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Abstract

I construct a no-arbitrage term structure model with endogenous regime

shifts and apply it to Japanese government bond (JGB) yields. This model

subjects the short-term interest rate to monetary regime shifts, speci�cally a

zero interest rate policy (ZIRP) and normal regimes, which depend on macro-

economic variables. The estimates show that under the ZIRP, the de�ationary

e�ect on bond yields increases on the long end of yield curves. However, output

gaps’ ability to raise bond yields weakens for all maturities.

�Faculty of Economics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan. Tel:

+81-3-5841-5649, Email: jkoeda@e.u-tokyo.ac.jp.
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1 Introduction

Policy shifts often depend on state variables in the real world. For example, a zero interest

rate policy (ZIRP) may be introduced when the Taylor-rule policy rate, which is a func-

tion of real activity and in�ation variables, hits the zero lower bound of the policy rate.

Policymakers may lift a ZIRP when the exit conditions on macroeconomic variables are

satis�ed. Do such state-dependent regime shifts signi�cantly a�ect the yield on government

bonds? The answer to this question is relevant for countries currently under a ZIRP and

struggling to meet macroeconomic conditions to exit the ZIRP. The answer is of particular

importance for Japan, which has already experienced such regime switches several times.

For Japan, small increases in bond yields can strain public �nances with the ratio of public

debt to GDP already exceeding 200 percent.

I examine how bond yields are a�ected by the state-dependent shifts in and out of

a ZIRP by constructing a no-arbitrage term structure model with discrete regime shifts.

The model has three key features. First, the probability of transitioning from a ZIRP

depends on the state variables that appear in the monetary policy rule (e.g., output gap and

in�ation), allowing the entry and exit conditions of a ZIRP to depend on the state. Second,

the model uses discrete regime shifts in the a�ne term structure framework, addressing

possible nonlinearity in the conditional means of short-term yields (Ang and Bekaert,

2002).1 Third, the state vector, which includes the policy rate, depends on the current,

1Alternatively, term structure models that lie outside of the a�ne family have been applied to the

Japanese zero rate environments. See Ichiue and Ueno (2012) for an application of Black’s (1995) model

to JGB yields and Singleton and Kim (2012) for a comparison between Cox, Ingersoll, and Ross (1985)

type a�ne model and non-a�ne models.
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rather than the previous, monetary policy regime. This third feature is not trivial: today’s

policy rate should depend on today’s monetary policy regime. If the model did not include

this third feature, it would inappropriately allow a policy rate well above zero even during

ZIRP periods. The model includes the policy rate in the state vector so that the lagged

policy rate can a�ect the dynamics of macroeconomic variables, as modeled in the standard

monetary VAR models (e.g., Stock and Watson, 2001) and several macro-�nance term

structure models (e.g, Ang, Piazzesi, and Wei, 2006, and Hördahl, Tristani, and Vestin,

2006).

This paper’s model is related to the existing discrete regime-switching ATSMs2 in the

following ways. First, most existing models implement discrete regime shifts and depen-

dence on the current policy rate (the second and third features) with a constant transi-

tion matrix (e.g., Bansal and Zhou, 2002, Ang, Bekaert, and Wei, 2008, Hamilton and

Wu, 2011). This paper extends these models by introducing state dependent transition

probabilities. Second, Dai, Singleton, and Yang (2007, henceforth DSY) implement state-

dependent transition probabilities and discrete regime shifts (the second and third features)

under the data generating or physical (P) measure, while their state vector depends on the

previous regime. This paper extends DSY’s work by adding dependence on the current pol-

icy rate (the third feature) and by providing formal propositions and proofs and discussion

on the link between the P and the risk neutral (Q) measures.

To apply the model, I estimate the responsiveness of Japanese government bond (JGB)

2Alternatively, Ang, Boivin, Dong, and Loo-Kung (2011) model monetary policy shifts with continuous

time-varying Taylor rule coe�cients, treating these coe�cients as latent factors. This paper di�ers from

their model as it focuses on discrete and observable monetary regime shifts.
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yields to a ZIRP and to macroeconomic conditions. The actual Japanese policy inter-

est rate process (Figure 1) appears to have at least two regimes: a period during which

the policy interest rate is near zero and �at (the ZIRP regime) and the remaining peri-

ods (the normal regime). Using these data as motivation, I construct a model with two

regimes. Exploiting information from Bank of Japan public policy announcements, I treat

the regimes as observable.3 I model bond pricing with factor dynamics that incorporate

endogenous monetary policy shifts as well as some key aspects of a ZIRP. Speci�cally, the

model includes the zero lower bound and the Bank of Japan’ forward guidance of interest

rates.4

Following Oda and Ueda’s (2007) set up with ZIRP exit rules, I consider two types of

regime evolutions: one that incorporates the zero lower bound and one that additionally

includes the forward guidance. I �rst consider a simple evolution of the regime that depends

solely on a Taylor-rule policy rate (Type I evolution). If the Taylor-rule policy rate hits the

lower bound of interest rates, policymakers set the policy rate at the bound under the ZIRP

regime; otherwise the Taylor rule sets the policy rate under the normal regime. Type I

evolution, however, does not take into account the Bank of Japan’s forward guidance policy,

a key feature of the ZIRP in Japan (for a discussion on this policy, see e.g., Ueda, 2012a

and 2012b and Ugai’s survey, 2007). Thus I extend the Type I evolution by introducing a

forward guidance policy under which the ZIRP continues unless some in�ation condition

3Another approach to modeling the regime process is to treat it as unobservable. For example, see

Fujiwara (2006) and Inoue and Okimoto (2008) for Markov-switching models applied to the Japanese

policy interest rate process.
4The Bank of Japan’s forward guidance of interest rates is also called the Jikan Jiku (policy duration)

policy.
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is satis�ed (Type II evolution).

I present the main results in two steps. First, I compare the empirical results of factor

dynamics with and without the forward guidance. One notable di�erence between the

two cases is that the estimated state-dependent transition probabilities are more persistent

when the forward guidance is present. Furthermore, empirical evidence indicates that the

evolution with the forward guidance �ts the data much better than without it; out-of-

sample performance results, however, are mixed. Second, I discuss the estimated yield

curves and term premia using the term structure model that incorporates the forward

guidance as the benchmark model. The estimated yield curves indicate that under a ZIRP

output gaps’ ability to raise bond yields weakens for all maturities, whereas the de�ationary

e�ect on JGB yields becomes stronger at the longer end of yield curves. Furthermore,

the estimated term premia indicate that the large bond yield decline in the early 1990s

was driven by expectation components, whereas that of the late 1990s was driven by

both expectations and term-premium components. Term premia also declined after the

introduction of the quantitative easing monetary policy (QEP) in March 2001.

This paper proceeds as follows. Section 2 describes a term structure model with endoge-

nous regime shifts. Section 3 describes the speci�c regime evolutions considered. Section

4 and 5 discuss the estimation strategy and results. Section 6 concludes the paper.
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2 The model

2.1 The P model

The state of the economy is assumed to follow a discrete time stationary Markov process

{yt, st} where yt is a vector of continuous variables and st is a scalar discrete variable

indicating the regime. Both yt and st are observable. The vector y includes the short

rate allowing the lagged short rate to directly a�ect the dynamics of y. For notational

convenience, the current value has tilda, and the previous period’s value has no time

subscript. The joint density-distribution function of (ey, s̃) conditional on (y, s) can be
expressed as the product of the conditional density of ỹ given (s̃,y, s) and the transition

probability of the regime, denoted as f (ey|s̃,y, s) and � (s̃|y, s) respectively, i.e.,
p (ey, s̃|y, s) = f (ey|s̃,y, s) � (s̃|y, s) . (1)

The P model satis�es two assumptions. Assumption 1 follows Hamilton (1989) that

f (ey|s̃,y, s) depends on s̃ but not on s. This formulation di�ers from DSY, they instead

assume that the conditional density of ey depends on s but not on s̃. Thus, the P model can
be interpreted as an extension of DSY with Hamilton’s formulation where f (ey|s̃,y, s) =
f (ey|s̃,y). As discussed earlier, Hamilton’s formulation is suitable particularly when the
state vector includes a policy variable (e.g., the policy interest rate) determined by the

current policy regime.

Assumption 1: f (ey|s̃,y, s) = f (ỹ|s̃,y), and ey|s̃,y �N ¡� (s̃,y) ,� (s̃)� (s̃)0¢ under
P.

Assumption 2 follows DSY’s assumption on the Radon-Nikodym derivative or equiva-
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lently that on the pricing kernel (M) that accommodates both regime shift and factor risks.

� (s̃,y) and � (s̃,y, s) are the prices-of-risk and regime-shift-risk coe�cients, respectively.

Assumption 2: M (ey, s̃,y, s) = exp
���� �r (y)� � (s̃,y, s)� 1

2
� (s̃,y)0 � (s̃,y)

�� (s̃,y)0� (s̃)�1 (ỹ� � (s̃,y))

����.

With the state (y, s), no arbitrage requires that n period bond prices satisfy

Pn+1 (y, s) =
X
s̃

� (s̃|y, s)E [M (ey, s̃,y, s)Pn (ey, s̃) |s̃,y, s] . (2)

For n = 0, since exp (�r (y)) = P1 (y, s) and P0 = 1, equation (2) becomes

exp [�r (y)] =
X
s̃

� (s̃|y, s)E [M (ey, s̃,y, s) |s̃,y, s] ,
=

X
s̃

� (s̃|y, s) exp [�r (y)� � (s̃,y, s)] , (3)

where that the second equality holds since

E [M (ey, s̃,y, s) |s̃,y, s] = exp [�r (y)� � (s̃,y, s)] . (4)

Equation (3) can be simpli�ed to

X
s̃

� (s̃|y, s) exp [�� (s̃,y, s)] = 1. (5)

2.2 From P to Q

This subsection provides two propositions to link P to risk neutral (hereafter denoted byQ)

measures by �nding a conditional density fQ (ey|s̃,y, s) and a transition matrix �Q (s̃|y, s),
such that

exp [�r (y)] fQ (ey|s̃,y, s) �Q (s̃|y, s)| {z }
=pQ(�y,s̃|y,s)

=M (ey, s̃,y, s) f (ey|s̃,y) � (s̃|y, s)| {z }
=p(�y,s̃|y,s)

, (6)
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where the Radon-Nikodym derivative is given by 1/ [exp [r (y)]M (ey, s̃,y, s)] . For any ran-
dom variable X, de�ne EQ (X|y, s) by

EQ (X|y, s) �
X
s̃

�Q (s̃|y, s)EQ (X|s̃,y, s) , where EQ (X|s̃,y, s) �
Z
ỹ

XfQ (ỹ|s̃,y, s) dỹ.

Then EQ (exp [�r (y)]X|y, s) = E (MX|y, s) for fQ and �Q satisfying equation (6). In

particular, the no-arbitrage condition (2) can be written as

Pn+1 (y, s) =
X
s̃

�Q (s̃|y, s)EQ [exp [�r (y)]Pn (ey, s̃) |s̃,y, s] . (7)

Proposition 1 Under Assumptions 1 and 2, the transition probability �Q (s̃|y, s) is given

by �Q (s̃|y, s) = � (s̃|y, s) exp [�� (s̃,y, s)] .

Proof. Appendix C.

Proposition 2 The conditional density fQ (ey|s̃,y, s) does not depend on s and is the
density of N

¡
�Q (s̃,y) ,� (s̃)� (s̃)0

¢
with �Q (s̃,y) � � (s̃,y)�� (s̃)� (s̃,y) .

Proof. Appendix C.

2.3 Pricing under Q

The no-arbitrage condition under Q can be rewritten as

1 =
X
s̃

�Q (s̃|y, s)EQ
n
exp

³
h̃t+1

´
|s̃,y, s

o
, (8)

where

h̃t+1 � pn (ey, s̃)� pn+1 (y, s)� r (y) ,

pn � log (Pn) .
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The term h̃t+1 is the log excess one-period return on n+ 1 period bonds.

If h̃t+1 is conditionally normally distributed given (s̃,y, s) under Q, then equation (8)

becomes

1 =
X
s̃

�Q (s̃|y, s) exp
�
EQ

³
h̃t+1|s̃,y, s

´
+
1

2
V arQ

³
h̃t+1|s̃,y, s

´¸
. (9)

Furthermore, by applying the approximation used by Bansal and Zhou (2002) and Hamilton

and Wu (2012) (i.e., exp (x) � 1 + x)5, equation (9) becomes

0 �
X
s̃

�Q (s̃|y, s)
�
EQ

³
h̃t+1|s̃,y, s

´
+
1

2
V arQ

³
h̃t+1|s̃,y, s

´¸
. (10)

In order to solve bond prices, I assume two additional assumptions that are commonly

assumed in the existing literature. Assumption 3 assumes that the factors that explain the

yield curves follow VAR(1) under Q.

Assumption 3:

EQ (ey|s̃,y, s) � �Q (s̃,y) = cQ (s̃) +�Q (s̃)y.
Assumption 4 assumes that the transition probabilities under Q are constant. This

implies, by Proposition 1 and equation (5), � (s̃|y, s) exp [�� (s̃,y, s)] does not depend on

y and its sum over s̃ is 1, so that the regime-shift risk is "fully priced." I discuss the case

without Assumption 4 in Appendix A.

Assumption 4:

�Q (s̃|y, s) = �Q (s̃|s) .
5One can note that if �Q does not depend on the regime s, as in DSY, then it is unnecessary to invoke

the "exp (x) � 1+x" approximation. However, this speci�cation does not allow the policy rule coe�cients

as well as coe�cients in the factor dynamics to depend on the regime.
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To solve bond prices, I �rst conjecture that

pn (ey, s̃) = �an (s̃)� bn (s̃) ỹ.
Since ey|s̃,y, s � N ¡� (s̃,y) ,�(s̃) � (s̃)0¢ under Q, the log excess return h̃t+1 is condition-

ally normal, as required above, with

EQ
³
h̃t+1|s̃,y, s

´
= �an (s̃)� bn (s̃)

£
cQ (s̃) +�Q (s̃)y

¤
+ an+1 (s) + bn+1 (s)y�r (y) ,

V arQ
³
h̃t+1|s̃,y, s

´
= bn (s̃)� (s̃)� (s̃)

0
n b (s̃)

0 .

Substituting these equations into (10) yields

0 � �
"X

s̃

�Q (s̃|s)
μ
an (s̃) + bn (s̃) c

Q (s̃)� 1
2
bn (s̃)� (s̃)� (s̃)

0 bn (s̃)
0
¶
� an+1 (s)

#
�
X
s̃

�Q (s̃|s) £bn (s̃)�Q (s̃) + e01 � bn+1 (s)
¤
y,

where e1 is a vector of zeros with 1st element being one (thus r (y) = e01y). Since this has

to hold for any y, I obtain the recursion

an+1 (s) =
X
s̃

�Q (s̃|s)
μ
an (s̃) + bn (s̃) c

Q (s̃)� 1
2
bn (s̃)� (s̃)� (s̃)

0
n b (s̃)

0
¶
,

bn+1 (s) =
X
s̃

�Q (s̃|s) ¡bn (s̃)�Q (s̃) + e01¢ .
The initial condition is a0 (s) = 0 and b0 (s) = 0 for all s.

Lastly, by Proposition 2 and Assumption 3, cQ (s̃) and �Q (s̃) can be expressed with

the prices of risk coe�cients

cQ (s̃) = c (s̃)�� (s̃)�0 (s̃) , �
Q (s̃) = � (s̃)�� (s̃)�1 (s̃) , (11)

if ey follows the VAR(1) process under P, i.e., � (s̃,y) = c (s̃) + � (s̃)y and the prices of
risk are a�ne in y, i.e., � (s̃,y) = �0 (s̃) +�1 (s̃)y.
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3 An application to JGB yields

In this section, I specify factor dynamics that correspond to f (ỹ|s̃,y) in the P model

and then endogenously derive the corresponding state-dependent transition probabilities

� (s̃|y, s). The speci�ed factor dynamics is VAR(1) model of three variables (i) the policy

interest rate, (ii) in�ation, and (iii) output gaps, with endogenous monetary policy regime

shifts. The VAR explicitly models the key features of recent monetary policies in Japan,

such as the zero lower bound of the policy interest rate and the Bank of Japan’s forward

guidance of interest rates.

3.1 Factor dynamics

The monetary policy regime (s) can be either normal (P) or a ZIRP (Z). I partition yt as

yt
3×1

=

���� rt

y2t
2×1

���� ,
where r is the policy interest rate (short rate) and y2 is a vector of macroeconomic variables

(in�ation and output gap).

The policy interest rate follows a regime-dependent Taylor rule

rt = �st
(1×1)

+ �st0
(1×2)

y2t + �st
(1×1)

rt�1 + �str
(1×1)

ur,t, ur,t � N (0, 1) , (12)

where the ZIRP regime can be represented as

�Z � 0, �Z = 0, �Z = 0, �Zr � 0,

ZLBt = �Z + �Zr ur,t, (13)
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with the lower bound of policy rate (ZLB) given by �Z + �Zr ur,t. The Taylor-rule (TR)

policy rate is the rate given by equation (12) under the normal regime.

The rest of system is also regime dependent

y2,t = cst2
(2×1)

+ �st2
(2×3)

yt�1 + �st22
(2×2)

u2t, u2t � N (0, I) . (14)

All shocks are jointly standard normal and independent to each other and over time.

Substituting (14) in the short rate equation yields

rt = �
st + �st0cst2 + [�

st0�st2 + [�
st, 0, 0, 0]]yt�1 + �st0�st22u2t + �

st
r ur,t.

Stacking the above equation over (14) results in the VAR

yt = cst
(3×1)

+ �st
(3×3)

yt�1 + �st
(3×3)

ut, ut � N (0, I) , (15)

where

cst
(3×1)

=

�����
�st + �st0cst2

cst2
(2×1)

����� , �st(3×3)
=

�����
�st0�st2 + [�

st, 0, 0, 0]

�st2
(2×3)

����� , �st(3×3)
=

���� �str �st0�st22

0 �st22

���� .
Equation (15) is a restricted VAR because the �rst row of �Z is a vector of zeros and the

six elements of �Z are a function of four parameters.

3.2 Regime determination

Following Oda and Ueda’ (2007) set up with ZIRP exit rules, I consider two types of regime

evolution. I �rst consider a simple regime evolution that depends solely on the level of the

Taylor-rule (TR) policy rate (Type I evolution). If the Taylor-rule policy hits the ZLB, the

policy rate is set at the bound under the ZIRP regime (s = Z), otherwise the policy rate

is set by the Taylor rule under the normal regime (s = P).
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Type I evolution, however, does not take into account the Bank of Japan’s forward

guidance policy. Thus I extend the Type I evolution by introducing a forward guidance

policy under which the ZIRP regime is maintained unless the expected year-on-year core

in�ation exceeds a certain level (Type II evolution). Such a level can be interpreted as the

exit condition based on core in�ation rate (�̄), a parameter that must be estimated since

the Bank of Japan did not commit a speci�c rate during the investigated period.

For notational convenience, de�ne

re (yt�1) � �P + �P 0
£
cP2 +�

P
2 yt�1

¤
+ �Prt�1,

�e (yt�1) � [1, 0]
£
cP2 +�

P
2 yt�1

¤
.

so that the TR rate can be rewritten as

TR ratet = �P + �P 0y2,t + �Prt�1 + �Pr ur,t, (16)

= �P + �P 0
¡
cP2 +�

P
2 yt�1 +�

P
22u2t

¢
+ �Prt�1 + �Pr ur,t,

= re (yt�1) + �P 0�P22u2t + �
P
r ur,t.

3.2.1 Evolution with the zero rate bound: Type I evolution

Under Type I evolution, the regime is a ZIRP if and only if the TR rate (equation (16))

lies at or below the ZLB (equation (13)); otherwise it is normal. Thus the probability that

the regime is normal is given by

Pr (st = P|yt�1, st�1) = Pr

	
�P + �P 0y2,t + �Prt�1 + �Pr ur,t| {z }
TR ratet

> �Z + �Zr ur,t| {z }
ZLBt

¯̄̄̄
¯̄yt�1, st�1

�� ,
= Pr

¡
re (yt�1) + �P 0�P22u2t + �

P
r ur,t > �

Z + �Zr ur,t
¢
, (by (16))

= Pr
¡
re (yt�1) > �Z � 	t

¢
,
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where 	t � �P 0�P22u2t +
£
�Pr � �Zr

¤
ur,t. The probability that the regime is the ZIRP is

given by Pr (st = Z|yt�1, st�1) = Pr
¡
re (yt�1) 5 �Z � 	t

¢
.

Since ut and u2t are normal and independent

	t|yt�1, st�1 � N
¡
0, �2�

¢
, �2� �

£
�Pr � �Zr

¤2
+ �P 0�P22�

P 0
22�

P .

Thus the Type I transition probabilities can be rewritten as

Pr (st = P|yt�1, st�1) = Pr (st = P|yt�1) = F
μ
re (yt�1)� �Z

��

¶
, (17)

Pr (st = Z|yt�1, st�1) = Pr (st = Z|yt�1) = 1� F
μ
re (yt�1)� �Z

��

¶
, (18)

where F (.) is the cumulative distribution function of N (0, 1). These transition probabili-

ties do not depend on st�1.

3.2.2 Forward guidance: Type II evolution

How does the regime evolution change when the forward guidance is introduced? Now, the

determination of the regime depends on the in�ation rate relative to �̄, in addition to the

TR policy rate.

If the previous regime is normal, then the transition probabilities are unchanged (i.e.,

equations (17) and (18)). On the other hand, if the previous regime is a ZIRP, the proba-

bility of it returning to normal is

Pr (st = P|yt�1, st�1 = Z)

= Pr

	
�P + �P 0y2,t + �Prt�1 + �Pr ur,t| {z }
TR ratet

> �Z + �Zr ur,t| {z }
ZLBt

, �t > �̄| {z }
exit condition

¯̄̄̄
¯̄yt�1, st�1 = Z

�� ,
= Pr

¡
re (yt�1) > �Z � 	t, �e (yt�1) > �̄ � ��u�,t

¢
. (19)
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where u�,t and �� are the shock and volatility parameters, respectively, calculated in the

in�ation equation as u�,t = [1, 0]u2t and �� = [1, 0]�P22�
P 0
22 [1, 0]

0.

The Type II transition probabilities can be rewritten as

Pr (st = P|yt�1, st�1 = Z) = B
¡
re (yt�1)� �Z , �e (yt�1)� �̄;W

¢
, (20)

Pr (st = Z|yt�1, st�1 = Z) = 1�B ¡re (yt�1)� �Z , �e (yt�1)� �̄;W¢
, (21)

Pr (st = P|yt�1, st�1 = P) = F

μ
re (yt�1)� �Z

��

¶
, (22)

Pr (st = Z|yt�1, st�1 = P) = 1� F
μ
re (yt�1)� �Z

��

¶
, (23)

where B (a, b;W) is the cumulative distribution function of the bivariate normal distribu-

tion with mean zero and the variance covariance matrix of (	t, u�,t). The variance covari-

ance matrix, which is denoted asW, is a known function of
¡
�Pr , �

Z
r ,�

P ,�P22
¢

W =

������������

�2� �P 0�P22�
P 0
22

���� 1
0

����
�P 0�P22�

P 0
22

���� 1
0

���� �
1 0

¸
�P22�

P 0
22

���� 1
0

����

������������
.

4 Estimating JGB yield curves

4.1 Data

I use quarterly data on interest rates and the macro variables of in�ation and output

gap from 1985Q1 to 2008Q2. I use quarterly data because it may re�ect Japan’s overall

economic activity more precisely than readily available monthly real activity measures,

such as, industrial production, unemployment, and machinery orders. The sample period
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starts in 1985Q1 because reliable zero coupon bond yield data are available from that

quarter; it ends in 2008Q2, the period prior to the Lehman shock.

The uncollaterized overnight call rate6 is used for the short-term interest rate. Zero

coupon bond yields of 4, 12, 20, and 40 quarter maturities are used for longer maturities.

These bond yields are obtained from Wright’s (2011) dataset and are the end of period

rates expressed at annualized rates in percent.

Regarding the macro variables, in�ation is measured by the percentage change in the

Consumer Price Index, excluding fresh food, from the same quarter in the previous year,

obtained from the Ministry of Internal A�airs and Communications7; real activity is mea-

sured by output gaps estimated by applying the Hodrick-Prescott �lter to the logs of the

seasonally adjusted GDP at 2000 prices, obtained from the Japanese Cabinet O�ce. Out-

put gaps are expressed in percentage points.

The regime series is constructed based on public statements by the end of each quarter.

One issue is how to di�erentiate the normal from the ZIRP regime; the regime can be

normal even if the short rate is almost zero if the Taylor-rule interest rate indicates it. I

thus identify the ZIRP regime with the forward guidance within Bank of Japan’s public

statements. This implies that the period from March to June 2006, when the targeted rate

was zero in the absence of forward guidance policy, was under the "normal" regime.

6I use the average rate of the last month in each quarter to remove end-of-month �uctuations in the

call rate.
7I use the 2000-base CPI up to mid-2006 since policy decisions were not made based on the 2005-base

CPI up to that point.
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4.2 Estimation strategy

The model consists of macro dynamics and static yield equations. The macro dynamics

are summarized by equation (15) and the static yield equations are

zt
4×1

= Ast
4×1

+Bst
4×3
yt + vt

4×1
,

where zt = [r4t , r
12
t , r

20
t , r

40
t ]

0 is a 4 × 1 vector of bond yields with maturities correspond-

ing to the superscript numbers (in quarters). The yield equations are an a�ne function

of the state variables with 4 × 1 coe�cient vectors A and a 4 × 3 coe�cient matrix B

corresponding to (i) a constant, (ii) the short-term interest rate, and (iii) the macro vari-

ables, respectively. The subscript numbers in A and B correspond to maturities, that is,

Ast =
h
a4(st)

4
, a12(st)

12
, a20(st)

20
, a40(st)

40

i0
, Bst =

h
b4(st)

4
, b12(st)

12
, b20(st)

20
, b40(st)

40

i0
.8 The elements in

A andB are derived from the recursive equations with the subscript numbers corresponding

to maturities. Measurement errors v are assumed to have constant variance.

The system of equations to be estimated can be summarized as

yt = cst +�styt�1 + ut, (24)

st = h (st�1,yt�1,u2t, ur,t) , (25)

zt = Ast +Bstyt + vt,

ut � N (0,�st�st0) , vt � N (0,V) .

where (25) is de�ned by (17) and (18) for Type I factor dynamics and by (20) to (23)

for Type II factor dynamics. All the shocks are iid and ut and vs are independent for

8According to the basic relation between bond price and yield, the n-period bond yield is given by

an
n +

bn
b y.
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all (t, s). Thus, the observation equation linking zt to the state (yt) is appended to the

VAR equations describing the state dynamics. I apply a two step procedure to estimate

the model (e.g., Ang, Piazzesi, and Wei, 2006). Appendix B shows the derivation of the

likelihood functions.

4.3 Estimated results

I present the estimated results in two steps. First, I compare the estimated factor dynamics

with (Type II) and without (Type I) the forward guidance e�ect. Second, I discuss the

estimated yield curves and term premium dynamics using the term structure model with

Type II factor dynamics as the benchmark model. The estimated results using the term

structure model with Type I factor dynamics are available upon request.

4.3.1 Factor dynamics: Type II versus Type I

How do the Type I and Type II factor dynamics di�er from each other? Figure 2 shows

the estimated state-dependent transition probabilities under each type of evolution. Under

both types, Pr (st = P|yt�1, st�1 = P), that is, the estimated probability that the normal

regime continues into the next period, is one until mid-1995. This is a reasonable result,

since nobody would have imagined a ZIRP up to that point. A notable di�erence between

the Type I and Type II transition probabilities is that the latter are more persistent. For

example, Figure 2 shows that during the quantitative easing monetary policy (QEP) of

March 2001 to February 2006, Pr (st = Z|yt�1, st�1 = Z) is estimated to be much higher

under the Type II regime than under the Type I regime. This may re�ect market pessimism

over the recovery from de�ation with the Bank of Japan’s commitment that it would

18



maintain the zero rate until some in�ationary condition was satis�ed.

The Taylor rule coe�cients under the two types of factor dynamics are reported in Table

1. Under both types of regime evolution, the estimated coe�cients have the right signs

in terms of economic interpretation, and the long-run response of the short-term interest

rate to a unit increase in in�ation well exceeds one (3.6 and 2.2 under Types I and II,

respectively). The Taylor rule coe�cient with respect to in�ation (i.e., the �rst element of

�P) under Type I is higher than that under Type II (0.34 versus 0.22 respectively), possibly

re�ecting the omission of the in�ation variable in the regime evolution under Type I (see

equations (26) and (27)). The estimated cZ2 ,�
Z
2 ,and �

Z
22 are the same under Type I and

II since they can be estimated separately (see Appendix B for details).

Figure 2 and Table 1 here

Which type of factor dynamics is more appropriate? I compare the empirical perfor-

mances of the two types of models, with Type I and Type II factor dynamics, using two

di�erent approaches, and �nd that Type II has notably better �ts to the data, though

out-of-sample performance results are mixed. The �rst approach is the likelihood-ratio

test. Setting Type 1 as the null and Type 2 as the alternative, a large positive test statistic

(14.1) rejects the null. The second approach is one-period-ahead out-of-sample forecasting

on the state variables (i.e., the short rate, in�ation, and output gaps) to check these models’

predictive accuracy. This exercise involves a rolling forecast covering the last three years of

the QEP period. I evaluate the predictive accuracy by the following two measures: (i) the

root mean square error ratios (Type I relative to Type II) and (ii) the modi�ed Diebold-
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Mariano test statistics9 proposed by Harvey et al (1998) with di�erential loss based on the

mean-squared errors. The results are summarized in Table 2. Type 2 weakly outperforms

Type 1 for the policy rate and output gap forecasts, whereas it underperforms Type I for

the in�ation forecasts. Type 2’s poor forecasting performance for in�ation forecasts may

be due to the imprecise estimate of �̄.

Table 2 here

4.3.2 The yield curves and term premia

I now discuss the estimated yield curves and term premia under the benchmark model.

The estimated prices-of-risk coe�cients and transition probabilities under Q are reported

in Table 3. The estimated prices-of-risk level coe�cients (
0 (P), 
0 (Z)) di�er for the

two regimes, particularly those corresponding to in�ation (the second element of each 
0)

which increase notably under the ZIRP, from a negative value under the normal regime

to a positive value under the the ZIRP regime. In the benchmark estimation, given large

standard errors with limited sample size, the remaining prices of risk coe�cients are set

equal to zero except for the (1,1) element of �1 (P), that is, under the normal regime the

prices of risk are allowed to change with short rate �uctuations.

Table 3 and Figure 3 here

Figure 3 shows how the yield-equation coe�cients, that is the constant, short-rate,

in�ation, and output-gap coe�cients in the yield equation, change against maturity (in
9Type II does not nest Type I factor dynamics. One may wonder whether Type II reduces to Type I

when �̄ is su�ciently negative (so that the in�ation condition is always satis�ed); however, this is not true

since u� � N (0, 1) and u� can be ��.
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quarters) under the normal regime (dashed black lines) and the ZIRP regime (red solid

lines). The model-implied yields are expressed as the annualized rate in percent. The

upward slopes of the constant coe�cients represent the shapes of the average yield curves

under the normal and ZIRP regimes. They imply that yield curves �atten on average under

the ZIRP regime, consistent with the existing �ndings (e.g., Okina and Shiratsuka, 2004

and Oda and Ueda, 2007). The downward slopes of the short-rate coe�cients imply that

an increase in the short rate has a more positive impact on the shorter end of yield curves.

The bottom two charts in Figure 3 demonstrate how di�erently de�ation and low growth

contribute to lowering longer-term JGB yields between the normal and ZIRP regimes; the

shapes of the in�ation coe�cients imply that the in�ationary e�ect on the longer end of

yield curves increases under the ZIRP; the shapes of the output-gap coe�cients imply that

growth e�ects on JGB yields weaken under the ZIRP. Quantitatively, the estimated results

indicate that under the normal regime, 1-percent de�ation lowers 10-year JGB yields by 14

basis points, and 1-percent output gap increase raises 10-year JGB yields by 7 basis points.

On the other hand, under the ZIRP regime, 1-percent de�ation lowers 10-year JGB yields

by 23 basis points, and 1-percent output gap increase raises 10-year JGB yields by 2 basis

points. A closer look at the recursive equations for bstn indicates that the shapes of in�ation

and output-gap coe�cients are generated largely by the di�erences between macroeconomic

factor coe�cients (i.e., �st and �st22) across regimes with persistent transition probabilities

under Q.

Lastly, I decompose the long term bond yields into the expectations and term premium

components. Following the typical de�nition in the literature, the term premium of an n-
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period bond yield is de�ned as the actual n-period bond yield minus the average expected

future short-term interest rates (i.e., 1
n
Et
nPn�1

j=0 r1,t+j
o
). To calculate the expectations

components, I �rst obtain 1, 2, ..., n period forecasts of the future short-term interest rates

at each quarter via two-regime three-variable VAR forecasting, I then use these forecasts

to calculate the average expected future short-term interest rates. Figure 4 reports the

model implied term premia of 10-year bonds, the corresponding averages of expected fu-

ture short-term interest rates, and the actual yields. It indicates that term premia declined

after the second ZIRP introduction (i.e., the QEP started in March 2001). It also indicates

that the large bond yield decline in the early 1990s was driven by the expectations compo-

nents, whereas that in the late 1990s was driven by both expectations and term premium

components.

Figure 4 here

5 Conclusion

I construct a no-arbitrage a�ne term structure model with state-dependent regime shifts.

In the model, the state vector depends on the current policy regime. As an application

of the model, I examine how the JGB yields �uctuate with macroeconomic variables with

endogenous monetary policy shifts that incorporate the key ZIRP features, speci�cally the

zero lower bound and the Bank of Japan’s forward guidance. I also analyze yield dynamics

by decomposing JGB yields into the expectations and term-premium components.

The estimated results indicate that under the ZIRP, de�ation plays a growing role in

lowering JGB yields, especially on the long end of yield curves. On the other hand, output
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gaps’ ability to raise bond yields weakens for all maturities. These results �ag upward risks

on the JGB yields when Japan exits from the ZIRP after satisfying the exit condition on

in�ation.

Looking forward, however, I believe it is important to understand not only "normal"

bond yield responses to moderate in�ation and economic growth, but also the channels

that can steeply raise macroeconomic variables, especially in�ation, and thus jeopardizing

the JGB markets.
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A A non-ATSM without Assumption 4

One may want to do away with Assumption 4 of fully priced regime risk. Under Assump-

tions 1-3, p1 (ỹ, s̃) = �r (ỹ) is conditionally normally distributed under Q. So, (9) holds

for n = 1. It can be rewritten as

exp [p2 (ỹ, s̃)] =
X
s̃

�Q (s̃|y, s) exp
�
EQ (p1 (ỹ) |s̃,y, s) + 1

2
V arQ (p1 (ỹ) |s̃,y, s)� r (y)

¸
.
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The term in the brackets can be rewritten as

�EQ (r (ỹ) |s̃,y, s) + 1
2
V arQ (p1 (ỹ) |s̃,y, s)� r (y) ,

= �e01EQ (ỹ|s̃,y, s) +
1

2
e01V ar

Q (p1 (ỹ) |s̃,y, s) e1 � e01y,

= �e01
¡
cQ (s̃) +�Q (s̃)y

¢
+
1

2
e01�(s̃)� (s̃)

0 e1 � e01y,

that is,

p2 (ỹ, s̃) = log

ÃX
s̃

�Q (s̃|y, s) exp
�
�e01

¡
cQ (s̃) +�Q (s̃)y

¢
+
1

2
e01�(s̃)� (s̃)

0 e1 � e01y
¸!
.

The whole term structure can be generated by the no-arbitrage condition for n = 2, 3, ...,

once the model parameters are estimated by using only p1 and p2.

B The likelihood function

B.1 Separating yield information from factor dynamics

The goal is to derive the likelihood of the data, i.e.,

L � p (z0, ..., zT ,y1, ...,yT , s1, ..., sT |y0, s0) ,

which can be decomposed as

L � f (z0, ..., zT |y0, ...,yT , s0, ..., sT )| {z }
L1

p (y1, ...,yT , s0, ..., sT |y0, s0)| {z }
L2

.

B.2 Likelihood for yields (L1)

The model-implied static yield equation
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zt = A
st +Bstyt + vt,

where

Ast �

��������
ast1

...

ast40/40

�������� , B
st �

��������
b1 (st)

...

b40 (st) /40

�������� .

The usual assumption that the error is iid normal can be stated precisely as��������
v1

...

vT

��������

¯̄̄̄
¯̄̄̄
¯̄̄̄ (y0, ...,yT , s0, ..., sT ) � N (0, IT �V) , V � V ar (vt) .

So

L1 � f (y0, ...,yT , s0, ..., sT ) =
Y
g1 (zt �Ast �Bstyt;V) ,

Or L1 � log (L1) =
X

log [g1 (zt �Ast �Bstyt;V)] ,

where g1 is the density of N (0,V). Furthermore, the log likelihood can be concnetreated

(Hayashi (2000), eq. (8.5.23)) as follows

L1 = const.� 1
2
log

¯̄̄̄
¯ 1

T + 1

TX
t=1

(zt �Ast �Bstyt) (zt �Ast �Bstyt)0
¯̄̄̄
¯ .

B.3 Likelihood for factor dynamics (L2)

Since {y, s} is Markov, the usual sequantial factorization argument yields

L2 � p (y1, ...,yT , s1, ...sT |y0, s0) =
TY
t=1

p (yt, st|yt�1, st�1) .
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As mentioned in the text, p (yt, st|yt�1, st�1) = f (yt|st,yt�1, st�1) � (st|yt�1, st�1). The

component f (yt|st,yt�1, st�1) can be decomposed as

f (yt|st,yt�1, st�1) = f (rt|y2,t,st,yt�1, st�1)× f (y2,t|st,yt�1, st�1) ,

f (rt|y2,t,st,yt�1, st�1) = g2
¡
rt � �st � �strt�1 � �st0y2,t; (�str )2

¢
,

f (y2,t|st,yt, st) = g3 (y2,t � cst2 ��st2 yt�1;�st22�st022 ) ,

where g2 is the density of N
¡
0, (�str )

2¢ and g3 is the density of N (0,�st�st0). The other
component in (1) � (st|yt�1, st�1) was derived in the text. Putting all pieces about L2

together, L2 � log (L2) can be written as

Type I: L2 =
TX
t=1

log
£
g2
¡
rt � �st � �strt�1 � �st0y2,t; (�str )2

¢¤
(26)

+
TX
t=1

log [g3 (y2,t � cst2 ��st2 yt�1;�st22�st022 )]

+
TX
t=1

½
st log

�
F

μ
re (yt�1)� �Z

��

¶¸
+ (1� st) log

�
1� F

μ
re (yt�1)� �Z

��

¶¸¾
.

Type II: L2 =
TX
t=1

log
£
g2
¡
rt � �st � �strt�1 � �st0y2,t; (�str )2

¢¤
(27)

+
TX
t=1

log [g3 (y2,t � cst2 ��st2 yt�1;�st22�st022 )]

+
TX
t=1


��������������
st�1st log

h
F
³
re(yt�1)��Z

��

´i
+ st�1 (1� st) log

h
1� F

³
re(yt�1)��Z

��

´i
+(1� st�1) st log

£
B
¡
re (yt�1)� �Z , �e (yt�1)� �̄;W

¢¤
+(1� st�1) (1� st) log

£
1�B ¡re (yt�1)� �Z , �e (yt�1)� �̄;W¢¤

���������������
.

Maximization of L2 can be simpli�ed because cZ2 ,�
Z
2 ,and �

Z
22 appear only in the g3

component of the second summation in L2.
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B.4 Choices of parameters

The model parameters are

� � (�1,�2) ,

�1 � ¡
�Q (P|P) , �Q (Z|Z) ,�0 (P) ,�0 (Z) ,�1 (P) ,�1 (Z)

¢
,

Type I: �2 �

	��
 �P , �Z ,�P , �P , �Pr , �
Z
r ,

cP2 , c
Z
2 ,�

P
2 ,�

Z
2 ,�

P
22,�

Z
22

���� ,

Type II: �2 �

	��
 �P , �Z ,�P , �P , �Pr , �
Z
r ,

cP2 , c
Z
2 ,�

P
2 ,�

Z
2 ,�

P
22,�

Z
22, �̄

���� .

C Proofs for propositions 1 and 2

Proof for proposition 1 Pin down �Q. Integrate both sides of (6) over ey.
LHS =

Z
�y

exp [�r (y)] fQ (ey|s̃,y, s) �Q (s̃|y, s) dey,
= exp [�r (y)] �Q (s̃|y, s)

Z
ỹ

fQ (ỹ|s̃,y, s) dey,
= exp [�r (y)] �Q (s̃|y, s) (since

Z
ỹ

fQ (ey|s̃,y, s) dey = 1).

RHS =

Z
�y

M (ey, s̃,y, s) f (ey|s̃,y) � (s̃|y, s) dey,
= � (s̃|y, s)

Z
ỹ

M (ey, s̃,y, s) f (ey|s̃,y) dey,
= � (s̃|y, s)E [M (ey, s̃,y, s) |s̃,y, s] ,
= � (s̃|y, s) exp [�r (y)� � (s̃,y, s)] , (by equation (4))

= exp [�r (y)] � (s̃|y, s) exp [�� (s̃,y, s)] .

30



Q.E.D.

Proof for proposition 2 Pin down fQ. Divide both sides of equation (6) by the ex-

pression of �Q in Proposition 1 and use Assumption 2 to obtain

fQ (ey|s̃,y, s) = exp ��1
2
� (s̃,y)0 � (s̃,y)� � (s̃,y)0�(s̃)�1 (ey�� (s̃,y))¸× f (ey|s̃,y) .

So the conditional moment-generating function of ỹ under Q can be written as

EQ [exp (� 0ey) |s̃,y, s] = Z
ỹ

exp (� 0ey) fQ (ey|s̃,y) dỹ =Z
ỹ

exp (X) f (ey|s̃,y) dey=E [exp (X) |s̃,y] ,
where X � � 0ey�1

2
�0�� �0��1 (ey��) with � here being � (s̃,y), � being � (s̃,y), and �

being � (s̃). Since ey|s̃,y �N (�,��0) under P by Assumption 1, the conditional distrib-
ution of X is normal with

E (X|s̃,y) = � 0��1
2
�0�, V ar (X|s̃,y) = ¡� ���10�¢��0 ¡� ���10�¢ .

Thus

E [exp (X) |s̃,y] = exp
�
E (X|s̃,y) + 1

2
(X|s̃,y)

¸
= exp

�
� 0 (����) + 1

2
���0�

¸
,

which is the moment-generating function of a normal random variable with mean �� �


and variance ��0. Q.E.D.
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Table 1. The factor dynamics coefficients. This table reports the estimated coefficients of  Type I (left panel) and Type II 
(right panel) factor dynamics.  
 
 
 



  
 
 
 

 

 
 
Table 2. (Pseudo) out of  sample performance. The second column reports the root mean square error (RMSE) ratios of  the 
Type I factor dynamics relative to the Type II factor dynamics. The third column reports modified Diebold-Mariano test 
statistics. Significantly negative statistics indicate that the Type II specification outperforms the Type I specification. The 
out-of-sample period consists of  the last three years of  the QEP period. The superscript ** indicate significance at the 1% 
level. 
 
 
 
 
 
 
 
 
 
 
 
 

RMSE ratios DM test
r 1.30 -1.33

0.77 2.89**

1.43 -1.52
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Table 3. Yield curve coefficients. This table reports the coefficients of  the prices of  risk and 
transition probabilities under Q estimated for the benchmark model. 
 
 

 
 
 
 
 
 
 
 
 



 

Figure 1. Uncollarterized overnight call rate in Japan (annualized rate in percent).  
 

 



 

  
Figure 2. State-dependent transition probabilities. The left column reports the probability that the regime is normal (top) or a ZIRP 
(bottom) given that the previous regime is normal. The right column reports the probability that the regime is normal (top) or a ZIRP (bottom) 
given that the previous regime is ZIRP. The blue lines are transition probabilities under Type I evolution and red lines are those under Type II 
evolution. The periods that the current regime is not normal (left column) or a ZIRP (right column) are shaded in gray.    
 



 
 
 

 
Figure 3. Factor weights against maturity. This figure plots the coefficients of  the yield equation against maturity (in 
quarters) estimated for the benchmark model. The coefficients correspond to the constant, short-rate, inflation, and 
output-gap terms in the yield equation under the normal regime (dashed black lines) and the ZIRP regime (red solid lines). 
The model-implied yields are expressed as the annualized rate in percent. 



 
 
 

 

Figure 4. Estimation of expectations and term premium components of 10-year bond yields 
(annualized rates in percent). This figure plots the actual 10-year bond yields, the average expected 
future short-term interest rates over the life of the bond, and its difference from the actual yields (i.e., 
term premium) obtained via two-regime three-variable VAR forecasting for the benchmark model. 
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