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Abstract

This paper discusses non-exponential growth patterns of macroeconomic
models. More specifically, the paper discusses asymptotic growth patterns
of the numbers of clusters and of components of partition vectors, that is,
the number of clusters of specific sizes, of one- and two-parameter Poisson-
Dirichlet models as the model sizes grow towards infinity.

As the model sizes become large, the coefficients of variaation of the
cluster sizes and components of the partition vector tend to zero in one-
parameter Poisson-Dirichlet model, but they remain positive in the two-
parameter version. Furthermore, the two-parameter version of the model
exhibits power-law behavior, while the one-parameter version does not.

The growth behavior of the two-parameter models is shown to be ex-
pressed in terms of generalized Mittag-Leffler distributions.

The paper ends with preliminary discussion of the effects of demand
pattern management policies on growth patterns of models that endogenize
the parameters of the two-parameter Poisson-Dirichlet model.

Key Words: Non-exponential growth patterns, One- and Two-parameter
Poisson-Dirichlet distributions; Mittag-Leffler distributions; Non-self aver-
aging phenomena, Power laws.
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Introduction

In a recent paper entitled ”What should we mean by growth policy?”, Solow
has expressed his concerns about a common practice by the mainstream
growth economists of focusing almost exclusively on exponential growths,
and wondered about their adverse influences on growth policy, Solow (2004).

In short, there are two aspects to his comments. First, he complains
that growth economists have centered their attention on steady-state expo-
nential growth, and that they made special assumptions for convenience to
gauarantee the existence of exponential steady states. Second, he mentions
that the set of their assumptions has become standard as if they have some
independent validation for policy makers to speak of their intention of rais-
ing the growth rate. According to him, the very vocabulary of growth policy
becomes identified with moving the growth rate. He condems this pattern
as being unnecessary and dysfunctional both for theory and for policy.

Aoki and Yoshikawa (2002) has mentioned one growth model that es-
capes his criticism, since it does not have a constant exponential growth
rate as time goes to infinity. This point was not developped fully in that
paper, however, because this point was not the center-piece of our analysis.

Here we describe two types of models called one- and two-parameter
Poisson-Dirichlet models which have non-exponential growth patterns. We
show that although both of our models grow at non-exponential rates, their
growth patterns are qualitatively different. We make this point using the
notion of the coefficient of variation. This notion is commonly used in econo-
metrics but less so in growth literature. We find that this concept is useful
in discussing how policies may affect growth patterns, as some preliminary
esxamination of examples in Aoki (2002, sec.7.4, sec. 8.6) and Aoki and
Yoshikawa (2006, ch.6, ch.7) seem to indicate.

It is shown that the one parameter Poisson-Dirichlet model is well be-
haved in the sense that its coefficient of variation tend to zero as model
size grows unboundedly. The coefficient of variation of the two-parameter
model, on the other hand, does not go to zero in the limit. This implies that
growth patterns of the two-parameter Poisson-Dirichlet models are more
unpredictable, and history-dependent. Effects in changes in growth path,
intentional or accidental will affect future growth patterns. We return to
this point later in the paper.

In a later section the paper points out the connection of Poisson-Dirichlet
models with Mittag-Leffler distributions. Mittag-Leffler functions are generic
in problems of occupation times and first-passage problems of Markov pro-
cesses, see for example Darling and Kac theorem in Bingham, Goldie and
Teugels (1987, Ch. 8).

There are models of entries and exits by heterogeneous agents with non
Markovian character for which analysis similar to those of waiting time
distributions in financial variables are applicable, with fractional master
equations. These extend the elementary model sketched in Aoki (1996).
The model responses are slower than exponential. Power-laws govern the
two-parameter Poisson-Dirichlet models. See Mainardi, Raberto, Gorenflo
and Sclals (2000), and Mainardi, Gorenflo and Scalas (2004) for example.
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These results indicate how the so-called fractional master equation also
arise in some macroeconomic models of cluster formations, entries and exits
of heterogeneous agents.

The paper is organized as follows: The coefficient of variation is de-
fined first. Then Poisson-Dirichlet models are introduced. We then describe
how point processes of innovations initiate or grow clusters of productive
units (agents, firms, or sectors of an economy). The asymptotic behavior
of the one- and two-parameter models, called Poisson-Dirichlet models, are
described. Then, the coefficients of variation of the number of clusters,
suitably normalized, are derived. Two-parameter Poisson-Dirichlet mod-
els have power law behavior. This is mentioned in connection with the
Mittag-Leffler probability density. Since this density is mostly unknown to
economists in general, a short summary of Mittag-Leffler probability density
is in appendix. It is a generalizetion of the well-known exponential density,
and appear in sluggish reponse patterns.

Some preliminary discussions are then given on endogenizing the models
of this paper in a way different from the mainstream endogenous growth
model literature in the penultimate section of this paper, with a short sketch
on the interactions of growth patterns and macroeconomic policies.

Coefficient of Variation: A Measure of Uncertainty

The coefficient of variation of a random variable, X , denoted by c.v.(X) is
defined by

c.v.(X) =
√
variance(X)
mean(X)

.

In this paper we use the number of clusters as X , which is an extensive
random variable1

As a simple example of the coefficient of variation, consider a pure-birth
model with a constant birth-rate λ and with an initial size n0.

Its first two cumulants are governed by

dκ1(t)/dt = λκ1(t),

and
dκ2(t)/dt = 2λκ2(t) + λ1(t).

The solution is
κ1(t) = n0e

λt

and
κ2(t) = n0[e2λt − eλt].

The coefficient of variation for the size n(t) of this model is given by

c.v.(n(t)) =
(1− e−λt)1/2

√
(n0)

∼ 1/
√

(n0).

See Cox and Miller,(1965, 159) for example.
1A variable is extensive if it scales with the ”size” of the model.

3



The larger the initial size, the smaller the coefficient of variation of this
growth model. By shifting the origin of time to an instant with a large size
for the initial cluster n0, we see that its coefficient of variation can be made
as small as you like.

In the main part of this paper we use the terms self- and non-self av-
eraging. The term ”non-self-averaging” is used as in the physics literature,
see Sornette (2000) for example. It means that some extensive random vari-
able X of the model, such as the number of sectors, has the coefficient of
variation that does not converge to zero as model size goes to infinity.2

Why is this important? It is important because non-self-averaging growth
models are sample dependent, and some degree of impreciseness or uncer-
tainty remain about the growth path trajectories, even when the sample
sizes go to infinity. We develop this point for the one-parameter, and
two-parameter Poisson-Dirichlet models introduced in the next section. In
one-parameter model, the coefficient of variations of the number of sector
sizes, suitably normalized is self-averaging, while the same variable in a
two-parameter model is not self-averaging.

Poisson-Dirichlet Models

Agents or factors of production of different characteristics or strategies be-
long to different types and form separate clusters (firsm, sectors). These
clusters jointly affect aggregate behavior.

Kingman invented the one-parameter Poisson-Dirichlet distribution to
describe random partitions of populations of heterogeneous agents into dis-
tinct clusters. Models of this class are also known as Ewens models, Ewens
(1972). See Aoki (2000a, 2000b) for further explanation.

The one-parameter model was extended to two-parameter Poisson-Dirichlet
distributions by Pitman. See Kingman (1993), Carlton (1999), Feng and
Hoppe(1998), Pitman (1999, 2002), and Pitman and Yor (1996), among
others.3

If the coefficient of variation of an extensive random variable X does not
approach zero but goes to some positive number or tends towards infinity as
the size of ”clusters” or model becomes very large, then X remains sample-
dependent even when the sample size approaches infinity.4

This paper shows that variables in the two-parameter Poisson-Dirichlet
2This limit is called thermodynamic limit in the physics terminology. The thermody-

namic behavior of these two classes of models have been examined in Aoki (2006), and is
shown to be qualitatively different betwee these two-classes of models.

3In physics literature, Mekjian and Chase (1997) have used two-parameter models.
They refer to Pitman (1996). There are other related works in the physics literature,
see the papers by Derrida-Flyvbjerg (1987), and Derrida (1994a, 1994b). Higgs (1995)
have noted the similarities of some physical distributions and power laws, and mention
population genetics papers by Ewens in particular. There are many papers on stick-
brekding version of the residual allocation processes, such as Krapivvsky, Grosse, and
B. Nadin (2002). They have not touch on connections with the two-parameter Poisson-
Dirichlet distributions, however.

4The square of the coefficient of variation is called the measure of non-self averaging
in the physics literature, Sornette (2000).
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model, denoted by PD(α, θ), with positive α less than 1, and θ+α > 0 have
non-vanishing coefficients of variations as the number of samples approaches
infinity, while the corresponding variables in the one-parameter Poisson-
Dirichlet distribution with α = 0, denoted by PD(θ), also known as Ewens
model, does not.

These models are not exponential growth models familiar to economists
but they belong to a broader class of models without steady state constant
exponential growth rate. Innovations occur to existing clusters (firms, sec-
tors, or goods) as well as innovations create new clusters (sectors or goods).
By making arrival rates of innovation endogenous, endogenous growth mod-
els result. An elementary example is in Aoki (2002, Sec.8.6) See the discus-
sion section on further comments on this point.

None of the previous works, however, have comparatively examined the
asymptotic behavior of the coefficient of variation of these two classes of
models.

Clusters in one- and two-parameter Poisson-Dirichlet

Distributions

The model consists of several clusters of basic units of production or pro-
ductive factor.5 The clusters could be sectors of macroeconomy or firms of
a sector, as the case may be. Suppose that there are k clusters of sizes ni,
i = 1, 2, . . . , k. The size of the model is n = n1 +n2 + · · ·+nk . A new basic
unit (agent) joins one of the existing clusters of size ni with probability rate

ni − α

n + θ
, (1)

where θ + α > 0, and α is between 0 and 1. With α = 0 there is a single
parameter θ, else we have a two-parameter model. In most part of the paper
these parameters are exogenously fixed. In the last section we discuss some
examples where these parameters are endogenized.

A unit of new type starts a new cluster of its own with probability rate6

1−
k∑

1

ni − α

n+ θ
=
θ + kα

n+ θ
. (2)

The above generalize the recurrence relation for the one-parameter PD(θ).
In the one-parameter case, θ/(θ + n) is a probability rate that the (n+1)th
agent that enter the model is a new type, hence it creates a new cluster,
and n/(θ + n) is the probability that the next agent is one of the types
already in the model. In the two-parameter Poisson-Dirichlet distribution
the conditional probabilities for the number of clusters in a sample of size
n, Kn is given by

Pr(Kn+1 = k + 1|K1, . . . , Kn = k) =
kα+ θ

n + θ
, (3)

5The model is a re-interpretation of Feng-Hoppe (1998), and the chinese restaurant
model in Pitman (2002).

6Probabilities of new types entering Ewens model, and the number of clusters have
been discussed in Aoki (2002, Sec.10.8, App. A.5), for example.
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and
Pr(Kn+1 = k|K1, . . . , Kn = k) =

n− kα

n+ θ
, (4)

where the random variable Kn is the number of clusters, i.e., subsets of
agents of different types present in a sample of size n.

Eq.(3) gives the expression for the probability that the (n+1)th entrant is
a new type that starts a new cluster with initial size one. Eq.(4) expressess
the probability that it is one of the previously existing types. Hence the
number of clusters does not change.

Let the probability for Kn = k be denoted by qαθ(n, k). Using (1)
through (4) it can be recursively computed by

qαθ(n+ 1, k) =
(n− kα)
(n+ θ)

qαθ(n, k) +
θ + (k − 1)α

n+ θ
qαθ(n, k− 1), (5)

for 1 ≤ k ≤ n. The expressions for the boundary Kn = 1 for all n, and that
of Kn = n are given by the expression

qαθ(n, 1) =
(1− α)(2 − α) · · ·(n − 1 − α)
(θ + 1)(θ + 2) · · ·(θ + n− 1)

,

and
qαθ(n, n) =

(θ + α)(θ + 2α) · · ·(θ + (n− 1)α)
(θ + 1)(θ + 2)) · · ·(θ + n− 1)

.

These expressions reduces to the Ewens model expressions when α is set
to zero. See Aoki (2002). In the two-parameter PD(α, θ) case, the rate of
forming a new cluster is slightly increased from θ/(n+θ) to (θ+kα)/(n+θ),
where k is the number of existing clusters (firms). This seemingly slight
endogenous increase in the rate of new cluster formation turns out to be
responsible for a qualitatively difference in the long-run model behavior.

In the one-parameter case, qθ(n, k) := P (Kn = k) is governed by the
recurrence relation

qθ(n + 1, k) =
n

n + θ
qθ(n, k) +

θ

θ + n
qθ(n, k − 1).

The solution of this recurrence equation is

qn,k =
c(n, k)θk

θ[n]
,

where θ[n] := θ(θ + 1) · · ·(θ + n − 1) = Γ(θ+n)
Γ(θ) , and where c(n, k) is named

as the unsigned (signless) Stirling number of the first kind. It satisfies the
recursion

c(n+ 1, k) = nc(n, k) + c(n, k− 1).

Because qθ(n, k) sums to one with respect to k we have

θ[n] =
n∑

k=1

c(n, k)θk. (6)

See Aoki (2002,p.208), for example, on the Stirling numbers, and their com-
binatorial interpretations.
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In the two-parameter version, the number of clusters is given by

Pα,θ(Kn = k) =
θ[k,α]

αkθ[n]
c(n, k;α), (7)

where
θ[k,α] := θ(θ + α)(θ + 2α) · · ·(θ + (k − 1)α),

and the expression c(n, k;α) generalizes the signless Stirling number of the
first kind of one-parameter situation. It is called generalized Stirling number
of the first kind. See Charalambides (2002).

Let Sα(n, k) := 1
αk c(n, k;α). It satisfies the recursion

Sα(n+ 1, k) = (n− kα)Sα(n, k) + Sα(n, k − 1),

where we set Sα(0, 0) = 1, Sα(n, 0) = 0, and Sα(0, k) = 0, k > 0 to make the
recursion valid for all cases.

Some special cases of interest are Sα(n, n) = 1;Sα(n, 1) = (1 − α)[n−1],
and

Sα(n, 2) =
1

2α2
{(−2α)[n] − 2(−α)[n]}.

Instead of (6) we have

θ[n] =
n∑

k=1

Sα(n, k)θ[k,α]. (8)

The Ewens distribution is replaced by

Sα(n, k) = n!
∗∑ 1
aj !

{(1 − α)[j−1]

j!
}aj ,

where aj is the jth component of the partition vector, see Aoki (2002). It
is the number of clusters of size j, and the summation

∑∗ is over aj such
that

∑
j jaj = n and

∑
aj = Kn. Pitman (1999) obtained its asymptotic

expression as

Sα(n, k) ∼ Γ(n)
Γ(k)

n−αα1−kgα(x),

where k ∼ xnα. Here, gα is the Mittag-Leffler (α)function. This function is
discussed in the next section, and in Appendix.

Asymptotic Behavior

The normalized number of clusters Kn/nα

In PD(θ) it is known that

Kn − θlog(n)√
θlog(n)

→ N(0, 1).

that is,
E(Kn) = θlog(n),

and
var(Kn) = θlog(n).

Hence, c.v.(Kn) = (θlog(n))−1/2, and it goes to zero as n approaches infinity.
This model is therefore self-averaging.
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Coefficient of variation of PD(α, θ)

Yamato and Sibuya (2000) obtained the expression

E(
Kn

nα
) =

Γ(θ + 1)
αΓ(α + θ)

. (9)

More generally, it is known that Kn/n
α →d L, and its first two moments

are
µ′1 = Eα,θ(L) = Γ(θ + 1)/αΓ(θ + α),

and
µ′2 = Eα,θ(L2) = Γ(θ + 1)(θ + α)/α2Γ(θ + 2α).

Hence variance of L is given as µ′2 − (µ′1)
2 = [Γ(θ + 1)/α2]γαθ. Hence we

have
c.v.(Kn/n

α) =
√
γα,θΓ(θ + α)/

√
Γ(θ + 1).

This expression can be simplified to

c.v.(Kn/n
α) =

α

2
[θ−1 + ψ(θ)], (10)

where ψ(θ) is the digamma function, that is the derivative of logarithm of
Γ(θ) with respect to θ.

Recall that
Kn − θln(n)√

θln(n)
→ N(0, 1),

in the Ewens model. Hence (Kn/ln(n)) is self-averaging in one-parameter
model.

For the two-parameter model, Yamato and Sibuya (2000) calculated the
expected value of the number of clusters Kn to be given by

EKn =
θ

α
[
(θ + α)[n]

θ[n]
− 1],

where we note that

(θ + α)[n]

θ[n]
=

Γ(θ)
Γ(θ + α)

Γ(θ + α+ n)
Γ(θ + n)

.

Mittag-Leffler distributions and the method of moments

In general the fact that all moments of two distributions defined on infinite
domain [0,∞) match does not imply that the distributions are the same.
There is, however, a sufficient condition on the moments that the distribu-
tion functions are uniquely determined by the equalities of all the moments.
This condition is satified for the problem at hand.7

Applying the asymptotic expression for the Gamma function for large n

Γ(n + a)
Γ(n)

∼ na,

7See Bingham et al. for example.
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to the above expression, we have an asymptotic expression,

E(
Kn

nα
) ∼ Γ(θ + 1)

αΓ(θ + α)
. (11)

All other moments such as the asymptotic value of the variance ofKn/n
α

. In particular,

var(Kn/n
α) ∼ Γ(θ + 1)

α2
γα,θ ≥ 0, (12)

where
γα,θ :=

θ + α

Γ(θ + 2α)
− Γ(θ + 1)

[Γ(θ + α)]2
. (13)

We thus deduce the thermodynamic limit is

c.v.(
Kn

nα
) → Γ(θ + α)

√
γ(α, θ)

Γ(θ + 1)
. (14)

It is given asymptotically by
√

γαθ
Γ(θ+1)Γ(θ + α). This ratio is positive for

α 6= 0. This is one of the important difference in the asymptotic behaviors
of one- and two-parameter Poisson-Dirichlet models.

See also Blumenfeld and Mandelbrot (1997) who credit Feller (1949) as
the original source.

The right-hand side of the above equation is approximately equal to√
Γ(θ + 1)(1 + α)/θ.
We calculate the asymptotic behavior of the coefficient of variation next.

Expanding the gamma function Γ(θ+α) ≈ Γ(θ)[1+ψ(θ)α+o(α)],where ψ(θ)
is the digamma or psi function given as the derivative of log of Gamma(θ)
with respect to θ, we obtain

c.v.(Kn/n
α) ≈ 1√

θ
[α+ o(α)].

The partition vector a

For simpler presentation we have just discussed the random variable Kn,
even though the components of the partition vector, i.e., the number of
clusters of size j, denoted by aj , and the total size of clusters of size j, jaj

can be analogously treated.
Components of partition vector a has expected value

E(aj) =
n!

j!(n− j)!
(θ + α)[n−j]

(1 − α)[j−1](θ + 1)[n−1]
.

We can show that
aj(n)
Kn

→d Pα,j ,

a.s., where

Pα,j =
Γ(j − α)
Γ(1 − α)

.
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Yamato and Sibuya noted that

limE(
Kn

nα
)r = µ′r ,

for r = 1, 2, . . ., where µ′r is the r − th moment of the generalized Mittag-
Leffler distribution with density

gα,θ :=
Γ(θ + 1)

Γ(θ/α + 1)
x

θ
α gα(x),

where θ/α > −1, and where gα(x) is the Mittag-Leffler (α) density function.
Its moments are given by

∫ ∞

0
xpgα(x)dx =

Γ(p+ 1)
Γ(pα+ 1)

,

for all p > −1.
See Appendix for the expression of gα(·).

Local Limit Theorem

Suppose N independent positive random variables Xi, i = 1, 2, . . .N are
normalized by their sum SN = X1 + · · ·+XN

xi = Xi/SN , i = 1, . . .N,

so that
Y1 :=

∑

i

xi = 1.

Suppose that the probability density ofXi is such that it has a power-law
tail,

ρ(x) ∼ Ax−1−µ,

with 0 < µ < 1. Then, SN/N
1/µ has a stable distribution (called Lévy

distribution).
Pitman’s formula for the probability of Kn = k, with k ∼ snα indicates

that the power law nα which is 2α < 2 or 2α = 1 + µ with 0 < µ < 1, the
case in Derrida.

With the 2-parameter PD distribution satisfying the power law condi-
tion, Derrida’s conclusion that the Hs are non-self averaging applies to this
case as well.

Aggregate Demand and Policy and Growth Policy

Here we examine some implications of non-self averaging growth patterns
and growth policies. In Aoki (2002, Ch.8) and further in Aoki and Yoshikawa
(2006, Ch.6) multi-sector models with non-identical productivity coefficients
have been examined for growth patterns and fluctuations that mimic busi-
ness cycles with slightly differently specified arrival rates of innovations to
initiate a new sector and to increase the sizes of existing sectors from the
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ones adopted in this paper. Sectors are made to have different productiv-
ity coefficients. There demand patterns to sectors were varied to see how
the fluctuations and growth rates of the aggregate models are affected. Not
enough numbers of simulations were run to state the results of this exami-
nation with sufficient conficence. However, we observed definite changes in
coefficients of variation.

In these models each sector attempts to increase its sizes if it experience
excess demand for its goods, and it reduces its output by laying-off a unit
of production factors (employees) when excess supply is experienced. In
analysis of these models, we have demonstrated that ”aggregate demand
management of sorts” which differentially allocate demands to more and less
productive sectors to affect total outputs and patterns of output fluctuations.

The number of sectors have been fixed at K = 10 for all n.

Potential Applications: Waiting time distributions

It is known that Mittag-Leffler functions generically appear in situations
where Darling-Kac theorem applies. See Bingham et al (1999). For exam-
ple waiting time distribution problems in the econo-physics literature are
such examples. Waiting time situations arise also in macroeconomics. For
example, the entry and exit problem discussed by Dixit (1989) in exchange
rate pass-through can be phrased more correctly as waiting time problem.

In view of these results, we conjecture that the model of this paper can
be used with minor changes to analyze effects of various growth policies to
determine how they affect growth patterns, and characterize their effects
in terms of the coefficients of variation, for example. We have shown that
the coefficient of variation of normalized cluster sizes increase with α and
change with θ as shown in (14).

With a more general specification of the arrival rates of innovations α
and θ such as those in Aoki (2002, Sec.8.6) are treated exogenously in this
paper could be made to be affected some policy instruments.

Concluding Remarks

In physics phenomena with non-vanishing coefficients of variation abound.
In traditional microeconomic foundations of economics, one deals almost ex-
clusively with well-posed optimization problems for the representative agents
with well defined peaks and valleys of the cost functions. It is also taken
for granted that as the number of agents goes to infinity, any unpleasant
fluctuations vanish and well defined deterministic macroeconomic relations
prevail. In other words, non-self-averaging phenomena are not in the mental
pictures of average macro- or microeconomists.

However, we know that as we go to problems which require agents to
solve some combinatorial optimization problems, this nice picture may dis-
appear. In the limit of the number of agents going to infinity some results
remain sample-dependent and deterministic results will not follow. Some
of this type of phenomena have been reported in Aoki (1996, Sec. 7.1.7)
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and also in Aoki (1996, p. 225) where Derrida’s random energy model was
introduced to the economic audience. Unfortunately it did not catch the
attention of the economic audiences. See Mertens (2000). This paper is
another attempt at exposing non-self-averaging phenomena in economics.

What are the implications if some economic models have non-self av-
eraging property? For one thing, it means that we cannot blindly try for
larger size samples in the hope that we obtain better estimates.

The examples above are just a hint of the potential of this approach
of using exchangeable random partition methods. It is the opinion of this
author that subjects such as in the papers by Fabritiis, Pammolli, and Ric-
caboni (2003), or by Amaral et al (1998) could be re-examined from the
random combinatorial partition approach with profit. Another example is
Sutton (2002). He modeled independent business in which the business sizes
vary by partitions of integers to discuss the dependence of variances of firm
growth rates. He assumed each partition is equally likely, however. Use
of random partitions discussed in this paper may provide more realistic or
flexible framework for the question he examined.

Finally, the key question in applications to macroeconomic or financial
modelings of the random partition approach is ”What are the most likely
combinations of the values of Kn = k, aj , and jaj all suitably normalized ?”
This question appears too complicated to answer analytically at this time,
except for some special cases. Some simulations would help.
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Appendices

Pitman showed that
Kn/n

α → L,
in distribution and Pitman (2002, Sec. 3) has stronger result of convergence
a.s. See Yamato and Sibuya also. The random variable L has the density

d

ds
Pα,θ(L ∈ ds) = gα,θ

where letting η = θ
α we define

gα,θ(s) :=
Γ(θ + 1)
Γ(η + 1)

sηgα(s),

where s > 0, and where gα = gα,0 is the Mittag-Leffler density

gα(s) =
1
π

∞∑

k=1

[
Γ(kα)
Γ(k)

sin(kπα)(−s)k−1].

See Blumenfeld and Mandelbrot (1997), or Pitman (2000) for example.
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