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Abstract

Official price indexes, such as the CPI, are imperfect indicators of inflation calcu-
lated using ad hoc price formulae different from the theoretically well-founded inflation
indexes favored by economists. This paper provides the first estimate of how accurately
the CPI informs us about “true” inflation. We use the largest price and quantity dataset
ever employed in economics to build a Törnqvist inflation index for Japan between 1989
and 2010. Our comparison of this true inflation index with the CPI indicates that the
CPI bias is not constant but depends on the level of inflation. We show the infor-
mativeness of the CPI rises with inflation. When measured inflation is low (less than
2.4% per year) the CPI is a poor predictor of true inflation even over 12-month periods.
Outside this range, the CPI is a much better measure of inflation. We find that the
U.S. PCE Deflator methodology is superior to the Japanese CPI methodology but still
exhibits substantial measurement error and biases rendering it a problematic predictor
of inflation in low inflation regimes as well.
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1 Introduction

We have long known that the price indexes constructed by statistical agencies, such as the

Consumer Price Index (CPI) and the Personal Consumption Expenditure (PCE) deflator,

measure inflation with error. This error arises for two reasons. First, formula biases or er-

rors appear because statistical agencies do not use the price aggregation formula dictated by

theory. Second, imperfect sampling means that official price indexes are inherently stochas-

tic. A theoretical macroeconomics literature starting with Svensson and Woodford [2003]

and Aoki [2003] has noted that these stochastic measurement errors imply that one cannot

assume that true inflation equals the CPI less some bias term. In general, the relationship is

more complex, but what is it? This paper provides the first answer to this question by an-

alyzing the largest dataset ever utilized in economics: 5 billion Japanese price and quantity

observations collected over a 23 year period. The results are disturbing. We show that when

the Japanese CPI measures inflation as low (below 2.4 percent in our baseline estimates)

there is little relation between measured inflation and actual inflation. Outside of this range,

measured inflation understates actual inflation changes. In other words, one can infer infla-

tion changes from CPI changes when the CPI is high, but not when the CPI close to zero.

We also show that if Japan were to shift to a methodology akin to the U.S. PCE deflator,

the non-linearity would be reduced but not eliminated. This non-linear relationship between

measured and actual inflation has important implications for the conduct of monetary policy

in low inflation regimes.

The basic intuition is straightforward. There is little disagreement that a superlative

price index, such as the Törnqvist, has the best theoretical properties of any price index

we have discovered [Diewert and Nakamura, 1993]. However, it is not possible to construct

this index given the limited data resources of most statistical agencies. Thus, price indexes

in all countries are constructed using other functional forms. We demonstrate that the

measurement error that results from using the wrong formula is not diminished by averaging

over larger sets of observations and is not constant over time. The empirical macroeconomics
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literature has documented that the volatility of inflation rises with the level of inflation. We

study the volatility of both true inflation and the CPI measurement errors with surprising

results. While we confirm that the volatility of true inflation rises rapidly with its level, we

find that the variance of the CPI measurement errors does not.

Thus, when inflation is high, most of the observed movement in the CPI is due to actual

inflation movements, but when the inflation is low, much of the movement in the CPI is

noise. Just as a bathroom scale is suitable for determining changes in a person’s weight but

not those of a mouse, so the CPI is more accurate when inflation is high than when it is low.

To understand the math underlying this result, think of the CPI as having two compo-

nents: a signal of true inflation and a measurement error, or noise. If the measurement errors

are uncorrelated with inflation rates, it is easy to show that the CPI inflation will be more

informative about actual inflation if the signal-to-noise ratio is high. If this ratio is high, the

variance of true inflation must be a large component of CPI variation, and one should expect

that true inflation moves nearly one to one with the CPI. If the variance of true inflation is

small relative the movements in the CPI, then the signal-to-noise ratio will, likewise be low,

and it is safe to largely ignore CPI movements when trying to determine inflation changes.

One can formalize this intuition mathematically by realizing that our best estimate of

true inflation movements equal CPI movements multiplied by a coefficient that equals the

variance of true inflation divided by the variance of the CPI. Since the variance of the CPI

rises with both the variance of true inflation and the variance of the error, this coefficient

will tend to be less than one. If the variance of true inflation is high relative to the variance

of the CPI error (a high signal-to-noise ratio), this coefficient will be close to one, and true

inflation will move almost one-to-one with the CPI. However, if the signal-to-noise ratio is

low, CPI movements will not be informative about true inflation movements and one should

not expect true inflation to move much as the CPI moves.

While this result is a simple application of econometric theory, economics can inform

our understanding of when we should expect the signal-to-noise ratio of the CPI to be high
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and when we should expect it to be low. Starting with Okun [1971], many studies (e.g.,

Friedman [1977], Taylor [1981], Ball et al. [1988], Ball and Cecchetti [1990], Kiley [2000])

have found that countries with high inflation rates tend to have high inflation volatility.1

Critically, these studies imply that the signal in the CPI (i.e., the variance of true inflation)

should be rising as inflation rises. The rising inflation signal in the CPI implies that as long

as CPI noise does not rise too quickly with inflation, it must be the case that there is a much

tighter relationship between the CPI and inflation in high inflation regimes than in low ones.

This has profound implications for how one should think about inflation and monetary

policy. First, it means that one cannot write true inflation as a linear function of the CPI.

In particular, true inflation cannot be assumed to equal the CPI less a constant bias term.

These non-linearities matter enormously in our data. For example, in our baseline estimates

based on Japanese data that we will discuss later, we find that when the annual Japanese CPI

registers an inflation rate of 0 percent, true inflation is -0.8 percent—but when CPI inflation

is 2 percent the bias rises to -1.8 percent. In other words, a 2 percent CPI inflation target is

actually a price stability target, when using annual data. Since the methodology underlying

the Japanese CPI is more prevalent internationally than that used in the U.S. PCE deflator,

this potentially has broad implications. Our results even have implications for the U.S.

PCE deflator. When we replicate the PCE deflator methodology using Japanese data, we

find the PCE deflator methodology generates substantial upward biases: the PCE deflator

methodology overstates inflation by about a percentage point when reported inflation is 2
1Friedman [1977] argues that “a burst of inflation produces strong pressure to counter it. Policy goes

from one direction to the other, encouraging wide variation in the actual and anticipated rate of inflation.”
A similar idea is proposed by Ball [1992], who argues that when inflation is low, there is a consensus that it
should be kept low; however, when inflation is high, there is disagreement about the importance of reducing
it, leading to high variability of inflation. Taylor [1981] suggests that accommodative monetary policies may
lead to high inflation and greater variability in response to supply shocks. Cukierman and Meltzer argue that
an exogenous increase in the variance of monetary control errors gives a central bank a stronger incentive
to create surprise inflation, leading to a high inflation and high volatility of inflation. Ball et al. [1988]
show, using a menu cost model, that high trend inflation reduces nominal price rigidity and thus steepens
the short-run Phillips curve. As a result, shocks to aggregate demand have smaller effects on output but
larger effects on inflation. Gagnon [2009] confirms that the micro price data is consistent with this story by
showing that the frequency of price adjustment increases with the level of inflation.
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percent and overstates inflation changes by 30 percent when inflation is below 2.2 percent.2

A second important implication concerns how central banks and other economic agents

should respond to CPI inflation movements. Again, the non-linearity arising from the fact

that the signal-to-noise ratio in the Japanese CPI is much higher in high inflation regimes

matters. We estimate that a one percentage point rise in the CPI should raise one’s assess-

ment of true inflation by only half a percentage point when inflation is less than 2 percent,

but this same increase should raise one’s assessment by 2 percent when inflation is high. In

other words, failure to take into account the change in an official price index’s signal-to-noise

ratio is likely to mean that central banks pay far too much attention to official price indexes

when they are low and not enough attention when they are high.

In order to demonstrate these points, our paper makes use of the Nikkei Point of Sale

database.3 Nikkei collects daily scanner purchase data from hundreds of large and small

stores covering hundreds of thousands of barcodes spread across Japan in the grocery sector.

These data are typically sold by Nikkei to customers interested in accurately measuring the

sales of individual barcodes. Our data covers the period from 1988 to 2010 and contains 4.82

billion price and quantity observations. The Japanese CPI, like the CPIs of most countries,

contains no quantity data and a tiny fraction of the number of price observations. Crucially,

the Nikkei data come as close as one could come empirically to observing the universe of

grocery price and quantity observations in the Japanese economy. Moreover, the long time

span means that we observe Japanese periods of substantial inflation and deflation. The fact

that we have both price and quantity data enables us to construct the theoretically well-

founded Törnqvist index of “true” inflation for a set of items covering 17 percent of Japanese

consumer expenditure. By following Abe and Tonogi’s [2010] concordance matching the

items in the Nikkei POS with those of the Japanese CPI, we are able to observe both a true

inflation measure and the CPI value.
2The variability of the bias has not been the focus of most prior work in this area (see the excellent

surveys by Hausman [2003], Lebow and Rudd [2003], and Reinsdorf and Triplett [2009]).
3This is an expanded version of the dataset used in Abe and Tonogi [2010].
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These data let us make a number of important empirical findings. The first is the

volatility in the CPI error. Our estimates of this error based on grocery data are likely to

be substantially lower than for the rest of the CPI because it is much easier to measure the

prices of the goods sold in a grocery store than major CPI components like housing, transport

and communication, and recreation. Nonetheless, we find that inflation mismeasurement is

large. Our results indicate that over 12-month periods, the grocery CPI sometimes overstated

inflation relative to a Törnqvist by as much as four percentage points while at other times it

understated inflation by as much as 2 percentage points. The fact that the standard deviation

in the bias is 0.9 percent means that much of the fluctuation in observed inflation during

this time period was due to CPI errors. It is the surprising magnitude of these errors that

drive our basic finding that the CPI is not very informative when the variance of inflation is

low.

It is not possible to precisely decompose the reasons for all of the differences between

the CPI and the Törnqvist because the two indexes differ in a myriad of ways. Some of

the important differences include the use of unweighted arithmetic (or sometimes geometric)

averages rather than sales-weighted geometric averages at the lower-level, upper level weights

that differ from those of a Törnqvist because they are computed from different sources than

the lower level data and at different times, and finally, samples of prices instead of the

universe of prices. In sum, official price indexes contain two classes of errors: “sampling

errors” arising from using a subset of the price data and “formula errors” arising from using

the wrong weights and formulas to aggregate the price information. An important difference

between these two types of errors is that formula errors are not diminished by building price

indexes with more data. For example, if the correct formula required a set of numbers to

be multiplied together, but instead the statistical agency added them, the result would be

different in general, and this difference would not be diminished by working with larger sets

of numbers.

In order to better understand the sources of this noise, we show how one can express
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CPI errors relative to a Törnqvist index, so that one can decompose the variance of the

CPI into movements in true inflation, upper-level weighting errors, and mismeasurement

of lower-level item indexes. True inflation can also be decomposed into fluctuations due to

aggregate inflation movements and fluctuations arising from relative price movements (which

will matter if some goods have nontrivial sales shares).

Since we can directly measure the CPI variance and its components, we can precisely

explain the non-linear relationship between the CPI and true inflation. We first show that

while there is some tendency for the variance of CPI noise to rise as inflation rises, the rise

is small compared to the tremendous increase in inflation volatility that occurs as inflation

rises. In other words, while Cecchetti [1997] and Shapiro and Wilcox [1996] were right to

point the tendency for CPI noise to rise with inflation because lower-level substitution bias

rises with inflation, this effect is very small compared to the rise in inflation volatility.

Because we observe the underlying individual price and quantity data, we are able to

be precise about how the non-linear relationship between the two series is generated. We

decompose inflation volatility into two components: one related to movements in compo-

nents of inflation that are common across products and another related to the relative price

dispersion across products. Consistent with previous work, we find that relative price dis-

persion rises with inflation (c.f. Vining and Elwertowski [1976], Parks [1978], Fischer [1981]

and Stockton [1988]). The variance in relative price shocks more than doubles as inflation

rises past 2.4 percent, but this dispersion explains only a small component of the increase in

aggregate price volatility. Most of this increase is explained by the variance in the aggregate

or common component of inflation, which rises by a massive 320 percent. The non-linear

relationship between inflation and the CPI is primarily driven by the fact that CPI mea-

surement errors are much less sensitive to inflation than either component of aggregate price

volatility: the variance of upper- and lower-level measurement errors only increase by 35–60

percent as we move from low inflation to high inflation regimes. The critical factors driving

the non-linearity are the higher inflation variance in high inflation regimes and the relative
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insensitivity of CPI measurement errors to inflation movements.

The richness of our data enables us to delve deeper into the sources of these errors by

performing a number of informative decompositions. First our results suggest that upper-

level weighting errors—which in the U.S. account for most of the difference between chained

and unchained indexes—matter for the average bias but are relatively unimportant in under-

standing movements in measurement error. Second, we find that one major source of formula

error comes from using arithmetic, rather than geometric, averages of prices. This suggests

that the move to geometric averaging of prices not only reduced the upward bias in inflation

indexes but also reduced the noise in these indexes. Third, we are able to show that geo-

metric averaging is not a complete solution in itself. In our simulations using Japanese data,

we show that the PCE deflator methodology still produces significant biases and measure-

ment error relative to the Törnqvist due to the choice of simple geometric averaging rather

than weighted averaging. Interestingly, sampling errors seem to be relatively unimportant

in understanding why our price indexes are flawed.

The structure of the paper is as follows. Section 2 describes our data and provides a

preview of the CPI measurement issues, biases and data challenges. Section 3 describes the

econometric strategies we follow in decomposing the relationship between true and measured

inflation. Section 4 presents our main empirical findings, and Section 5 concludes.

2 Data

Our paper makes use of two principal datasets. The first is detailed Japanese CPI data. We

obtained the price indexes and CPI weights from various issues of the Annual Report on the

Consumer Price Index produced by the Statistics Bureau (SBJ) at the Ministry of Internal

Affairs and Communications.4 We then used these data to build the CPI for grocery items

following the same formulas used by the SBJ. In all of our work, the inflation rate we work
4Although the official name of the bureau is the “Statististics Bureau,” we will follow the Japanese website

and abbreviate it with SBJ, which stands for “Statistics Bureau of Japan.” Data are available at the SBJ
website (http://www.stat.go.jp/english/data/cpi/). Issues prior to 2001 are only available in paper form.
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with is the inflation rate in a given month relative to the same month in the previous year.

This lets us avoid seasonality problems.

The SBJ produces a CPI index conforming to the International Labor Organization

standard. The ILO methodology is the basic approach used in all advanced countries.5 Thus,

many of the strengths and weaknesses of the Japanese CPI are common to most advanced

countries. Nevertheless, it is worth describing how the index is constructed. Price quotes for

each good are collected each month during the span of the same week in stores in hundreds of

locations across Japan. Indeed the geographic representation of the Japanese CPI is superior

to that of the U.S. CPI. Like the U.S. CPI, there is highly imperfect information available

on what weights to use at the lower level. The SBJ defines product type specifications for

each of the item categories and only collects prices for products fitting these specifications.6

For example, the price quotes for the “Butter” item include only the prices of products that

are 200 grams and packed in a paper container, excluding unsalted varieties [Imai et al.,

2012]. The SBJ then calculates inflation for each item as a Dutot index; that is, the ratio

of the mean price quotes collected for an item in one period relative to another. Once these

item indexes are constructed, the SBJ aggregates the data to form an overall CPI using

weights from its consumer expenditure survey. The upper-level item weights are based on

item expenditure shares in a base year that is updated every five years.7

The items in the grocery elements of the CPI account for 17 percent of the full CPI.

Grocery items are extremely standardized items that are easy to price, so it is far easier to

measure price changes for this sample of the CPI than it is for most of the remainder. For

example, it is easier to measure the the 30-day price change of a 300 ml can of Coca Cola

sold in a particular store than the 30-day price change of other major expenditure items

like imputed rent or recreational services. One should therefore anticipate that our paper
5See http://www.stat.go.jp/english/data/cpi/1585.htm#B2
6See Imai et al. [2012] for a more detailed description of this “purposive” sampling rule and a comparison

of its performance relative to the probability sampling used by the BLS.
7There are a range of differences between how the BLS calculates the U.S. CPI and the Japanese method-

ology described above. We explore how these technical differences potentially reduce the variance of the CPI
errors that drive our main results in Section 4.4 below.
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understates the magnitude of CPI measurement error.

An obvious concern with our focus on grocery items is that this sample of goods might

not be representative. While it is true that inflation measurement errors are likely to be

much smaller in our sample of grocery items than for the whole CPI, the grocery CPI tends

to track the overall Japanese CPI quite closely. Figure 1 plots both the Grocery CPI and the

full CPI, and it is immediately apparent that the two are fairly closely correlated (ρ = 0.8)

despite the fact that grocery items make up less 20 percent of the CPI. Our sample of

products seems to capture most of the variation in the official CPI including the overall

trend in inflation.

Our second dataset is the Nikkei Point of Sale (Nikkei POS) dataset. The Nikkei data

differs from other barcode datasets in frequency, scope, and length. Nikkei collects data at

a daily frequency. We observe the number of units of a barcoded good purchased in a store

on a day and the store’s sales revenue for that barcode on that day. In a typical month
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we observe prices for about a quarter of a million different grocery products, each identified

by a barcode. Nikkei also has impressive scope relative to other datasets. Where other

datasets focus on one store or chain, the Nikkei POS database includes observations taken

from hundreds of grocery and convenience stores spread across Japan each day. This is done

so that Nikkei can provide customers with an accurate picture of how goods are sold in

general and across different markets. Finally, the truly amazing feature of the Nikkei POS

data is its time dimension. Our data makes use of 23 years of these data collected from 1988

through 2010, all together comprising close to 5 billion observations.

The detail in the Nikkei data allows us to construct a price index under fewer assumptions

than the official CPI. We measure “true” inflation using a Törnqvist index. As a superlative

index, the Törnqvist is a second order approximation to any twice-differentiable homothetic

expenditure function, and is as close as we can come to computing an exact inflation index

without actually specifying preferences.8 Since our data permits us to compare the prices of

identical goods purchased in the the same store using the correct weights for that store, we

are able to exactly produce this index.9

It is difficult to formally compare the properties of the two-tiered CPI with those of

the Törnqvist, which does not have a two-tier system. For example, it is not impossible

to formally assess the importance of measurement error at the CPI’s lower level because

the Törnqvist has no lower level. In order to make progress on understanding what causes

CPI errors, we utilize a Törnqvist index that has a two-tiered structure. We call this two-

tiered index the “item Törnqvist” because the lower tier indexes are calculated at the “item”

level to correspond with the Japanese CPI and then aggregated using Törnqvist weights.

Fortunately, the item Törnqvist produces inflation rates that are almost identical to those

of the standard Törnqvist as is shown in Figure 2. Thus, we can be confident that virtually

all of the difference between Törnqvist and the CPI can be understood in terms of the
8The Törnqvist measures inflation in common goods prices. Assumptions on preferences are required in

order to account for the welfare effects of entry and exit of goods (see, for example, Broda and Weinstein
[2010]).

9See Appendix B for details on the Törnqvist index calculation.
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Figure 2
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decomposition between an item Törnqvist and the CPI and not as differences between the

item Törnqvist and the standard Törnqvist.10In the interest of simplicity, we will therefore

ignore the difference between the item Törnqvist and the Törnqvist indexes of inflation and

refer simply to to the “item Törnqvist” as the “Törnqvist” index throughout.

2.1 Measurement Error in the Official CPI

We calculate the measurement error in the official CPI by comparing it with the Törnqvist

index. Figure 3 presents the grocery component of the official CPI and the Törnqvist index

calculated using the Nikkei data. As one can see in the figure, there are substantial differences

between the CPI and the Törnqvist index. Figure 3 suggests that there is a very clear upward
10Diewert [1978] shows that a superlative index, such as the Törnqvist, is approximately consistent in

aggregation (that is, the value of an index calculated in two stages approximately coincides with the value
of an index calculated in a single stage) and that this approximation is closer for chained indexes, like those
constructed here using changes in prices and quantities between successive periods, rather than fixed base
indexes. It is not surprising, therefore, that all of our results are qualitatively identical whether we use the
standard or the item Törnqvist.
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Figure 3
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bias in the official index. While the Törnqvist index became negative in 1993, the official

index did not register deflation until 1995. However, the correlation between the CPI and

the Törnqvist is much less tight than what one might expect for two indexes measuring

the same component of inflation. The correlation between the two indexes is 0.87, which

reflects the fact that there are some periods in with the two indexes differ quite substantially.

For example, in 1994 the CPI was registering an inflation rate that was at one point 4.7

percentage points above that of Törnqvist, in 1991 CPI understated inflation by almost

2 percentage points, and between 1995-1999, the bias was close to zero. Thus, Figure 3

indicates that one should be very wary of assuming that one can infer inflation by looking

at an official index and subtracting off a constant bias term.

In Table 1, we study the bias in the CPI, defined as the difference between the CPI and

the Törnqvist. As we can see in the first column, this difference averages to 0.63 percent

per year. The Törnqvist index suggests that Japanese grocery goods entered a period of
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sustained deflation in 1993. If we focus our attention on that period we see that the official

bias in the CPI was actually larger, at 0.76 percent per year.

Table 1
Index Biases

πCPI − πT

Annualized Total Bias 0.625
Standard Deviation of Bias 0.961

Annualized Total Bias (Post-93) 0.762
Standard Deviation of Bias (Post-93) 0.763

This bias implies a radically different impression of what has happened to the price

level in Japan (at least for grocery goods). As one can see in Figure 4 the official price index

suggests that prices only fell by 4.2 percent between 1993 and 2010, suggesting that deflation

was quite mild. The superlative index, on the other hand, indicates that deflation averaged

.91 percent per year, implying a far more substantial 14.5 percent drop in the price level

over the whole period.

What is most striking in Table 1 is the magnitude of the standard deviation of the bias:

0.96 percentage points. This means that while, on average, the CPI inflation rate is biased

upwards by 0.6 percentage points per year, one can only say with 95 percent confidence that

this bias lies between -1.3 and 2.5 percentage points. In other words, if the official inflation

rate is one percent per year and aggregate CPI errors are the same as those for grocery

items, one can only infer that the true is inflation rate is between -1.5and 2.3 percentage

points. Thus, a one percent measured inflation rate would not be sufficient information for a

central bank to know if the economy is in inflation or deflation. The magnitude and standard

deviation of the bias in the grocery component of the CPI is particularly striking since other

components of the CPI are subject to much larger measurement errors, potentially yielding

an even larger and more noisy bias in the overall CPI.11

11Of course, averaging over more price series might improve the picture for the overall CPI—a point we
will address later—but the magnitude of the errors is still worrying.
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Figure 4
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We can see the magnitude of the noise in Figure 5. The figure plots the difference between

the CPI and the Törnqvist index over the full time period. There are two important findings

revealed by the figure. First, as we saw in Table 1, the CPI bias is not constant. While

the bias is positive on average, the difference between the CPI and the Törnqvist fluctuates.

Second, the magnitude of the measurement error is quite large in comparison with the

underlying Japanese inflation rate. While one can see that the bias is clearly positive on

average, there appears to be no clear relationship between the magnitude of the bias and the

underling inflation rate. For example, the bias was not exceptionally high or low in either of

the two periods that Japan experience inflation peaks, 1990-1 and 2008-9. The plot suggests

that it is not implausible to think of this noise as classical measurement error.

The results in Figure 5 and Table 1 have extremely important implications for our un-

derstanding of inflation. As basic econometrics tells us, the fact that there is substantial

measurement error in the CPI means those who assume that a one percent movement in the

CPI corresponds to a one percent movement in inflation will systematically overstate true

inflation movements. We turn to formalizing this intuition in the next section.

3 Econometric Theory

3.1 Inferring True Inflation from Measured Inflation

The basic question we are trying to ask is how do we infer true inflation from the measured

values of inflation. We think about this problem mathematically by first assuming that

measured inflation—the CPI, which we denote πCPIt —is equal to true inflation, which we

denote πTt , plus some measurement error, φt:

πCPIt = πTt + φt (1)
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where πTt and φt are both unobserved. Equation 1 can be thought of as the standard equation

used in the CPI bias literature.12 However, most users of the CPI are are interested in a

related but different question: what is the expected value of true inflation given measured

inflation, or E
[
πTt |πCPIt

]
= α′ + β′πCPIt ? Since πTt and πCPIt are both univariate and they

follow a linear relationship, the minimum mean square estimate of πTt is its conditional

expectation, which we can express as:

E
(
πTt |πCPIt

)
= E

(
πTt
)

+
Cov

(
πTt , π

CPI
t

)
V ar (πCPIt )

[
πCPIt − E

(
πCPIt

)]
(2)

indicating that the extent to which an unexpected change in the CPI is a signal of an

unexpected change in true inflation is governed by the ratio of the covariance of inflation

and the CPI to the variance of the CPI.

The amount of information on true inflation, πTt , that is contained in observed inflation,

πCPIt , therefore depends crucially on the covariance of the two series relative to the variance

of the observed inflation series. It is useful to rewrite equation 2 in terms of a regression

coefficient, β, that would be obtained from regressing πTt on πCPIt :

E
(
πTt |πCPIt

)
=
[
E
(
πTt
)
− βE

(
πCPIt

)]
+ βπCPIt

where:

β ≡
Cov

(
πTt , π

CPI
t

)
V ar (πCPIt ) =

V ar
(
πTt
)

+ Cov
(
πTt , φt

)
V ar (πTt ) + V ar (φt) + 2Cov (πTt , φt)

(3)

where the second equality follows from equation (1).

Equation 3 forms the foundation of everything that follows. In particular, the notion

that a given movement in the CPI produces a movement in actual inflation of the same
12One can think of this formally by realizing that the price measurement literature has focused on obtaining

a link between true and measured inflation, i.e. estimating πCPIt = πTt + α + εt, where πCPI is the CPI
inflation rate, πTt is the true inflation rate, α is the bias, and εt is a mean-zero error term. This approach is
equivalent to equation (1) with φt = α+ εt.
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magnitude, i.e. β = 1, relies on the assumption that there is no variation in the measurement

error of CPI. If there is any volatility measurement error in the CPI, true inflation cannot be

expressed as equal to measured inflation less some constant term. In other words, the fact

that the bias term in Figure 5 is not a horizontal line, provides prima facie evidence that the

common practice of assuming true inflation equals measured inflation less some bias term is

wrong.

The noisy indicators literature has examined cases where β is constant. We will next

show that one should not expect this. In order to do this, it will be useful to build some

theory from first principles on what we should expect the relationship to be.

3.2 Decomposing “True” Inflation

We need to make a few assumptions about the underlying error structure causing CPI

mismeasurement in order to understand why β in equation 3 is unlikely to equal one or be

constant. We begin by assuming that inflation, πTt , is given by a Törnqvist index:

ln
(
1 + πTt

)
=

n∑
i=1

witπit (4)

where wit = 1
2 (sit + sit−1), sit is the expenditure share of good i in period t, and 1 + πit is

the relative price of good i in period t relative to its price in period t− 1, and ∑n
i=1 wit = 1.

The price change of every good i from period t to period t−1 can be decomposed as follows:

πit = µt + νit, (5)

where µt is the aggregate component of inflation and νit is an idiosyncratic component of

that good’s price change. This enables us to rewrite the Törnqvist inflation index as

πTt = µt +
n∑
i=1

witνit. (6)
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3.3 The Variance of “Measured” Inflation

As we have argued earlier, statistical agencies cannot compute the Törnqvist index in equa-

tion (4) because the data requirements are too high. We can think of official inflation rates

as weighted averages of price changes in which the weights and formulas contain errors. We

can therefore write a general equation for the CPI, πCPIt in terms of the true underlying

price indexes as:

πCPIt =
n∑
i=1

(wit + εit) (πit + δit) , (7)

where we use εit to denote the error in the upper-level weight for good i at time t and δit to

denote the lower-level error in the measured inflation rate for the good. In this formulation,

if the the upper- and lower-level errors were eliminated, the CPI inflation rate would collapse

to that of the Törnqvist.

In order to make the analysis that follows tractable, we need to assume that these errors

are random independent draws from distributions with zero means. In particular, we assume

(i.e. E (εit) = E (δit) = 0, and Cov (εit, εjt) = Cov (δit, δjt) = Cov (νit, νjt) = 0, µt ⊥ εit, δit).

As we show in Appendix A, these assumptions are sufficient to ensure that the error term

in equation 3 is independent of the level of inflation, a condition that we will examine in

the empirical section. These assumptions enable us to derive the variance of the the CPI in

terms of the signal, given by the variance of true inflation
(
V ar

(
πCPIt

))
, and the variances

of the various errors given below:

V ar(πCPIt ) = V ar(πTt ) + σ2
δt

(
n∑
i=1

s2
i,t−1 + γ2

4 (n− 1)σ2
νt

)
+nσ2

εt

[
σ2
µt + σ2

νt + σ2
δt

]
, (8)

where the algebra used to derive this equation is relegated to Appendix A.

Equation 8 is key to understanding the problems of formula bias in understanding the

variance of inflation measures. As we argued before, if wit ≈ 1/n ≈ si,t−1 then in the limit,
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as the number of products goes to infinity, the law of large numbers will cause the variance

in the first term to approach the variance in underlying inflation. Similarly, the law of large

numbers will also cause the second term to also approach zero because any idiosyncratic

error in calculating lower-level price quote will not affect the average. However, the last

term in equation (8) will not in general approach zero as the number of items in the index

approaches infinity. The reason more data does not improve the accuracy of the CPI stems

from the fact that CPI contains a formula bias, which is contained in the εt’s. These errors

do not disappear as one averages across more sectors because they are correlated with the

inflationary errors and the δt’s. In other words, one cannot correct for the fact that the CPI

uses the wrong formula to measure inflation by simply using more data: averaging over more

sectors will not solve the problem of formula bias.

Our next task is to compute correlation between πCPIt and πTt . In Appendix A we

show that under reasonable assumptions about the independence of the various idiosyncratic

shocks we can write:

Cov
(
πTt , π

CPI
t

)
= V ar

(
πTt
)

(9)

The key assumption behind this result is that the CPI measurement errors, εit and δit, are

independent draws from a distribution and, therefore, uncorrelated with the components of

true inflation, µt and νit. While equation 9 does not need to be true for all possible price

shocks, we will show in the empirical section that it is an extremely good approximation of

reality. This result has important implications for our understanding of 2. In particular, if

we maintain the assumptions necessary to derive equation 9, we can rewrite the expression
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for β derived in equation 3 in terms of the fundamental microeconomic price shocks as,

β =
V ar

(
πTt
)

V ar (πTt ) + V ar (φt)
(10)

=
V ar

(
πTt
)

V ar (πTt ) + σ2
δt

(
n∑
i=1

s2
i,t−1 + γ2

4 (n− 1)σ2
νt

)
+ nσ2

εt

[
σ2
µt + σ2

νt + σ2
δt

]
︸ ︷︷ ︸

“CPI Noise”≥0

≤ 1 (11)

where σ2
µt is the variance in common price shocks inflation, and σ2

νt is the variance in id-

iosyncratic price shocks..

Equation 11 is the critical equation for everything that follows. A first clear implication of

this equation is that a rise in CPI inflation of a given percentage should always be associated

with an equal or smaller percentage rise in actual inflation. A second implication is that

with non-constant measurement errors (i.e., σ2
δt > 0 or σ2

εt > 0) changes in the CPI always

overestimate actual inflation changes.

Our ability to decompose this bias into the underlying components enables us to make

much stronger statements about the relationship between real inflation and measured infla-

tion. Ball et al. [1988], among others, have argued that the variance of inflation should rise

as inflation rises. However, they were only able to make this claim using U.S. CPI data, and

thus, it is not clear that this rise in variance is due to actual inflation becoming more volatile,

i.e., a rise in σ2
µt , or just an increase in the volatility of idiosyncratic price movements, σ2

νt .

The former might occur if monetary shocks become more volatile when inflation rises, and

the latter would arise if price dispersion rises with inflation. One of the interesting elements

of our setup is that we can not only examine if Cov
(
V ar

(
πTt
)
, πTt

)
> 0, but we can also

understand why it is true.

A second, and more important, feature of our approach is that we also have a direct

measure of the “CPI Noise” term in equation 11. If Cov
(
V ar

(
πTt
)
, πTt

)
> 0 and this

term is approximately constant, then this implies that there will be a non-linear relationship
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between CPI inflation changes and actual inflation changes. When the CPI is low, the signal

to noise ratio will be low because most movements in the CPI will be driven by noise, and

hence one should not adjust expectations of true inflation from movements in the CPI. But

when inflation is high and V ar
(
πTt
)
is large, movements in our estimate of actual inflation

much more with movements in the CPI. In order to compute the exact magnitudes we need

to first compute the elements of equation 11.

4 Results

We divide our results into several sections. First, we document that there is a strong non-

linear relationship between true inflation and the CPI. Second, we investigate the microstruc-

ture of this non-linearity with an aim of understanding what elements of measured inflation

explain our findings. Third, we conduct a series of robustness checks to examine whether

the results stem from the methodologies employed by statistical agencies or whether our

results simply stem from using a different dataset to measure prices. Finally, we consider

some potential fixes to the measurement of inflation.

4.1 Inferring Inflation

We now turn to studying the relationship between the official CPI and the Törnqvist index

addressing a series of questions motivated by the theoretical framework outlined above:

1. Is the signal-to-noise coefficient (β) equal to one?

2. Is the relationship between true inflation and measured inflation non-linear, resulting

in a poor relationship between measured inflation when it is low and a stronger one

when it is high?

Fortunately, both of these questions can be qualitatively assessed by looking at the data.

We start by plotting πTt against πCPIt in Figure 6. Each point in the plot represents a 12-
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Figure 6
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month inflation rate taken from our sample. There is a very strong positive relationship

between true inflation and CPI inflation when the inflation rate exceeds 2 percent, but there

is a much weaker connection between CPI inflation and actual inflation when the CPI is

registering rates of inflation below 2 percent per year.

Regression evidence confirms that our eyes are not deceiving us. In Table 2 we present

a number of regressions of of πTt against πCPIt . In the first column we perform a simple

OLS regression and obtain a coefficient of 0.83. The fact that this coefficient is less than

one suggests that CPI measurement error could be causing an attenuation bias. However,

simple inspection of Figure 6 indicates that this bias is not stable. In column 2 we regress

πTt against πCPIt and its square. The data indicate that the attenuation bias is much larger

when CPI inflation is low relative to when it is higher. In column 3, we run a spline

regression with a knot placed at 1 percent measured inflation. The interesting feature of this

regression is that that for inflation rates below 1 percent, there is a much weaker relationship
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Table 2
Grocery CPI vs. Tornqvist Inflation Regressions (Lag-11 Newey-West Standard Errors)

Tornqvist Tornqvist Tornqvist Tornqvist
Grocery CPI 0.832∗∗∗ 0.553∗∗∗

(0.148) (0.151)
Grocery CPI2 0.119∗∗

(0.0494)
Grocery CPI (≤ 1%) 0.398∗∗

(0.189)
Grocery CPI (> 1%) 1.257∗∗∗

(0.241)
Grocery CPI (≤ 2.385%) 0.505∗∗∗

(0.165)
Grocery CPI (> 2.385%) 1.843∗∗∗

(0.446)
Constant -0.584∗∗∗ -0.908∗∗∗ -0.894∗∗∗ -0.775∗∗∗

(0.173) (0.224) (0.216) (0.183)
Observations 262 262 262 262
Adjusted R2 0.668 0.717 0.713 0.739
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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between measured and actual inflation. If we chose an endogenous knot, the data place it at

2.4 percent, indicating that there is a substantially weaker relationship between measured

inflation and true inflation below this point.13

The results presented in the last column suggest that the relationship between measured

and actual inflation is highly non-linear. Consider, for example, how to interpret a move

in the Japanese CPI from -1 to 2 percent. According to the regression evidence in the last

column in Table 2, an inflation rate of -1 percent per year—as the Japanese CPI averaged

for many years—corresponds to a true inflation rate of -1.3. In other words the bias in

inflation is very small when inflation is moderately negative. However, if CPI inflation were

to rise by three percentage points to 2 percent, the negative bias would rise in magnitude

dramatically, reaching 1.8 percentage points. Our point estimate suggests that two percent

measured inflation rate is only a 0.2 percent inflation rate. In other words the current Bank

of Japan target inflation rate of 2 percent is extremely close to the correct rate to achieve

price stability! Moreover, the fact that the bias point estimate varies considerably with the

underlying inflation rate means that one should exercise caution in comparing estimates of

the bias computed using samples composed of observations using different inflation rates.

A second striking feature of the non-linearity that we observe is that further increases in

CPI inflation imply much sharper rises in true inflation. For example, our estimation implies

that an increase in inflation from 2 percent to 5 percent would correspond to an increase in

true inflation from 0.24 percent to 3.4 percent. Since the upward bias largely disappears at

higher inflation rates, central banks should pay much more attention to inflationary changes

when inflation is high than when it is close to zero. A central bank that deems a movement

in CPI inflation from 0 to 2 percent as the same as a movement from 2 to 4 percent is liable

to dramatically overreact to inflation when it is low and and underact when it is high.
13It is possible the relationship between measured inflation and true inflation depends on the absolute

magnitude of inflation, rather than its level. Suppose, for example, that inflation volatility is increas-
ing in the magnitude of inflation, rather than its level, that is, Cov

(
V ar

(
πTt
)
, |πTt |

)
> 0 rather than

Cov
(
V ar

(
πTt
)
, πTt

)
> 0. We considered a specification with two knots symmetrically placed around 0, but

the data did not support this parameterization instead selecting a model with a single knot placed at 2.4
percent. This may reflect the fact that we do not experience any highly deflationary periods.
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4.2 The Microstructure of Inflation Measurement Errors

The analysis above gives visual and econometric evidence for a non-linear relationship be-

tween the CPI and actual inflation, but we still have not identified the micro-foundations of

this relationship. Our theory depends on the CPI measurement error being classical. The-

oretically, one can construct cases in which this is not true, but its veracity is an empirical

question. In order to assess whether Cov
(
πTt , φt

)
= 0, we regressed φt on πTt and could

not statistically reject that there was no relationship between the measurement error and

the level of inflation. Since we cannot statistically reject the hypothesis that the inflation

measurement error is classical, we assume it is so and proceed with our decomposition.

Table 3
Summary Statistics (Means): Item Tornqvist

All Ratio (1% Knot) Ratio (2% Knot) Ratio (Endogenous Knot)
β(πCPI, πT ) 0.833 2.56 3.42 3.65
σ2
πT 3.18e-04 10.41 8.01 5.68
σ2
νt 3.49 2.46 2.55 2.34
σ2
µ̂t 0.79 7.45 5.77 4.16
σ2
εt 0.32 1.14 1.19 1.35
σ2
δt 2.83 1.57 1.60 1.62

Herft 0.019 1.05 1.05 1.05
CPI Noise 0.20 2.36 2.49 2.56
#Itemst 135.2 0.97 0.98 0.99
γt -0.68
Observations 262 0.32 0.21 0.15

Note: Entries for σ2
νi,t

, σ2
µ̂t

, σ2
εi,t

, σ2
δi,t

, and the CPI Noise are divided by the entry for σ2
πT . The “Ratio”

columns give the ratio of a variable in periods where πCPI is greater than the knot value to that variable’s
value calculated from observations in those months when πCPI is less than the knot. The “Endogenous Knot”
was determined to be 2.385%.

Equation 11 provides the formula for decomposing β into the underlying variances. Fortu-

nately, our dataset is rich enough that we can directly measure all of the variance components

that are likely to create the biases. In Table 3 we compute β̂ along with all of its compo-

nents to examine why it varies with the level of inflation. In the first column of the table, we
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present the results from the full sample with the first three elements of the column presenting

our regression coefficient from the first column of Table 2 along with its decomposition as

given in equation 11.

A critical feature of equation 2 is that it tells us how to decompose movements in the

link between CPI inflation and actual based on movements in the underlying forces driving

movements in variance of actual inflation σ2
πTt

and movements in the CPI noise term. Let’s

begin by focusing on the determinants of inflation volatility.

We know from equation 5 that we can decompose actual inflation of an item, πTit , into two

components: the aggregate component of inflation, µt, and its idiosyncratic component, νit.

By simply running this OLS regression we can identify each element of this decomposition.

In Figure 7, we plot the inflation rate implied by the aggregate component of inflation,

µt, against that of true inflation, πTt . Not surprisingly, these two series track each other

extremely closely, which is what one would expect if aggregate inflation were driven largely

by shocks common to all sectors rather than to shocks to a few sectors.

In the next cells of the first column of Table 3, we express each of the component variances

as a share of σ2
πT , so that one can get some sense of how important each factor is relative

to the variance of CPI inflation. The fact that the variance of the aggregate component of

inflation, σ2
µt , is 80 percent as large as σ2

πT implies that actual inflation movements are an

important determinant of CPI inflation movements as one might suspect. It is a little harder

to interpret the importance of idiosyncratic inflation volatility because this term only enters

into the formula for actual or CPI inflation volatility after being multiplied by another term,

but the fact that we saw in Figure 7 that πTit tracks µt so closely means that these idiosyncratic

terms cannot be an important determinant of actual inflation. The next two cells show the

importance of error terms that only affect the variance of measured (CPI) inflation but not

actual inflation. As one can see from the table, the variance of the lower-level errors, σ2
δt ,

are much larger than the upper-level ones, σ2
εt , although here, too, it is difficult to assess the

importance of each error because they affect the CPI noise interactively.
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Figure 7
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In order to make some progress on this issue, we can think of performing a number

of counterfactual exercises in which we assume that a statistical agency could eliminate

different types of errors and see what this does to the variance of the aggregate measurement

error. The move to producing chained CPI’s can be thought of as attempts to eliminate the

upper-level weighting problems captured by σ2
εt . Equation 11 lets us compute how much the

variance in the CPI noise would fall if we eliminated these errors by setting σ2
εt = 0. Our

results suggest that eliminating upper-level weighting from the current weighting structure

a perfect weighting structure would only reduce the variance in CPI noise by 49 percent.

However, if we were to eliminate lower-level measurement errors, i.e. setting σ2
δt = 0, this

would reduce the variance in CPI noise by 71 percent.14 It is clear that at least half of the

problem in the CPI is that there are substantial formula biases and other measurement errors

at the lower level. The importance of lower-level errors in driving overall CPI measurement
14The two numbers do not sum to 100 percent because the nσ2

εt
σ2
δt

term can be eliminated by setting
either σ2

εt
or σ2

δt
to zero.
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error probably stems from the fact that the inability to weight goods by sales and the choice

of the price aggregation method at the lower level is not rigorously based on theory.

In addition to decomposing the sources of the errors, we also can back out the combined

impact of each of these terms by using equation 11 and our parameter estimates to solve

for the variance in the CPI noise. This number is presented in the row labeled “CPI Noise”

in Table 3 and indicates that this noise is about 20 percent as big as the variance of actual

inflation implying a signal-to-noise ratio of about 5.15

The following three columns of Table 3 present what happens to each parameter as we

divide the data into different bins. The first two columns corresponds to results of assuming

that there are knots at inflation rates of one percent and two percent, and the last column

corresponds to the endogenous knot we identified in Table 2. For example, we see in the first

row that if we estimated β using data in which the CPI exceeded 2.4 percent (the value of

our endogenous knot) we would obtain a value that is 3.65 times larger than if we estimated

β using data in which measured inflation is less than 2.4 percent. The lower rows provide

information how changes in the key variances that determine β in equation 11 vary above

and below each knot. The second row of the table shows that the variance of true inflation,

σ2
πT , rises by a factor of almost 5.7 to 10.4 as we move from a low inflation regime to a high

inflation regime. This is the standard result that variance of inflation rises with inflation.

However, we are able to drill deeper into this result to understand its cause.As one can see

from the third and fourth rows of Table 3 the rise in the variance of true inflation is driven

by two forces. First and foremost, we see that the variance of the aggregate component of

inflation, σ2
µt , rises by a factor of 4 in the endogenous knot specification, which is consistent

with the idea that the variance of aggregate shocks rise as inflation rates rise. Second, we

see that variance of idiosyncratic price shocks, σ2
νt , doubles, which suggests that rising price

dispersion—a feature of many staggered pricing models—also increases with inflation.
15As a check on our results we can also solve for the translog demand parameter, γ, which comes out equal

to -0.68, implying that firm with a 20 percent market share would have a 29 percent markup. Our procedure
is surely not the most efficient means of estimating this demand parameter; we report the number simply to
demonstrate that our approach does not imply an implausible elasticity.
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While the data also indicate that the variance of CPI noise rises with inflation, the

increase is much smaller: as we move from low to high inflation regimes, CPI noise only rises

half as much as the variance of true inflation. This increase comes from a number of sources.

The rise in idiosyncratic price shocks, σ2
νt , interacts with the substantial rise in lower level

measurement errors, σ2
δt , reinforcing the level of measurement error. Similarly, upper level

weighting errors, σ2
εt , also rise, further boosting measurement error. However, despite these

effects, the CPI’s signal-to-noise ratio almost doubles in the high inflation regime, which

explains why the CPI is a much more reliable predictor of inflation when inflation is high.

4.3 Robustness Check: Are the results due to dataset differences?

An obvious concern about our results is that we are working with two different datasets—

the Nikkei POS and the CPI—and that our results may be due to the fact that the data

collection methods differ. In order to test whether this is driving our results we need to

replicate the Japanese CPI using the Nikkei POS data. This is not a trivial exercise as the

purposive sampling method used by SBJ uses a non-random selection of goods. Fortunately,

Imai et al. [2012] used the CPI price quote descriptions to identify the barcodes that match

these specifications in the Nikkei data and then replicated the Japanese CPI methodology

on this sub-sample of the Nikkei data for 2000–10.

Table 4 reports the results of replicating the regressions in Table 2 on the Imai et al. [2012]

set of barcodes believed to be used in the Japanese CPI. A striking feature of these results

is how similar the two sets of results are. One cannot statistically reject that the coefficients

in in Table 4 are the same as their counterparts in in Table 2. These results indicate that

the reason for the non-linearity is not based on differences in the underlying price data in

the Nikkei and CPI samples, but must emanate from the different methodologies used to

construct the price indexes.
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Table 4
Replicated CPI vs. Tornqvist Inflation Regressions (Lag-11 Newey-West Standard Errors)

Tornqvist Tornqvist Tornqvist Tornqvist
Replicated CPI 0.671∗∗∗ 0.608∗∗∗

(0.0947) (0.0612)
Replicated CPI2 0.0655∗∗∗

(0.0209)
Replicated CPI (≤ 1%) 0.434∗∗∗

(0.0972)
Replicated CPI (> 1%) 1.075∗∗∗

(0.0939)
Replicated CPI (≤ 1.507%) 0.464∗∗∗

(0.0895)
Replicated CPI (> 1.507%) 1.181∗∗∗

(0.124)
Constant -0.622∗∗∗ -0.849∗∗∗ -0.852∗∗∗ -0.804∗∗∗

(0.150) (0.189) (0.176) (0.164)
Observations 113 113 113 113
Adjusted R2 0.748 0.794 0.810 0.812
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Index begins in 2000
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4.4 Are other price index methodologies superior?

There have been a number of analyses that have suggested that one way to improve the CPI

is to move from Dutot index of prices (which is comprised of a simple average of prices) to

a Jevons index (which uses a geometric average of prices) at the lower level. Both methods

are acceptable according to ILO standards, and the ILO reports that slightly more countries

use the Dutot method than the Jevons.16 For example, Belgium, Germany, and the U.K.

also use Dutot indexes. However, many countries, including the U.S., switched to the Jevons

methodology in the 1990s because it better controls for consumer substitution. It therefore is

reasonable to ask whether a methodology akin to that used by the U.S. in the construction of

the PCE deflator eliminates the non-linearity. In order to assess the importance of arithmetic

versus geometric averaging, we replicated the methodology used by the BLS in the selection

of the price quotes, and then constructed a price index based on the PCE deflator that

consisted of geometric averaging at the lower level and a Törnqvist index at the upper

level.17 The results from this exercise are presented in Table 5. If we compare our results

based on US methodology with those using Japanese methodology in Tables 2 or 4, we see

that using geometric averaging improves our measure of inflation both in terms of raising the

R2 and in terms of reducing the level of the bias. We can see this most clearly in Figure 8,

which plots the movements of the bias in the grocery CPI (πCPIt −πTt ) against its level (πCPIt )

in green, and the movement of the bias in our replication of the PCE deflator (πPCEt − πTt )

against its level (πPCEt ) in blue. As one can see from the plots, both indexes tend to overstate
16See http://www.ilo.org/public/english/bureau/stat/download/cpi/survey.pdf.
17In order to do this we replicated both the sample size and the sampling procedure used by the BLS.

The BLS collects prices for 85,000 products each month. These products are classified into 305 entry level
items (ELIs), of which 62 are food as opposed to 135 items in Japan. We chose the number of store-barcodes
according to the following formula:

62 Food ELIs
305 Total ELIs ×

85,000 price quotes
135 Japan CPI items = 128 store-barcodes per Japan CPI item

The BLS chooses products for inclusion on a rotating basis. The BLS methodology replaces 1/16th of their
sample of price quotes each quarter, and we replicated this in our data. We did this by resampling 8 store-
barcodes in each of our item categories each quarter. Selection probability was a store-barcode’s share of
the previous quarter’s sales within its CPI item. Sampling weights were based on the sales of each barcode
in the two years prior to each base year.
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inflation. However, the extent to which the Japanese CPI overstates inflation increases much

more dramatically than the upward bias in the replicated PCE deflator. The upward bias

in the Japanese CPI is largest at 1.5 percentage points when measured inflation approaches

2 percent and decreases thereafter, while the upward bias in the replicated PCE deflator

increases consistently but slowly with the level of measured inflation never reaching more

than one percentage point. Furthermore, although our replicated PCE deflator indicates that

a substantial share of movement in the PCE is noise at low inflation rates, our replicated PCE

deflator does appear more accurate than the Japanese CPI. A rise of measured inflation from

0 percent to 2 percent is associated with a 1.4 percent increase in inflation if when using the

PCE deflator methodology but only 1 percent when using the Japanese CPI methodology.

Table 5
Replicated PCE vs. Tornqvist Inflation Regressions (Lag-11 Newey-West Standard Errors)

Tornqvist Tornqvist Tornqvist Tornqvist
Replicated PCE 0.925∗∗∗ 0.789∗∗∗

(0.0791) (0.0480)
Replicated PCE2 0.0635∗∗∗

(0.0121)
Replicated PCE (≤ 1%) 0.668∗∗∗

(0.0623)
Replicated PCE (> 1%) 1.202∗∗∗

(0.0964)
Replicated PCE (≤ 2.251%) 0.725∗∗∗

(0.0663)
Replicated PCE (> 2.251%) 1.454∗∗∗

(0.0812)
Constant -0.433∗∗∗ -0.645∗∗∗ -0.657∗∗∗ -0.591∗∗∗

(0.0877) (0.0950) (0.0992) (0.0910)
Observations 240 240 240 240
Adjusted R2 0.898 0.923 0.921 0.925
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Index starts in January 1991, the first month we have 2 full calendar years’ worth of data.
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Figure 8
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Assessing Bias from Measured Inflation

One obvious question is how important are sampling errors versus formula errors in the

generation of measurement errors in price indexes. We can easily address this question in

the case of the PCE deflator methodology by maintaining the BLS sampling technique but

switching the price aggregation method from a simple geometric average (the Jevons index)

to the Törnqvist. By constructing this “PCE Törnqvist” index, we eliminate all of the

formula bias in the price estimate but keep errors due to sampling only a subset of prices.

Figure 8 and Table 6 report the results of this exercise. Our results suggest that eliminating

the formula bias substantially improves the accuracy relative to the purposive sampling

approach. Figure 8 shows that moving from the PCE deflator formula to a Törnqvist index

yields a much better predictor of the level of true inflation: the bias drops to around a third of

the bias in the replicated PCE deflator. The relationship between the Törnqvist index with

the replicated BLS sample is still non-linear, but the kink is at a lower level of inflation than

the kink in either the replicated PCE deflator or the official grocery CPI. Moreover, the bias
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becomes fairly stable when measured inflation is above 1 percent. In fact, the final column

in Table 6 shows that the PCE deflator Törnqvist index moves almost one-to-one with true

inflation when inflation exceeds 0.6 percent per year. In other words, if the BLS used the

correct aggregation formula, actual and measured inflation would move one-to-one at most

levels of inflation even if the sampling methodology were unchanged. This establishes that it

is the use of the wrong formula and not the sampling techniques that is the principal culprit

generating measurement errors in the PCE deflator methodology.

Table 6
Tornqvist PCE (All Stores) vs. Tornqvist (All Stores) Inflation Regressions (Lag-11 Newey-West

Standard Errors)

Tornqvist Tornqvist Tornqvist Tornqvist
Tornqvist PCE 0.896∗∗∗ 0.818∗∗∗

(0.0465) (0.0206)
Tornqvist PCE2 0.0420∗∗∗

(0.00401)
Tornqvist PCE (≤ 1%) 0.710∗∗∗

(0.0341)
Tornqvist PCE (> 1%) 1.120∗∗∗

(0.0306)
Tornqvist PCE (≤ .611%) 0.695∗∗∗

(0.0317)
Tornqvist PCE (> .611%) 1.087∗∗∗

(0.0306)
Constant -0.0610 -0.261∗∗∗ -0.286∗∗∗ -0.311∗∗∗

(0.0614) (0.0495) (0.0557) (0.0531)
Observations 262 262 262 262
Adjusted R2 0.957 0.975 0.974 0.974
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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4.5 Applicability of our results for the broader CPI

Another way of seeing that formula errors are driving our results more than sampling errors

can be garnered from realizing that the CPI errors are not mitigated much by building

indexes that use more categories of goods. We can obtain some sense of how much working

with data for a larger set of items might matter by bootstrapping the underlying errors in

the CPI and seeing how the variance of the CPI falls with as we average over more product

categories. Any CPI measure of aggregate prices can be thought of as a weighted average

over a set of K individual item indexes. Thus we can write:

πCPIKt =
∑
i∈K

wCPIKi,t πCPIi,t , (12)

where πCPIKt is the CPI computed over set of K items, wKi,t is the weight of item i in a CPI

computed over set of K items, and πCPIi,t is the CPI item index. Similarly, one can define a

Törnqvist index over the same set of items:

πTKt =
∏
i∈K

(
πTi,t
)wTKi,t − 1, (13)

where πTKt is a Törnqvist index computed over the K items, wTKi,t is the Törnqvist weight of

item i in a Törnqvist index computed over the K items, and πTi,t is the Törnqvist item index.

We now can define the bias in the K item index as φKt ≡π
CPIK
t -πTKt , and its variance across

all time periods as σ2
φK

. Similarly, we can define share of of the K items in the full CPI as

WK = 0.168
T

∑
t∈T,i∈K w

CPIK
i,t , where T is the number of time periods, and 0.168 is the share

of the total CPI expenditure categories in our data. For each value of K from one to 178,

we can draw fifty samples with replacement and record the values of σ2
φK

and WK .

Figure 9 plots the result of this exercise. Not surprisingly, we see that the bias variance

declines with sample size, but what is striking is that the impact of increasing the sample

size has a rapidly diminishing effect on reducing the variance. This is exactly what one

might have expected given that some of the variance of the error is due to formula errors
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Figure 9
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and not due to simply having a larger sample. Indeed if we fit a Weibull function to this

distribution, we estimate that using the full sample of all CPI products would only reduce

the variance by 30 percent relative to our sample, and this result, of course, assumes that

the sampling and formula errors in the non-grocery components of the CPI are not higher

than those within the grocery sector. Thus, it appears that the mere fact that the CPI

is computed over more items is unlikely to dramatically alter the fact that formula biases

generate significant inflation measurement errors that cannot be averaged away.

4.6 Can time averaging reduce non-linearities?

Comprehensive overhaul of a country’s price indexes is not easy, so one question that remains

is whether there are any quick fixes that could mitigate this problem. One such approach

is to use time averaging and compute inflation over longer periods: perhaps a 24-, 36-, or

48-month inflation rate will be more accurate than a 12-month one. Averaging might help
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eliminate errors if the covariance of inflation in consecutive years was positive. The intuition

behind this insight comes from the fact that if true inflation rates are positively correlated

but the noise is not, then the noise will tend to cancel as we average over longer time periods,

but the true inflation signal will amplify. This is essentially the same intuition about why a

sample average produces a lower variance estimate of a mean than a single observation.18

We can see the impact of time averaging in Table 7. Since most of the non-linear relation-

ship between CPI inflation and actual inflation can be captured by the quadratic functional

form (because there are not many periods of severe deflation in Japan), we will focus our

results on this specification. As one can see, computing inflation over 24, 36, or 48 month

periods does not tend to change the coefficients much, although the standard errors rise,

presumably because longer differences require us to throw out more data.

Table 7
Grocery CPI vs. Item Tornqvist Inflation Regressions (Newey-West Standard Errors)

Base Gap 12 24 36 48
Grocery CPI 0.553*** 0.571** 0.621** 0.633***

(0.151) (0.221) (0.241) (0.198)
Grocery CPI2 0.119** 0.164** 0.153* 0.110

(0.0494) (0.0753) (0.0906) (0.101)
Constant -0.908*** -0.876*** -0.823*** -0.785***

(0.224) (0.263) (0.225) (0.190)

Implied Price Stability Target 1.285 1.152 1.052 1.049
Adjusted R2 0.717 0.727 0.732 0.773
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

18Temporal aggregation reduces the variance of random variables with non-negative serial correlation and
the rate of decay is increasing with the extent to which the variable is serially correlated (see, for example,
Wei [1990]). Let ΠT

t,m = 1
m

∑m
t=1 π

T
t−m+1 and ΦTt,m = 1

m

∑m
t=1 φt−m+1 be true inflation and the CPI bias

aggregated over m periods and βm = V ar(ΠT
t,m)/[V ar(ΠT

t,m) + V ar(Φt,m)] is the conditional expectation
coefficient on expected annualized inflation implied by equation 11. In the extreme case, in which we assume
that true inflation is positively serially correlated but the noise is not, then the variance of true inflation,
V ar(ΠT

t,m), will decay faster with the order of temporal aggregation,m, than the variance of the measurement
error, V ar(Φt,m) and, therefore, that the conditional expectation coefficient, βm, increases towards one as
m increases.
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The results in this section provide two important takeaways for understanding the impli-

cations of our technical results when using CPI data. First, the fact that formula biases are

not dramatically reduced when moving from the analyses of subsamples of the CPI to full

samples means that CPI index errors are likely to be a problem for inflation measurement in

low inflation regimes. Second, one possible solution to these problems is to measure inflation

using longer time averages.

5 Conclusion

This paper shows that the relationship between the economic concepts of inflation and the

inflation indexes generated by statistical agencies is nonlinear. In particular, changes in the

CPI and PCE deflator overstate changes in true inflation when inflation is low, and are only

accurate measures when inflation is high. This result stems from the fact that much of the

movement in the CPI (or our replicated PCE deflator) in low inflation regimes arises from

formula errors in the computation of price indexes. Since the variance of true inflation is

high in high inflation regimes, the signal-to-noise ratio of the CPI rises with inflation making

it more accurate in inflationary periods.

Moreover, our estimates suggest that the the biases of official inflation indexes are not

constant. Inflationary biases peak when official inflation rates are at two percent per year,

but approach zero at higher inflation rates. Thus, there is no single bias number for the CPI.

Moreover, we are also able to show that even a chained official index, like the PCE deflator,

has an upward bias relative to a Törnqvist index. This bias is largely due to the usage of

unweighted geometric averages of price quotes at the lower level.

Our results have a number of implications for policy. First, given the biases inherent

in the Japanese CPI, an inflation target of 2 percent approximately corresponds to price

stability. Similarly, our results suggest that price stability in the U.S. would correspond

to a PCE deflator inflation rate of 1 percent. These result also suggest that the switch
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to geometric averaging at the lower level of the U.S. CPI and chaining at the upper level

have not eliminated the upward bias in the PCE deflator or chained-CPI. This implies that

indexing benefits to a chained index may provide real income gains to recipients.

Second, our results also imply that central banks would do well to pay less attention to

official inflation measures in low inflation regimes. Similarly, economists using official price

indexes to measure inflation should be cognizant of the fact that these measures do not

always move one to one with actual inflation.
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Appendix A Derivations

Variance of the CPI: The CPI is related to the Törnqvist index by the following equation

πCPIt :=
∑
i

(wit + εit) (πit + δit) = πTt +
∑
i

witδit +
∑
i

εitπit +
∑
i

εitδit. (14)

By expanding (14), we obtain

V
(
πCPIt

)
= V

(
πTt
)

+ V

(∑
i

witδit

)
+ V

(∑
i

εitπit

)
+ V

(∑
i

εitδit

)

+ 2Cov
(
πTt ,

∑
i

witδit

)
+ 2Cov

(
πTt ,

∑
i

εitπit

)
+ 2Cov

(
πTt ,

∑
i

εitδit

)

+ 2Cov
(∑

i

witδit,
∑
i

εitπit

)
+ 2Cov

(∑
i

witδit,
∑
i

εitδit

)
+ 2Cov

(∑
i

εitπit,
∑
i

εitδit

)
.

Notice that all the covariance terms are zero because the error terms are independent. For

example, consider the first covariance term. We know that the expected value of the weighted

average of the error terms is zero because

E

[∑
i

witδit

]
=
∑
i

E [witδit] =
∑
i

E [wit]E [δit] = 0

which gives

nCov

(
πTt ,

∑
i

witδit

)
= E

[(∑
i

witπit

)(∑
i

witδit

)]
= E

∑
i,j

witwjtπitδjt


=

∑
i,j

E [witwjtπit]E [δjt] = 0.

A similar argument holds for all other covariance terms. Therefore,

V
(
πCPIt

)
= V

(
πTt
)

+ V

(∑
i

witδit

)
+ V

(∑
i

εitπit

)
+ V

(∑
i

εitδit

)
. (15)

We can write the second term of (15) in terms of the underlying variances of the errors

through a bit of algebra. First recall E [∑iwitδit] = ∑
iE [witδit] = ∑

iE [wit]E [δit] = 0.
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Now we can write,

V

(∑
i

witδit

)
= E


 1
n

∑
i,j

(
sit−1 + γ

2 (νit − νjt)
)
δit


2


= 1
n2

∑
i,j,k

E
[(
sit−1 + γ

2 (νit − νjt)
)(

sit−1 + γ

2 (νit − νkt)
)
δ2
it

]
(∵ δit⊥δjt if i 6= j)

= σ2
δt

n2

∑
i,j,k

E

[(
s2
it−1 + γ2

4 (νit − νjt) (νit − νkt)
)]

(∵ E [νit − νkt] = 0∀i, k)

= σ2
δt

n2

∑
i,j,k

s2
it−1 + γ2

4

∑
i,j,k

E
[
ν2
it

]
︸ ︷︷ ︸

=σ2
νt

−
∑
i,j,k

E [νitνkt]︸ ︷︷ ︸
=σ2

νt
1{i=k}

−
∑
i,j,k

E [νjtνit]︸ ︷︷ ︸
=σ2

νt
1{j=i}

+
∑
i,j,k

E [νjtνkt]︸ ︷︷ ︸
=σ2

νt
1{j=k}




= σ2
δt

n2

∑
i

s2
it−1

∑
j,k

1 + γ2

4 σ
2
νt

∑
i,j,k

1−
∑
i,j,k

1{i=k} −
∑
i,j,k

1{j=i} +
∑
i,j,k

1{j=k}


= σ2

δt

n2

(
n2∑

i

s2
it−1 + γ2

4 σ
2
νt

(
n3 − n2 − n2 + n2

))

= σ2
δt

(∑
i

s2
it−1 + γ2

4 (n− 1)σ2
νt

)
.

We can rewrite the third term of (15) in terms of the underlying variances by first remem-

bering that E [∑i εitπit] = ∑
iE [εit]E [πit] = 0. The independence of εit guarantees that the

cross terms disappear, and we get

V

(∑
i

εitπit

)
= E

(∑
i

εitπit

)2
 =

∑
i

E
[
(εitπit)2

]
=
∑
i

E
[
ε2
it

]
E
[
π2
it

]
= nσ2

εt

(
σ2
µt + σ2

νt

)
.

Finally, since the error terms are iid when i 6= j and E [εit] = E [δit] = 0, the fourth term of

(15) can be rewritten as

V

(∑
i

εitδit

)
= nσ2

εtσ
2
δt .
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In summary,

V
(
πCPIt

)
= V

(
πTt
)

+ σ2
δt

(∑
i

s2
it−1 + γ2

4 (n− 1)σ2
νt

)
+ nσ2

εt

(
σ2
µt + σ2

νt

)
+ nσ2

εtσ
2
δt

= V
(
πTt
)

+ σ2
δt

(∑
i

s2
it−1 + γ2

4 (n− 1)σ2
νt

)
+ nσ2

εt

(
σ2
µt + σ2

νt + σ2
δt

)

Covariance of the CPI and true inflation: Note Cov
(
πTt ,

∑
iwitδit

)
= Cov

(
πTt ,

∑
i εitπit

)
=

Cov
(
πTt ,

∑
i εitδit

)
= 0. Hence,

Cov
(
πCPIt , πTt

)
= V

(
πTt
)

+ Cov

(
πTt ,

∑
i

witδit

)
+ Cov

(
πTt ,

∑
i

εitπit

)
+ Cov

(
πTt ,

∑
i

εitδit

)
= V

(
πTt
)
.

Appendix A.1 Decomposing CPI Measurement Error

We can use the upper-level components of the item Törnqvist to study the measurement error

in the Japanese CPI through the lens of the theoretical framework presented in Section 3

above. In this section, we derived the relationship between the aggregate measurement error

in the Japanese CPI and the measurement errors in the underlying item-level components

of this index (Equation 8). We can now define these errors in the weight and item inflation

index components empirically as

εITi,t = wCPIi,t − wTi,t (16)

δITi,t = πCPIi,t − πTi,t (17)

The relationship between these errors and the aggregate measurement error defined in Equa-

tion 8 also depended on the aggregate and idiosyncratic components of the true item level

inflation. We extract these components by running the following unweighted regression:

πTi,t = µt + νi,t.

In Section 3, we additionally formally characterized the measurement error in the Japanese
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CPI. We found that the conditional expectation of true inflation based on observed inflation

depends crucially on the variances of the inflation components (µt, νit) and errors (εt, δit)

listed above. To characterize the inference problem empirically, we estimate these variances.

We define the variance of the aggregate component of inflation, µt as

σ̂2
µt = 1

N

N∑
t=1

(
µ̂t − ¯̂µ

)2
, where ¯̂µ = 1

N

N∑
t=1

µ̂t (18)

and where N is the number of observations (months) in the sample. We then calculate the

variances of ε, δ, ν within each item as

σ̂2
xi,t

= 1
N

N∑
t=1

(
x̂i,t − ¯̂xi

)2
, where ¯̂xi = 1

N

N∑
t=1

x̂i,t (19)

where x = ε, δ, ν specifies the variable under consideration. We aggregate these variances

across items using Törnqvist item weights:

σ̂2xt =
I∑
i=1

wTi,tσ̂
2
xi,t

We use the values of each of these estimated variances to solve for the implied value of γt by

equating

Cov
(
πTt , π

CPI
t

)
V ar (πCPIt ) =

V ar
(
πTt
)

V ar (πTt ) + σ2
δt

∑n
i=1 s

2
it−1 + n

[
σ2
εtσ

2
µt + σ2

εtσ
2
νt + σ2

εtσ
2
δt

+ γ2
t

4

(
σ2
δt
σ2
νt

)]
(20)

using variables’ period t values then solving for γt.

Appendix B Index Calculation

Our price and quantity data are at a daily frequency, so we sum over quantity and expenditure

to find their monthly values. We then back out the monthly price by dividing. For all days
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Dt in the month t, in each store s and JAN code j, we define

pj,s,t =
∑
d∈Dt pj,s,dqj,s,d∑

d∈Dt qj,s,d
(21)

We aggregate the daily item purchase and price data to a monthly frequency denoting

the sales-weighted average price charged by store s for JAN code j in month t as pj,s,t and the

corresponding sales quantity qj,s,t. In order to do the decompositions indicated in equation

4, we need to work with Törnqvist index that is composed of Törnqvist item indexes. Each

“item” level index is a Törnqvist index of the twelve-month within-store JAN code price

changes aggregated across all JAN codes that belong to an “official” item category. The

item-level Törnqvist index for item i in month t, πTi,t, is defined as follows:

1 + πTi,t =
∏

j∈Ji,s,[t−12,t]

∏
s∈S[t−12,t]

(
pj,s,t
pj,s,t−12

)wTj,s,t

where Ji,s,[t−12,t] is the set of item i JAN codes sold in store s in months t− 12 and t; S[t−12,t]

is the set of stores in the sample for months t− 12 and t; and wTj,s,t is item Törnqvist weight

for JAN code j in store s, and month t given by

wTj,s,t = sj,i,s,t + sj,i,s,t−12

2 for sj,i,s,t = pj,s,tqj,s,t∑
j∈Ji,s,[t−12,t]

∑
s∈S[t−12,t]

pj,s,tqj,s,t

The item Törnqvist index aggregates these indexes across items i = 1, ..., I, using a weighted

geometric average:

1 + πTt =
I∏
i=1

(
1 + πTi,t

)wTi,t (22)
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with Törnqvist item weights, wTi,t given by

wTi,t = si,t + si,t−12

2 for si,t =
∑
j∈Ji,s,[t−12,t]

∑
s∈S[t−12,t]

pj,s,tqj,s,t∑I
i=1

∑
j∈Ji,s,[t−12,t]

∑
s∈S[t−12,t]

pj,s,tqj,s,t
.

19

19In the theory section, we make the approximation that ln
(
1 + πTt

)
= πTt , but equation 22 does not make

this approximation. This has virtually no impact on the results.
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