides the complete 

proof of this theorem. 

 

2. The Model 

 

 A principal hires agents 1 and 2 and delegates multiple tasks to each of them as 

follows. n  number of tasks are delegated to each agent {1,2}i∈ , i.e., the tasks ( ,1)i , 

( ,2)i , …, and ( , )i n , where 0n >  is a positive integer. Thereafter, each of them 

selects a strategy , 1( )n
i i h ha a == , where ,i ha  implies the action choice for task ( , )i h . 

Let , {0,1}i hA ≡  denote the set of actions for task ( , )i h . In this case, action 1 for task 

( , )i h , i.e., , 1i ha = , implies the desirable action choice for this task, whereas action 0 

for task ( , )i h , i.e., , 0i ha = , implies the undesirable action choice for this task. Let 

,{1,..., }i i hh n
A A

∈
= ×  denote the set of strategies for agent i . Let 1 2A A A= ×  denote the set 

of strategy profiles and 1 2( , )na a a a A= = ∈  denote a strategy profile. Therefore, the 

desirable strategy profile is denoted by * * * *
1 2( , )na a a a A= = ∈ , which is defined as 

   *
, 1i ha =  for all {1,2}i∈  and all {1,..., }h n∈ . 
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The principal is faced with a moral hazard problem in which she cannot observe 

the agents’ action choices but can only imperfectly monitor them by observing the 

public signal ,i hω  for each task ( , )i h . Let , {1,2}i hΩ ≡  denote the set of public 

signals for task ( , )i h . The public signal , ,i h i hω ∈Ω  for each task ( , )i h  is randomly 

drawn according to the probability function that depends on the action choice ,i ha  for 

this task. With regard to task ( , )i h , the public signal , 1i hω =  implies the good signal, 

whereas the public signal , 0i hω =  implies the bad signal for this task. Let 

,{1,..., }i i hh n∈
Ω ≡ × Ω  denote the set of public signal profiles for agent 'i s  tasks, and let 

1 2Ω ≡ Ω ×Ω  denote the set of public signal profiles. 

The public signals are imperfectly correlated across all the tasks as follows. There 

exists a macro shock θ  that is unobservable by not only the principal but also the 

agents, and it is randomly drawn according to the probability density distribution ( )f θ  

on the interval [0,1] , where ( ) 0f θ >  for all [0,1]θ ∈ , and 
1

0

( ) 1f d
θ

θ θ
=

=∫ . Let us fix 

an arbitrary non-negative real number 0α ≥ . Therefore, there exists an increasing and 

continuous function : [0,1 ] [0,1]p α+ →  such that for each ( , ) {1,2} {1,..., }i h n∈ × , 

,( )i hp a αθ+  is the probability that the principal will observe the good signal , 1i hω =  

for task ( , )i h , provided the macro shock θ  occurs and agent i  selects action ,i ha  

for this task. Hence, the public signals are correlated through the randomization of the 
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macro shock. Since p  is increasing with respect to θ , it follows that the stronger the 

macro shock θ , the better is the business for each task. Since (1 )p αθ+  is greater 

than ( )p αθ  for all [0,1]θ ∈ , it follows that the probability of the occurrence of the 

good signal for a task when action 1 is adopted is greater than that when action 0 is 

adopted. Since the principal is unable to observe the occurred macro shock and the 

chosen strategy profile, she is unable to verify whether the occurrence of the good 

public signals for the tasks was due to the agent’s adoption of the desirable action 

choices or the occurrence of a strong macro shock. We assume conditional 

independence, i.e., given the occurrence of the macro shock, the public signals are 

drawn randomly and independently. This implicitly assumes that there exist some 

private factors for each task that are drawn randomly and independently of each other 

and that influence the realization of the public signal. 

The payoff for agent i  when he/she selects a strategy i ia A∈  and receives a 

monetary transfer it R∈  is given by 

   
,

1( )

n

i h
h

i

a
u t

n
=−
∑

, 

where :u R R→  is an increasing function and ,i ha
n

 implies the cost of selecting the 

action for task ( , )i h . Note that the desirable action choice is more costly than the 

undesirable action choice. Without loss of generality, we assume that 
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(0) 0iu =  for each {1,2}i∈ . 

In order to incentivize the agents to select the desirable strategy profile *a , the 

principal will design a punishment rule for each agent {1,2}i∈  that is defined as a 

function : [ ,0]ix HΩ→ − , where 0H >  implies the upper bound of the monetary fine. 

Given a punishment rule ix  for each agent {1,2}i∈ , when a strategy profile a A∈  is 

selected, the expected payoff for agent i  is defined by 

   
,

1( ; ) ( ( )) ( | )

n

i h
h

i i i i

a
v a x u x p a

nω
ω ω =

∈Ω
≡ −

∑
∑ , 

where ( | )p aω  denotes the probability that the public signal profile ω  occurs when 

a  is chosen, i.e., 

,

1

,
( , ) {1,2} {1,..., }:0

0

( | ) {1 ( )}
i h

i h
i h n

p a p a
θ

ω

ω αθ
∈ ×=

=

≡ − +∏∫ . 

,

,
( , ) {1,2} {1,..., }:

1

( ) ( )
i h

i h
i h n

p a f d
ω

αθ θ θ
∈ ×

=

+∏ . 

Let 1 2( , )x x x=  denote a punishment rule. This paper uses the approximate Nash 

equilibrium concept, which is defined as follows. For each positive real number 0ε > , 

a strategy profile a A∈  is said to be an ε −Nash equilibrium for a punishment rule 

x  if for every {1,2}i∈ , every ia A′∈ , and for j i≠ , 

( ; ) ( , ; )i i i i j iv a x v a a x ε′≥ − . 

This implies that for each agent, the gain from deviating from an ε −Nash equilibrium 



 13

is less than or equal to ε , provided that the other agent plays this ε −Nash equilibrium. 

Note that the ε − Nash equilibrium concept is equivalent to the standard Nash 

equilibrium concept when 0ε = . 

 This paper examines a case in which the principal delegates a large number of 

tasks to each agent. An interpretation is as follows. In order to adopt the desirable action 

choices for 2n  tasks, the principal hires 2n  workers and divides them into two 

separate groups; each group has the same number of workers. The members of each 

group enter into a binding agreement to jointly adopt the action choices for the n  tasks 

that the principal delegates and maximize the sum of their expected payoffs. 

 This paper aims to design a punishment rule for which the desirable strategy 

profile *a  is an approximate Nash equilibrium; moreover, every approximate Nash 

equilibrium induces the desirable action choices for almost all the tasks and rarely fines 

the agents. The reasons why the principal dislikes fining the agents even though they 

adopt the desirable action choices for all the tasks are as follows. Suppose that each 

agent {1,2}i∈  has an outside opportunity that provides him/her with a payoff that is 

less than but close to 

*
,

1(0) 1

n

i h
h

i

a
u

n
=− = −
∑

. If he/she is fined with a positive probability, 

playing the desirable strategy *
ia  would not satisfy the participation constraint; 

therefore, the agent is incentivized not to participate in the principal’s business. Hence, 
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in order to prevent this agent from leaving, the principal must provide him/her with an 

extra monetary payment; consequently, the principal fails to extract the full surplus. 

Next, suppose that the agents are risk averse with respect to the monetary transfers, i.e., 

iu  is concave for each {1,2}i∈ . If each agent is fined with a positive probability, the 

principal fails to achieve the first-best allocation because of the welfare distortion 

caused by this risk-averse agent’s risk sharing. 

 

3. Relative Performance Evaluation 

 

Let us arbitrarily fix a positive integer 1n ≥  and a positive integer 

( ) {1,..., }n nλ λ= ∈ . We specify a punishment rule nx x=  as follows. For every 

{1,2}i∈  and for j i≠ , 

(1)   ( )ix Hω = −  if , , ,
1 1 1

max , min (1), 1
n n n

i h j h j h
h h h

npω ω λ ω λ
= = =

⎡ ⎤⎡ ⎤≤ − + −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
∑ ∑ ∑ , 

and 

(2)   ( ) 0ix ω =  otherwise. 

We can regard the above specification of nx  as a hybrid of the relative 

performance evaluation method and the absolute performance evaluation method as 

follows. If the absolute value of the difference between the number of good signals for 
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agent 'i s  tasks and that of the other agent 'j s  tasks is greater than or equal to λ , 

i.e., 

   1, 2,
1 1

n n

h h
h h
ω ω λ

= =
− ≥∑ ∑ , 

then the principal will evaluate each agent’s performance according to the relative 

performance evaluation method as follows. If the number of good signals for agent 'i s  

tasks is relatively small as compared with that of the other agent 'j s  tasks such that 

, ,
1 1

n n

j h i h
h h
ω ω λ

= =
− ≥∑ ∑ , 

then agent i  is fined a monetary amount H , whereas agent j  is never fined. 

On the other hand, if the absolute value of the difference between the number of 

good signals for agent 'i s  tasks and that of the other agent 'j s  tasks is less than λ , 

i.e., 

1, 2,
1 1

n n

h h
h h
ω ω λ

= =

− <∑ ∑ , 

then the principal will evaluate each agent’s performance according to the absolute 

performance evaluation method as follows. Let us consider (1)np  as the threshold to 

determine whether an agent should be fined or not. Here, (1)p  implies the probability 

that a good signal will occur for a task when action 1 is chosen, and the weakest macro 

shock 0θ =  occurs. If the number of good signals for agent 'i s  tasks is less than or 

equal to this threshold, i.e.,  
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(3)   ,
1

(1)
n

i h
h

npω
=

≤∑ , 

then agent i  is fined a monetary amount H . However, if the number of good signals 

for agent 'i s  tasks is greater than this threshold, he/she is not fined. Note that although 

the inequality (3) holds, agent i  is not fined if this number is relatively larger than that 

of the other agent 'j s  tasks, i.e., 

,
1

n

i h
h
ω

=
≥∑ ,

1

n

j h
h
ω λ

=
+∑ . 

 

4. The Theorem 

 

In this paper, we will assume that 

(4)   ( ) 1u H− ≤ − , 

which should be considered as a necessary condition for the existence of a well-behaved 

punishment rule. In fact, without this assumption (4), it is impossible for the principal to 

resolve the incentive problem even for the perfect monitoring case. Let us consider a 

situation in which the principal can perfectly monitor the agents’ action choices. With 

assumption (4), by fining any agent who selects action 0 for m  tasks irrespective of 

{1,..., }m n∈  with a monetary amount mH
n

, the principal can incentivize the agents to 

select *a  as a Nash equilibrium. Without this assumption, however, the principal is 
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unable to compel the agents to select *a  as a Nash equilibrium although she can 

perfectly monitor their action choices. The following theorem shows that generally, this 

assumption, i.e., (4), is almost sufficient for unique implementation in the imperfect 

monitoring case. 

 

The Theorem: There exists an infinite sequence of positive integers 1( ( ))nnλ ∞
=  that 

satisfies the following three properties. 

(i)  ( ) {1,..., }n nλ ∈  for all 1n ≥ . 

(ii)  For every 0ε > , there exists n  such that for every n n≥  and every 

{1,2}i∈ , when *na  is selected, the probability that agent i  is fined, i.e., 

( )n
ix Hω = − , is less than ε . 

(iii)  For every 0ε > , there exists n  such that for every n n≥ , *na  is a 

ε −Nash equilibrium for nx . 

(iv) If the strict inequality of (4) holds, i.e., 

( ) 1u H− < − , 

then for every 0η > , there exist 0ε >  and n  such that for every n n≥ , 

there exists no ε −Nash equilibrium na a=  for nx  that satisfies 
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,

1 1

n

i h
h

a

n
η= ≤ −

∑
 for some {1,2}i∈ . 

 

 The above theorem states that if the number of tasks that each agent is delegated is 

sufficiently large, then *a  is an approximate Nash equilibrium; moreover, every 

approximate Nash equilibrium can induce the agents to adopt the desirable action 

choices for almost all the tasks and rarely fines them. Hence, the principal succeeds in 

achieving the desirable action choices for all the tasks and extracts the full surplus 

without any substantial welfare loss. 

 Although the complete proof of this theorem will be presented in the next section, 

the following is a brief outline of it. Consider a sufficiently large n . The Law of Large 

Numbers implies that when each agent {1,2}i∈  selects *
ia , irrespective of the macro 

shock θ , it is almost certain that 
,

1

n

i h
h

n

ω
=
∑

 is around (1 )p θ+ . This implies that when 

the agents select *a , it is almost certain that 
1,

1

n

h
h

n

ω
=
∑

 and 
2,

1

n

h
h

n

ω
=
∑

 are almost identical. 

Hence, it is almost certain that in the relative performance evaluation method, the agents 

are never fined. Moreover, given that ( )n
n

λ  is close to zero, it is almost certain that 

,
1

n

i h
h

n

ω
=
∑

 is greater than (1)p  for each {1,2}i∈ ; therefore, the agents are never fined 
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under the absolute performance evaluation method as well. Hence, with a sufficiently 

large n , * *na a=  almost surely induces ( ) 0ix ω =  for each {1,2}i∈ , i.e., property 

(ii) holds. 

 Let us arbitrarily fix (0,1)ε ∈ . When each agent {1,2}i∈  adopts action 0 for 

approximately nε  tasks, irrespective of θ , it is almost certain that 
,

1

n

i h
h

n

ω
=
∑

 is around 

(1 ) { (1 ) ( )}p p pθ ε θ θ+ − + − , which is less than (1 )p θ+  by the positive value 

{ (1 ) ( )}p pε θ θ+ − . This implies that the relative performance evaluation method can 

almost certainly detect agent 'i s  deviation, as long as the other agent j i≠  plays *
ja . 

This along with (3) implies that *a  is an approximate Nash equilibrium, i.e., property 

(iii) holds. 

 Finally, consider any strategy profile a , according to which an agent adopts action 

0 for some tasks. If the macro shock that occurred is sufficiently weak, it is almost 

certain that ,
1

(1)
n

i h
h

npω
=

<∑ . Hence, in the absolute performance evaluation method, 

some agents are fined with a positive probability. On the other hand, the Law of Large 

Numbers implies that if an agent can alter the proportion of tasks for which he/she 

adopts the desirable action choices to be slightly greater than that for which the other 

agent adopts the desirable action choices, then this agent can almost certainly evade this 

fine. This contradicts the approximate Nash equilibrium concept. Hence, we have 
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proved that every approximate Nash equilibrium can induce the agents to adopt the 

desirable action choices for almost all the tasks, and that it rarely fines them, i.e., 

property (iv).6 

 

5. Proof of the Theorem 

 

The Law of Large Numbers implies that irrespective of θ , with a sufficiently 

large n , it is almost certain that for each {1,2}i∈ , 
,

1

n

i h
h

n

ω
=
∑

 is around 

, ,
1 1

(1 ) ( )( )
n n

i h i h
h h

p a p n a

n

αθ αθ
= =

+ + −∑ ∑
, 

provided that agent i  selects ia  and the macro shock θ  occurs. Hence, it is almost 

certain that 
, ,

1 1

n n

i h j h
h h

n n

ω ω
= =−
∑ ∑

 is around 

, ,
1 1

{ (1 ) ( )}( )
n n

i h j h
h h

p p a a

n

αθ αθ
= =

+ − −∑ ∑
, 

provided that the agents select a  and the macro shock θ  occurs. Hence, we can 

                                                 
6 In this paper, we do not consider the possibility that the agents overwork. However, it is very 
easy to resolve this issue by modifying the specification of the punishment rule such that each 
agent is fined whenever the proportion of his/her tasks for which good public signals occur is 
greater than (1 )p α+ . 
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select 1( ( ))nnλ ∞
=  that satisfies property (i) and the following two properties. 

(iv)  ( )lim 0
n

n
n

λ
→∞

= . 

(v)  The probability that 1, 2,
1 1

( )
n n

h h
h h

nω ω λ
= =

− <∑ ∑  when *na  is selected 

converges to unity as n  increases. 

Moreover, for each {1,2}i∈ , 

(vi) the probability that ,
1

(1)
n

i h
h

npω
=

>∑  when agent i  selects *n
ia  converges to 

unity as n  increases. 

Property (v) implies that it is almost certain that under the relative performance 

evaluation method, the agents are never fined. Property (vi) implies that it is almost 

certain that the agents are never fined under the absolute performance evaluation 

method. Hence, with a sufficiently large n , *na  almost surely induces ( ) 0ix ω =  for 

each {1,2}i∈ , i.e., property (ii) holds. 

 Let us arbitrarily fix 0ε > . We prove property (iii), i.e., with a sufficiently large 

n , * *na a=  is an ε −Nash equilibrium, as follows. Suppose that there exists *
i ia a≠  

such that 

(5)   * *( , ) ( )i i j iu a a u a ε> + . 

Note that the number of tasks for which agent i  chooses action 0 must be greater than 

nε , i.e., 
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,
1

n

i h
h

n a nε
=

− >∑ . 

Irrespective of θ , it is almost certain that 
, ,

1 1

n n

j h i h
h h

n n

ω ω
= =−
∑ ∑

 is around 

,
1

{ (1 ) ( )}( )
n

i h
h

p p n a

n

αθ αθ
=

+ − −∑
, 

which is greater than the positive value 

{ (1 ) ( )} 0p pαθ αθ ε+ − > . 

This along with the fact that ( )n
n

λ  is close to zero implies that it is almost certain that 

, ,
1 1 ( )

n n

j h i h
h h n

n n n

ω ω λ= =− ≥
∑ ∑

, and therefore, agent i  is almost certainly fined. Hence, 

* *( , ) ( )i i j iu a a u a−  is approximated by 

  
,

11 ( )

n

i h
h

i

a
u H

n
=− + −
∑

, 

which is non-positive, because of (4). This contradicts (5). Hence, we have proved that 

with a sufficiently large n , *na  is an ε −Nash equilibrium. 

 We prove property (iv) as follows. Since ( )p ⋅  is continuous and increasing, it 

follows that for every 0η > , there exists *( ) 0θ θ η= >  such that 

   (1) ( ) (1 ) (1 )p p pη αθ η αθ= + − + . 

Let us arbitrarily fix 0η > . From the strict inequality of (4), we can choose 0ε >  

such that 
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(6)   *min[ ( ) ( ), ( ) 1] 3i iu H u Hθ η ε− − − − − > . 

For each {1,2}i∈ , consider any strategy profile a  such that 

,
1 1

n

i h
h

a

n
η= ≤ −

∑
, 

and 

, ,
1 1

n n

i h j h
h h

a a
= =

≤∑ ∑ . 

From the definition of *( )θ η , it follows that when the occurred macro shock is weaker 

than *( )θ η , in the case of a sufficiently large n , it is almost certain that 

, ,
1 1

min (1), ( )
n n

i h j h
h h

np nω ω λ
= =

⎡ ⎤≤ +⎢ ⎥⎣ ⎦
∑ ∑ . 

This implies that the probability that agent i  is fined is at least around *( )θ η . 

Suppose that 

, ,
1 1

0
n n

j h i h
h h

a a nε
= =

≤ − <∑ ∑ . 

When agent i  chooses another strategy i ia a≠  such that 
, ,

1 1

n n

i h i h
h h

a a

n
= =

−∑ ∑
 is around 

2ε , for a sufficiently large n , it is almost certain that , ,
1 1

( )
n n

i h j h
h h

nω ω λ
= =

− ≥∑ ∑ ; therefore, 

agent i  is almost certainly never fined. Hence, ( , ) ( )i i j iu a a u a−  is at least around 

*( ) ( ) 2iu H θ η ε− − − , 

which is greater than ε , because of (6). This implies that a  is not an ε −Nash 

equilibrium. 
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 Next, suppose that 

, ,
1 1

n n

j h i h
h h

a a nε
= =

− ≥∑ ∑ . 

Irrespective of θ , for a sufficiently large n , it is almost certain that 
, ,

1 1

n n

j h i h
h h

n n

ω ω
= =−
∑ ∑

 

is at least around 

{ (1 ) ( )}p pαθ αθ ε+ − , 

which is positive. This along with property (i) implies that it is almost certain that 

, ,
1 1 ( )

n n

i h j h
h h n

n n

ω ω
λ= =− ≤ −

∑ ∑
; therefore, agent i  is almost certainly fined. When agent i  

selects *
ia  instead of ia , for a sufficiently large n , it is almost certain that he/she is 

never fined. Hence, *( , ) ( )i i j iu a a u a−  is around 

,
1( ) 1 ( ) 1

n

i h
h

i i

a
u H u H

n
=− − − + ≥ − − −
∑

, 

which is greater than ε , because of (6). This implies that a  is not an ε −Nash 

equilibrium. Hence, we have proved that with a sufficiently large n , there exists no 

ε −Nash equilibrium a  such that  
,

1 1

n

i h
h

a

n
η= ≤ −

∑
, i.e., property (iv) holds. 

Q.E.D. 
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