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Abstract

In this paper, we propose an efficient Monte Carlo implementation of a non-linear
FBSDE as a system of interacting particles inspired by the idea of the branching
diffusion method of McKean. It will be particularly useful to investigate large and
complex systems, and hence it is a good complement of our previous work presenting
an analytical perturbation procedure for generic non-linear FBSDEs. There appear
multiple species of particles, where the first one follows the diffusion of the original
underlying state, and the others the Malliavin derivatives with a grading structure.
The number of branching points are capped by the order of perturbation, which is
expected to make the scheme less numerically intensive. The proposed method can be
applied to semi-linear problems, such as American Options, Credit and Funding Value
Adjustments, and even fully non-linear issues, such as the optimal portfolio problems
in incomplete and/or constrained markets.
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1 Introduction

The forward backward stochastic differential equations (FBSDEs) were first introduced by
Bismut (1973) [2], and then later extended by Pardoux and Peng (1990) [29] for general
non-linear cases. They were found particularly relevant for optimal portfolio and indiffer-
ence pricing issues in incomplete and/or constrained markets. Their financial applications
are discussed in, for example, El Karoui, Peng and Quenez (1997a) [11], Ma and Yong
(2000) [25] and a book edited by Carmona (2009) [6]. There now exist large number
of literature studying Monte Carlo simulation techniques to solve FBSDEs. Since new
works are constantly appearing in this research area, it is impossible to mention every
relevant work. Just to name but a few, one can find important examples in Bouchard &
Touzi (2004) [5], Bender & Denk (2007) [1], Gobet et al. (2005) [16] and Gobet & Lemor
(2010) [17].

After the financial crisis in 2008, the researches on FBSDEs have gained significant
traction not only from academia but also from financial practitioners. This is because that
they inevitably encounter the problems of FBSDEs when they try to handle credit risk,
collateralization, funding and regulatory costs. These new developments in the market
have given rise to a formidable problem for the existing Monte Carlo methods which can
solve the problem only backwardly relying on the least-square regression method (LSM).
In fact, it is practically infeasible to handle real financial problems which typically require
very high dimensional modeling with a rather long time horizon. The problem and the
necessity of a fully forward-looking technique not relying on the LSM are emphasized also
in the recent book of counterparty risk by Crépey et al. (2014) [7].

Fujii & Takahashi (2012a) [12] proposed an analytical perturbation technique for
generic non-linear FBSDEs. It was shown that a non-linear FBSDE can be decomposed
into a series of linear and decoupled ones by treating the non-linear parts of a driver as
perturbations with respect to an appropriate linear decoupled system. In particular, it
allows analytical explicit expressions for the backward components with the help of the
asymptotic expansion technique (See, for example [30, 24, 34, 32].). The control variables
( i.e., the coefficients of the Brownian motions ) were shown to be obtained by consider-
ing dynamics of the stochastic flows, which denote Malliavin derivatives of the underling
state processes. A rigorous justification for a decoupled FBSDE with a smooth driver was
recently given by Takahashi & Yamada (2013) [33]. An explicit example of its application
can be found in Fujii & Takahashi (2012b) [13] for an incomplete market with stochastic
volatility.

Thanks to the linearity of the expanded system, the method [12] allows to solve the
problem in a forward-looking manner, which can provide one possible solution to the above
mentioned problem relevant for the current financial market. The remaining issue is that
it is impractical to carry out complicated analytic calculation for conditional expectations
in realist setups. Although we can also use standard Monte Carlo simulation in estimating
conditional expectations, it requires nested simulations at each point of time, which makes
it too time-consuming for the practical use. In order to overcome the problem, we propose
the idea of particle representation in this paper, inspired by the branching diffusion method
used in McKean (1975) [28]. There, the convoluted expectation is compressed into a usual
one by introducing an intensity of the particle interaction. McKean applied the method
to solve a particular type of semi-linear PDE, where a single particle splits into two at
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each interaction time and creates a cascade of the identical particles. The similar idea
was also adopted by Labordère (2012) [19] for semi-linear problems, and in particular, for
CVA calculation.

In this paper, we combine the idea of particle representation and the perturbation
technique developed in the previous work [12]. We provide a straightforward simulation
scheme to solve fully-nonlinear decoupled as well as coupled FBSDEs at each order of
perturbative approximation. It includes, of course, a semi-linear problem as a special
case. In contrast to the direct application of branching diffusion method, the number of
branching points are capped by the order of perturbative expansion, which is due to the
linearity of the decomposed FBSDE system. This property is expected to make Monte
Carlo simulation less numerically intensive.

The sole purpose of the current paper is providing a simple explanation of the method-
ology and does not include concrete numerical examples. After publishing the first work-
ing paper version in 2012, there already appeared various numerical applications using our
particle method: Crépey & Song (2014) [8] and Shiraya & Takahashi (2014) [31] for coun-
terparty risk modeling, Fujii et al. (2014) [14] for the pricing of American options. See also
Haramishi (2013a,b) [18] comparing our method with that of [19] for an inverse problem of
derivative pricing, which aims to obtain appropriate parameters for the contract yielding
a target fair price with the counterparty risk taken into account.

Remark

The analysis of branching Markov process and related problems in semi-linear PDEs
has a long history. Some of the well-known works are Fujita (1966) [15], Ikeda, Naga-
sawa & Watanabe (1965,1966,1968) [20, 21, 22], Ikeda et.al. (1966,1967) [23] and Naga-
sawa & Sirao (1969) [27]. For recent developments and reviews of the particle methods,
see [9, 10] for example.

2 Setup

We first consider generic decoupled non-linear FBSDEs. Let us use the same setup assumed
in the work [12]. The probability space is taken as (Ω,F , P ) and T ∈ (0,∞) denotes some
fixed time horizon. Wt = (W 1

t , · · · ,W r
t )

∗, 0 ≤ t ≤ T is Rr-valued Brownian motion defined
on (Ω,F , P ), and (Ft){0≤t≤T} stands for P-augmented natural filtration generated by the
Brownian motion.

We consider the following forward-backward stochastic differential equation (FBSDE)

dVs = −f(Xs, Vs, Zs)ds+ Zs · dWs (2.1)

VT = Ψ(XT ) (2.2)

where the process V takes the value in R, and that of X in Rd, which is assumed to follow
a generic Markovian forward SDE

dXs = γ0(Xs)ds+ γ(Xs) · dWs . (2.3)

f : Rd × R × Rr → R, γ0 : Rd → Rd and γ : Rd → Rd×r are assumed to be smooth
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functions. Ψ : Rd → R is a function to give the terminal condition for V . Here, we
absorbed an explicit dependence on time to X by allowing some of its components can
be a time itself. “·” in front of the dW represents the summation for the components of
r-dimensional Brownian motion. The following approximation procedures can be applied
in the same way also in the presence of coupon payments. Throughout this paper, we are
going to assume that the appropriate regularity conditions for the introduced functions
are satisfied to guarantee the existence of well-defined solution.

Let us fix the initial time as t. We denote the Malliavin derivative of Xu (u ≥ t) at
time t as (DtXu) taking value in Rr×d. Its dynamics in terms of the future time u is
specified by the well-known stochastic flow:

d(Yt,u)
i
j = ∂kγ

i
0(Xu)(Ytu)

k
jdu+ ∂kγ

i
a(Xu)(Ytu)

k
jdW

a
u

(Yt,t)
i
j = δij (2.4)

where ∂k denotes the differential with respect to the k-th component of X, and δij denotes
Kronecker delta. Here, i and j run through {1, · · · , d} and {1, · · · , r} for a. Throughout
the paper, we adopt Einstein notation which assumes the summation of all the paired
indexes. Using the known chain rule of Malliavin derivative, one sees

(DtX
i
u) =

∫ u

t
∂kγ

i
0(Xs)(DtX

k
s )ds+

∫ u

t
∂kγ

i(Xs)(DtX
k
s ) · dWs + γi(Xt) (2.5)

and hence it satisfies

(DtX
i
u)a = (Yt,u)

i
jγ

j
a(Xt) = (Yt,uγ(Xt))

i
a (2.6)

where “a” is the index of r-dimensional Brownian motion.

3 Expansion into a series of Linear FBSDE System

Following the perturbative method proposed in [12], let us introduce the perturbation
parameter ϵ and then write the equation as{

dV
(ϵ)
s = −ϵf(Xs, V

(ϵ)
s , Z

(ϵ)
s )ds+ Z

(ϵ)
s · dWs

V
(ϵ)
T = Ψ(XT )

(3.1)

where ϵ = 1 corresponds to the original model 1. We suppose that the solution can be
expanded in a power series of ϵ:

V
(ϵ)
t = V

(0)
t + ϵV

(1)
t + ϵ2V

(2)
t + ϵ3V

(3)
t + · · · (3.2)

Z
(ϵ)
t = Z

(0)
t + ϵZ

(1)
t + ϵ2Z

(2)
t + ϵ3Z

(3)
t + · · · (3.3)

If the non-linearity is sub-dominant, one can expect to obtain reasonable approximation
of the original system by putting ϵ = 1 at the end of calculation.

1It is possible to extract the linear term from the driver and treat separately. Here, we simply leave it
in a driver, or work in a ”discounted” base to remove linear term in V .
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The dynamics of each pair (V (i), Z(i)) can be easily derived as follows:
Zero-th order {

dV
(0)
s = Z

(0)
s · dWs

V
(0)
T = Ψ(XT )

(3.4)

First order {
dV

(1)
s = −f(Xs, V

(0)
s , Z

(0)
s )ds+ Z

(1)
s · dWs

V
(1)
T = 0

(3.5)

Second order{
dV

(2)
s = −

{
V

(1)
s

∂
∂v + (Z

a(1)
s ) ∂

∂za

}
f(Xs, V

(0)
s , Z

(0)
s )ds+ Z

(2)
s · dWs

V
(2)
T = 0

(3.6)

Third order
dV

(3)
s = −

{
V

(2)
s

∂
∂v + Z

2(a)
s

∂
∂za + 1

2(V
(1)
s )2 ∂2

∂v2
+ V

(1)
s Z

a(1)
s

∂2

∂v∂za

+1
2Z

a(1)
s Z

b(1)
s

∂2

∂za∂zb

}
f(Xs, V

(0)
s , Z

(0)
s )ds+ Z

(3)
s · dWs

V
(3)
T = 0

(3.7)

One can continue to an arbitrary higher order in the same way.

· · · · · · · · ·

Note that the higher order backward components (V (n), Z(n)){n≥1} are always outside
of the non-linear function f . This property arises naturally due to the very nature of
perturbation. As we shall see, this is crucial to suppress the number of particles in the
numerical simulation.

4 Interacting Particle Interpretation

Let us fix the initial time t and set Xt = xt.

4.1 ϵ-0th Order

For the zeroth order, it is easy to see

V
(0)
t = E

[
Ψ(XT )

∣∣∣Ft

]
(4.1)

Z
a(0)
t = E

[
∂iΨ(XT )(Da

tX
i
T )
∣∣∣Ft

]
= E

[
∂iΨ(XT )(Yt,Tγ(Xt))

i
a

∣∣∣Ft

]
(4.2)

It is clear that they can be evaluated by standard Monte Carlo simulation. However,
for their use in higher order approximation, it is crucial to obtain explicit approximate
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expressions for these two quantities. As proposed in [12], we use asymptotic expansion
technique [30, 24, 34, 32] for this purpose. When Ψ is a smooth function, it is quite
straightforward. Even if Ψ is not a smooth function, such as an option payoff, one can ob-
tain explicit expressions of (V (0), Z(0)) in terms of Xt, too. This is because, one can derive
an approximate joint transition density of general diffusion processes by the asymptotic
expansion 2. In the following, let us suppose that we have obtained the solutions up to a
given order of asymptotic expansion, and write each of them as a function of xt:{

V
(0)
t = v(0)(xt)

Z
(0)
t = z(0)(xt)

(4.3)

4.2 ϵ-1st Order

Since the BSDE is linear, we can integrate as before. Here, let us first consider the

evaluation of V
(1)
t .

V
(1)
t =

∫ T

t
E
[
f(Xu, V

(0)
u , Z(0)

u )
∣∣∣Ft

]
du

=

∫ T

t
E
[
f
(
Xu, v

(0)(Xu), z
(0)(Xu)

)∣∣∣Ft

]
du (4.4)

Although it is possible to carry out standard Monte Carlo simulation for every time u ∈
[t, T ] and integrate to obtain the V

(1)
t , the time integration becomes numerically quite

heavy. In fact, it will soon become infeasible for ϵ higher order terms that include multi-
dimensional integration of time. We now introduce particle interpretation by McKean [28]
developed for the study of semilinear PDEs:

Proposition 1 The V
(1)
t in (4.4) can be equivalently expressed as

V
(1)
t = 1{τ>t}E

[
1{τ<T}f̂t

(
Xτ , v

(0)(Xτ ), z
(0)(Xτ )

)∣∣∣Ft

]
(4.5)

Here τ is the time of interaction which is drawn independently from Poisson distribution
with an arbitrary deterministic positive intensity process λt. It can be a positive constant
for the simplest case. 3 f̂ is defined as

f̂t(x, v
(0)(x), z(0)(x)) :=

1

λs
e
∫ s
t λuduf(x, v(0)(x), z(0)(x)) . (4.6)

Proof: Define the new process for (s > t):

V̂
(1)
t,s := e

∫ s
t λuduV (1)

s (4.7)

2We intend to use the result of asymptotic expansion only for higher order approximations.
3It is not difficult to make it a stochastic process.
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then its dynamics is given by

dV̂
(1)
t,s = e

∫ s
t λudu

{
λsV

(1)
s ds− f(Xs, v

(0)(Xs), z
(0)(Xs))ds+ Z(1)

s · dWs

}
= λsV̂

(1)
t,s ds− λsf̂t(Xs, v

(0)(Xs), z
(0)(Xs))ds+ e

∫ s
t λuduZ(1)

s · dWs . (4.8)

Since we have V̂
(1)
t,t = V

(1)
t , one can easily see the following relation holds:

V
(1)
t =

∫ T

t
E
[
e−

∫ u
t λsdsλuf̂t(Xu, v

(0)(Xu), z
(0)(Xu))

∣∣∣Ft

]
du (4.9)

It is clear for those familiar with credit risk modeling [3, 4], it is nothing but the present
value of default payment where the default intensity is λ with the default payoff at s (> t)
given by f̂t(Xs, v

(0)(Xs), z
(0)(Xs)). Thus, it is clear that (4.9) is equivalent to (4.5). �

Now, let us consider the martingale component Z(1). It can be expressed as

Z
(1)
t =

∫ T

t
E
[
Dtf

(
Xu, v

(0)(Xu), z
(0)(Xu)

)∣∣∣Ft

]
du (4.10)

We perform the similar transformation for Z(1) to make it easier to interpret in the inter-
acting particle model. Firstly, let us observe that the dynamics of Malliavin derivative of
V (1) follows

d(DtV
(1)
s ) = −(DtX

i
s)
{
∂i + ∂iv

(0)(Xs)∂v + ∂iz
a(0)(Xs)∂za

}
f(Xs, v

(0)(Xs), z
(0)(Xs))ds

+(DtZ
(1)
s ) · dWs (4.11)

DtV
(1)
t = Z

(1)
t (4.12)

For lighten the notation, let us introduce a derivative operator

∇i(x, v
(0), z(0)) := ∂i + ∂iv

(0)(x)∂v + ∂iz
a(0)(x)∂za (4.13)

and also

f(x, v(0), z(0)) := f(x, v(0)(x), z(0)(x)) (4.14)

Now, we can write Eq. (4.12) as

d(DtV
(1)
s ) = −(DtX

i
s)∇i(Xs, v

(0), z(0))f(Xs, v
(0), z(0))ds+ (DtZ

(1)
s ) · dWs

Define, for (s > t),

D̂tV
(1)
s := e

∫ s
t λudu(DtV

(1)
s ) (4.15)
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then its dynamics can be written as

d(D̂tV
(1)
s ) = e

∫ s
t λudu

{
λs(DtV

(1)
s )ds− (DtX

i
s)∇i(Xs, v

(0), z(0))f(Xs, v
(0), z(0))ds

+DtZ
(0)
s · dWs

}
= λs(D̂tV

(1)
s )ds− λs(DtX

i
s)∇i(Xs, v

(0), z(0))f̂t(Xs, v
(0), z(0))ds

+e
∫ s
t λudu(DtZ

(0)
s ) · dWs (4.16)

We have

D̂tV
(1)
t = Z

(1)
t (4.17)

and hence

Z
(1)
t =

∫ T

t
E
[
e−

∫ u
t λsdsλs(DtX

i
u)∇i(Xu, v

(0), z(0))f̂t(Xu, v
(0), z(0))

∣∣∣Ft

]
(4.18)

Thus, following the same argument of the proposition 1, we can conclude:

Proposition 2 Z
(1)
t in (4.10) is equivalently expressed as

Z
a(1)
t = 1{τ>t}E

[
1{τ<T}(Yt,τγ(Xt))

i
a∇i(Xτ , v

(0), z(0))f̂t(Xτ , v
(0), z(0))

∣∣∣Ft

]
(4.19)

where the definitions of random time τ and the intensity process λ are the same as those
in proposition 1.

As we shall see later, interpreting (X,Y ) as a pair of particles allows an efficient Monte
Carlo implementation. For the evaluation of Z(1) for example, one can consider it as an
system of two particles (X,Y ), which have the intensity λ of the interaction that produces

(Yt,τγ(Xt))
i
a∇i(Xτ , v

(0), z(0))f̂t(Xτ , v
(0), z(0)) (4.20)

at the interaction point and annihilate altogether. For V (1), the interpretation is much
simpler. A single particle X with the decay rate of λ leaves f̂ at its decay point and
vanishes.

4.3 ϵ-2nd Order

For the ϵ-2nd order, one can observe that

V
(2)
t =

∫ T

t
E
[(

V (1)
u ∂v + Za(1)

u ∂za
)
f(Xu, v

(0), z(0))
∣∣∣Ft

]
du (4.21)

Z
(2)
t =

∫ T

t
E
[
Dt

{(
V (1)
u ∂v + Za(1)

u ∂za
)
f(Xu, v

(0), z(0))
}∣∣∣Ft

]
du (4.22)

solve the BSDE (3.6). Its particle interpretation is available by the similar transformation.
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Firstly, for (s > t), let us define

V̂
(2)
t,s := e

∫ s
t λuduV (2)

s (4.23)

with some appropriate intensity process λ. Then it follows

dV̂
(2)
t,s = λsV̂

(2)
t,s ds− λs(V

(1)
s ∂v + Za(1)

s ∂za)f̂t(Xs, v
(0), z(0))ds

+e
∫ s
t λuduZ(2)

s · dWs (4.24)

Observing that V̂
(2)
t,t = V

(2)
t , one can confirm that

V
(2)
t = 1{τ1>t}E

[
1{τ1<T}

(
V (1)
τ1 ∂v + Za(1)

τ1 ∂za
)
f̂t(Xτ1 , v

(0), z(0))
∣∣∣Ft

]
(4.25)

where τ1 is the random interaction time with intensity λ. Now, using the tower property
of conditional expectations, one can conclude that

Proposition 3 V
(2)
t in (4.21) is equivalently expressed as

V
(2)
t = 1{τ1>t}E

[
1{τ1<τ2<T}(∂vf̂t,τ1)f̂τ1,τ2

∣∣∣Ft

]
+1{τ1>t}E

[
1{τ1<τ2<T}∂za f̂t,τ1

(
Yτ1,τ2γτ1

)i

a
∇i,τ2 f̂τ1,τ2

∣∣∣Ft

]
(4.26)

where we have defined

f̂t,s := f̂t(Xs, v
(0)(Xs), z

(0)(Xs))

∇i,s := ∇i(Xs, v
(0)(Xs), z

(0)(Xs))

γt := γ(Xt) (4.27)

and τ1 and τ2 are the two interaction times randomly drawn with intensity λ.

A particle interpretation for the first term is quite simple. A particle X starts at t
follows the diffusion (2.3) with (self) interaction intensity λ. For the first interaction time
τ1, it yields ∂vf̂t,τ1 and at the 2nd interaction time τ2 it yields f̂τ1,τ2 and decays away. The
expectation value can be evaluated by preparing a large number of particles X starting
from the same point and obeying the same physical law but spend independent lives. For
the second term, the interpretation is more interesting. A particle X starts at time t and
follows the diffusion (2.3) with interaction intensity λ. At the first interaction time τ1, it
yields ∂za f̂t,τ1 and at the same time bears a new particle Y . After τ1, the two particles
(X,Y ) follow the diffusions (2.3) and (2.4), respectively. They have interaction intensity
λ, and at the second interaction point τ2 they yield (Yτ1,τ2γ(Xτ2))∇τ2 f̂τ1,τ2 and annihilate
altogether. As in the first example, the expectation can be calculated by preparing a large
number of particle X at the same starting point.

Remark: Note that, if we simply use Eqs. (4.4, 4.21) and the tower property, we have to
handle a two-dimensional time integration. It makes naive implementation of Monte Carlo
simulation numerically too heavy. In our particle interpretation, this problem is solved by
introducing random interaction times with some intensity λ. One can choose appropriate
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size of intensity that produces enough amount of events for Monte Carlo simulation.

We now consider an interacting particle interpretation of Z(2). For the evaluation of Z(2),
we need to define the second order stochastic flow for (t < s < u):

(Γt,s,u)
i
jk :=

∂2

∂xjt∂x
k
s

Xi
u =

∂

∂xjt
(Ys,u)

i
k (4.28)

Since we have

(Ys,u)
i
k = δik +

∫ u

s
(Ys,v)

l
k(∂lγ

i
0(Xv)dv + ∂lγ

i(Xv) · dWv) (4.29)

it is easy to see that

(Γt,s,u)
i
j,k =

∫ u

s
(Γt,s,v)

l
j,k(∂lγ

i
0(Xv)dv + ∂lγ

i(Xv) · dWv)

+

∫ u

s
(Yt,v)

m
j (Ys,v)

l
k(∂lmγi0(Xv)dv + ∂lmγi(Xv) · dWv) (4.30)

Note that we have Γt,s,s = 0, regardless of time s (> t). Using the second order stochastic
flow, the Malliavin derivative of Y can be written as

Da
t (Ys,v)

i
k = (Γt,s,v)

i
j,k(γ

j(Xt))a = (Γt,s,vγ(Xt))
i
k,a (4.31)

Consider the process of Malliavin derivative DtV
(2)
s . One can write its dynamics for

(t < s) as

d(DtV
(2)
s ) = −

(
(DtV

(1)
s )∂v + (DtZ

a(1)
s )∂za

)
f(Xs, v

(0), z(0))ds

−(DtX
i
s)
{
V (1)
s ∇i,s(∂vf(Xs, v

(0), z(0))) + (Za(1)
s )∇i,s(∂zaf(Xs, v

(0), z(0)))
}
ds

+DtZ
(2)
s · dWs (4.32)

DtV
(2)
t = Z

(2)
t (4.33)

As before, we define

D̂tV
(2)
s := e

∫ s
t λudu(DtV

(2)
s ) (4.34)

then its dynamics satisfies the following SDE:

d(D̂tV
(2)
s ) = λs(D̂tV

(2)
s )ds− λs

[
(DtX

i
s)
(
V (1)
s ∇i,s(∂vf̂t,s) + (Za(1)

s )∇i,s(∂za f̂t,s)
)

+
(
(DtV

(1)
s )∂v + (DtZ

a(1)
s )∂za

)
f̂t,s

]
ds+ e

∫ s
t λuduDtZ

(2)
s · dWs (4.35)

(D̂tV
(2)
t ) = Z

(2)
t (4.36)
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Then, the same arguments leads to

Z
(2)
t = 1{τ1>t}E

[
1{τ1<T}(DtX

i
τ1)

(
V (1)
τ1 ∇i,τ1(∂vf̂t,τ1) + (Za(1)

τ1 )∇i,τ1(∂za f̂t,τ1)
)

+1{τ1<T}

(
(DtV

(1)
τ1 )∂v + (DtZ

a(1)
τ1 )∂za

)
f̂t,τ1

∣∣∣Ft

]
(4.37)

using the random interaction time τ1.

Proposition 4 Z
(2)
t in (4.22) is equivalently expressed as

Z
a(2)
t = 1{τ1>t}E

[
1{τ1<τ2<T}(Yt,τ1γt)

i
a∇i,τ1(∂vf̂t,τ1)f̂τ1,τ2

+1{τ1<τ2<T}(Yt,τ1γt)
i
a∇i,τ1(∂zb f̂t,τ1)(Yτ1,τ2γτ1)

j
b∇j,τ2 f̂τ1,τ2

+1{τ1<τ2<T}(∂vf̂t,τ1)(Yt,τ2γt)
i
a∇i,τ2 f̂τ1,τ2

+1{τ1<τ2<T}(∂zb f̂t,τ1)(γτ1)
j
b(Γt,τ1,τ2γt)

i
j,a∇i,τ2 f̂τ1,τ2

+1{τ1<τ2<T}(∂zb f̂t,τ1)(Yt,τ1γt)
j
a(∂jγτ1)

k
b (Yτ1,τ2)

i
k∇i,τ2 f̂τ1,τ2

+1{τ1<τ2<T}(∂zb f̂t,τ1)(Yt,τ2γt)
j
a(Yτ1,τ2γτ1)

i
b∇j,τ2(∇i,τ2 f̂τ1,τ2)

∣∣∣Ft

]
. (4.38)

where τ1 and τ2 are sequential interaction times with intensity λ.

Proof: It can be shown straightforwardly by using the tower property of conditional expec-
tations and commutativity between the indicator functions and the Malliavin derivative
due to the independence of λ. �

t Xxt
·

Yt,·

τ1

τ2 < T

Xxt
·

Yt,·

Yτ1,·

Γt,τ1,·

Figure 1: A particle interpretation for Z
(2)
t .

Despite the apparent complexity, required numerical procedures for the evaluation of
Z(2) is, in fact, quite simple. We provide a Feynman diagram for the particle interpreta-
tion in Figure 1. At the first stage, there are two particles of (X·, Yt,·) with initial values
(xt, {δij}), which survive until the second interaction time τ2 (< T ). At the first inter-
action at τ1, two additional particles (Yτ1,·,Γt,τ1,·) are created. Each interaction occurs
randomly with intensity λ. Note that we already know the initial values of the new par-
ticles regardless of the interaction time, which makes numerical simulations possible to
carry out. What one has to do is to store the information of τ1 and τ2 and the values of
the particles at these times. Then, all the ingredients in expectations can be calculated.
Simply repeating independent experiments and taking average will give the desired values.
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4.4 ϵ-3rd Order: V (3)

In the similar fashion, we can proceed to higher order. As before, by considering the
dynamics of

V̂
(3)
t,s := e

∫ s
t λuduV (3)

s (4.39)

one can observe that

V
(3)
t = 1{τ1>t}E

[
1{τ1<T}

(
V (2)
τ1 ∂v + Za(2)

τ1 ∂za +
1

2
(V (1)

τ1 )2∂2
v

+V (1)
τ1 Za(1)

τ1 ∂v∂za +
1

2
Za(1)
τ1 Zb(1)

τ1 ∂zazb
)
f̂t,τ1

∣∣∣∣Ft

]
. (4.40)

It can be written in terms of the fundamental variables simply applying tower property.

Proposition 5 V
(3)
t can be expressed as

V
(3)
t = 1{τ1>t}E

[
1{τ1<τ2<τ3<T}(∂vf̂t,τ1)

{
(∂vf̂τ1,τ2)f̂τ2,τ3 + (∂za f̂τ1,τ2)(Yτ2,τ3γτ2)

i
a∇i,τ3 f̂τ2,τ3

}
+1{τ1<τ2<τ3<T}(∂za f̂t,τ1)

{
(Yτ1,τ2γτ1)

i
a∇i,τ2(∂vf̂τ1,τ2)f̂τ2,τ3

+(Yτ1,τ2γτ1)
i
a∇i,τ2(∂zb f̂τ1,τ2)(Yτ2,τ3γτ2)

j
b∇j,τ3 f̂τ2,τ3

+(∂zb f̂τ1,τ2)(γτ2)
j
b(Γτ1,τ2,τ3γτ1)

i
j,a∇i,τ3 f̂τ2,τ3

+(∂zb f̂τ1,τ2)(Yτ1,τ2γτ1)
j
a(∂jγτ2)

k
b (Yτ2,τ3)

i
k∇i,τ3 f̂τ2,τ3

+(∂zb f̂τ1,τ2)(Yτ1,τ3γτ1)
j
a(Yτ2,τ3γτ2)

i
b∇j,τ3(∇i,τ3 f̂τ2,τ3)

}∣∣∣Ft

]
(4.41)

+ 1{τ1>t}E

1{τ1<T}
1

2
(∂2

v f̂t,τ1)
2∏

p=1

(
1{τ1<τp2<T}f̂τ1,τp2

)
+1{τ1<T}(∂v∂za f̂t,τ1)

(
1{τ1<τp2<T}f̂τ1,τp2

)p=1(
1{τ1<τp2<T}(Yτ1,τp2 γτ1)

i
a∇i,τp2

f̂τ1,τp2

)p=2

+1{τ1<T}
1

2
(∂zazb f̂t,τ1)

(
1{τ1<τp2<T}(Yτ1,τp2 γτ1)

i
a∇i,τp2

f̂τ1,τp2

)p=1

×
(
1{τ1<τp2<T}(Yτ1,τp2 γτ1)

j
b∇j,τp2

f̂τ1,τp2

)p=2
∣∣∣∣Ft

]
(4.42)

where the contents within each bracket of p ∈ {1, 2} must be calculated according to the
diffusion processes (X

xτ1· , Yτ1,·)p={1,2} that follow the identical diffusion laws with the same
initial values, but are independent with each other. {τi}i≥1 are sequential random times
of interactions drawn with intensity λ. {τp2 }p=1,2 should be drawn independently.

Note that, we have introduced two sets of particles labeled by p ∈ {1, 2} that follow
the same SDEs of (X,Y ) but driven by two independent sets of Brownian motions to
eliminate τ1-conditional expectations. In this way, one can avoid the use of nested Monte
Carlo simulation. In Figures 2 and 3, we have provided two Feynman diagrams, one for

the first half, and the other for the second half of the expression of V
(3)
t . In simulations,
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one has to store the interaction times and all the relevant particles values at those points
to evaluate the expectations.

t Xxt
·

Yt,·

τ1 Xxt
·

Xxt
·

Yt,·

Yt,·

Yτ1,·

τ2

Γτ1,τ2,·

Yτ1,·

Yτ2,·

τ3 < T

Figure 2: A particle interpretation for the first half of V
(3)
t .

t Xxt
·

Yt,·

τ1

(X
xτ1· )p=1

(X
xτ1· )p=2

(Yτ1,·)
p=1

(Yτ1,·)
p=2

(τp2 )
p=1 < T

(τp2 )
p=2 < T

Figure 3: A particle interpretation for the second half of V
(3)
t .

4.5 Z(3) and ϵ-higher order terms

The valuation procedures for Z(3) are almost the same as that of Z(2), but we need to
introduce a new type of particle corresponding to ( ∂

∂xt
Γs,u,v,·). As easily guessed from

the previous examples, we need to add one new particle corresponding to a higher order
stochastic flow to complete the particle picture at every time when we proceed a higher
order approximation of the control variable Z. A remarkable fact is that all the initial
conditions of the new particles created at random times are known beforehand thanks
to the characteristics of the Malliavin derivatives. This feature makes one can perform
numerical simulations that describe full history of the evolution of particles.
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5 Extension to Fully-Coupled Cases

We now consider the situation where the underlying state processX also gets the feedbacks
from the backward components. By making use of the perturbative technique in PDE
framework [12], we shall show that the same strategy in the previous sections works well
also in this seemingly much more complicated situation.

The dynamics of whole system is assumed to be given by
dVt = −f(t,Xt, Vt, Zt)dt+ Zt · dWt

VT = Ψ(XT )

dXt = γ0(t,Xt, Vt, Zt)dt+ γ(t,Xt, Vt, Zt) · dWt

X0 = x

(5.1)

where we have distinguished time arguments from X to make PDE generator have a
familiar form. As before, we assume that V, Z,X take value in R,Rr and Rd respectively,
and W denotes a r-dimensional Brownian motion, f : [0, T ] × Rd × R × Rr → R, γ0 :
[0, T ]×Rd ×R×Rr → Rd and γ : [0, T ]×Rd ×R×Rr → Rd×r are smooth deterministic
functions.

Following the idea of four-step scheme [26], we postulate that Vt is given as Vt = v(t,Xt)
by using some appropriate function v : [0, T ]×Rd → R. Then it needs to satisfy the relevant
PDE:

∂tv(t, x) +
{
∂iv(t, x)γ

i
0(t, x, v(t, x), z(t, x)) +

1
2∂ijv(t, x)(γ

i · γj)(t, x, v(t, x), z(t, x))
}

+f(t, x, v(t, x), z(t, x)) = 0

z(t, x) = ∂iv(t, x)γ
i(t, x, v(t, x), z(t, x))

v(T, x) = Ψ(T, x)

(5.2)

The above non-linear PDE cannot be solved in general. Therefore, let us introduce
perturbation parameter ϵ as before,

dV
(ϵ)
t = −ϵf(t,X

(ϵ)
t , V

(ϵ)
t , Z

(ϵ)
t )dt+ Z

(ϵ)
t · dWt

V
(ϵ)
T = Ψ(X

(ϵ)
T )

dX
(ϵ)
t =

(
r(t,X

(ϵ)
t ) + ϵµ(t,X

(ϵ)
t , V

(ϵ)
t , Z

(ϵ)
t )

)
dt

+
(
σ(t,X

(ϵ)
t ) + ϵη(t,X

(ϵ)
t , V

(ϵ)
t , Z

(ϵ)
t )

)
· dWt

X
(ϵ)
0 = x

and its corresponding PDE
∂iv

(ϵ)(t, x) +
{
∂iv

(ϵ)(t, x)γi0(t, x, v
(ϵ), z(ϵ)) + 1

2∂ijv
(ϵ)(t, x)(γi · γj)(t, x, v(ϵ), z(ϵ))

}
+ϵf(t, x, v(ϵ), z(ϵ)) = 0

z(ϵ)(t, x) = ∂iv
(ϵ)(t, x)γi(t, x, v(ϵ), z(ϵ))

v(ϵ)(T, x) = Ψ(x)

(5.3)
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Here, we have extracted the terms (r, σ) free from feedback effects from X’s dynamics 4:{
γ0(t, x, v

(ϵ), z(ϵ)) = r(t, x) + ϵµ(t, x, v(ϵ)(t, x), z(ϵ)(t, x))

γ(t, x, v(ϵ), z(ϵ)) = σ(t, x) + ϵη(t, x, v(ϵ)(t, x), z(ϵ)(t, x))
(5.4)

We suppose that the solution of the above PDE can be expanded perturbatively in
terms of ϵ as

v(ϵ)(t, x) = v(0)(t, x) + ϵv(1)(t, x) + ϵ2v(2)(t, x) + · · · (5.5)

z(ϵ)(t, x) = z(0)(t, x) + ϵz(1)(t, x) + ϵ2z(2)(t, x) + · · · (5.6)

As in the previous sections, putting ϵ = 1 is expected to give the approximation of the
original system as long as the non-linear effects are perturbative.

5.1 Expansion of non-linear PDE

Straightforward calculation allows us to expand the original PDE into a series of linear
parabolic PDEs. See [12] for details. Firstly, let us define the differential operator L:

L(t, x) := ri(t, x)∂i +
1

2
(σi · σj)(t, x)∂ij (5.7)

which corresponds to the infinitesimal generator of X(0), ie., the free forward component

dX
(0)
t = r(t,Xt)dt+ σ(t,Xt) · dWt (5.8)

X
(0)
0 = x (5.9)

Using this generator, we can show that the backward components in each order satisfy:
Zero-th order { (

∂t + L(t, x)
)
v(0)(t, x) = 0

v(0)(T, x) = Ψ(x)
(5.10)

and
z(0)(t, x) = ∂iv

(0)(t, x)σi(t, x) (5.11)

Higher expansion order (n ≥ 1){ (
∂t + L(t, x)

)
v(n)(t, x) +G(n)(t, x) = 0

v(n)(T, x) = 0
(5.12)

where the expression of G(n) and z(n) can be obtained straightforwardly by extracting
O(ϵn) terms from (5.3). See the following discussion for explicit expressions of G(1) and
G(2).

4Although this can be done somewhat arbitrarily, it may be natural to set r(t, x) and σ(t, x) as the
expected dynamics of X when all the feedback effects are switched off.
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5.2 Particle Interpretation

The crucial point in the previous subsection is, because of the perturbation structure in
(5.4), the relevant infinitesimal generator is always given by L(t, x) for all the expansion
orders. In addition, since we put a ϵ-factor in front of the non-linear terms, G(n) contains
the backward components with ϵ-order only up to (n− 1). Furthermore, it is clear to see
that z(n) can only contain the backward components of {v(m)}{m≤n} and {z(m)}{m≤(n−1)}.
Therefore, using Feynman-Kac theorem, we see that the PDE in (5.12) is equivalently
expressed by, with some abuse of notation,{

dV
(n)
t = −G(n)(t,X

(0)
t , V

(n−1)
t , Z

(n−1)
t , · · · )dt+ Z̃

(n)
t · dWt

V
(n)
T = 0

(5.13)

where the dynamics of the forward component X(0) is kept unchanged and decoupled from
the BSDE. Note that every variable in G(n) can be written eventually as a function of X(0).
Because of the very nature of the perturbative expansion, all the (V (m), Z(m)){m≥1} appear

as a power series and not contained within the non-linear functions. Thus, V
(n)
t can be

solved by the same procedures studied in the previous sections, and also the nice properties
of explicitly capped number of branches and interaction points still hold.

Note that Z̃
(n)
t is not equal to Z

(n)
t that contains additional terms through the feedbacks

to X. However, it is not difficult to calculate these terms. For example, one can observe:
1st order (n = 1)

G(1)(t, x) = f (0)(t, x) + ∂iv
(0)(t, x)µi(0)(t, x) + ∂ijv

(0)(t, x)(σi · ηj(0))(t, x) (5.14)

z(1)(t, x) = ∂iv
(1)(t, x)σi(t, x) + ∂iv

(0)(t, x)ηi(0)(t, x) (5.15)

2nd order (n = 2)

G(2)(t, x) =
(
v(1)(t, x)∂v + za(1)(t, x)∂za

)
f (0)(t, x)

+∂iv
(1)(t, x)µi(0)(t, x) + ∂iv

(0)(t, x)
(
v(1)(t, x)∂v + za(1)(t, x)∂za

)
µi(0)(t, x)

+∂ijv
(1)(t, x)(σi · ηj(0))(t, x) + 1

2
∂ijv

(0)(t, x)(ηi(0) · ηj(0))(t, x)

+∂ijv
(0)(t, x)σi(t, x) ·

(
v(1)(t, x)∂v + za(1)(t, x)∂za

)
ηj(0)(t, x) (5.16)

z(2)(t, x) = ∂iv
(2)(t, x)σi(t, x) + ∂iv

(1)(t, x)ηi(0)(t, x)

+∂iv
(0)(t, x)

(
v(1)(t, x)∂v + za(1)(t, x)∂za

)
ηi(0)(t, x) (5.17)

Higher order cases can be obtained similarly.
Let us now consider the particle method to evaluate the relevant terms. Let us fix

the initial time as t as before: For the zero-th order, the problem is exactly the same
as the decoupled case and we can derive easily v(0)(t, x) and z(0)(t, x) as a function of

x by asymptotic expansion 5. For notational simplicity, we write X
(0)
s as Xs since the

underlying process is the same for every expansion order.

5As before, this is only to use higher order expansion. For the valuation of the zero-th order itself, one
can use the standard Monte Carlo simulation
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1st order
As for the first order, observe that G(1)(t, x) is given as an explicit function of x after the

completion of the zero-th order calculation. Then, V
(1)
s follows{

dV
(1)
s = −G(1)(t,Xs)ds+ Z̃

(1)
s · dWs

V
(1)
T = 0

(5.18)

and hence, by the same arguments, for (s > t), we have a particle representation as

V
(1)
t = 1{τ>t}E

[
1{τ<T}Ĝ

(1)
t (τ,Xτ )

∣∣∣Ft

]
(5.19)

where Ĝ
(1)
t is defined as

Ĝ
(1)
t (s,Xs) :=

1

λs
e
∫ s
t λuduG(1)(s,Xs) (5.20)

with some appropriate positive deterministic (or independent) intensity λ. For martingale
component, it is easy to see

Z
(1)
t = Z̃

(1)
t + ∂iv

(0)(t, xt)η
i(0)(t, xt) (5.21)

from (5.15). Here, the particle representation of Z̃(1) can be derived in the same way as
in the decoupled case:

Z̃
a(1)
t = 1{τ>t}E

[
1{τ<T}(Yt,τσt)

i
a∂iĜ

(1)
t (τ,Xτ )

∣∣∣Ft

]
(5.22)

where Yt,s (s > t) is the stochastic flow of X and is given by

(Yt,u)
i
j = δij +

∫ u

t
(Yt,s)

k
j

{
∂kr

i(s,Xs)ds+ ∂kσ
i(s,Xs) · dWs

}
(5.23)

The second term of Z(1) is already given as an explicit function of xt.

2nd order
We can proceed to higher orders in similar fashion. For the second order, the contribution
to V (2) from the first line of G(2) can be calculated in the same way as the decoupled case.
Let us consider non-trivial remaining terms. The contribution from ∂iv

(1)(t, x)µi(0)(t, x),
for example, can be calculated as

1{τ1>t}E
[
1{τ1<T}µ̂

i(0)
t (τ1, Xτ1)

∂

∂xiτ1

(
1{τ2>τ1}E

[
1{τ2<T}Ĝ

(1)
τ1 (τ2, Xτ2)

∣∣∣Fτ1

])∣∣∣∣Ft

]
= 1{τ1>t}E

[
1{τ1<τ2<T}µ̂

i(0)
t (τ1, Xτ1)(Yτ1,τ2)

j
i∂jĜ

(1)
τ1 (τ2, Xτ2)

∣∣∣Ft

]
(5.24)

where

µ̂
i(0)
t (s,Xs) =

1

λs
e
∫ s
t λuduµi(0)(s,Xs) (5.25)
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Note that the partial derivative of x in ∂iv
(1)(τ1, Xτ1) should be recognized as the shift of

X at the time of τ1, which leads to the first order stochastic flow Y in the above expression.
Next, let us consider the contribution from ∂ijv

(1)(t, x)(σi · ηj(0))(t, x). As is the pre-
vious example, it is calculated as

1{τ1>t}E

[
1{τ1<T}(

̂σi · ηj(0))(τ1, Xτ1)
∂2

∂xiτ1∂x
j
τ1

(
1{τ2>τ1}E

[
1{τ2<T}Ĝ

(1)
τ1 (τ2, Xτ2)

∣∣∣Fτ1

])∣∣∣∣∣Ft

]
= 1{τ1>t}E

[
1{τ1<τ2<T}(

̂σi · ηj(0))(τ1, Xτ1)
{
(Γτ1,τ2)

k
ij∂kĜ

(1)
τ1 (τ2, Xτ2)

+(Yτ1,τ2)
k
i (Yτ1,τ2)

l
j∂klĜ

(1)
τ1 (τ2, Xτ2)

}∣∣∣Ft

]
(5.26)

where ̂σi · ηj(0)(s,Xs) := e
∫ s
t λudu(σi ·ηj(0))(s,Xs)/λs. Note that the second order stochas-

tic flow (Γt,s)
k
i,j is defined, for (u > t), as

(Γt,u)
k
i,j :=

∂

∂xit∂x
j
t

(Xxt
u )k (5.27)

and is given by

(Γt,u)
k
i,j =

∫ u

t
(Γt,s)

l
ij

{
∂lr

k(s,Xs)ds+ ∂lσ
k(s,Xs) · dWs

}
+

∫ u

t
(Yt,s)

l
i(Yt,s)

m
j

{
∂lmrk(s,Xs)ds+ ∂lmσk(s,Xs) · dWs

}
(5.28)

The remaining contributions to V (2) as well as Z(2) can be calculated by the same tech-
nique.

· · · · · · · · ·

Although tedious calculation is needed, we can proceed to an arbitrary higher order in the
same fashion. Note that, also in fully-coupled cases, new particles required in simulation
are all derived as stochastic flows of X and hence the initial values at their creations are
known beforehand.

6 Conclusions and Discussions

In this paper, we have developed an efficient Monte Carlo scheme with an interacting
particle representation. It allows straightforward numerical implementation to solve fully
non-linear decoupled as well as coupled FBSDEs at each order of perturbative expansion.
The appearance of unknown backward components in the expressions of higher order ap-
proximations is solved by introducing an appropriate particle interpretation. Although a
couple of new particles are created at random interaction times, their initial values are
known beforehand. This is due to their properties as the stochastic flows of the underlying
sate, which is the crucial point to make straightforward Monte Carlo simulation possible.
The proposed method can be applied to various problems, such as American option pric-
ing, Credit and Funding Value Adjustment (CVA & FVA), as well as the optimal portfolio
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problems in incomplete and/or constrained markets. In fact, there already appeared sev-
eral papers adopting our proposed method for the analysis. It looks also interesting to
use the current method to study higher order FBSDEs, where the higher order Malliavin
derivatives exist in the non-linear driver, such as f(t,Xt, Vt,DtV,D2

t V ). It can be done
straightforwardly by introducing higher order stochastic flows.

Acknowledgment: The authors thank Seisho Sato of the Institute of Statistical Mathe-
matics (ISM) for the helpful discussions about the branching diffusion method.
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