
 

 

 

 

 

 

C A R F  W o r k i n g  P a p e r 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CARF is presently supported by Bank of Tokyo-Mitsubishi UFJ, Ltd., Dai-ichi Mutual Life 
Insurance Company, Meiji Yasuda Life Insurance Company, Nomura Holdings, Inc. and 
Sumitomo Mitsui Banking Corporation (in alphabetical order). This financial support enables 
us to issue CARF Working Papers. 

 
 

 

 

 

 

 

 

 

CARF Working Papers can be downloaded without charge from: 
http://www.carf.e.u-tokyo.ac.jp/workingpaper/index.html 

 

 

 

 

Working Papers are a series of manuscripts in their draft form.  They are not intended for 
circulation or distribution except as indicated by the author.  For that reason Working Papers may 
not be reproduced or distributed without the written consent of the author. 

  
CARF-F-340 

 
Speculative Attacks with Multiple Targets 

 
 
 

Junichi Fujimoto 
The University of Tokyo  

 
 

January 2014 



Speculative Attacks with Multiple Targets

Junichi Fujimoto∗

University of Tokyo

First Version: October 2009
This Version: January 2014

Abstract

This paper examines a global games model of speculative attacks in which spec-

ulators can choose to attack any one of a number of targets. In the canonical global

games model of speculative attacks with a single target, it is well known that there

exists a unique equilibrium that survives iterative deletion of dominated strategies,

characterized by the threshold values of the private signal and the fundamentals.

This paper shows that with two targets, there is again a unique, dominance-solvable

equilibrium. In this equilibrium, the threshold value of signal for attacking a given

currency is a function of the signal for the other target, and the threshold value of

fundamentals that determines the outcome of attack on one currency is a function

of the other target’s fundamentals. Under certain condition on the noise distribu-

tion, the result is shown to extend to environments with any N symmetric targets.

This paper then presents a number of numerical examples and shows, among other

results, that more accurate private signals have a decoupling effect on the outcomes

of attack on different currencies.
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1 Introduction

Global games of regime change are “coordination games of incomplete information in

which a status quo is abandoned once a sufficiently large fraction of agents attack it”

(Angeletos, Hellwig, and Pavan (2007)). In the typical setup, agents receive a noisy

private signal of the fundamentals, which represents the strength of the regime, or the

status quo. The agents then individually decide whether to attack, or more generally

take an action against, the regime, and when the fraction of agents attacking exceeds

a certain threshold, which depends on the fundamentals, the attack succeeds and the

regime is abandoned. Since the seminal work of Morris and Shin (1998), which applies

such games to analyze speculative attacks against a currency peg, these games have been

actively applied to model a wide range of crisis situations.

This paper extends the literature on global games of regime change by allowing agents

to attack any one of multiple regimes, or targets. Such a situation may arise in a number

of real-life environments. In the context of currency crises, speculators may, as during the

Asian crisis of 1997-98, face multiple emerging countries with currency pegs, and choose

from among these currencies to allocate their limited resources for attack, such as wealth.

Similar scenarios apply to sovereign debt crises, including the recent episode in Europe in

which the debt and credit default swaps of several countries, rumored to be facing potential

default, were subject to speculative trading. Thus, while this paper places the discussion

in the context of currency crises, its implications extend to a much broader context.1

In the canonical global games model of regime change with a single target, it is well

known that iterative deletion of (strictly) dominated2 strategies yields a unique equilib-

rium.3 The equilibrium is a threshold equilibrium characterized by a threshold value of

the private signal that determines whether an agent participates in an attack, and by a

threshold value of the fundamentals that determines whether the regime is abandoned.

The main result established in this paper is that a unique, dominance-solvable equilib-

rium continues to exist in a variety of environments with multiple targets. The paper first

shows that with two targets, the equilibrium is always unique and dominance solvable.

This equilibrium is a threshold equilibrium characterized by threshold signal functions

and threshold fundamentals functions—for each country, the threshold value of the pri-

vate signal is a function of an agent’s signal for the other country, and the threshold value

of the fundamentals is a function of the fundamentals of the other country. This paper

then shows, using the contraction mapping theorem, that with any N targets that are ex

1Other possible applications include situations in which investors decide which project to invest in,

or rioters choose which government facility to attack, where the success of these activities requires the

participation of at least a minimum mass of agents. Using the global games approach, Dasgupta (2007)

and Atkeson (2000) analyze similar situations with, respectively, a single project and target of attack.
2Throughout this paper, “dominated” implies being strictly, rather than weakly, dominated.
3See, e.g., Morris and Shin (1998). Note that multiple equilibria may arise when there is public

information about the fundamentals, either exogenous (Hellwig (2002)) or endogenous (Angeletos and

Werning (2006), Hellwig, Mukherji, and Tsyvinski (2006)) that is sufficiently precise.
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ante homogeneous, there exists a threshold equilibrium. Under some assumption on the

noise distribution, this is shown to be the unique, dominance-solvable equilibrium.

The key to proving these results is to extend the iterative deletion procedure to the

multiple-target environment. As in the case of N = 1, this procedure involves generating

sequences of the threshold signal and fundamentals from “below” and “above”, or from

the lower and upper dominance regions. However, here the objects of interest are func-

tions, and since speculators compare the expected profits from attacking different targets,

iterative deletion requires proceeding simultaneously from below and above. A unique

equilibrium obtains once the two function sequences converge to the same limit.

In such a unique equilibrium, an agent attacks a country more aggressively when

receiving strong signals for other countries, and a country is more vulnerable to an attack

when other countries have strong fundamentals.4 This result is in line with actual crisis

episodes, in which speculators, facing multiple potential targets, concentrate their attacks

on the “weakest link”. The model thus provides a complementary perspective to models of

contagion, which also examine attacks on multiple targets, but in a sequential framework.5

This paper then explores, mainly focusing on the two-country case, several numerical

examples, and obtains interesting results. First, the presence of a second target facilitates

the survival of a target, if the total measure of speculators is fixed; if the measure of

speculators doubles as does the number of targets, however, the range of fundamentals

in which both countries sustain the peg becomes smaller than when the two countries

separately face speculative attacks. Second, increased precision in speculators’ private

signals has a decoupling effect ; since more accurate signals allow speculators to better

discern the country with the weaker fundamentals and to concentrate their attack on that

country, the two countries are more likely to face different outcomes from an attack.

Finally, this paper examines the introduction of exogenous public information as an

extension. The precision of public and private information turns out to play a key role

in guaranteeing a unique equilibrium in environments with multiple targets, as with the

known sufficient condition for equilibrium uniqueness with a single target.

An important theoretical feature of this paper’s model is that, unlike typical global

games models, it does not belong to supermodular games, nor games of strategic com-

plementarities (GSC).6 The model certainly has elements of strategic complementarities,

the key feature in such games, in that each speculator has greater incentive to attack a

given currency when others do so. In the context of the model, however, supermodular

games also require each speculator to have the freedom to attack multiple currencies at

4Throughout this paper, increasing (decreasing) implies strictly increasing (decreasing), and nonde-

creasing (nonincreasing) implies weakly increasing (decreasing).
5The relation of this paper to the issue of contagion of crises is discussed in Section 6.1.
6For details on these games, see Milgrom and Roberts (1990), Vives (1990, 2005), and Topkis (2001).

This paper follows the usage in Vives (2005), according to which GSC is an intuitive concept referring to

games in which the best responses of agents are increasing in the actions of rivals, whereas the technical

concept of supermodular games provides sufficient conditions for the best responses to be increasing.
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the same time, and to have greater incentive to attack a given currency when attacking

another currency or currencies. This is not the case here since speculators can attack

at most one target, which technically corresponds to an agent’s action set not being a

lattice.7 Thus, one cannot apply the known results for these games, such as the existence

of the largest and smallest pure strategy equilibria, obtained by lattice theoretic methods.

The model of this paper has similar appearances as the models of Oury (2009, 2013),

which extend the general global games environment of Frankel, Morris, and Pauzner (2003)

by introducing multidimensional actions and payoff parameters. However, Oury (2009,

2013) do not restrict agents’ action sets as this paper does,8 and pursue multidimensional

global games within the framework of GSC. Thus, while the models of Oury (2009, 2013)

are quite general, they do not include the present model as a special case, which is why the

mathematical approach used in this paper and in these studies differ completely. From

the practical standpoint, while the models of Oury (2009, 2013) have many potential

applications, the model of this paper has an advantage when analyzing situations in

which an agent’s overall decisions are naturally constrained by the agent’s total available

resources. To elaborate, the setup of this paper corresponds to a situation in which

wealth constrains one’s total amount of short selling in all target currencies. This is more

plausible than if wealth constrained one’s short position in each currency separately, as

would be the case if one instead applied the framework of Oury (2009, 2013).

This paper also has some similarities with Steiner (2007), which examines a mobile

game in which agents in a sector coordinate to make an investment and have the outside

option of leaving the current sector for other sectors. However, agents in Steiner (2007)

make the binary decision of staying or leaving based on the private signal of the funda-

mentals of only the current sector, instead of directly choosing one of multiple sectors

based on the signals of the fundamentals of all sectors, as do the speculators in this pa-

per. The twin crises model of Goldstein (2005) also addresses multiple regimes, the bank

and the currency peg. In Goldstein (2005), however, the two regimes share the same

fundamentals and face different groups of agents, depositors and speculators, whereas

in the present paper, multiple regimes with different fundamentals face the same group

of agents. Therefore, Goldstein (2005) does not pursue the problem of choosing from

7A lattice is a partially ordered set in which any two elements have a least upper bound (sup) and a

greatest lower bound (inf) in the set. In supermodular games and GSC of incomplete information, each

action set is assumed to be at least a complete lattice, or a lattice in which every nonempty subset has a

sup and an inf. This requirement is satisfied for general unidimensional global games models, since any

subset of R is a lattice, and any finite lattice is complete. Footnote 12 explains why this is not true for

the present model. The global games models of Dasgupta (2004) and Goldstein and Pauzner (2005) also

fail to be GSC, but for a different reason, namely, lack of global strategic complementarities.
8In Oury (2009), each action set is a finite (hence, complete) lattice. In Oury (2013), each action set

is a finite linearly ordered set, which is again a complete lattice. Thus, in both studies, the action set has

a greatest and a smallest element, which is critical in the analysis. The action set is a finite lattice also

in McAdams (2003), which provides a sufficient condition for the existence of an isotone pure strategy

equilibrium in a class of games of incomplete information with multidimensional actions and types.
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multiple regimes, the key theme of the present paper.

Finally, this paper is related to studies that adopt the contraction mapping approach

to examine the equilibrium of games of incomplete information. In particular, Mathevet

(2010) considers a finite unidimensional global games model in which the existence of pure

strategy equilibria follows from the theory of GSC, and proves the uniqueness of equilib-

rium by showing that the best response function is weak contraction. The present paper

considers a multidimensional global games environment that does not belong to GSC, and

applies the contraction mapping theorem to show the existence of a threshold equilibrium

in one of the cases analyzed, which differs substantially from Mathevet (2010).9

2 Model

The model follows a simplified version of the model of Morris and Shin (1998), except

that speculators can choose to attack one of multiple potential targets, creating a new

dimension of coordination. There are N > 1 countries indexed by j ∈ J ≡ {1, 2, . . . , N},
whose currencies are also referred to as currency j. Each currency is pegged to a foreign

currency. Country j’s economic fundamentals are denoted as θj ∈ R, and (θj)j∈J are

independently drawn from a uniform distribution over R.10

There is a continuum of risk-neutral speculators, indexed by i ∈ [0, 1]. Instead of

observing the true values of θj , speculators receive noisy private signals of their realization.

Speculator i’s private signal of θj , denoted as xji , is expressed as

xji = θj + ǫji , (1)

where
(

ǫji
)

j∈J
are independent across i and j, and each ǫji is drawn from a distribution

with the cumulative density function (cdf) Ψj and the probability density function (pdf)

ψj . The cdf Ψj is defined on R̄ = R∪{−∞,∞}, where Ψj (−∞) = 0 and Ψj (∞) = 1.

The pdf ψj is continuous and strictly positive over R.11

Based on these N signals xi ≡
(

x1i , x
2
i , . . . , x

N
i

)

=
(

xji , x
−j
i

)

, speculators individually

decide whether to attack any, but at most one, of the N currencies. In what follows, su-

perscript −j implies that the variable pertains toN−1 countries (or currencies) other than

j. Speculators’ common action set is C =
{

(

a1, a2, . . . , aN
)

∈ {0, 1}N |Σj∈Ja
j ∈ {0, 1}

}

,

where aj = 1 implies attacking currency j and aj = 0 implies not attacking it. The

restriction Σj∈Ja
j ∈ {0, 1} is theoretically very important, since it prevents C from being

9Levin (2001) and Mason and Valentinyi (2007) also resort to the contraction mapping argument to

prove equilibrium uniqueness in classes of games related to, but distinct from, global games.
10This assumption on the distribution of θj implies that speculators have uninformative (or improper)

priors on θj , such that with the independent noise assumed below, a speculator’s posterior belief on θj

depends only on the private signal for θj . For a discussion on improper priors, see Hartigan (1983).
11Normal distribution satisfies this assumption, and is assumed in Sections 5 and 6.2.
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a lattice,12 as required for supermodular games and GSC. Speculator i’s pure strategy

is a function si : RN → C. Each component function of si is written as sji , that is,

si (xi) =
(

s1i (xi) , s
2
i (xi) , . . . , s

N
i (xi)

)

.

While I focus on pure strategy, and do not consider partial attacks, that is inessential

for the analysis below. Thus, assuming that a speculator can attack at most one target is

equivalent to imposing a constraint on the total amount of each speculator’s short selling,

which can be justified, for example, by margin requirements for taking a short position.13

If the measure of speculators attacking currency j14 equals or exceeds the realization

of θj, the attack against j succeeds and country j abandons the peg; currency j then

depreciates, providing profits to those who attacked j. Otherwise, the attack against j

fails and country j sustains the peg. Thus, country j always abandons the peg for θj ≤ 0,

and never does so for θj > 1.

Speculators’ payoffs are summarized in Table 1. The payoff from attacking a particular

currency depends only on the success of that attack, and not on the outcomes of attacks

on other currencies. Speculators attacking currency j receive 1 − cj > 0 if j abandons

the peg, and −cj < 0 otherwise, where cj ∈ (0, 1) is a transaction cost, which may differ

across j. Speculators attacking none of the currencies receive 0 for sure.

Country j abandons the peg Country j sustains the peg

Attack currency j 1− cj −cj
Attack no currency 0 0

Table 1: Payoffs.

3 Analysis

3.1 Threshold Equilibrium

It is well known that the canonical global games model, where N = 1, has a unique,

dominance-solvable equilibrium. Letting xi be speculator i’s signal and θ be the fun-

12To see this, let N = 2. Then, C = {(0, 0) , (1, 0) , (0, 1)}, which is not a lattice under the product

order, since the sup of (1, 0) and (0, 1) is not in C. If attacking both countries were allowed, C would

include (1, 1) and become a lattice. This conclusion is unaltered by letting C ≡ {0, 1, 2}, where the

action a = j ∈ {1, 2} implies attacking country j, and a = 0 implies attacking none. This time, a = 1

and 2 are not ordered, since countries are numbered arbitrarily, so the sup of {1} and {2} is not in C.
13Such a wealth constraint is generally present in global games models of currency crises (see, e.g.,

Morris and Shin (1998) and Corsetti, Dasgupta, Morris, and Shin (2004)). A similar constraint naturally

arises in the context of investment in projects or political riots, to which this paper’s model can also be

applied.
14This equals the fraction of speculators attacking j, since there is a measure one of speculators. One nu-

merical exercise in Section 5.1, however, discusses a case where the measure of speculators differs from one.
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damentals, the equilibrium is characterized by thresholds (x∗s, θ
∗
s) such that speculator i

attacks if and only if xi ≤ x∗s, and the peg collapses if and only if θ ≤ θ∗s .
15

In the present model, the fundamentals of different countries are independent, and so

are the noises in the signals, and further, the payoff from attacking a currency depends

only on whether that country sustains the peg. Despite such lack of intrinsic link between

countries, the fact that speculators can attack at most one target makes their decision to

attack a given currency dependent on the signals of all countries. As a result, whether a

country sustains the peg depends on the fundamentals of all countries.

It is then natural to consider equilibria in which the thresholds for the signal and the

fundamentals of each country are given as functions of, respectively, the signals and the

fundamentals of other countries. The key objects in such equilibria are defined below.

Definition 1 Let xj∗ : R
N−1 → R̄ and θj∗ : R

N−1 → [0, 1] for all j ∈ J . Then,

(a) Speculator i follows a threshold strategy (xj∗)j∈J , where x
j∗ is the threshold signal

function for country j, if sji (xi) = 1 for xji < xj∗
(

x−j
i

)

and sji (xi) = 0 for xji > xj∗
(

x−j
i

)

.

(b) θj∗ is the threshold fundamentals function for country j, if j abandons the peg if and

only if θj ≤ θj∗ (θ−j).

A (symmetric) threshold equilibrium is an equilibrium in which for some (xj∗, θj∗)j∈J ,

all speculators follow the threshold strategy (xj∗)j∈J , and (θj∗)j∈J are the threshold fun-

damentals functions. I also call such an equilibrium a threshold equilibrium (xj∗, θj∗)j∈J ,

and the functions (xj∗, θj∗)j∈J characterizing it equilibrium threshold functions.

For N = 2, I show that there exists a unique, dominance-solvable equilibrium, which is

a threshold equilibrium. For any N countries with the same cost of attack and noise dis-

tribution, I show that there exists a threshold equilibrium, which, under certain condition

on the noise distribution, is again unique and dominance solvable.

In the next subsection, I explain the strategy used to establish equilibrium uniqueness.

3.2 Strategy for Proving Equilibrium Uniqueness

As a first step, I show that iterative deletion of dominated strategies yields sequences

of functions from “below” and “above”, (xj∗n , θ
j∗
n+1)j∈J and (x̄j∗n , θ̄

j∗
n+1)j∈J , such that in

the n-th round of deletion, not attacking currency j is dominated by attacking j if xji <

xj∗n
(

x−j
i

)

, and attacking j is dominated by not attacking j if xji > x̄j∗n
(

x−j
i

)

. Showing that

these sequences both converge to some (xj∗, θj∗)j∈J completes the proof, because then the

threshold strategy (xj∗)j∈J uniquely survives iterative deletion of dominated strategies.

Below, I provide the basic insight for each of these two steps.

15I denote variables in the canonical global games model by dropping superscript j. Appendix A1

discusses how the iterative deletion procedure yields a unique equilibrium in this environment.
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3.2.1 Iterative Deletion of Dominated Strategies

With multiple targets, speculators decide not only whether to attack, but also which

country to attack. As a result, unlike in the case of a single target, the iterative deletion

procedure requires proceeding simultaneously from below and above, by coupling the most

pessimistic (optimistic) belief on the success of an attack toward one currency with the

most optimistic (pessimistic) beliefs on the success of attacks toward other currencies.16

Throughout, let j = 0 correspond to attacking no currency, and J−j ≡ J\ {j} and

J−j
0 ≡ {0} ∪ J\ {j}. For any j ∈ J , let θj∗n , θ̄j∗n : RN−1 → [0, 1] be such that, at the

beginning of the n-th round of deletion, all speculators believe that country j abandons

the peg for θj ≤ θj∗n (θ−j), and sustains the peg for θj > θ̄j∗n (θ−j). Note that θj∗1 = 0 and

θ̄j∗1 = 1, since for θj ≤ 0, country j abandons the peg even if no speculator attacks j, and

for θj > 1, country j sustains the peg even if all speculators attack it.

Consider the n-th round of deletion. For any j ∈ J , let Γj∗
n (xi) (Γ̄

j∗
n (xi)) be the ex-

pected payoff from attacking j, given signals xi, when the threshold fundamentals function

for country j is θj∗n (θ̄j∗n ). Then, given xi, the expected payoff from attacking j must be at

least Γj∗
n (xi) and at most Γ̄j∗

n (xi). Not attacking yields zero, so let Γ0∗
n (xi) = Γ̄0∗

n (xi) = 0.

Now, for any j ∈ J , let xj∗n , x̄
j∗
n : RN−1 → R̄ be such that xji < xj∗n

(

x−j
i

)

implies

Γj∗
n (xi) > max

k∈J
−j
0

Γ̄k∗
n (xi), and xji > x̄j∗n

(

x−j
i

)

implies Γ̄j∗
n (xi) < max

k∈J
−j
0

Γk∗
n (xi).

Then, if xji < xj∗n
(

x−j
i

)

, not attacking j is a dominated action, since the expected payoff

from attacking j is at least Γj∗
n (xi) and that from attacking k is at most Γ̄k∗

n (xi). From

similar reasoning, if xji > x̄j∗n
(

x−j
i

)

, attacking j is a dominated action.

In the n+1-th round, it is taken as given that speculators with signals xji < xj∗n
(

x−j
i

)

will attack currency j, and those with signals xji > x̄j∗n
(

x−j
i

)

will not, which gives rise to

θj∗n+1 and θ̄j∗n+1. Iterating this procedure from θj∗1 = 0 and θ̄j∗1 = 1 yields the sequences

of functions,
(

(xj∗n , θ
j∗
n+1)j∈J

)∞

n=1
and

(

(x̄j∗n , θ̄
j∗
n+1)j∈J

)∞

n=1
. I refer to such functions as xj∗n

and θj∗n+1 as lower threshold functions, and x̄j∗n and θ̄j∗n+1 as upper threshold functions.

3.2.2 Convergence of Threshold Functions

One can show that with adequate choices of xj∗n and x̄j∗n , lower and upper threshold

functions become continuous and monotonic, and
(

(xj∗n , θ
j∗
n+1)j∈J

)∞

n=1
and

(

(x̄j∗n , θ̄
j∗
n+1)j∈J

)∞

n=1

become, respectively, nondecreasing and nonincreasing sequences. The proofs use these

properties and show that both sequences have the same limit, denoted as (xj∗, θj∗)j∈J . A

key role in this analysis is played by the variable defined below.

Definition 2 For any j ∈ J , λj ≡ ‖ψj‖ / (1 + ‖ψj‖), where ‖ψj‖ ≡ sup
ǫ
j
i∈R

∣

∣ψj
(

ǫji
)
∣

∣.17

Since the pdf ψj is positive and continuous over R, ‖ψj‖ is bounded, and thus λj ∈
(0, 1). When ψj = ψ, I drop the superscript on λj and write λ.

16Formal mathematical formulation of the iterative deletion procedure is set forth in Appendix B.
17Throughout, ‖·‖ denotes a sup norm, and ‖·‖E denotes a Euclidean norm.
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Now, for N = 1, the sequences of threshold signals and fundamentals generated by

the iterative deletion procedure, (θ∗n, x
∗
n)

∞
n=1

and
(

θ̄∗n, x̄
∗
n

)∞

n=1
, are shown to satisfy18

x̄∗n − x∗n = θ̄∗n − θ∗n, (2)

θ̄∗n+1 − θ∗n+1 ≤ λ (x̄∗n − x∗n) . (3)

Combining (2) and (3) yields

θ̄∗n+1 − θ∗n+1 ≤ λ
(

θ̄∗n − θ∗n
)

, (4)

so given λ ∈ (0, 1), θ̄∗n − θ∗n → 0, and thus x̄∗n − x∗n → 0, as n → ∞. Note that the vital

force behind this convergence result is the constant λ in (3), which measures the impact

of the difference in threshold signals on the difference in resulting threshold fundamentals.

The proofs for N > 1 resort to a similar argument as above and show that as n→ ∞,

djn → 0 for all j ∈ J , where djn ≡
∥

∥θ̄j∗n − θj∗n
∥

∥ = supθ−j∈RN−1

∣

∣θ̄j∗n (θ−j)− θj∗n (θ−j)
∣

∣. Now

the objects of interest are functions, but there is a close analogue of (3),19 and the constant

λj in that expression plays an essential role in establishing this convergence result.

4 Equilibrium

Before describing the equilibrium, I introduce some notations. For any X ⊆ R
m and

g, g′ : X → R, let g ≥ g′ and g > g′ imply, respectively, g (x) ≥ g′ (x) and g (x) > g′ (x)

for any x ∈ X . Let similar notations apply when g′ is a scalar. Also, defining XR (·) as
below facilitates stating the results involving xj∗

(

x−j
i

)

= −∞.

Definition 3 For any f : Rm → R̄, XR (f) ≡ {z ∈ R
m|f (z) ∈ R}.

Note that by definition, XR (f) = R
m for f : Rm → R.

4.1 The Equilibrium with N = 2 Targets

Let xj∗s and θj∗s be the threshold values of signal and fundamentals of country j, when

country j is the sole target. The equilibrium for N = 2 is then described as below.20

Proposition 1 If N = 2, there is a unique, dominance-solvable equilibrium. This is a

threshold equilibrium (xj∗, θj∗)j∈J , where x
j∗ : R → [−∞, xj∗s ) is nondecreasing in R and is

continuous and increasing in XR (x
j∗), and θj∗ : R → (0, θj∗s ) is continuous and increasing.

The economic intuition for equilibrium uniqueness is as follows. When N = 1,
(

x∗n, θ
∗
n+1

)

increases with n, because as some of the strategies that attack least aggressively

18Derivation of these equations is provided in Appendix A1.
19This corresponds to Lemma 7 in Appendix C.
20The proofs to all propositions are in Appendix C.
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are deleted each round, strategic complementarity makes attacking the peg more profitable

for any signal, inducing speculators to attack more aggressively. One can similarly explain

why
(

x̄∗n, θ̄
∗
n+1

)

decreases, and thus, why
(

x∗n, θ
∗
n+1

)

and
(

x̄∗n, θ̄
∗
n+1

)

approach one another,

with n. When N = 2,
(

x1∗n , θ
1∗
n+1

)

and
(

x̄2∗n , θ̄
2∗
n+1

)

evolve together, and independently

from
(

x̄1∗n , θ̄
1∗
n+1

)

and
(

x2∗n , θ
2∗
n+1

)

.21 Now, as some of the strategies that attack currency 2

most aggressively are deleted each round, the strategic complementarity in attacking each

currency makes attacking currency 1 even more profitable, providing an additional force

for
(

x1∗n , θ
1∗
n+1

)

to increase with n. In other words, the increase in
(

x1∗n , θ
1∗
n+1

)

and the

decrease in
(

x̄2∗n , θ̄
2∗
n+1

)

reinforce each other, and similarly for
(

x2∗n , θ
2∗
n+1

)

and
(

x̄1∗n , θ̄
1∗
n+1

)

,

facilitating convergence of the lower and upper threshold functions to the same limit.

That the equilibrium threshold functions are increasing implies that a speculator is

more willing to attack currency j when receiving a strong signal for the other country,

and country j is more likely to abandon the peg when the other country has strong

fundamentals. These properties are intuitive, because what links the two countries is not

something intrinsic such as correlations in fundamentals, but the fact that speculators

attack the relatively more attractive target. That xj∗ < xj∗s implies that speculators

attack each currency less aggressively than in the single-target case. This is because, when

deciding on whether to attack currency j, each speculator expects some other speculators

to attack the other target, and thus the expected payoff from attacking currency j becomes

lower than when j is the only target. As a consequence, θj∗ < θj∗s , such that the presence

of multiple targets makes sustaining the peg easier for each country.

4.2 The Equilibrium with N > 2 Targets

When N > 2, each country is compared with more than one country, which substan-

tially complicates the environment. Most importantly, all lower and upper threshold

functions now evolve jointly, unlike the case of N = 2.22 This is why the intuition for

equilibrium uniqueness for N = 2 does not carry over to N > 2.

Due to this complication, it is difficult to conduct analyses for general N > 2 environ-

ments. However, when countries are symmetric in the sense formally defined below, one

can exploit the symmetry to derive implications on the equilibrium.

Definition 4 Countries are symmetric if ψj = ψ, Ψj = Ψ, and cj = c for all j ∈ J .

The definition below is used to describe the relevant functions of symmetric countries.

21This follows, since, as explained in Section 3.2.1, the iterative deletion procedure couples the most

pessimistic (optimistic) belief on the success of an attack toward currency 1 with the most optimistic

(pessimistic) belief on the success of an attack toward currency 2.
22To see this, let N = 3. The argument in Section 3.2.1 then implies that evolution of

(

x1∗
n , θ1∗n+1

)

is affected by that of
(

x̄2∗
n , θ̄2∗n+1

)

and
(

x̄3∗
n , θ̄3∗n+1

)

. Evolution of
(

x̄2∗
n , θ̄2∗n+1

)

in turn depends on that of
(

x1∗
n , θ1∗n+1

)

and
(

x3∗
n , θ3∗n+1

)

, and similarly for the process of
(

x̄3∗
n , θ̄3∗n+1

)

.
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Definition 5 (1) hj : R
N → R̄, j ∈ J , is symmetric, if hj (s) = hj (s̃) for any s =

(

s1, s2, . . . , sN
)

and s̃ =
(

s̃1, s̃2 . . . , s̃N
)

such that sj = s̃j and s̃−j =
(

s̃1, . . . , s̃j−1, s̃j+1, . . . , s̃N
)

is any permutation of s−j. (2) (hj)j∈J are symmetric across j, if each hj : RN → R̄ is

symmetric, and for any j, k ∈ J and s =
(

s1, s2, . . . , sN
)

, hj (s) = hk (s′) where s′ is

created from s by exchanging its j-th and k-th elements.

When hj is a function of s−j , Definition 5 can be applied by considering hj as a function

of s ∈ R
N , whose values do not vary with sj .23 In the present context, that (hj)j∈J are

symmetric across j simply implies that the roles played by N countries are identical.

4.2.1 Existence of a Threshold Equilibrium

I first state the result on the existence of a threshold equilibrium.24 Note that x∗s and

θ∗s are the equilibrium threshold signal and fundamentals for N = 1.

Proposition 2 Let N > 2 and countries be symmetric. Then, there exists a threshold

equilibrium (xj∗, θj∗)j∈J , where x
j∗ : RN−1 → (−∞, x∗s) is continuous, nondecreasing, and

xj∗
(

x−j
i

)

≤ mink∈J−j xki with equality for mink∈J−j xki sufficiently small, θj∗ : RN−1 →
(0, θ∗s) is continuous and increasing, and (xj∗)j∈J and (θj∗)j∈J are symmetric across j.

The basic idea of the proof is to define a mapping, whose fixed point corresponds to

equilibrium threshold fundamentals functions, and apply the contraction mapping theo-

rem. However, as expected from the discussion in Section 3.2.1, the relevant mapping is

in general one from (θj∗n )j∈J to
(

θj∗n+1

)

j∈J
, which, due to its complexity, cannot be shown

to be a contraction. When countries are symmetric, however, one may impose (θj∗n )j∈J to

be symmetric across j, and consider a mapping from θj∗n into θj∗n+1, separately for each j.

One may show that each such simplified mapping is a contraction, and that the fixed point

functions (θj∗)j∈J , and the associated functions (xj∗)j∈J , are equilibrium threshold func-

tions. The constant λ is critical also in this proof, as it serves as the contraction constant.

Due to such a priori restrictions on (θj∗n )j∈J , however, the proof does not rule out

other forms of equilibria, namely threshold equilibria in which (xj∗)j∈J and (θj∗)j∈J are

not symmetric across j, nor equilibria in non-threshold strategies.

The threshold strategy in this equilibrium has an intuitive property; xj∗
(

x−j
i

)

≤
mink∈J−j xki implies that a speculator attacks only the currency with the weakest signal.

That xj∗ < x∗s and θj∗ < θ∗s can be interpreted just as in the N = 2 case.

4.2.2 Uniqueness of the Equilibrium

With some restrictions on the noise distribution, the threshold equilibrium above is

shown to be the unique, dominance-solvable equilibrium, as stated below.

23For example, let N = 3 and consider θ1∗n
(

θ2, θ3
)

, θ2∗n
(

θ1, θ3
)

, θ3∗n
(

θ1, θ2
)

. If
(

θj∗n
)

j∈J
are symmetric

across j, then θj∗n (a, b) = θj∗n (b, a) for any a, b ∈ R and j ∈ J , and the value is independent of j.
24Propositions 2 and 3 below also apply to two symmetric countries. However, the result in Proposition

1 is stronger, except for the symmetry of the equilibrium threshold functions.
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Proposition 3 Let N > 2, countries be symmetric, and ‖ψ‖ < 1. Then, the threshold

equilibrium in Proposition 2 is the unique, dominance-solvable equilibrium.

The key to the proof is to choose xj∗n and x̄j∗n that are consistent with deletion of

dominated strategies and that ensure the monotonicity and continuity of the lower and

upper threshold functions.25 Suppose
(

θj∗n
)

j∈J
and

(

θ̄j∗n
)

j∈J
are symmetric across j, which

holds for n = 1 since θj∗1 = 0 and θ̄j∗1 = 1 for all j. Then, djn =
∥

∥θ̄j∗n − θj∗n
∥

∥ is common to

all j, so it can be denoted as dn. One can then find xj∗n and x̄j∗n that satisfy the requirement

above and ‖x̄j∗n − xj∗n ‖ ≤ 2dn, and that make
(

θj∗n+1

)

j∈J
and

(

θ̄j∗n+1

)

j∈J
again symmetric

across j. Thus, dn+1 ≤ 2λdn from the analogue of (3), so dn → 0 as n→ ∞, since ‖ψ‖ < 1

implies λ = ‖ψ‖ / (1 + ‖ψ‖) < 1/2. Therefore, there is a unique, dominance-solvable

equilibrium, which must coincide with the threshold equilibrium shown in Proposition 2.

The intuition for the condition ‖ψ‖ < 1 follows from the discussion forN = 1 in Section

3.2.2. When ‖ψ‖ is large, there is a point at which the cdf Ψ rises sharply. Then, a

given difference in the threshold signal, x̄∗n−x∗n, may lead to a relatively large difference in

the fraction of speculators attacking, and thus a relatively large θ̄∗n+1 − θ∗n+1, as observed

from (3) and the fact that λ is increasing in ‖ψ‖. Nevertheless, given (2), θ̄∗n − θ∗n → 0

is guaranteed for N = 1 since λ < 1. The same conclusion would hold in the present

environment if ‖x̄j∗n − xj∗n ‖ ≤ dn. But since only a weaker condition, ‖x̄j∗n − xj∗n ‖ ≤ 2dn,

can be shown here, a restriction on ‖ψ‖ is needed to guarantee dn → 0.

5 Numerical Examples

This section explores several numerical examples to obtain additional insight on the

properties of equilibrium. In this section, ǫji is assumed to follow N (0, βj). The pdf and

cdf of the standard normal distribution are denoted by φ and Φ, respectively.

5.1 Symmetric and Nonsymmetric N = 2 Targets

This subsection discusses the case of N = 2, the main focus of this analysis.

5.1.1 Symmetric Targets

I first consider two symmetric countries, where c1 = c2 = c = 0.1 and β1 = β2 = β = 1.

Results are symmetric across two countries, so the explanations below apply when the roles

of country 1 and 2 are reversed. Figures 1–4 depict the equilibrium threshold functions.

As shown in Figure 1, x1∗ consists of two parts; one that lies on the 45 degree line, where

the speculator is indifferent between attacking currency 1 and 2, and a flatter part, where

the speculator is indifferent between attacking currency 1 and not attacking. Note that

25For N > 2, the fact that each country is compared with more than one country adds complications

in ensuring the monotonicity of these functions. For details, see footnote 52 in Appendix C.

12



x1∗ < x∗s, as shown in Proposition 2, and that x1∗ (x2i ) → x∗s as x
2
i → ∞. Since each spec-

ulator expects some other speculators to attack currency 2, the expected payoff from at-

tacking currency 1 is, for any x2i , lower than with a single target. Thus, speculators require

lower x1i for attacking currency 1, hence x1∗ < x∗s. But as x2i increases, a speculator infers

greater values of θ2 and expects a smaller fraction of other speculators to attack currency

2, so the presence of currency 2 becomes less relevant for the decision to attack currency

1. As x2i → ∞, the speculator behaves as if currency 1 is the only target. Speculators’

attacking decisions for given (x1i , x
2
i ) are shown in Figure 2. Note that x1∗ and x2∗ divide

the (x1i , x
2
i ) space into three regions according to the corresponding attacking decision.

Similarly, Figure 3 indicates that θ1∗ < θ∗s , as shown in Proposition 2, and that

θ1∗ (θ2) → θ∗s as θ2 → ∞. Thus, sustaining a peg is easier than in the single-target case,

which is natural because the presence of multiple targets serves to diversify the attacking

pressure. More importantly, θ1∗ (θ2) is highly dependent on the value of θ2. This is more

clearly observed in Figure 4, in which θ1∗ and θ2∗ divide the (θ1, θ2) space into four regions

according to the outcomes of attack for the two countries. Figure 4 shows that the success

of an attack on one country depends critically on the other country’s fundamentals, and

not just on its own. Put differently, what matters is not necessarily the fundamentals per

se, but their value relative to the other target. Such a feature is entirely lacking in the

complete information version of the model in which fundamentals are publicly observed.26

The comparison between θ1∗ and θ∗s above assumes the same total measure of specu-

lators, normalized to one, for single and two-country environments. One may ask what

happens if the per-country, not total, measure of speculators is fixed. In other words, the

question is whether doubling both the number of targets and the population of speculators,

which makes coordination among speculators more difficult but increases the potential size

of the attack toward each country, makes collapse of the peg more likely or less so. To

answer this question, Figure 5 draws θ1∗ and θ2∗, along with the lines corresponding to

θ∗s,0.5, the threshold value of fundamentals in the single-target case with measure 0.5 of

speculators. Note that θ1∗ can be lower than θ∗s,0.5, such that currency 1 may be able to

sustain the peg, even with values of fundamentals that force country 1 to abandon the peg

in the single-target case with half the population of speculators. However, this can occur

only when country 2 falls victim to attack; indeed, the region of (θ1, θ2), under which both

countries sustain the peg (i.e., the upper right region of Figure 5 in which both θ1 and θ2

are above the relevant threshold), is smaller when the number of targets and the popula-

tion of speculators are doubled. This finding turns out to be robust to changes in β and c.

Another interesting exercise involves varying β. Figure 6 shows the outcomes of attack

when β1 = β2 = 4, corresponding to more precise private signals than in Figure 4.27

Comparing Figures 4 and 6, we observe that in Figure 6, θ1∗ is higher for relatively large

values of θ2, and is lower for relatively small values of θ2. As a result, the region of (θ1, θ2)

26Appendix A2 presents a discussion of this complete information model.
27As shown in Appendix A1 (eq (12)), θ∗s is independent of β, so Figures 4 and 6 are directly comparable.
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for which both pegs survive, and the region for which both pegs fail, are both smaller in

Figure 6. The implication here is that increased precision of signals has a decoupling

effect, in the sense that the two countries are less likely to face the same outcomes of attack.

With more precise private signals, speculators are able to better discern the country with

the weaker fundamentals and to concentrate their attack on that country. Thus, the

country with the stronger fundamentals survives the attack for a wider range of its own

fundamentals, at the cost of placing the other country in a more vulnerable position.

5.1.2 Nonsymmetric Targets

I now examine the nonsymmetric case, where c1 = c2 = 0.1, β1 = 1, and β2 = 4.

Figure 7 illustrates the attacking decisions in the (x1i , x
2
i ) space. Unlike in Figure 2,

the part of x1∗ where the speculator is indifferent between attacking currency 1 and 2 is

steeper than the 45 degree line. The intuition here is that country 2’s signal, which is more

precise, has a stronger impact on the speculator’s decision than country 1’s signal. For

example, when both x1i and x
2
i are relatively large (say, equal to 1), speculators recognize

that θ2 is more certain to be strong than θ1, and hence prefer to attack currency 1 over

currency 2. The opposite is true when both x1i and x2i are relatively small.

Figure 8 shows the outcomes of attack in the (θ1, θ2) space. Note that the outcome

of attack for currency 1 is more strongly dependent on θ2 than the outcome of attack for

currency 2 is on θ1. Again, this follows since country 2’s fundamentals are perceived more

accurately by speculators. That is, when country 2 has strong fundamentals, speculators

well recognize this and tend to shift their target to country 1, placing country 1 in a

vulnerable position. Conversely, when country 2 has weak fundamentals, speculators

tend to shift their target to country 2, relaxing the attacking pressure on country 1.

This explanation suggests that what really matters for the profile of the threshold

fundamentals function of a country (say, θ1∗) is the precision of the signal for the other

country (β2), not its own (β1). Indeed, in Figure 8, θ1∗ resembles that in Figure 6, where

β1 = β2 = 4, whereas θ2∗ is similar to that in Figure 4, where β1 = β2 = 1. This finding

may appear surprising, but it is natural because θ1∗ represents how country 1’s threshold

fundamentals are affected by the variations in country 2’s fundamentals, and such an

effect depends critically on how accurately speculators perceive θ2, and thus on β2.

This observation has the following implication on the issue of decoupling mentioned

above. Suppose the precision of private signals reflects the transparency of government

policy,28 such that country j’s government can, to some extent, control βj. Then, what

country 1’s government can affect is mainly how the outcome of attack for currency

2 depends on country 1’s fundamentals; the issue that is probably more important to

country 1’s government, dependence of the outcome of attack for currency 1 on country

2’s fundamentals, is instead at the discretion of country 2’s government.

28Heinemann and Illing (2002) adopts such an interpretation and discusses the impact of transparency

on the probability of successful speculative attack.
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5.2 Symmetric N = 3 Targets

I conclude this section with an example for the symmetric N > 2 case. Figures 9

and 10 depict the equilibrium threshold functions for N = 3, where cj = c = 0.1 and

βj = β = 1 for all j. Since ‖ψ‖ =
√
βφ (0) =

√
β/

√
2π, the condition ‖ψ‖ < 1 in

Proposition 3 holds for such β, hence there is a unique equilibrium.

Figure 9 depicts x3∗. As for N = 2, x3∗ consists of two parts: one that coincides with

min {x1i , x2i }, where the speculator is indifferent between attacking currency 3 and either

currency 1 or 2, and the flatter part, where the speculator is indifferent between attacking

currency 3 and not attacking. While x∗s is not shown in the figure to avoid graphical

clutter, x3∗ < x∗s as shown in Proposition 2, and x3∗ approaches x∗s as both x
1
i and x

2
i tend

to ∞. The intuition here is similar to the N = 2 case. Compared to the single-target

case, speculators attack country 3 less aggressively, since the attacking pressure is spread

out over three countries. But as x1i and x
2
i increase, speculators expect a smaller fraction

of other speculators to attack countries 1 and 2, so the presence of these two countries

becomes less important for the decision to attack country 3. As both x1i and x
2
i approach

∞, the speculator behaves as if currency 3 is the only target. Note that x1∗, x2∗ and x3∗

divide the (x1i , x
2
i , x

3
i ) space into four regions according to speculators’ attacking decisions.

Figure 10 depicts θ3∗. Note that θ3∗ increases with θ1 and θ2, approaches 0 as θ1

or θ2 tends to −∞, and approaches θ∗s as both θ1 and θ2 tend to ∞. Thus, if there is

one country with very weak fundamentals, speculators target this country, relaxing the

attacking pressure on the other countries. The (θ1, θ2, θ3) space is divided by θ1∗, θ2∗,

and θ3∗ into eight regions according to the outcomes of attack for the three countries.

6 Discussions and Extensions

6.1 Relation to the Contagion of Crises

I now discuss how the implications above relate to the issue of contagion of crises.

That the survival of the peg in one country is facilitated by the weak fundamentals of

other countries may appear as negative contagion, contradicting the existing models of

contagion and the empirical observations that these models aim to address. But in fact,

these models and the model of this paper shed light on different aspects of actual crises.

A contagion of crises involves sequential, rather than simultaneous, speculative attacks

on multiple targets. For example, Branson (2001) describes the EMS crisis in 1992 as

“Speculation then focused on the weakest link, the Finmark, and proceeded to Swedish

krona, sterling, and so on ...”, and the Asian crisis in 1997-98 as “... the attacks began

in Thailand. ... Since the markets concentrated on one country at a time, speculative

pressure was maximized and devaluations overshot.” Such sequential attacks on the

weakest link applies also to the contagion of crises other than currency crises.29

29For example, regarding the recent European debt crises, many argued that speculators targeted
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The existing global games models of contagion of currency or financial crises30 take

as given the sequential nature of attacks, and focus on explaining the mechanisms of

contagion, that is, how a successful attack on the first target facilitates an attack on the

second target. Such explanation follows also from the present model if there are multiple

rounds of attacks. If N = 2, for example, once one country abandons the peg, the

remaining country faces all speculators alone, such that it must now abandon the peg for

a wider range of its own fundamentals.

However, the emphasis of this paper is not on the mechanism of contagion, but on

the theory of how speculators choose the weakest link from among multiple candidates.

Such an element is absent in the studies above, in which attacks on two targets occur

sequentially with an exogenously given order.31 To put this in the context of the Asian

crisis, existing studies explain how the crisis in Thailand placed Indonesia, for example, in

a more vulnerable situation. In contrast, the present paper explains why the Thai baht

was the first to be heavily attacked. Importantly, the model’s implication is that the

weak fundamentals of Thailand helped Indonesia to avoid being speculators’ first target,

not in ultimately sustaining the peg; thus, there is no conflict with the previous studies.

6.2 Introduction of Public Information

Thus far, speculators’ information on fundamentals has been restricted to private sig-

nals. I now introduce public information through informative priors of the fundamentals.

In the global games model of speculative attacks with a single target, it is shown32

that multiple equilibria may exist if public information is sufficiently precise relative to

private information. For example, if the common prior for θ is N (w, 1/α) and ǫi follows

N (0, 1/β) in theN = 1 version of the model of this paper, there may be multiple equilibria

if α/
√
β >

√
2π. Thus, the sufficient condition for a unique equilibrium is α/

√
β ≤

√
2π.

I provide below the corresponding sufficient condition in the case of symmetric multiple

targets, for which the analysis is much simpler than for the general two-country case.33

Greece as the weakest link in the Eurozone, with a country like Portugal being the next possible candidate.
30In Goldstein and Pauzner (2004), the interaction of wealth and risk aversion creates financial conta-

gion through agents’ portfolio decisions. Guimaraes and Morris (2007), which generalizes such portfolio

decisions by allowing continuous actions, also provides valuable insights on contagion. The wealth ef-

fect generates contagion also in Keister (2009), but through a different channel. In Dasgupta (2004),

contagion of financial crises occurs due to capital linkage between banks in two different regions.
31Outside the global games framework, Botman and Jager (2002) extends the models of Krugman (1979)

and Flood and Garber (1984) into a two-country environment, and analyzes the issue of coordination

among speculators. In the model, the reserves of both countries decrease deterministically over time in

the same fashion, forcing eventual collapse of the peg, but the timing of collapse for each currency depends

on the initial beliefs of speculators on the fraction of speculators attacking each of the two currencies.
32See, e.g., Morris and Shin (2004) and Hellwig (2002).
33For nonsymmetric N = 2 targets, equilibrium uniqueness is guaranteed when private information is

sufficiently precise relative to public information, as for N = 1. The analysis is available upon request.
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Proposition 4 For N > 2, let the common prior for θj be N (w, 1/α), ǫji ∼ N (0, 1/β),

and cj = c ∈ (0, 1), for all j ∈ J . Then, (1) the conclusion of Proposition 2 holds if

α/
√
β <

√
2π, and (2) that of Proposition 3 holds if α <

√
β
(√

2π −
√
β
)

/2.

To see the intuition for these conditions, suppose the common prior for θ is N (w, 1/α),

and ǫi ∼ N (0, 1/β), in the argument for N = 1 in Section 3.2.2. Then, (4) becomes34

θ̄∗n+1 − θ∗n+1 ≤ λ
α+ β

β

(

θ̄∗n − θ∗n
)

, (5)

so the term λ in (4) is replaced by λ (α + β) /β.

Now, as explained in Section 4.2.1, Proposition 2 is proved by considering a relevant

function mapping, which turns out to be a contraction with the contraction constant λ. In

line with the argument above for N = 1, with public information, this constant is replaced

by λ (α + β) /β. Thus, for the mapping to be a contraction, it requires λ (α+ β) /β < 1,

or equivalently α/
√
β <

√
2π, since ‖ψ‖ =

√
β/

√
2π and λ = ‖ψ‖ / (1 + ‖ψ‖).

Further, recall from the discussion of Proposition 3 that with only private informa-

tion, there is a unique equilibrium if 2λ < 1. As the comparison of (4) and (5) suggests,

with public information, a unique equilibrium is ensured under a stronger condition,

2λ (α + β) /β < 1, or equivalently α <
√
β
(√

2π −
√
β
)

/2. This condition requires

public information be sufficiently diffuse, just like the condition α/
√
β ≤

√
2π for N = 1.

7 Conclusions

This paper has examined a global games model in which speculators can attack any

one of multiple currencies. The main result shown is that with two countries, or any N

symmetric countries satisfying some condition on the noise distribution, there is a unique,

dominance-solvable equilibrium. In equilibrium, a country’s fundamentals are evaluated

in relation to those of other countries, which contrasts with the complete information

version of the model. This paper has then derived, through numerical examples, several

implications on how the number of targets and the precision of signals affect survival of

the pegs. Finally, the paper has considered the extension of introducing exogenous public

information, and has shown that the sufficient condition for a unique equilibrium is given

in terms of the precision of public and private information, as in the single-target case.

The environment of this paper is not only of theoretical interest, but has many inter-

esting applications. Formulating the iterative deletion procedure as function iterations

turns out to be a powerful approach not only for theoretical analysis of equilibrium, but

also for the numerical computations necessary for such applications. As a limitation, this

approach yields little information on equilibrium when it fails to show equilibrium unique-

ness, as in the case of more than two nonsymmetric targets. Analyzing such environments

would seem to require a different approach, and such pursuit is left for future study.

34See Appendix A1 for derivation.
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Appendix A: Two Related Models

Appendix A discusses two models, mentioned in the main body of this paper, that

have environments similar to the model of this paper.

A1. Model with a Single Target

Appendix A1 discusses the canonical global games model, where N = 1. The super-

script denoting country is now redundant, and hence is removed; otherwise, assumptions

are as in Section 2. As is well known, this model has a unique Bayesian Nash equilibrium

that survives iterative deletion of dominated strategies, as I briefly describe below.35

By assumption, the peg collapses for θ ≤ 0 = θ∗1 even if no speculator attacks the peg.

Thus, given signal xi, the expected payoff from attacking is at least

(1− c) · Pr (θ ≤ θ∗1|xi)− c · (1− Pr (θ ≤ θ∗1|xi)) = Pr (θ ≤ θ∗1|xi)− c, (6)

where Pr (θ ≤ θ∗1|xi) is the probability that θ ≤ θ∗1, conditional on receiving xi. Noting

(1), Pr (θ ≤ θ∗1|xi) = 1 −Ψ (xi − θ∗1), which is decreasing in xi. Thus, not attacking is a

dominated action for speculators with signals xi < x∗1, where

c = Pr (θ ≤ θ∗1|x∗1) = 1−Ψ (x∗1 − θ∗1) , (7)

which completes the first round of deletion.

In the second round of deletion, it is taken as given that speculators with signals

xi ≤ x∗1 will attack the currency.36 Let Pr (xi ≤ x∗1|θ) be the probability that xi ≤ x∗1,

conditional on a given realization of θ. From the law of large numbers, this is also the

fraction of speculators with such signals. Noting (1), Pr (xi ≤ x∗1|θ) = Ψ (x∗1 − θ), which

is decreasing in θ. Then, for θ ≤ θ∗2, where

θ∗2 = Pr (xi ≤ x∗1|θ∗2) = Ψ (x∗1 − θ∗2) , (8)

the fraction of speculators who receive signals xi ≤ x∗1 and attack is at least θ∗2, so

speculators must expect the peg to collapse. Thus, given xi, the expected payoff from

attacking is at least Pr (θ ≤ θ∗2|xi) − c = 1 − Ψ (xi − θ∗2) − c, which is decreasing in xi.

Therefore, not attacking is a dominated action for speculators with signals xi < x∗2, where

c = Pr (θ ≤ θ∗2|x∗2) = 1−Ψ (x∗2 − θ∗2) . (9)

Clearly θ∗2 > θ∗1 = 0, which implies x∗2 > x∗1. This completes the second round of deletion.

This procedure yields an increasing sequence (θ∗n, x
∗
n)

∞
n=1

such that in the n-th round

of deletion, speculators must expect the peg to collapse for θ ≤ θ∗n, and not attacking is

35For a more detailed description, see, e.g., Atkeson (2000).
36Having a weak, instead of strict, inequality here presumes that speculators attack when they are

indifferent; such a tie-breaking rule is immaterial.
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a dominated action for xi < x∗n. A similar procedure from θ̄1 = 1 yields a decreasing

sequence
(

θ̄∗n, x̄
∗
n

)∞

n=1
such that in the n-th round of deletion, speculators must expect the

peg to be sustained for θ > θ̄∗n, and attacking is a dominated action for xi > x̄∗n. Clearly,

θ̄∗n > θ∗n and x̄∗n > x∗n for all n.

The limits of these sequences, (θ∗∞, x
∗
∞) and

(

θ̄∗∞, x̄
∗
∞

)

, must both be solutions to

c = Pr (θ ≤ θ∗s |x∗s) = 1−Ψ (x∗s − θ∗s) , (10)

θ∗s = Pr (xi ≤ x∗s|θ∗s) = Ψ (x∗s − θ∗s) . (11)

These equations yield

θ∗s = 1− c, (12)

x∗s = θ∗s +Ψ−1 (θ∗s) = 1− c +Ψ−1 (1− c) , (13)

so θ∗∞ = θ̄∗∞ = θ∗s and x∗∞ = x̄∗∞ = x∗s. Thus, there is a unique, dominance-solvable

equilibrium, such that speculator i attacks if and only if xi ≤ x∗s, and the peg collapses if

and only if θ ≤ θ∗s .

From the argument above, one can obtain (2) and (3) in Section 3.2.2 as follows. In the

n-th round of deletion, (7) and (8) become Ψ (x∗n − θ∗n) = 1−c and θ∗n+1 = Ψ
(

x∗n − θ∗n+1

)

.

Similarly, Ψ
(

x̄∗n − θ̄∗n
)

= 1− c and θ̄∗n+1 = Ψ
(

x̄∗n − θ̄∗n+1

)

. Therefore,

x̄∗n − θ̄∗n = x∗n − θ∗n = Ψ−1 (1− c) , (14)

which yields (2). Further, noting θ̄∗n+1 > θ∗n+1,

θ̄∗n+1 − θ∗n+1 = Ψ
(

x̄∗n − θ̄∗n+1

)

−Ψ
(

x∗n − θ∗n+1

)

≤ ‖ψ‖ ·
[(

x̄∗n − θ̄∗n+1

)

−
(

x∗n − θ∗n+1

)]

,

which yields (3).

Finally, consider the extension discussed in Section 6.2. This time, conditional on

receiving xi, θ follows N ((αw + βxi) / (α + β) , 1/ (α + β)) such that Pr (θ ≤ θ∗|xi) =

Φ
(√

α + β (θ∗ − (αw + βxi) / (α + β))
)

. Thus, in the n-th round of deletion, (7) yields√
α + β ((αw + βx∗n) / (α + β)− θ∗n) = Φ−1 (1− c) and similarly,√
α + β

(

(αw + βx̄∗n) / (α + β)− θ̄∗n
)

= Φ−1 (1− c). Therefore, (2) is replaced with

x̄∗n − x∗n = α+β

β

(

θ̄∗n − θ∗n
)

, hence combining with (3) yields (5).

A2. Model with Complete Information

Appendix A2 discusses the complete information version of the model with N > 1

targets and publicly observed fundamentals (θj)j∈J . For simplicity, let cj = c for all j.37

This can be considered a multi-country extension of Obstfeld (1996), whose equilibrium is

37When cj varies with j, one must examine various cases according to the values of cj and θj ; this

provides little insight on the difference between complete and incomplete information environments.
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as follows: all speculators attack and the peg is abandoned if θ ≤ 0, no speculator attacks

and the peg is sustained if θ > 1, and both of these are equilibria if θ ∈ (0, 1].

In the present environment, for each speculator, attacking currency j is (at least

weakly) optimal if and only if j abandons the peg, and attacking no currency is optimal

if and only if the peg is sustained for all j. Thus, the Nash equilibrium is as follows.

If θj > 1 for all j, all speculators follow the dominant strategy of attacking no currency,

and the peg is sustained for all j. If θk ≤ 0 for some k and θj > 1 for all j 6= k, all

speculators follow the dominant strategy of attacking k, and only k abandons the peg.

In all other cases, there are multiple equilibria. If θk ≤ 0 for some k and θj ≤ 1 for at

least one j 6= k, one or more j with θj ≤ 1 abandon the peg, and each speculator attacks

one of such j. This is because attacking no currency is a dominated strategy, since k

abandons the peg for sure. Finally, if θj > 0 for all j and θj ≤ 1 for at least one j, there

clearly exist, just as in the previous case, equilibria in which one or more j with θj ≤ 1

abandon the peg, and each speculator attacks one of such j. This time, however, since

θj > 0 for all j, there is also an equilibrium in which no speculator attacks any currency

and the peg is sustained for all j.

Therefore, as in Obstfeld (1996), there may be unique or multiple equilibria, depending

on the realization of fundamentals. Moreover, the outcome of attack for each country

depends on own fundamentals in a very similar fashion as for N = 1: country j abandons

the peg for sure if θj ≤ 0, sustains the peg for sure if θj > 1, and either outcome may arise

if θj ∈ (0, 1]. Thus, whether a country sustains the peg depends little on the fundamentals

of other countries, which contrasts with the incomplete information model of this paper.

Appendix B: Iterative Deletion Procedure

Appendix B provides the formal mathematical formulation of the iterative deletion

procedure. As in Section 3.2.1, for any j ∈ J , let θj∗n , θ̄j∗n : RN−1 → [0, 1] be such that, at

the beginning of the n-th round of deletion, all speculators believe that country j aban-

dons the peg for θj ≤ θj∗n (θ−j), and sustains the peg for θj > θ̄j∗n (θ−j). Such θj∗n and θ̄j∗n
are used to eliminate dominated strategies in the n-th round of deletion, which in turn

yields θj∗n+1 and θ̄j∗n+1.

To utilize these expressions later on, I describe below the n-th round of deletion. For

any N signals xi, given the beliefs described by θj∗n and θ̄j∗n , the expected payoff from

attacking currency j ∈ J must be at least Γj∗
n (xi) and at most Γ̄j∗

n (xi), where

Γj∗
n (xi) = Pr

(

θj ≤ θj∗n
(

θ−j
)

|xi
)

− cj, (15)

Γ̄j∗
n (xi) = Pr

(

θj ≤ θ̄j∗n
(

θ−j
)

|xi
)

− cj. (16)

Not attacking yields zero, so Γ0∗
n (xi) = Γ̄0∗

n (xi) = 0. Then, if Γj∗
n (xi) > max

k∈J
−j
0

Γ̄k∗
n (xi),

not attacking j is dominated by attacking j, since the expected payoff from attacking j is
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at least Γj∗
n (xi), while that from attacking k is at most Γ̄k∗

n (xi). From similar reasoning,

if Γ̄j∗
n (xi) < max

k∈J
−j
0

Γk∗
n (xi), attacking j is dominated by not attacking j.

Now, for any j ∈ J , let xj∗n , x̄
j∗
n : RN−1 → R̄ be such that not attacking j is a dominated

action for xji < xj∗n
(

x−j
i

)

, and attacking j is a dominated action for xji > x̄j∗n
(

x−j
i

)

. There

is more than one possible choice for xj∗n and x̄j∗n , but from the argument above, the most

natural ones, which I adopt for N = 2 are,38

xj∗n
(

x−j
i

)

= inf
{

xji ∈ R|Γj∗
n (xi) ≤ max

k∈J
−j
0

Γ̄k∗
n (xi)

}

, (17)

x̄j∗n
(

x−j
i

)

= sup
{

xji ∈ R|Γ̄j∗
n (xi) ≥ max

k∈J
−j
0

Γk∗
n (xi)

}

. (18)

In the n+1-th round, it is taken as given that speculators with signals xji < xj∗n
(

x−j
i

)

will

attack currency j, and those with signals xji > x̄j∗n
(

x−j
i

)

will not. Thus, one must believe

that the fraction of speculators attacking j is at least Pr
(

xji < xj∗n
(

x−j
i

)

|θ
)

, and at most

Pr
(

xji ≤ x̄j∗n
(

x−j
i

)

|θ
)

, which are increasing in θj given (1). Then, θj ≤ θj∗n+1 (θ
−j) implies

θj ≤ Pr
(

xji < xj∗n
(

x−j
i

)

|θ
)

, and θj > θ̄j∗n+1 (θ
−j) implies θj > Pr

(

xji < x̄j∗n
(

x−j
i

)

|θ
)

, where

θj∗n+1

(

θ−j
)

= Pr
(

xji < xj∗n
(

x−j
i

)

|θj∗n+1

(

θ−j
)

, θ−j
)

, (19)

θ̄j∗n+1

(

θ−j
)

= Pr
(

xji ≤ x̄j∗n
(

x−j
i

)

|θ̄j∗n+1

(

θ−j
)

, θ−j
)

. (20)

Thus, at the beginning of the n + 1-th round of deletion, all speculators must believe

that country j abandons the peg for all θj ≤ θj∗n+1 (θ
−j), and sustains the peg for all

θj > θ̄j∗n+1 (θ
−j), which is in line with the definitions of θj∗n and θ̄j∗n .

Iterating this procedure from θj∗1 = 0 and θ̄j∗1 = 1 yields the sequences of functions,
(

(xj∗n , θ
j∗
n+1)j∈J

)∞

n=1
and

(

(x̄j∗n , θ̄
j∗
n+1)j∈J

)∞

n=1
.

38As I discuss in the proof of Proposition 3, for N > 2, I adopt alternative definitions of xj∗
n and x̄j∗

n

to ensure that the sequence of functions generated by the iterative deletion procedure are well behaved.

Note that xj∗
n

(

x−j
i

)

= −∞ if the set on the right-hand side (RHS) of (17) is unbounded below, and

x̄j∗
n

(

x−j
i

)

= −∞ if the set on the RHS of (18) is empty. These may arise if cj > ck for some k ∈ J−j .
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Appendix C: Proofs

Appendix C contains all proofs.

Lemmas for General Environments

This subsection collects lemmas that hold for general N > 1 environments. Below,

let B̃(X) be the set of bounded, continuous, and nondecreasing functions from X to R.

Lemmas 1–4 concern how continuity and monotonicity of the relevant functions are

conveyed through the iterative deletion procedure.

Lemma 1 For any j ∈ J and θj∗ : RN−1 → R, define Γj∗ : RN → R by Γj∗ (xi) =

Pr (θj ≤ θj∗ (θ−j) |xi) − cj. If θj∗ ∈ B̃(RN−1), then Γj∗ is continuous, decreasing in xji ,

and nondecreasing in x−j
i ; further, if θj∗ is increasing, then Γj∗ is increasing in x−j

i .

Proof. Since θj = xji − ǫji , Pr
(

θj ≤ θj∗|xji
)

= Pr
(

ǫji ≥ xji − θj∗
)

= 1−Ψj
(

xji − θj∗
)

for a

fixed θj∗. Thus, noting that θ−j = x−j
i − ǫ−j

i ,

Γj∗ (xi) = 1− cj −
∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)

Ψj
(

xji − θj∗
(

x−j
i − ǫ−j

i

))

dǫ−j
i , (21)

where ψ̃−j : RN−1 → R is the joint pdf of N − 1 independent noises, ǫ−j
i . Since the pdf

of ǫki is ψk, it follows that ψ̃−j
(

ǫ−j
i

)

= Πk∈J−jψk
(

ǫki
)

.

That Γj∗ is decreasing in xji is immediate from (21); that Γj∗ is nondecreasing (in-

creasing) in x−j
i also follows from (21), as well as the assumption that θj∗ is nondecreasing

(increasing). For continuity, define Hj : RN × R
N−1 → R

+ by

Hj
(

xi, ǫ
−j
i

)

= ψ̃−j
(

ǫ−j
i

)

Ψj
(

xji − θj∗
(

x−j
i − ǫ−j

i

))

. (22)

By assumption, Ψj and θj∗ are continuous, and hence, so is their composition,

Ψj
(

xji − θj∗
(

x−j
i − ǫ−j

i

))

. Being a product of continuous pdfs ψk, ψ̃−j is also continuous,

and thus, so is Hj.39 Since Ψj ∈ [0, 1] and ψ̃−j > 0, it follows that
∣

∣Hj
(

xi, ǫ
−j
i

)
∣

∣ ≤
ψ̃−j

(

ǫ−j
i

)

for any
(

xi, ǫ
−j
i

)

∈ R
N ×R

N−1. Moreover, ψ̃−j is independent of xi, and being

a joint pdf, ψ̃−j is improperly integrable on R
N−1, where the value of the improper integral

is 1. Therefore, the improper integral
∫

ǫ
−j
i ∈RN−1 H

j
(

xi, ǫ
−j
i

)

dǫ−j
i converges uniformly on

R
N−1, and thus

∫

ǫ
−j
i ∈RN−1 H

j
(

xi, ǫ
−j
i

)

dǫ−j
i is continuous in xi, and hence, so is Γj∗.40

Lemma 1 can be used to establish the properties of Γj∗
n and Γ̄j∗

n , by letting θj∗ = θj∗n
and θj∗ = θ̄j∗n . For later use, note that (15) and (16) can be rewritten as

Γj∗
n (xi) = 1− cj −

∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)

Ψj
(

xji − θj∗n
(

x−j
i − ǫ−j

i

))

dǫ−j
i , (23)

Γ̄j∗
n (xi) = 1− cj −

∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)

Ψj
(

xji − θ̄j∗n
(

x−j
i − ǫ−j

i

))

dǫ−j
i . (24)

39For these properties of continuous functions, see Johnsonbaugh and Pfaffenberger (2010), Theorem

40.4 and Corollary 40.6.
40For the continuity of functions defined by integrals (or parameter-dependent integrals), see, e.g.,

Burkill and Burkill (2002), Theorems 6.35 and 8.73, and Bauer (2001), Lemma 16.1.
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Since the definitions of xj∗n and x̄j∗n differ for N = 2 and N > 2, discussions of their

properties are deferred to relevant propositions. Instead, I define xj,kn and x̄j,kn , which are

closely related to xj∗n and x̄j∗n , and examine their properties in Lemmas 2 and 3.

Definition 6 For any
(

Γj∗
n , Γ̄

j∗
n

)

j∈J
, Γj∗

n , Γ̄
j∗
n : RN→ R, define xj,kn , x̄j,kn : RN−1 → R̄ by

xj,kn
(

x−j
i

)

≡ inf
{

xji ∈ R|Γj∗
n (xi) ≤ Γ̄k∗

n (xi)
}

, (25)

x̄j,kn
(

x−j
i

)

≡ sup
{

xji ∈ R|Γ̄j∗
n (xi) ≥ Γk∗

n (xi)
}

, (26)

for any j ∈ J and k ∈ J−j
0 , where Γ0∗

n (xi) ≡ 0 and Γ̄0∗
n (xi) ≡ 0 for any xi ∈ R

N .

Note that Definition 6 includes the definitions of xj,0n and x̄j,0n , since k ∈ J−j
0 = {0}∪

J−j above. Also note that xj,kn and x̄j,kn are allowed to take infinite values.

Lemma 2 Suppose θj∗n , θ̄j∗n ∈ B̃(RN−1) for all j ∈ J , and define Γj∗
n , Γ̄j∗

n : RN→ R by

(15), (16). Then, Γj∗
n − Γ̄k∗

n is continuous, decreasing in xji , and increasing in xki for any

j ∈ J and k ∈ J−j, and for any x−j
i ∈ XR

(

xj,kn
)

, xj,kn
(

x−j
i

)

is the unique xji such that

Γj∗
n (xi) = Γ̄k∗

n (xi). Moreover, xj,kn is continuous in x−j
i and increasing in xki in XR

(

xj,kn
)

.

The same statements hold with Γj∗
n , Γ̄k∗

n , and xj,kn replaced by Γ̄j∗
n , Γk∗

n , and x̄j,kn .

Proof. Without loss of generality, I prove the claim for j = 1.41 Fix any k ∈ J−1.

From Lemma 1, Γj∗
n and Γ̄j∗

n are continuous, decreasing in xji , and nondecreasing in x−j
i

for all j ∈ J . Thus, Γ1∗
n − Γ̄k∗

n is continuous, decreasing in x1i and increasing in xki .

Therefore, if z ∈ XR

(

x1,kn

)

, then (25) implies that x1,kn (z) is the unique x1i such that

Γ1∗
n

(

x1,kn (z) , z
)

= Γ̄k∗
n

(

x1,kn (z) , z
)

, and moreover, x1,kn is increasing in xki .

Further, for any z ∈ XR

(

x1,kn

)

and ν > 0, Γ1∗
n

(

x1,kn (z) + ν, z
)

< Γ̄k∗
n

(

x1,kn (z) + ν, z
)

and Γ1∗
n

(

x1,kn (z)− ν, z
)

> Γ̄k∗
n

(

x1,kn (z)− ν, z
)

, since Γ1∗
n − Γ̄k∗

n is decreasing in x1i . Then,

since Γ1∗
n − Γ̄k∗

n is continuous, there exists δ > 0 such that ‖zδ − z‖E ≤ δ implies

Γ1∗
n

(

x1,kn (z) + ν, zδ
)

< Γ̄k∗
n

(

x1,kn (z) + ν, zδ
)

, (27)

Γ1∗
n

(

x1,kn (z)− ν, zδ
)

> Γ̄k∗
n

(

x1,kn (z)− ν, zδ
)

. (28)

Since Γ1∗
n − Γ̄k∗

n is decreasing in x1i , (25) and (27) imply x1,kn (zδ) ≤ x1,kn (z)+ν, whereas

(25) and (28) imply x1,kn (zδ) ≥ x1,kn (z) − ν. Thus,
∣

∣x1,kn (zδ)− x1,kn (z)
∣

∣ ≤ ν, so x1,kn is

continuous at z. The claims for x̄1,kn follow from a similar argument.

Note that (24) and the boundedness of θ̄k∗n imply Γ̄k∗
n (xi) ∈

(

−ck, 1− ck
)

so long as xki
is finite. Thus, if c1 = ck = c, then for any x−1

i ∈ R
N−1, (23) yields Γ1∗

n (xi)−Γ̄k∗
n (xi) → 1−

c−limx1

i→−∞ Γ̄k∗
n (xi) > 0 as x1i → −∞, and Γ1∗

n (xi)−Γ̄k∗
n (xi) → −c−limx1

i→∞ Γ̄k∗
n (xi) < 0

41This is to simplify notation. For example, I let
(

x1,k
n (z) , z

)

denote an N -vector with x1
i = x1,k

n (z)

and
(

x2
i , x

3
i , . . . , x

N
i

)

= z; when x1
i changes to x1,k

n (z) + ν, the new vector is conveniently expressed as
(

x1,k
n (z) + ν, z

)

. Describing a similar situation for general j requires cumbersome notations, so the proof

here, and some of the proofs below, consider j = 1. This is without loss of generality, since numbering

of countries is arbitrary.
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as x1i → ∞, so x1,kn

(

x−1
i

)

∈ R. More generally, if cj = ck, then XR

(

xj,kn
)

= R
N−1, and

similarly, XR

(

x̄j,kn
)

= R
N−1. However, xj,kn and x̄j,kn may equal −∞ or ∞ when cj 6= ck.

Also note that Lemma 2 shows the monotonicity of xj,kn and x̄j,kn in xki , but not in all ele-

ments of x−j
i (except for N = 2, in which case x−j

i is a scalar). As stated below, the impli-

cations for xj,0n and x̄j,0n are stronger in this sense, and also, XR (x
j,0
n ) = XR (x̄

j,0
n ) = R

N−1.

Lemma 3 Under the assumptions of Lemma 2, for any x−j
i ∈ R

N−1, xj,0n
(

x−j
i

)

is the

unique xji such that Γj∗
n (xi) = 0, and xj,0n ∈ B̃(RN−1); further, if θj∗n is increasing, so is

xj,0n . The same statement holds with xj,0n , Γj∗
n , and θj∗n replaced by x̄j,0n , Γ̄j∗

n , and θ̄j∗n .

Proof. I prove the claim for j = 1. For any x−1
i ∈ R

N−1, (23) implies Γ1∗
n (xi) → 1−c1 > 0

as x1i → −∞, and Γ1∗
n (xi) → −c1 < 0 as x1i → ∞. Also, from Lemma 1, Γ1∗

n is continuous,

decreasing in x1i , and nondecreasing in x−1
i . Thus, (25) implies that for any x−1

i , x1,0n

(

x−1
i

)

is the unique x1i such that Γ1∗
n (xi) = 0, and moreover, x1,0n is nondecreasing. Further,

if θ1∗n is increasing, then Γ1∗
n is increasing in x−1

i from Lemma 1, so x1,0n is increasing.

The boundedness of x1,0n follows from (23) and the assumption that θ1∗n is bounded. The

continuity of x1,0n follows by replacing Γ̄k∗
n in the proof of Lemma 2 by Γ̄0∗

n = 0. The claim

for x̄1,0n follows similarly.

Lemma 4 For any j ∈ J and xj∗ : RN−1 → R, define θj∗ : RN−1 → [0, 1] by θj∗ (θ−j) =

Pr
(

xji < xj∗
(

x−j
i

)

|θj∗ (θ−j) , θ−j
)

. If xj∗ is continuous and nondecreasing, then θj∗ ∈
B̃(RN−1); further, if, for each k ∈ J−j, there is some x−j

i ∈ R
N−1 at which xj∗ is increas-

ing in xki , then θ
j∗ is increasing.

Proof. Noting that Pr
(

xji < xj∗|θ
)

= Ψj (xj∗ − θ) for fixed xj∗,

θj∗
(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)

Ψj
(

xj∗
(

θ−j + ǫ−j
i

)

− θj∗
(

θ−j
))

dǫ−j
i . (29)

I prove the claim for j = 1. The boundedness of θ1∗ is obvious, since θ1∗ : RN−1 →
[0, 1]. Define H̃1 : RN × R

N−1 → R
+ by

H̃1
(

θ, ǫ−1
i

)

= ψ̃−1
(

ǫ−1
i

)

Ψ1
(

x1∗
(

θ−1 + ǫ−1
i

)

− θ1
)

. (30)

Then, H̃1 is continuous because, by assumption, ψ̃−1, Ψ1, and x1∗ are continuous. Thus,
∫

ǫ−1

i ∈RN−1 H̃
1
(

θ, ǫ−1
i

)

dǫ−1
i is continuous in θ from the same argument as for Hj. Also,

given ψ̃−1 > 0, for any ǫ−1
i , H̃1 is clearly decreasing in θ1, and since x1∗ is by assumption

nondecreasing, H̃1 is nondecreasing in θ−1. Thus, θ1 −
∫

ǫ−1

i ∈RN−1 H̃
1
(

θ, ǫ−1
i

)

dǫ−1
i is con-

tinuous, increasing in θ1, nonincreasing in θ−1, and tends to −∞ as θ1 → −∞, and to ∞
as θ1 → ∞. So, for any θ−1, there is a unique θ1 such that θ1 =

∫

ǫ−1

i ∈RN−1 H̃
1
(

θ, ǫ−1
i

)

dǫ−1
i ,

which corresponds to θ1∗ (θ−1). Thus, for any z, z′ ∈ R
N−1,42

θ1∗ (z) =

∫

ǫ−1

i ∈RN−1

H̃1
(

θ1∗ (z) , z, ǫ−1
i

)

dǫ−1
i , (31)

θ1∗ (z′) =

∫

ǫ−1

i ∈RN−1

H̃1
(

θ1∗ (z′) , z′, ǫ−1
i

)

dǫ−1
i . (32)

42The first two arguments in H̃1
(

θ1∗ (z) , z, ǫ−1
i

)

imply θ1 = θ1∗ (z) and θ−1 = z.
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Therefore, if z ≥ z′, (31) implies

θ1∗ (z) ≥
∫

ǫ−1

i ∈RN−1

H̃1
(

θ1∗ (z) , z′, ǫ−1
i

)

dǫ−1
i , (33)

since
∫

ǫ−1

i ∈RN−1 H̃
1
(

θ, ǫ−1
i

)

dǫ−1
i is nondecreasing in θ−1. Since θ1−

∫

ǫ−1

i ∈RN−1 H̃
1
(

θ, ǫ−1
i

)

dǫ−1
i

is increasing in θ1, (32) and (33) imply θ1∗ (z) ≥ θ1∗ (z′), so θ1∗ is nondecreasing.

Further, suppose, for each k ∈ J−1, there is some x−1
i at which x1∗ is increasing in

xki . Take any θ1 ∈ R and z, z′ ∈ R
N−1 such that z ≥ z′ and z 6= z′. Then, for some

k ∈ J−1, the k-th element of z is strictly greater than that of z′. Then, x1∗
(

z + ǫ−1
i

)

≥
x1∗

(

z′ + ǫ−1
i

)

for any ǫ−1
i ∈ R

N−1, with strict inequality in some neighborhood of ǫ−1
i

for which x1∗
(

z + ǫ−1
i

)

is increasing in the k-th argument. Thus, H̃1
(

θ1, z, ǫ−1
i

)

≥
H̃1

(

θ1, z′, ǫ−1
i

)

for any ǫ−1
i , with strict inequality for some ǫ−1

i . Then, since H̃1
(

θ1, z, ǫ−1
i

)

and H̃1
(

θ1, z′, ǫ−1
i

)

are continuous in ǫ−1
i , strict monotonicity of the integral43 yields

∫

ǫ−1

i ∈RN−1

H̃1
(

θ1, z, ǫ−1
i

)

dǫ−1
i >

∫

ǫ−1

i ∈RN−1

H̃1
(

θ1, z′, ǫ−1
i

)

dǫ−1
i . (34)

Thus, the inequality in (33) becomes strict, hence θ1∗ is increasing.

For the continuity of θ1∗, fix any z ∈ R
N−1, and take any z′ ∈ R

N−1, z′ 6= z. Then, if

θ1∗ (z) > θ1∗ (z′),

0 > θ1∗ (z′)− θ1∗ (z)

=

∫

ǫ−1

i ∈RN−1

H̃1
(

θ1∗ (z′) , z′, ǫ−1
i

)

dǫ−1
i −

∫

ǫ−1

i ∈RN−1

H̃1
(

θ1∗ (z) , z, ǫ−1
i

)

dǫ−1
i

>

∫

ǫ−1

i ∈RN−1

H̃1
(

θ1∗ (z) , z′, ǫ−1
i

)

dǫ−1
i −

∫

ǫ−1

i ∈RN−1

H̃1
(

θ1∗ (z) , z, ǫ−1
i

)

dǫ−1
i ,

where the equality is from (31) and (32), and the second inequality follows since
∫

ǫ−1

i ∈RN−1 H̃
1
(

θ, ǫ−1
i

)

dǫ−1
i is decreasing in θ1 as argued above. If θ1∗ (z) < θ1∗ (z′), the

two inequalities above are reversed, and thus,

∣

∣θ1∗ (z′)− θ1∗ (z)
∣

∣

<

∣

∣

∣

∣

∣

∫

ǫ−1

i ∈RN−1

H̃1
(

θ1∗ (z) , z′, ǫ−1
i

)

dǫ−1
i −

∫

ǫ−1

i ∈RN−1

H̃1
(

θ1∗ (z) , z, ǫ−1
i

)

dǫ−1
i

∣

∣

∣

∣

∣

. (35)

But since
∫

ǫ−1

i ∈RN−1 H̃
1
(

θ, ǫ−1
i

)

dǫ−1
i is continuous in θ as argued, for any ν > 0, there exists

δ > 0 such that the RHS of (35) is smaller than ν for any z′ ∈ R
N−1, ‖z′ − z‖E < δ. Thus,

|θ1∗ (z′)− θ1∗ (z)| < ν for such z′. The choice of z was arbitrary, so θ1∗ is continuous.

43The monotonicity of the integral holds that if f, g : Rm → R are integrable on R
m and f ≥ g, then

∫

Rm
f ≥

∫

Rm
g (see, e.g., Hijab (2011), Theorem 4.3.1). The strict monotonicity of integral holds that

if f , g are also continuous and f (w) > g (w) for some w ∈ R
m, then

∫

Rm
f >

∫

Rm
g. To see this,

let ϕ ≡ f − g. Then, ϕ ≥ 0 and ϕ (w) > 0, and since ϕ is continuous, there exists ν > 0 such that

|ϕ (w) − ϕ (z)| < ϕ (w) /2 for all z ∈ Bν (w) ≡ {w′ ∈ R
m| ‖w′ − w‖E < ν}. Then,

∫

z∈Rm
ϕ (z)dz ≥

∫

z∈Bν(w)
ϕ (z)dz >

∫

z∈Bν(w)
ϕ(w)
2 dz > 0.
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For later use, note that (19) and (20) can be rewritten as

θj∗n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)

Ψj
(

xj∗n
(

θ−j + ǫ−j
i

)

− θj∗n+1

(

θ−j
))

dǫ−j
i , (36)

θ̄j∗n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)

Ψj
(

x̄j∗n
(

θ−j + ǫ−j
i

)

− θ̄j∗n+1

(

θ−j
))

dǫ−j
i . (37)

Lemma 5 is used to show how the ordering of xj∗n and x̄j∗n affect that of θj∗n+1 and θ̄
j∗
n+1.

Lemma 5 For any j ∈ J and xj∗, x̂j∗ : RN−1 → R, define θj∗, θ̂j∗ : RN−1 → [0, 1] by

θj∗ (θ−j) = Pr
(

xji < xj∗
(

x−j
i

)

|θj∗ (θ−j) , θ−j
)

and θ̂j∗ (θ−j) = Pr
(

xji < x̂j∗
(

x−j
i

)

|θ̂j∗ (θ−j) , θ−j
)

.

If xj∗ and x̂j∗ are continuous and xj∗ ≥ x̂j∗, then θj∗ ≥ θ̂j∗; further, if xj∗
(

x−j
i

)

>

x̂j∗
(

x−j
i

)

for some x−j
i ∈ R

N−1, then θj∗ > θ̂j∗.

Proof. I prove the claim for j = 1. Define Ĥ1 : RN × R
N−1 → R

+ by Ĥ1
(

θ, ǫ−1
i

)

=

ψ̃−1
(

ǫ−1
i

)

Ψ1
(

x̂1∗
(

θ−1 + ǫ−1
i

)

− θ1
)

. Since x̂1∗ is continuous, so is Ĥ1 from the same

argument as for H̃1, and since x1∗ ≥ x̂1∗, it follows that H̃1 ≥ Ĥ1. Further, if x1∗
(

x−1
i

)

>

x̂1∗
(

x−1
i

)

for some x−1
i ∈ R

N−1, then for any θ1 ∈ R and z ∈ R
N−1, H̃1

(

θ1, z, ǫ−1
i

)

≥
Ĥ1

(

θ1, z, ǫ−1
i

)

for any ǫ−1
i , with strict inequality for some ǫ−1

i . Thus, the claim follows by

letting Ĥ1
(

θ1, z, ǫ−1
i

)

and θ̂1∗ (z) play the role of H̃1
(

θ1, z′, ǫ−1
i

)

and θ1∗ (z′) in the proof

of Lemma 4.

With adequate assumptions, the conclusions of Lemmas 4 and 5 hold when xj∗ and x̂j∗

may equal −∞. This issue is discussed in the proof of propositions for the nonsymmetric

two-country environment, where such consideration is necessary.

Lemmas 6 and 7 are critical to showing the convergence of the relevant functions.

Lemma 6 Under the assumptions of Lemma 2,

Γ̄j∗
n (xi) ≤ Γj∗

n

(

x1i , . . . , x
j−1

i , xji − djn, . . . , x
N
i

)

for any j ∈ J and xi ∈ R
N .

Proof. For any j ∈ J and x−j
i − ǫ−j

i ∈ R
N−1, θ̄j∗n

(

x−j
i − ǫ−j

i

)

≤ θj∗n
(

x−j
i − ǫ−j

i

)

+ djn.

Thus, the claim follows from (23), (24), and the monotonicity of the integral.

Lemma 7 For any j ∈ J and xj∗n , x̄
j∗
n : RN−1 → {−∞} ∪R, define θj∗n+1, θ̄

j∗
n+1 : R

N−1 →
[0, 1] by (19), (20). If there exist z ∈ R

N−1 and y > 0 such that x̄j∗n
(

x−j
i − z

)

≤
xj∗n

(

x−j
i

)

+y for x−j
i ∈ XR (x

j∗
n ), and x̄j∗n

(

x−j
i − z

)

= xj∗n
(

x−j
i

)

= −∞ for x−j
i /∈ XR (x

j∗
n ),

then θ̄j∗n+1 (θ
−j − z) − θj∗n+1 (θ

−j) ≤ λjy for any θ−j ∈ R
N−1. The same statement holds

with both ≤ replaced by <.

Proof. Replacing θ−j with θ−j − z in (37),

θ̄j∗n+1

(

θ−j − z
)

=

∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)

Ψj
(

x̄j∗n
(

θ−j − z + ǫ−j
i

)

− θ̄j∗n+1

(

θ−j − z
))

dǫ−j
i .

(38)
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Take any θ−j ∈ R
N−1. If θ̄j∗n+1 (θ

−j − z)−θj∗n+1 (θ
−j) ≤ 0, the claim follows since y > 0.

Suppose θ̄j∗n+1 (θ
−j − z)− θj∗n+1 (θ

−j) > 0, and let

F j
n

(

ǫ−j
i

)

≡ Ψj
(

x̄j∗n
(

θ−j − z + ǫ−j
i

)

− θ̄j∗n+1

(

θ−j − z
))

−Ψj
(

xj∗n
(

θ−j + ǫ−j
i

)

− θj∗n+1

(

θ−j
))

.

(39)

Then (36), (38), and (39) imply ‖F j
n‖ = sup

ǫ
−j
i ∈RN−1 F j

n

(

ǫ−j
i

)

> 0 and

θ̄j∗n+1

(

θ−j − z
)

− θj∗n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)

F j
n

(

ǫ−j
i

)

dǫ−j
i

≤
∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)
∥

∥F j
n

∥

∥ dǫ−j
i

=
∥

∥F j
n

∥

∥ , (40)

where the second equality follows since
∫

ǫ
−j
i ∈RN−1 ψ̃

−j
(

ǫ−j
i

)

dǫ−j
i = 1.

LetXR (x̄
j∗
n ; θ−j − z) ≡

{

ǫ−j
i ∈ R

N−1|θ−j − z + ǫ−j
i ∈ XR (x̄

j∗
n )

}

. If ǫ−j
i /∈ XR (x̄

j∗
n ; θ−j − z),

then x̄j∗n
(

θ−j − z + ǫ−j
i

)

= −∞, hence F j
n

(

ǫ−j
i

)

≤ 0 from (39). Thus, F j
n

(

ǫ−j
i

)

can be pos-

itive only if ǫ−j
i ∈ XR (x̄

j∗
n ; θ−j − z), in which case x̄j∗n

(

θ−j − z + ǫ−j
i

)

and xj∗n
(

θ−j + ǫ−j
i

)

are both finite from the assumption of the lemma. Then, from (39),

∥

∥F j
n

∥

∥ ≤
∥

∥ψj
∥

∥

{

sup
ǫ
−j
i ∈XR(x̄j∗

n ;θ−j−z)

[

x̄j∗n
(

θ−j − z + ǫ−j
i

)

− xj∗n
(

θ−j + ǫ−j
i

)]

(41)

−
[

θ̄j∗n+1

(

θ−j − z
)

− θj∗n+1

(

θ−j
)]

}

,

where the terms in the curly bracket are positive given ‖F j
n‖ > 0. Substituting (41) into

(40) and rearranging,

θ̄j∗n+1

(

θ−j − z
)

−θj∗n+1

(

θ−j
)

≤ λj sup
ǫ
−j
i ∈XR(x̄j∗

n ;θ−j−z)

[

x̄j∗n
(

θ−j − z + ǫ−j
i

)

− xj∗n
(

θ−j + ǫ−j
i

)]

≤ λjy.

(42)

The second inequality here follows from the assumption of the lemma, and it is a strict

inequality if the inequality in the assumption is strict.

Proof of Proposition 1

I first prove two lemmas, and then use them to prove Proposition A1, which shows

that the iterative deletion procedure defined by (15)–(20) yields monotonic sequences of

monotonic and continuous functions from below and above. I then show that both these

sequences converge to a common limit, which has the claimed properties.

Lemmas 8 and 9 below complement Lemmas 2 and 3. For the sake of disposition, I

summarize below the assumptions made in these two lemmas.

Assumption 1 Suppose N = 2, and for all j ∈ J = {1, 2}, let θj∗n , θ̄j∗n ∈ B̃(R),

Γj∗
n , Γ̄j∗

n : R2→ R be defined by (15), (16), and xj∗n , x̄j∗n : R → R̄ be defined by (17), (18).
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Note that one may invoke Lemmas 1–3 under Assumption 1.

Lemma 8 Let Assumption 1 hold. Then, for any j ∈ J , Γj∗
n −max

k∈J
−j
0

Γ̄k∗
n and Γ̄j∗

n −
max

k∈J
−j
0

Γk∗
n are continuous, decreasing in xji , and nondecreasing in x−j

i . Moreover, if

x−j
i ∈ XR (x

j∗
n ), then Γj∗

n (xi) = max
k∈J

−j
0

Γ̄k∗
n (xi) at x

j
i = xj∗n

(

x−j
i

)

, and if x−j
i ∈ XR (x̄

j∗
n ),

then Γ̄j∗
n (xi) = max

k∈J
−j
0

Γk∗
n (xi) at x

j
i = x̄j∗n

(

x−j
i

)

.

Proof. I prove the claim for j = 1. Note that a function obtained by taking the

minimum of continuous functions is continuous44, and that a similar statement holds for

monotonic functions.45 Now, from Lemma 1, Γj∗
n and Γ̄j∗

n are continuous, decreasing in

xji , and nondecreasing in x−j
i for all j ∈ J . Thus, both Γ1∗

n and Γ1∗
n − Γ̄2∗

n are continuous,

decreasing in x1i , and nondecreasing in x2i , so the same is true for Γ1∗
n − maxk∈J−1

0

Γ̄k∗
n =

min
{

Γ1∗
n , Γ1∗

n − Γ̄2∗
n

}

. The claim for Γ̄1∗
n −maxk∈J−1

0

Γk∗
n follows similarly.

Therefore, (17) implies that if x2i ∈ XR (x
1∗
n ), then x1∗n (x2i ) is the unique x1i such that

Γ1∗
n (xi) = maxk∈J−1

0

Γ̄k∗
n (xi). Similarly, (18) implies that if x2i ∈ XR (x̄

1∗
n ), then x̄1∗n (x2i )

is the unique x1i such that Γ̄1∗
n (xi) = max

k∈J
−j
0

Γk∗
n (xi).

Lemma 9 below examines the properties of xj∗n and x̄j∗n . Part (a)–(d) concern xj∗n , and

(A)–(D) are parallel statements for x̄j∗n .

Lemma 9 Under Assumption 1, the following holds for any j ∈ J .

(a) xj∗n < ∞, and XR (x
j∗
n ) = (ωj∗

n ,∞) for some ωj∗
n < ∞. (b) xj∗n = min

k∈J
−j
0

xj,kn , and

for any k ∈ J−j
0 , xj∗n

(

x−j
i

)

= xj,kn
(

x−j
i

)

at some x−j
i ∈ XR (x

j∗
n ). (c) xj∗n is nondecreasing

in R, continuous in XR (x
j∗
n ), and increasing at some x−j

i ∈ XR (x
j∗
n ); further, if θj∗n is

increasing, then xj∗n is increasing in XR (x
j∗
n ). (d) If ωj∗

n ∈ R, lim
x
−j
i

ցω
j∗
n
xj∗n

(

x−j
i

)

= −∞.

(A) x̄j∗n < ∞, and XR (x̄
j∗
n ) = (ω̄j∗

n ,∞) for some ω̄j∗
n < ∞. (B) x̄j∗n = min

k∈J
−j
0

x̄j,kn , and

for any k ∈ J−j
0 , x̄j∗n

(

x−j
i

)

= x̄j,kn
(

x−j
i

)

at some x−j
i ∈ XR (x̄

j∗
n ). (C) x̄j∗n is nondecreasing

in R, continuous in XR (x̄
j∗
n ), and increasing at some x−j

i ∈ XR (x̄
j∗
n ); further, if θ̄j∗n is

increasing, then x̄j∗n is increasing in XR (x̄
j∗
n ). (D) If ω̄j∗

n ∈ R, lim
x
−j
i ցω̄

j∗
n
x̄j∗n

(

x−j
i

)

= −∞.

Proof. Note below that (15), (16) are rewritten as (23), (24), and J−1
0 = {0, 2}.

For (a), note from (17) that x1∗n (x2i ) = ∞ if the set
{

x1i ∈ R|Γ1∗
n (xi) ≤ maxk∈J−1

0

Γ̄k∗
n (xi)

}

is empty, and x1∗n (x2i ) = −∞ if this set is unbounded below. From Lemma 3, x1,0n (x2i ) ∈ R

for any x2i ∈ R, and Γ1∗
n (xi) ≤ Γ̄0∗

n (xi) if and only if x1i ≥ x1,0n (x2i ). Thus, this set is

44Let f and g be continuous. Then, f+g, f−g, and |f | are continuous (Johnsonbaugh and Pfaffenberger

(2010), Theorem 40.4). But then, min {f, g} = (f + g − |f − g|) /2 is continuous. By repeating the

argument, the same result follows for more than two functions.
45Let f, g : R

m → R be decreasing, h ≡ min {f, g}, and take any z, z′ ∈ R
m, z′ ≥ z and

z′ 6= z. Then, h (z′) ≤ f (z′) and h (z′) ≤ g (z′), so h (z) − h (z′) = min {f (z) , g (z)} − h (z′) ≥
min {f (z)− f (z′) , g (z)− g (z′)} > 0, so h is decreasing. If f, g are nonincreasing, the last inequality is

weak, so h is nonincreasing. By repeating the argument, the same result follows for more than two func-

tions. Minor modifications from above yield similar statements for increasing (nondecreasing) functions.
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nonempty for any x2i ∈ R, and is bounded below if and only if Γ1∗
n (xi) > Γ̄2∗

n (xi) for any

sufficiently small x1i . Therefore,

XR

(

x1∗n
)

=

{

x2i ∈ R| lim
x1

i→−∞

[

Γ1∗
n (xi)− Γ̄2∗

n (xi)
]

> 0

}

, (43)

where the limit exists for any x2i ∈ R, since Γ1∗
n − Γ̄2∗

n is decreasing in x1i .

Clearly XR (x
1∗
n ) 6= ∅, since from (23) and (24), Γ1∗

n (xi)−Γ̄2∗
n (xi) > 0 for combinations

of sufficiently small x1i and sufficiently large x2i . Moreover, since Γ1∗
n − Γ̄2∗

n is increasing in

x2i , if z ∈ XR (x
1∗
n ), then z′ ∈ XR (x

1∗
n ) for all z′ ≥ z, and if z /∈ XR (x

1∗
n ), then z′′ /∈ XR (x

1∗
n )

for all z′′ ≤ z. Thus, XR (x
1∗
n ) = (ω1∗

n ,∞), where ω1∗
n = −∞ if XR (x

1∗
n ) = R. If

XR (x
1∗
n ) 6= R, then ω1∗

n is the value of x2i ∈ R such that limx1

i→−∞

[

Γ1∗
n (xi)− Γ̄2∗

n (xi)
]

= 0,

where such x2i uniquely exists since Γ1∗
n − Γ̄2∗

n is continuous and increasing in x2i .

For (b), note that for any x2i ∈ XR (x
1∗
n ), Lemma 8 implies

x1∗n
(

x2i
)

=
{

x1i ∈ R|Γ1∗
n (xi) = maxk∈J−1

0

Γ̄k∗
n (xi)

}

. (44)

Moreover, if l ∈ J−1
0 is such that Γ1∗

n (x1∗n (x2i ) , x
2
i ) = Γ̄l∗

n (x1∗n (x2i ) , x
2
i ), then x1∗n (x2i ) =

x1,ln (x2i ) from Lemma 2. Now, (17) implies that for any x2i ∈ R and k ∈ J−1
0 , if x1i <

x1∗n (x2i ), then Γ1∗
n (xi) > Γ̄k∗

n (xi), so from the definition of x1,kn in (25), x1∗n (x2i ) ≤ x1,kn (x2i ).

Combining these results, x1∗n (x2i ) = mink∈J−1

0

x1,kn (x2i ). For any x2i /∈ XR (x
1∗
n ), the argu-

ment in the proof of (a) implies x1∗n (x2i ) = x1,2n (x2i ) = −∞, and thus for any x2i ∈ R,

x1∗n
(

x2i
)

= mink∈J−1

0

x1,kn

(

x2i
)

. (45)

For the latter part of the claim, note from (24) and the boundedness of θ̄2∗n that for

sufficiently large x2i , Γ̄
2∗
n (xi) < 0 = Γ̄0∗

n (xi) for any x1i , hence x
1∗
n (x2i ) = x1,0n (x2i ) ∈ R.

Further, since Γ̄2∗
n is continuous from Lemma 1, (24) and the boundedness of θ̄2∗n imply that

there exists z ∈ R such that limx1

i→−∞ Γ̄2∗
n (x1i , z) = 0. Then, since limx1

i→−∞ Γ1∗
n (x1i , z) >

0 from (17), limx1

i→−∞

[

Γ1∗
n (x1i , z)− Γ̄2∗

n (x1i , z)
]

> 0, which implies z ∈ XR (x
1∗
n ) from

(43). Also, since Γ̄2∗
n is nondecreasing in x1i , Γ̄

2∗
n (x1i , z) ≥ 0 = Γ̄0∗

n (x1i , z) for any x
1
i ∈ R.

Thus, Γ1∗
n (x1∗n (z) , z) = Γ̄2∗

n (x1∗n (z) , z) from Lemma 8, hence x1∗n (z) = x1,2n (z).

For (c), note from (45) and XR (x
1,0
n ) = R that XR (x

1,2
n ) ⊂ XR (x

1∗
n ), and that

x2i ∈ XR (x
1∗
n ) implies x1,2n (x2i ) ∈ R∪{∞}. Now, from Lemmas 2 and 3, x1,2n is continuous

and increasing, and x1,0n is continuous and nondecreasing, in XR (x
1,2
n ). Thus, from (45),

x1∗n is continuous and nondecreasing in XR (x
1,2
n ) (see footnotes 44 and 45). Moreover,

for x2i such that x1,2n (x2i ) = ∞, (45) implies x1∗n (x2i ) = x1,0n (x2i ), which is continuous and

nondecreasing. Thus, x1∗n is continuous and nondecreasing in x2i ∈ XR (x
1∗
n ), and is in-

creasing if x1∗n (x2i ) = x1,2n (x2i ), where such x
2
i ∈ XR (x

1,2
n ) ⊂XR (x

1∗
n ) exists as shown in (b).

Further, if θj∗n is increasing, so is x1,0n from Lemma 3, hence x1∗n is increasing in XR (x
1∗
n ).

For (d), note that the limit is well defined, since x1∗n is nondecreasing. As argued

in the proof of (a), limx1

i→−∞

[

Γ1∗
n (x1i , ω

1∗
n )− Γ̄2∗

n (x1i , ω
1∗
n )

]

= 0 since ω1∗
n ∈ R. Suppose

the claim is false, and limx2

iցω1∗
n
x1∗n (x2i ) = κ ∈ R. Then, since Γ1∗

n − Γ̄2∗
n is decreas-

ing in x1i , Γ
1∗
n (κ, ω1∗

n ) < Γ̄2∗
n (κ, ω1∗

n ), and since Γ1∗
n − Γ̄2∗

n is continuous, Γ1∗
n (κ, ω1∗

n + ν) <
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Γ̄2∗
n (κ, ω1∗

n + ν) for sufficiently small ν > 0. Thus, Γ1∗
n (κ, ω1∗

n + ν) < maxk∈J−1

0

Γk∗
n (κ, ω1∗

n + ν),

and since ω1∗
n + ν ∈ XR (x

1∗
n ) from (a) and Γ1∗

n − maxk∈J−1

0

Γk∗
n is decreasing in x1i

from Lemma 8, (44) implies x1∗n (ω1∗
n + ν) < κ. Then, since x1∗n is nondecreasing,

limx2

iցω1∗
n
x1∗n (x2i ) < κ. This is a contradiction, so limx2

iցω1∗
n
x1∗n (x2i ) = −∞.

This concludes the proof of Lemma 9(a)–(d), and (A)–(D) follow similarly.

For later use, note from above that (18) can be rewritten as

x̄1∗n
(

x2i
)

=
{

x1i ∈ R

∣

∣

∣
Γ̄1∗
n (xi) = maxk∈J−1

0

Γk∗
n (xi)

}

(46)

if x2i ∈ XR (x̄
1∗
n ), and x̄1∗n (x2i ) = −∞ otherwise.

By combining Lemmas 1–5, 8, and 9, I now prove the following proposition.46

Proposition A1 Let N = 2, and
(

(xj∗n , x̄
j∗
n , θ

j∗
n+1, θ̄

j∗
n+1)j∈J

)∞

n=1
be defined by (15)–(20),

where θj∗1 ≡ 0 and θ̄j∗1 ≡ 1 for all j ∈ J . Then, for any n ∈ N and j ∈ J , (a) θj∗n+1 and θ̄
j∗
n+1

are continuous and increasing, and xj∗n+1 and x̄
j∗
n+1 are nondecreasing in R and continuous

and increasing, respectively, in XR

(

xj∗n+1

)

and XR

(

x̄j∗n+1

)

, (b) θ̄j∗n > θ̄j∗n+1 > θj∗n+1 > θj∗n ,

and x̄j∗n ≥ x̄j∗n+1 ≥ xj∗n+1 ≥ xj∗n .

Proof. Note that θj∗1 = 0, θ̄j∗1 = 1, and θj∗n+1, θ̄
j∗
n+1 ∈ (0, 1) from (19) and (20). Thus, for

any n ∈ N, θj∗n and θ̄j∗n are bounded, so Assumption 1 holds if θj∗n and θ̄j∗n are continuous

and nondecreasing.

For Proposition A1(a), I first show by induction that θj∗n+1 and θ̄
j∗
n+1 are continuous and

increasing for all j ∈ J and n ∈ N. By assumption, θj∗1 , θ̄
j∗
1 ∈ B̃(R), so from Lemma 9(c),

xj∗1 is nondecreasing in R, continuous in XR

(

xj∗1
)

, and increasing at some x−j
i ∈ XR

(

xj∗1
)

.

Thus, ifXR

(

xj∗1
)

= R, then θj∗2 is continuous and increasing from Lemma 4. IfXR

(

xj∗1
)

6=
R, then from Lemma 9(a)(d), there exists ωj∗

1 ∈ R such that xj∗1
(

x−j
i

)

= −∞ for x−j
i ≤ ωj∗

1

and xj∗1
(

x−j
i

)

ց −∞ as x−j
i ց ωj∗

1 . Now, if one replaces H̃1 in the proof of Lemma 4 by

H̃j
1

(

θ, ǫ−j
i

)

≡ ψ̃−j
(

ǫ−j
i

)

Ψj
(

xj∗1
(

θ−j + ǫ−j
i

)

− θj
)

, then H̃j
1

(

θ, ǫ−j
i

)

= 0 for θ−j+ǫ−j
i ≤ ωj∗

1 ,

and H̃j
1

(

θ, ǫ−j
i

)

ց 0 as θ−j+ǫ−j
i ց ωj∗

1 , so H̃j
1 is continuous just like H̃

1.47 Thus, the argu-

ment in the proof of Lemma 4 goes through, and θj∗2 is continuous and increasing. That θ̄j∗2
is continuous and increasing follows similarly, so the claim holds for n = 1. Now, suppose

θj∗n+1 and θ̄
j∗
n+1 are continuous and increasing for some n ∈ N. Then, from the same argu-

ment, θj∗n+2 and θ̄
j∗
n+2 are continuous and increasing, so the claim holds for n+1. Thus, by

induction, θj∗n+1 and θ̄
j∗
n+1 are continuous and increasing for all n ∈ N. Then, from Lemma

9(c)(C), xj∗n+1 is continuous and increasing in XR

(

xj∗n+1

)

, and so is x̄j∗n+1 in XR

(

x̄j∗n+1

)

.

For Proposition A1(b), I first show by induction that θ̄j∗n > θ̄j∗n+1 > θj∗n+1 > θj∗n for all

j ∈ J and n ∈ N. For any j ∈ J , 1 = θ̄j∗1 > θj∗1 = 0, so Γ̄j∗
1 > Γj∗

1 from (23) and (24).

46Throughout, N denotes the set of positive integers. Thus, Proposition A1(a) excludes xj∗
1 and x̄j∗

1 ,

which is because xj∗
1 and x̄j∗

1 turn out to be continuous and nondecreasing, but not necessarily increasing.
47Recall the assumption that Ψj is defined on R̄, where Ψj (−∞) = 0.
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Take any x2i ∈ R. If x2i /∈ XR (x
1∗
1 ), then x̄1∗1 (x2i ) ≥ x1∗1 (x2i ) = −∞. If x2i ∈ XR (x

1∗
1 ),

then (44), Γ̄1∗
1 > Γ1∗

1 , Γ̄2∗
1 > Γ2∗

1 , and Γ̄0∗
1 = Γ0∗

1 = 0 imply

Γ̄1∗
1

(

x1∗1
(

x2i
)

, x2i
)

> max
k∈J−1

0

Γk∗
1

(

x1∗1
(

x2i
)

, x2i
)

. (47)

From Lemma 8, Γ̄1∗
1 −maxk∈J−1

0

Γk∗
1 is decreasing in x1i , so (46) and (47) imply x̄1∗1 (x2i ) >

x1∗1 (x2i ). Therefore x̄1∗1 ≥ x1∗1 , where the inequality is strict except when x2i /∈ XR (x̄
1∗
1 ),

in which case x̄1∗1 (x2i ) = x1∗1 (x2i ) = −∞. Moreover, XR (x̄
1∗
1 ) 6= ∅ from Lemma 9(A).

Also, from Lemma 9(d)(D), limx2

iցω1∗

1
x1∗1 (x2i ) = −∞ and limx2

iցω̄1∗

1
x̄1∗1 (x2i ) = −∞, so

Ψ1 (x1∗1 (θ2 + ǫ2i )− θ1) and Ψ1 (x̄1∗1 (θ2 + ǫ2i )− θ1) are continuous for any (θ, ǫ2i ) ∈ R
2 ×R.

Thus, the argument in the proof of Lemma 5 goes through, hence θ̄1∗2 > θ1∗2 . Moreover,

θ̄1∗2 , θ
1∗
2 ∈ (0, 1), so 1 = θ̄1∗1 > θ̄1∗2 > θ1∗2 > θ1∗1 = 0. The same argument establishes the

inequality for j = 2, so the claim holds for n = 1.

Now, suppose θ̄j∗n > θ̄j∗n+1 > θj∗n+1 > θj∗n for all j ∈ J and some n ∈ N. Then, clearly

Γ̄j∗
n > Γ̄j∗

n+1 > Γj∗
n+1 > Γj∗

n from (23) and (24). Since Γ̄j∗
n+1 > Γj∗

n+1, the same argument as

above shows x̄j∗n+1 ≥ xj∗n+1, where the inequality is strict for x−j
i ∈ XR

(

x̄j∗n+1

)

.

To show xj∗n+1 ≥ xj∗n and x̄j∗n ≥ x̄j∗n+1, again, take any x2i ∈ R. If x2i /∈ XR (x
1∗
n ), then

x1∗n+1 (x
2
i ) ≥ x1∗n (x2i ) = −∞. If x2i ∈ XR (x

1∗
n ), then (44), Γ1∗

n+1 > Γ1∗
n , Γ̄2∗

n > Γ̄2∗
n+1, and

Γ̄0∗
n+1 = Γ̄0∗

n = 0 imply

Γ1∗
n+1

(

x1∗n
(

x2i
)

, x2i
)

> max
k∈J−1

0

Γ̄k∗
n+1

(

x1∗n
(

x2i
)

, x2i
)

. (48)

From Lemma 8, Γ1∗
n+1 − maxk∈J−1

0

Γ̄k∗
n+1 is decreasing in x1i , so (44) (for n + 1) and (48)

imply x1∗n+1 (x
2
i ) > x1∗n (x2i ). Thus, x1∗n+1 ≥ x1∗n , with strict inequality for x2i ∈ XR

(

x1∗n+1

)

.

Similarly, x2∗n+1 ≥ x2∗n , with strict inequality for x1i ∈ XR

(

x2∗n+1

)

.

Likewise, if x2i /∈ XR

(

x̄1∗n+1

)

, then x̄1∗n (x2i ) ≥ x̄1∗n+1 (x
2
i ) = −∞. If x2i ∈ XR

(

x̄1∗n+1

)

,

then (46), Γ̄1∗
n > Γ̄1∗

n+1, Γ
2∗
n+1 > Γ2∗

n , and Γ0∗
n+1 = Γ0∗

n = 0 imply

Γ̄1∗
n

(

x̄1∗n+1

(

x2i
)

, x2i
)

> max
k∈J−1

0

Γk∗
n

(

x̄1∗n+1

(

x2i
)

, x2i
)

. (49)

From Lemma 8, Γ̄1∗
n −maxk∈J−1

0

Γk∗
n is decreasing in x1i , so (46) and (49) imply x̄1∗n (x2i ) >

x̄1∗n+1 (x
2
i ). Thus, x̄1∗n ≥ x̄1∗n+1, with strict inequality for x2i ∈ XR (x̄

1∗
n ). Similarly, x̄2∗n ≥

x̄2∗n+1, with strict inequality for x1i ∈ XR (x̄
2∗
n ).

To summarize, if, for some n ∈ N, θ̄j∗n > θ̄j∗n+1 > θj∗n+1 > θj∗n for all j ∈ J , then

x̄j∗n ≥ x̄j∗n+1 ≥ xj∗n+1 ≥ xj∗n for all j ∈ J , where each inequality is strict for some x−j
i ∈ R. By

invoking the continuity argument as when establishing θ̄1∗2 > θ1∗2 and applying Lemma 5,

θ̄j∗n+1 > θ̄j∗n+2 > θj∗n+2 > θj∗n+1 for all j ∈ J , so the claim holds for n+1. Thus, by induction,

θ̄j∗n > θ̄j∗n+1 > θj∗n+1 > θj∗n for all j ∈ J and n ∈ N, hence x̄j∗n ≥ x̄j∗n+1 ≥ xj∗n+1 ≥ xj∗n .

The remaining proof of Proposition 1 again proceeds through a series of lemmas. Note

from the proof of Proposition A1 that under the assumptions of this proposition, for any

j ∈ J and n ∈ N, Γj∗
n+1 and Γ̄j∗

n+1 are continuous, decreasing in xji , and increasing in
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x−j
i , and further, Γ̄j∗

n > Γ̄j∗
n+1 > Γj∗

n+1 > Γj∗
n . Similarly, Γj∗

n+1− maxk∈J−1

0

Γ̄k∗
n+1 and Γ̄j∗

n+1−
maxk∈J−1

0

Γk∗
n+1 are continuous, decreasing in xji , and increasing in x−j

i . Moreover, (djn)
∞

n=1

is a nonincreasing sequence, since θ̄j∗n > θ̄j∗n+1 > θj∗n+1 > θj∗n .

Lemmas 10 and 11 state how the horizontal and vertical distances between x̄j∗n and

xj∗n decrease with n.

Lemma 10 Under the assumptions of Proposition A1, for any j ∈ J and n ∈ N,

x̄j∗n+1

(

x−j
i − d−j

n+1

)

< xj∗n+1

(

x−j
i

)

+ djn+1 if x−j
i ∈ XR

(

xj∗n+1

)

, and x̄j∗n+1

(

x−j
i − d−j

n+1

)

=

xj∗n+1

(

x−j
i

)

= −∞ if x−j
i /∈ XR

(

xj∗n+1

)

.

Proof. I prove the claim for j = 1. Fix any n ∈ N and z ∈ R, and let y ≡ x1∗n+1 (z)

to simplify notation. If z ∈ XR

(

x1∗n+1

)

, (44) implies Γ1∗
n+1 (y, z) = maxk∈J−1

0

Γ̄k∗
n+1 (y, z).

Then,

Γ̄1∗
n+1

(

y + d1n+1, z − d2n+1

)

< Γ̄1∗
n+1

(

y + d1n+1, z
)

≤ Γ1∗
n+1 (y, z)

= max
k∈J−1

0

Γ̄k∗
n+1 (y, z)

≤ max
k∈J−1

0

Γk∗
n+1

(

y, z − d2n+1

)

≤ max
k∈J−1

0

Γk∗
n+1

(

y + d1n+1, z − d2n+1

)

. (50)

Here, the first inequality follows since Γ̄1∗
n+1 is increasing in x2i . The second and third

inequalities are from Lemma 6, whereas the last inequality follows since Γk∗
n+1, k ∈ J−1

0 =

{0, 2}, is nondecreasing in x1i . Then, since Γ̄1∗
n+1−maxk∈J−1

0

Γk∗
n+1 is decreasing in x1i , (46),

(50), and y = x1∗n+1 (z) imply

x̄1∗n+1

(

z − d2n+1

)

< x1∗n+1 (z) + d1n+1. (51)

If z /∈ XR

(

x1∗n+1

)

, or equivalently x1∗n+1 (z) = −∞, then Γ1∗
n+1 (x

1
i , z) < maxk∈J−1

0

Γ̄k∗
n+1 (x

1
i , z)

for any x1i ∈ R. But then, a similar argument as above shows that

Γ̄1∗
n+1

(

x1i + d1n+1, z − d2n+1

)

< max
k∈J−1

0

Γk∗
n+1

(

x1i + d1n+1, z − d2n+1

)

(52)

for any x1i ∈ R, hence x̄1∗n+1

(

z − d2n+1

)

= −∞.

Lemma 11 Under the assumptions of Proposition A1, for any j ∈ J , n, τ ∈ N and

τ ′ ∈ {1, 2, . . . , τ}, x̄j∗n+τ

(

x−j
i − (λ−j)

τ−τ ′

d−j
n+1

)

< xj∗n+τ

(

x−j
i

)

+ (λj)
τ ′−1

djn+1 if x−j
i ∈

XR

(

xj∗n+τ

)

, and x̄j∗n+τ

(

x−j
i − (λ−j)

τ−τ ′

d−j
n+1

)

= xj∗n+τ

(

x−j
i

)

= −∞ if x−j
i /∈ XR

(

xj∗n+τ

)

.

Proof. Fix any n ∈ N. As shown in Lemma 10, the claim holds for τ = 1. Now, suppose

the claim holds for some τ ∈ N. Then, for any j ∈ J and τ ′ ∈ {1, 2, . . . , τ},

θ̄j∗n+τ+1

(

θ−j −
(

λ−j
)τ−τ ′

d−j
n+1

)

< θj∗n+τ+1

(

θ−j
)

+
(

λj
)τ ′

djn+1 (53)
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from Lemma 7, which, combined with (23) and (24), implies

Γ̄1∗
n+τ+1

(

x1i +
(

λ1
)τ ′

d1n+1, x
2
i −

(

λ2
)τ−τ ′

d2n+1

)

< Γ1∗
n+τ+1

(

x1i , x
2
i

)

, (54)

Γ̄2∗
n+τ+1

(

x1i −
(

λ1
)τ−τ ′

d1n+1, x
2
i +

(

λ2
)τ ′

d2n+1

)

< Γ2∗
n+τ+1

(

x1i , x
2
i

)

. (55)

Using (54) and (55), I show that the claim holds for τ + 1.

Fix any z ∈ R, and let y ≡ x1∗n+τ+1 (z) to simplify notation. For now, suppose

z ∈ XR

(

x1∗n+τ+1

)

. Then, (44) implies

Γ1∗
n+τ+1 (y, z) = max

k∈J−1

0

Γ̄k∗
n+τ+1 (y, z) . (56)

The goal here is to show that for any τ ′′ ∈ {1, 2, . . . , τ + 1},

Γ̄1∗
n+τ+1

(

y +
(

λ1
)τ ′′−1

d1n+1, z −
(

λ2
)τ+1−τ ′′

d2n+1

)

< max
k∈J−1

0

Γk∗
n+τ+1

(

y +
(

λ1
)τ ′′−1

d1n+1, z −
(

λ2
)τ+1−τ ′′

d2n+1

)

, (57)

which requires separate arguments for τ ′′ = 1, τ ′′ ∈ {2, 3, . . . , τ}, and τ ′′ = τ + 1.

First,

Γ̄1∗
n+τ+1

(

y + d1n+1, z −
(

λ2
)τ
d2n+1

)

< Γ̄1∗
n+τ+1

(

y + d1n+1, z
)

≤ Γ̄1∗
n+τ+1

(

y + d1n+τ+1, z
)

≤ Γ1∗
n+τ+1 (y, z)

= max
k∈J−1

0

Γ̄k∗
n+τ+1 (y, z)

≤ max
k∈J−1

0

Γk∗
n+τ+1

(

y + d1n+1, z −
(

λ2
)τ
d2n+1

)

. (58)

Here, the first inequality follows since Γ̄1∗
n+τ+1 is increasing in x2i . The second inequality

holds since d1n+1 ≥ d1n+τ+1 and Γ̄1∗
n+τ+1 is decreasing in x1i , and the third inequality follows

from Lemma 6. The equality is from (56), and the last inequality results from setting

τ ′ = τ , x1i = y + d1n+1, and x
2
i = z − (λ2)

τ
d2n+1 in (55).

Second, for any τ ′′ ∈ {2, 3, . . . , τ},

Γ̄1∗
n+τ+1

(

y +
(

λ1
)τ ′′−1

d1n+1, z −
(

λ2
)τ+1−τ ′′

d2n+1

)

< Γ1∗
n+τ+1 (y, z)

= max
k∈J−1

0

Γ̄k∗
n+τ+1 (y, z)

≤ max
k∈J−1

0

Γk∗
n+τ+1

(

y +
(

λ1
)τ ′′−1

d1n+1, z −
(

λ2
)τ+1−τ ′′

d2n+1

)

. (59)

Here, the first inequality follows from setting τ ′ = τ ′′ − 1 (hence, τ ′ ∈ {1, 2, . . . , τ − 1}),
x1i = y, and x2i = z in (54), whereas the equality follows from (56). The last inequality

follows from setting τ ′ = τ +1− τ ′′ (hence τ ′ ∈ {1, 2, . . . , τ − 1}), x1i = y+ (λ1)
τ ′′−1

d1n+1,

and x2i = z − (λ2)
τ+1−τ ′′

d2n+1 in (55).
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Third,

Γ̄1∗
n+τ+1

(

y +
(

λ1
)τ
d1n+1, z − d2n+1

)

< Γ1∗
n+τ+1 (y, z)

= max
k∈J−1

0

Γ̄k∗
n+τ+1 (y, z)

≤ max
k∈J−1

0

Γk∗
n+τ+1

(

y, z − d2n+τ+1

)

≤ max
k∈J−1

0

Γk∗
n+τ+1

(

y, z − d2n+1

)

≤ max
k∈J−1

0

Γk∗
n+τ+1

(

y +
(

λ1
)τ
d1n+1, z − d2n+1

)

. (60)

Here, the first inequality follows by setting τ ′ = τ , x1i = y, and x2i = z in (54). The

equality is from (56), and the second inequality uses Lemma 6. The third inequality

follows since d2n+1 ≥ d2n+τ+1 and Γk∗
n+τ+1, k ∈ J−1

0 , is nonincreasing in x2i , whereas the last

inequality obtains since Γk∗
n+τ+1, k ∈ J−1

0 , is nondecreasing in x1i .

Thus, if z ∈ XR

(

x1∗n+τ+1

)

, (58)–(60) imply (57) for any τ ′′ ∈ {1, 2, . . . , τ + 1}. Then,

since Γ̄1∗
n+τ+1− maxk∈J−1

0

Γk∗
n+τ+1 is decreasing in x1i , (46), (57), and y = x1∗n+τ+1 (z) imply

x̄1∗n+τ+1

(

z −
(

λ2
)τ+1−τ ′′

d2n+1

)

< x1∗n+τ+1 (z) +
(

λ1
)τ ′′−1

d1n+1. (61)

Finally, if z /∈ XR

(

x1∗n+τ+1

)

, then Γ1∗
n+τ+1 (x

1
i , z) < maxk∈J−1

0

Γ̄k∗
n+τ+1 (x

1
i , z) for any

x1i ∈ R. Then, a similar argument as above shows that

Γ̄1∗
n+τ+1

(

x1i +
(

λ1
)τ ′′−1

d1n+1, z −
(

λ2
)τ+1−τ ′′

d2n+1

)

< max
k∈J−1

0

Γk∗
n+τ+1

(

x1i +
(

λ1
)τ ′′−1

d1n+1, z −
(

λ2
)τ+1−τ ′′

d2n+1

)

for any τ ′′ ∈ {1, 2, . . . , τ + 1} and x1i ∈ R, hence x̄1∗n+τ+1

(

z − (λ2)
τ+1−τ ′′

d2n+1

)

= −∞.

A symmetric argument yields the corresponding relation between x̄2∗n+τ+1 and x2∗n+τ+1,

so the claim holds for τ + 1. Thus, by induction, the claim holds for any τ ∈ N.

The final piece of the proof of Proposition 1 is Lemma 12, which applies Lemma 11

and shows that the lower and upper threshold functions converge to the common limit.

Below, fn ր f (fn ց f) implies that {fn}∞n=1
is a nondecreasing (nonincreasing) sequence

of functions that converge pointwise to f .

Lemma 12 Under the assumptions of Proposition A1, for any j ∈ J , as n → ∞, θj∗n ր
θj∗ and θ̄j∗n ց θj∗, where θj∗ ∈ (0, θj∗s ) is continuous and increasing, and xj∗n ր xj∗ and

x̄j∗n ց xj∗, where xj∗ ∈ [−∞, xj∗s ) is nondecreasing in R and is continuous and increasing

in XR (x
j∗).

Proof. From Proposition A1, (xj∗n )
∞

n=1
is a nondecreasing sequence, and (x̄j∗n )

∞

n=1
is a

nonincreasing sequence, and the two sequences are bounded by each other. Thus, they
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respectively converge pointwise to some function, xj∗∞ and x̄j∗∞, where x̄j∗∞ ≥ xj∗∞. Moreover,

from Proposition A1, xj∗n and x̄j∗n are nondecreasing in R for all n ∈ N, so xj∗∞ and x̄j∗∞ are

also nondecreasing in R. Thus, the left- and the right-hand limits of xj∗∞ and x̄j∗∞ exist on

all x−j
i ∈ R, and the set of discontinuity points of xj∗∞ and x̄j∗∞ are at most countable.48

Fix any n ∈ N. As shown in Lemma 11, for all j ∈ J , τ ∈ N, and τ ′ ∈ {1, 2, . . . , τ},

x̄j∗n+τ

(

x−j
i −

(

λ−j
)τ−τ ′

d−j
n+1

)

< xj∗n+τ

(

x−j
i

)

+
(

λj
)τ ′−1

djn+1 (62)

if x−j
i ∈ XR

(

xj∗n+τ

)

, and x̄j∗n+τ

(

x−j
i − (λ−j)

τ−τ ′

d−j
n+1

)

= xj∗n+τ

(

x−j
i

)

= −∞ if x−j
i /∈

XR

(

xj∗n+τ

)

. Below, for each τ ∈ N, fix τ ′ = (τ + 1) /2 if τ is odd, and τ ′ = τ/2 if τ

is even. Then, as τ → ∞, τ ′ → ∞ and τ − τ ′ → ∞, which imply (λ−j)
τ−τ ′

d−j
n+1 → 0 and

(λj)
τ ′−1

djn+1 → 0 since λj, λ−j < 1.

First, take x−j
i /∈ XR (x

j∗
∞). Then, for any τ , xj∗n+τ

(

x−j
i

)

≤ xj∗∞
(

x−j
i

)

= −∞ and thus

x−j
i /∈ XR

(

xj∗n+τ

)

, so x̄j∗n+τ

(

x−j
i − (λ−j)

τ−τ ′

d−j
n+1

)

= xj∗n+τ

(

x−j
i

)

= −∞. Letting τ → ∞,

x̄j∗∞
(

x−j
i −

)

= −∞, where x̄j∗∞
(

x−j
i −

)

is the left-hand limit of x̄j∗∞ at x−j
i . Since this holds

for any x−j
i /∈ XR (x

j∗
∞) and xj∗∞ is nondecreasing in R, there exists ωj∗

∞ ∈ {−∞}∪ R such

that x̄j∗∞ (z) = xj∗∞ (z) = −∞ for z < ωj∗
∞, and x̄j∗∞ (z) ≥ xj∗∞ (z) > −∞ for z > ωj∗

∞.

Next, take x−j
i ∈ XR (x

j∗
∞), hence xj∗∞

(

x−j
i

)

∈ R. Then, since xj∗n+τ ր xj∗∞, for τ

sufficiently large, xj∗n+τ

(

x−j
i

)

∈ R, and thus (62) holds. As τ → ∞, the left-hand side

(LHS) and the RHS of (62) converges to x̄j∗∞
(

x−j
i −

)

and xj∗∞
(

x−j
i

)

, respectively, hence

x̄j∗∞
(

x−j
i −

)

≤ xj∗∞
(

x−j
i

)

. But now, if x̄j∗∞ is continuous at x−j
i , then x̄j∗∞

(

x−j
i −

)

= x̄j∗∞
(

x−j
i

)

and thus x̄j∗∞
(

x−j
i

)

≤ xj∗∞
(

x−j
i

)

, which implies x̄j∗∞
(

x−j
i

)

= xj∗∞
(

x−j
i

)

since x̄j∗∞ ≥ xj∗∞ as

argued above.

Summarizing these results, x̄j∗∞ = xj∗∞ except possibly at ωj∗
∞ and the set of discontinuity

points of x̄j∗∞ in XR (x̄
j∗
∞), which are at most countable.

Now, from Proposition A1,
(

θj∗n
)∞

n=1
is an increasing sequence, and

(

θ̄j∗n
)∞

n=1
is a de-

creasing sequence, and the two sequences are bounded by each other. Thus, they respec-

tively converge pointwise to θj∗∞ and θ̄j∗∞, where

θj∗∞
(

θ−j
)

=

∫

ǫ
−j
i ∈R

ψ̃−j
(

ǫ−j
i

)

Ψj
(

xj∗∞
(

θ−j + ǫ−j
i

)

− θj∗∞
(

θ−j
))

dǫ−j
i , (63)

θ̄j∗∞
(

θ−j
)

=

∫

ǫ
−j
i ∈R

ψ̃−j
(

ǫ−j
i

)

Ψj
(

x̄j∗∞
(

θ−j + ǫ−j
i

)

− θ̄j∗∞
(

θ−j
))

dǫ−j
i . (64)

48See Kolmogorov and Fomin (1975), Chapter 9, Theorems 2 and 3.
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But since xj∗∞ = x̄j∗∞ almost everywhere on R as shown above, it follows that49

∫

ǫ
−j
i ∈R

ψ̃−j
(

ǫ−j
i

)

Ψj
(

xj∗∞
(

θ−j + ǫ−j
i

)

− θj
)

dǫ−j
i

=

∫

ǫ
−j
i ∈R

ψ̃−j
(

ǫ−j
i

)

Ψj
(

x̄j∗∞
(

θ−j + ǫ−j
i

)

− θj
)

dǫ−j
i (65)

for any θ ∈ R
2. Therefore, θj∗∞ (θ−j) = θ̄j∗∞ (θ−j) ≡ θj∗ (θ−j) for all θ−j ∈ R.

Now, a pointwise limit of an increasing sequence of lower semicontinuous functions is

lower semicontinuous, and that of a decreasing sequence of upper semicontinuous functions

is upper semicontinuous.50 From Proposition A1, θj∗n+1 and θ̄j∗n+1 are continuous for any

n ∈ N, so θj∗ is both lower and upper semicontinuous, hence continuous; moreover, since

θj∗n+1 and θ̄
j∗
n+1 are increasing for any n ∈ N, θj∗ is nondecreasing. Clearly θj∗ is bounded,

so θj∗ ∈ B̃(R). Further, by the definition of θj∗, if θj∗n = θ̄j∗n = θj∗ for all j ∈ J , then

θj∗n+1 = θ̄j∗n+1 = θj∗ for all j ∈ J . As shown in the proof of Proposition A1, if θj∗n , θ̄
j∗
n ∈ B̃(R)

for all j ∈ J , then θj∗n+1 and θ̄j∗n+1 are increasing for all j ∈ J . Thus, θj∗ is increasing.

Also, since θj∗∞ = θ̄j∗∞ = θj∗, (23) and (24) imply Γj∗
∞ = Γ̄j∗

∞ ≡ Γj∗. Thus, from (44)

and (46), xj∗∞ = x̄j∗∞ ≡ xj∗. Since θj∗ ∈ B̃(R) and θj∗ is increasing, Lemma 9(a)(c) imply

that xj∗ is nondecreasing in R, continuous and increasing in XR (x
j∗), and xj∗ <∞.

To see θj∗ < θj∗s , note that an environment where country j is the only target can

be expressed as a two-country environment where attacking k ∈ J−j is never profitable,

such that in (17) and (18), the RHS of the inequality is replaced by 0. In that case,

speculators care only about whether attacking currency j is profitable, so the value of x−j
i

becomes irrelevant. Thus, this modified iterative deletion procedure yields, given θj∗1,s = 0

and θ̄j∗1,s = 1, sequences of constant functions,
(

xj∗n,s, θ
j∗
n+1,s

)∞

n=1
and

(

x̄j∗n,s, θ̄
j∗
n+1,s

)∞

n=1
, which

both converge to functions constant at xj∗s and θj∗s . Note that for any x−j
i ∈ R, xj∗n,s

(

x−j
i

)

is

the value of xji such that Γj∗
n,s (xi) ≡ Pr

(

θj ≤ θj∗n,s (θ
−j) |xi

)

− cj = 0. Since θj∗1 = θj∗1,s = 0,

it follows that Γj∗
1 = Γj∗

1,s. Thus, xj,01 = xj∗1,s, and since xj∗1 ≤ xj,01 from Lemma 9(b), xj∗1 ≤
xj∗1,s. Thus, θj∗2 ≤ θj∗2,s from Lemma 5, so from the monotonicity of the integral, Γj∗

2 ≤ Γj∗
2,s.

Since Γj∗
2 and Γj∗

2,s are decreasing in xji from Lemma 1, xj,02 ≤ xj∗2,s, and since xj∗2 ≤ xj,02
from Lemma 9(b), xj∗2 ≤ xj∗2,s. Thus, θj∗3 ≤ θj∗3,s from Lemma 5. Then, by the induction

argument, θj∗n+1 ≤ θj∗n+1,s for any n ∈ N, so letting n→ ∞, θj∗ ≤ θj∗s . Moreover, θj∗ < θj∗s ,

because if θj∗ (z) = θj∗s for some z ∈ R, then θj∗ (z′) > θj∗s for z′ > z since θj∗ is increasing,

violating θj∗ ≤ θj∗s . Since θj∗ > θj∗1 = 0, it follows that θj∗ ∈ (0, θj∗s ). That xj∗ < xj∗s fol-

lows from the same argument, since xj∗ is nondecreasing in R and is increasing inXR (x
j∗).

Accordingly, for all j ∈ J ,
(

xj∗n , θ
j∗
n+1

)∞

n=1
and

(

x̄j∗n , θ̄
j∗
n+1

)∞

n=1
monotonically converge

to (xj∗, θj∗), which have the claimed properties.

49Fix θ ∈ R
2 and let Λ1 and Λ2 be the integrand on the LHS and RHS of (65), respectively. Clearly, Λ1

is nonnegative and bounded, and is nondecreasing since xj∗
∞

is nondecreasing. Thus, Λ1 is Riemann inte-

grable on any closed interval in R, and the value of the integral is bounded by 1. So, the improper Riemann

integral of Λ1 on R exists and equals the Lebesgue integral of Λ1 on R (Apostol (1974), Theorem 10.33),

and since Λ1 = Λ2 almost everywhere on R, their integrals on R coincide (Apostol (1974), Theorem 10.21).
50See Kaczor and Nowak (2001), Question 1.4.18.
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Thus, the threshold equilibrium (xj∗, θj∗)j∈J is the unique equilibrium that survives

iterative deletion of dominated strategies, which concludes the proof of Proposition 1.�

Proof of Proposition 2

By assumption, ψj = ψ, Ψj = Ψ, and cj = c for all j ∈ J . Then, clearly
(

ψ̃−j
)

j∈J
are

symmetric across j.

Now, if there exist (θj∗)j∈J , θ
j∗ ∈ B̃(RN−1), such that

Γj∗ (xi) = 1− c−
∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)

Ψ
(

xji − θj∗
(

x−j
i − ǫ−j

i

))

dǫ−j
i , (66)

xj∗
(

x−j
i

)

=
{

xji ∈ R|Γj∗ (xi) = max
k∈J

−j
0

Γk∗ (xi)
}

, (67)

θj∗
(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)

Ψ
(

xj∗
(

θ−j + ǫ−j
i

)

− θj∗
(

θ−j
))

dǫ−j
i , (68)

where Γ0∗ (xi) ≡ 0 for all xi ∈ R
N , then (xj∗, θj∗)j∈J are equilibrium threshold functions.

To see this, suppose such (θj∗)j∈J exist, and further, are threshold fundamentals functions.

Then, Γj∗ (xi) is the expected payoff from attacking currency j, and Γ0∗ (xi) = 0 is the

payoff from not attacking. Since θj∗ ∈ B̃(RN−1), Lemma 1 implies that Γj∗ is decreasing

in xji and nondecreasing in x−j
i . Thus, Γj∗ − max

k∈J
−j
0

Γk∗ is decreasing in xji , so from

(67), it is optimal to follow the threshold strategy (xj∗)j∈J . Now, if all speculators follow

the threshold strategy (xj∗)j∈J , then for any θ, the fraction of speculators attacking j is

Pr
(

xji ≤ xj∗
(

x−j
i

)

|θ
)

=

∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)

Ψ
(

xj∗
(

θ−j + ǫ−j
i

)

− θj
)

dǫ−j
i , (69)

which is decreasing in θj. Then, θj − Pr
(

xji ≤ xj∗
(

x−j
i

)

|θ
)

is increasing in θj, and

from (68), equals zero at θj = θj∗ (θ−j). Thus, country j abandons the peg if and only

if θj ≤ θj∗ (θ−j), hence (θj∗)j∈J are threshold fundamentals functions as conjectured.

Therefore, (xj∗, θj∗)j∈J are equilibrium threshold functions.

To show the existence of (θj∗)j∈J satisfying (66)–(68), I consider a modified system of

equations in which the functions of different countries are independently determined. I

then use the contraction mapping theorem to find the solution to this system of equations,

and resort to symmetry to show that they also satisfy the original system of equations.

Let B̃s(RN−1) be the set of bounded, continuous, nondecreasing, and symmetric func-

tions from R
N−1 to R. Equipped with a sup metric, B̃(RN−1) is a complete metric space,

and being its closed subset, so is B̃s(RN−1).51 Fix any j ∈ J . For any θj∗n ∈ B̃s(RN−1),

51Equipped with a sup metric, the set of bounded, continuous functions fromR
N−1 to R is complete, and

being its closed subset, so is B̃(RN−1) (Stokey and Lucas (1989), p80). Clearly B̃s(RN−1) ⊂ B̃(RN−1),

so B̃s(RN−1) is complete if it is closed. Take any convergent sequence
{

θj∗n
}∞

n=1
in B̃s(RN−1), and let θj∗

∞

be its limit. Since θj∗n ∈ B̃s(RN−1) ⊂ B̃(RN−1) and B̃(RN−1) is complete, θj∗
∞

∈ B̃(RN−1). Moreover,

θj∗n is symmetric, so for any θ−j ∈ R
N−1 and its permutation θ̃−j , θj∗n

(

θ−j
)

= θj∗n
(

θ̃−j
)

. Due to the

uniqueness of the limit, scalar sequences
{

θj∗n
(

θ−j
)}∞

n=1
and

{

θj∗n
(

θ̃−j
)}∞

n=1
converge to the same limit,

so θj∗
∞

(

θ−j
)

= θj∗
∞

(

θ̃−j
)

. Therefore, θj∗
∞

is symmetric and thus θj∗
∞

∈ B̃s(RN−1), so B̃s(RN−1) is closed.
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define Γj∗
n : RN → R, xj∗n : RN−1 → R, and θj∗n+1 : R

N−1 → [0, 1] by

Γj∗
n (xi) = 1− c−

∫

ǫ
−j
i

∈RN−1

ψ̃−j
(

ǫ−j
i

)

Ψ
(

xji − θj∗n
(

x−j
i − ǫ−j

i

))

dǫ−j
i , (70)

xj∗n
(

x−j
i

)

= min
{

xj,0n
(

x−j
i

)

,
(

xki
)

k∈J−j

}

, (71)

θj∗n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)

Ψ
(

xj∗n
(

θ−j + ǫ−j
i

)

− θj∗n+1

(

θ−j
))

dǫ−j
i , (72)

where for any x−j
i ∈ R

N−1, xj,0n
(

x−j
i

)

is the value of xji such that Γj∗
n (xi) = 0; such xji

exists uniquely from Lemma 3. Note that (71) involves only Γj∗
n (through xj,0n ), unlike

(67) which involves Γk∗ for all k ∈ J−j . This enables defining an operator T j on B̃s(RN−1)

by θj∗n+1 = T jθj∗n , separately for each j. Below, I show that T j is a contraction mapping.

First, let us show T j : B̃s(RN−1) → B̃s(RN−1). Take any θj∗n ∈ B̃s(RN−1). From

Lemma 3, xj,0n is continuous and nondecreasing. Also, xki is continuous and nondecreasing,

viewed as a function of x−j
i . Thus, xj∗n is continuous and nondecreasing, since it is obtained

by taking the minimum of continuous and nondecreasing functions (see footnotes 44 and

45). Moreover, from Lemma 3, xj,0n is bounded. Thus, for each k ∈ J−j, for x−j
i with

sufficiently small xki , x
j∗
n

(

x−j
i

)

= xki and thus xj∗n is increasing in xki . Therefore, from

Lemma 4, θj∗n+1 is bounded, continuous, and increasing. Finally, if θj∗n is symmetric, then

clearly so is Γj∗
n from (70) since ψ̃−j is symmetric, and similarly for xj∗n and θj∗n+1 from

(71) and (72). Thus, θj∗n+1 ∈ B̃s(RN−1), and furthermore, θj∗n+1 is increasing.

Next, let us show that T j satisfies the Blackwell’s sufficient conditions for a contraction.

Formonotonicity, take any θj∗n , θ̂j∗n ∈ B̃s(RN−1) such that θ̂j∗n ≥ θj∗n . Define Γ̂j∗
n : RN → R,

x̂j∗n : RN−1 → R, and θ̂j∗n+1 : R
N−1 → [0, 1] by

Γ̂j∗
n (xi) = 1− c−

∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)

Ψ
(

xji − θ̂j∗n
(

x−j
i − ǫ−j

i

)

)

dǫ−j
i , (73)

x̂j∗n
(

x−j
i

)

= min
{

x̂j,0n
(

x−j
i

)

,
(

xki
)

k∈J−j

}

, (74)

θ̂j∗n+1

(

θ−j
)

=

∫

ǫ
−j
i ∈RN−1

ψ̃−j
(

ǫ−j
i

)

Ψ
(

x̂j∗n
(

θ−j + ǫ−j
i

)

− θ̂j∗n+1

(

θ−j
)

)

dǫ−j
i , (75)

where for any x−j
i ∈ R

N−1, x̂j,0n
(

x−j
i

)

is the value of xji such that Γ̂j∗
n (xi) = 0. Then,

(70), (73), and θ̂j∗n ≥ θj∗n imply Γ̂j∗
n ≥ Γj∗

n from the monotonicity of the integral, and since

Γ̂j∗
n and Γj∗

n are decreasing in xji from Lemma 1, it follows that x̂j,0n ≥ xj,0n . But then, (71)

and (74) imply x̂j∗n ≥ xj∗n . Thus, θ̂j∗n+1 ≥ θj∗n+1 from Lemma 5, hence monotonicity holds.

For discounting, take any y > 0, and let θ̂j∗n = θj∗n + y in the argument above. Then,

(70) and (73) imply Γ̂j∗
n

(

x1i , . . . , x
j
i + y, . . . , xNi

)

= Γj∗
n (xi) for any xi ∈ R

N , such that

x̂j,0n
(

x−j
i

)

= xj,0n
(

x−j
i

)

+ y. From (71) and (74), then, x̂j∗n ≤ xj∗n + y. By replac-

ing x̄j∗n
(

x−j
i − z

)

and xj∗n
(

x−j
i

)

in Lemma 7 by x̂j∗n
(

x−j
i

)

and xj∗n
(

x−j
i

)

, one obtains

θ̂j∗n+1 (θ
−j) − θj∗n+1 (θ

−j) ≤ λy for any θ−j ∈ R
N−1. Thus, θ̂j∗n+1 ≤ θj∗n+1 + λy where

λ ∈ (0, 1), and since the choice of y > 0 was arbitrary, discounting also holds.
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Thus, T j is a contraction, so it has a unique fixed point. Let θ̃j∗ be this fixed point,

and similarly denote the associated functions by dropping the subscript and placing tilde.

Then, θ̃j∗ ∈ B̃s(RN−1), and since T j maps a nondecreasing function to an increasing

function as shown above, θ̃j∗(= T j θ̃j∗) is increasing. Then, the same argument as for xj∗n
shows that x̃j∗ is continuous, nondecreasing, and x̃j∗

(

x−j
i

)

≤ mink∈J−j xki with equality for

mink∈J−j xki sufficiently small. Moreover, since θ̃j∗ is increasing, so is x̃j,0 from Lemma 3.

To see θ̃j∗ < θ∗s and x̃j∗ < x∗s, let T
j
s be a modified operator of T j in which the RHS

of (71) is replaced by xj,0n
(

x−j
i

)

, and let θj∗1 ∈ B̃s(RN−1) be a function constant at θ∗s .

The equilibrium conditions for N = 1, (12) and (13), imply that such θj∗1 is a fixed point

of T j
s , and that xj,01 is a function constant at x∗s. Thus, xj∗1 ≤ xj,01 from (71), which

yields θj∗2 ≤ T j
s θ

j∗
1 = θj∗1 from Lemma 5. Then, θj∗3 ≤ θj∗2 from the monotonicity of T j,

and thus, iterating on T j yields a nonincreasing sequence of functions {θj∗n }∞n=1
. From

the contraction mapping theorem, this sequence converges to θ̃j∗, hence θ̃j∗ ≤ θj∗1 = θ∗s .

Moreover, θ̃j∗ < θ∗s , because if θ̃j∗ (z) = θ∗s for some z ∈ R
N−1, then θ̃j∗ (z′) > θ∗s for

z′ > z since θ̃j∗ is increasing, violating θ̃j∗ ≤ θ∗s . Now, since {θj∗n }∞n=1
is a nonincreasing

sequence, clearly so is {xj∗n }∞n=1
from (70) and (71), and thus x̃j∗ ≤ xj∗1 ≤ xj,01 = x∗s.

Moreover, x̃j∗ < x∗s, because if x̃j∗ (z) = x∗s for some z ∈ R
N−1, then from (71) and the

fact that x̃j,0 is increasing, x̃j∗ (z + δ) > x∗s for any δ > 0, violating x̃j∗ ≤ x∗s.

Finally, note that if (θj∗)j∈J are symmetric across j, then so are (Γj∗)j∈J , because

given that
(

ψ̃−j
)

j∈J
are symmetric across j, the functional form of (66) is common to all

j. Thus, Γj∗ (xi) = Γk∗ (xi) if and only if xji = xki , hence (67) can be rewritten as

xj∗
(

x−j
i

)

= min
{

xj,0
(

x−j
i

)

,
(

xki
)

k∈J−j

}

, (76)

where for any x−j
i ∈ R

N−1, xj,0
(

x−j
i

)

is the value of xji such that Γj∗ (xi) = 0. But now,
(

θ̃j∗
)

j∈J
are symmetric across j, because each θ̃j∗ is symmetric, and given that

(

ψ̃−j
)

j∈J

are symmetric across j, the functional forms of (70)–(72) are common to all j. Thus,

comparing (71) and (76), one observes that if θj∗ = θ̃j∗ for all j ∈ J , the equilibrium

conditions (66)–(68) are satisfied, where xj∗ = x̃j∗ for all j ∈ J .�

Proof of Proposition 3

Again, the proof proceeds through a series of lemmas.

For N > 2, xj∗n and x̄j∗n defined by (17) and (18) are not necessarily nondecreasing,

even when θj∗n , θ̄
j∗
n ∈ B̃(RN−1) for all j ∈ J .52 This issue is overcome as follows. Suppose

(

θj∗n
)

j∈J
and

(

θ̄j∗n
)

j∈J
are symmetric across j, such that djn =

∥

∥θ̄j∗n − θj∗n
∥

∥ is the same for

52Let N = 3 and θj∗n , θ̄j∗n ∈ B̃(R2) for all j ∈ J . Then from Lemma 1, Γj∗
n and Γ̄j∗

n are decreasing in xj
i

and nondecreasing in x−j
i for all j ∈ J . Now, suppose x1∗

n is defined by (17), and
(

x2
i , x

3
i

)

is such that

Γ1∗
n

(

x1∗
n

(

x2
i , x

3
i

)

, x2
i , x

3
i

)

= Γ̄2∗
n

(

x1∗
n

(

x2
i , x

3
i

)

, x2
i , x

3
i

)

. As x3
i rises, Γ1∗

n and Γ̄2∗
n both weakly rise, and

thus x1
i may need to fall to sustain the equality. Thus, x1∗

n defined by (17) may not be nondecreasing,

and similarly for x̄1∗
n defined by (18).
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all j and thus can be written as dn, and define xj∗n and x̄j∗n as

xj∗n
(

x−j
i

)

≡ min
{

xj,0n
(

x−j
i

)

,
(

xki − dn
)

k∈J−j

}

, (77)

x̄j∗n
(

x−j
i

)

≡ min
{

x̄j,0n
(

x−j
i

)

,
(

xki + dn
)

k∈J−j

}

. (78)

Recall the expressions xj∗n = min
k∈J

−j
0

xj,kn and x̄j∗n = min
k∈J

−j
0

x̄j,kn for N = 2. The idea

here is to replace xj,kn with xki −dn, and x̄j,kn with xki +dn, for all k ∈ J−j. Lemma 13 below

shows that if xj∗n and x̄j∗n are defined by (77) and (78), the iterative deletion procedure

generates well-behaved functions, just like for N = 2, and for all n ∈ N,
(

θj∗n
)

j∈J
and

(

θ̄j∗n
)

j∈J
are indeed symmetric across j. The result of Lemma 14 then confirms that

defining xj∗n and x̄j∗n this way is consistent with iterative deletion of dominated strategies,

since it does not cause deletion of undominated strategies.

Lemma 13 Let N > 2 and countries be symmetric, and
( (

xj∗n , x̄
j∗
n , θ

j∗
n+1, θ̄

j∗
n+1

)

j∈J

)∞

n=1
be

defined by (15), (16), (77), (78), (19), and (20), where θj∗1 ≡ 0 and θ̄j∗1 ≡ 1 for all j ∈ J .

Then, for any n ∈ N, (a)
(

θj∗n+1

)

j∈J
and

(

θ̄j∗n+1

)

j∈J
are symmetric across j, and for any

j ∈ J , (b) θj∗n+1, θ̄
j∗
n+1 ∈ B̃s(RN−1), and θj∗n+1 and θ̄j∗n+1 are increasing, (c) θ̄j∗n > θ̄j∗n+1 >

θj∗n+1 > θj∗n . Similarly, (A) (xj∗n )j∈J and (x̄j∗n )j∈J are symmetric across j, and for any

j ∈ J , (B) xj∗n and x̄j∗n are continuous and nondecreasing, (C) x̄j∗n ≥ x̄j∗n+1 > xj∗n+1 ≥ xj∗n .

Proof. Since θj∗1 = 0 and θ̄j∗1 = 1, it follows that θj∗1 , θ̄j∗1 ∈ B̃s(RN−1), and moreover,
(

θj∗1
)

j∈J
and

(

θ̄j∗1
)

j∈J
are symmetric across j. Thus, dj1 =

∥

∥θ̄j∗1 − θj∗1
∥

∥ is the same for all j,

and hence can be written as d1. Then, by letting (15), (77), (19) and (16), (78), (20) play

the role of (70)–(72), the same argument as in the proof of Proposition 2 shows that (a)(b)

and (A)(B) hold for n = 1, and by induction, the same applies to any n ∈ N. Lemma 1

then implies that for any j ∈ J and n ∈ N, Γj∗
n and Γ̄j∗

n are continuous, decreasing in xji ,

and nondecreasing in x−j
i .

Below, I prove (c)(C) for j = 1. For (c), note from 1 = θ̄1∗1 > θ1∗1 = 0, (23),

and (24) that Γ̄1∗
1 > Γ1∗

1 . Take any x−1
i =

(

x2i , x
3
i , . . . , x

N
i

)

∈ R
N−1. Then, Lemma 3

implies Γ̄1∗
1

(

x̄1,01

(

x−1
i

)

, x−1
i

)

= Γ1∗
1

(

x1,01

(

x−1
i

)

, x−1
i

)

= 0, so since Γ1∗
1 < Γ̄1∗

1 , it follows that

Γ̄1∗
1

(

x̄1,01

(

x−1
i

)

, x−1
i

)

< Γ̄1∗
1

(

x1,01

(

x−1
i

)

, x−1
i

)

, and since Γ̄1∗
1 is decreasing in x1i , x̄

1,0
1

(

x−1
i

)

>

x1,01

(

x−1
i

)

. Thus, x̄1∗1 > x1∗1 from (77) and (78), hence θ̄1∗2 > θ1∗2 from Lemma 5. Moreover,

clearly θ̄1∗2 , θ1∗2 ∈ (0, 1), hence 1 = θ̄1∗1 > θ̄1∗2 > θ1∗2 > θ1∗1 = 0.

Now, suppose θ̄1∗n > θ̄1∗n+1 > θ1∗n+1 > θ1∗n for some n ∈ N. Then, Γ̄1∗
n > Γ̄1∗

n+1 > Γ1∗
n+1 >

Γ1∗
n from (23) and (24), and also, dn ≥ dn+1. For any x−1

i ∈ R
N−1, Γ̄1∗

n

(

x̄1,0n

(

x−1
i

)

, x−1
i

)

=

Γ̄1∗
n+1

(

x̄1,0n+1

(

x−1
i

)

, x−1
i

)

= Γ1∗
n+1

(

x1,0n+1

(

x−1
i

)

, x−1
i

)

= Γ1∗
n

(

x1,0n

(

x−1
i

)

, x−1
i

)

= 0 from Lemma

3, so it follows from Γ̄1∗
n > Γ̄1∗

n+1 > Γ1∗
n+1 > Γ1∗

n and the fact that these functions are decreas-

ing in x1i that x̄1,0n

(

x−1
i

)

> x̄1,0n+1

(

x−1
i

)

> x1,0n+1

(

x−1
i

)

> x1,0n

(

x−1
i

)

. Then, x̄1∗n ≥ x̄1∗n+1 >

x1∗n+1 ≥ x1∗n from (77), (78), and dn ≥ dn+1. Since x̄1,0n+1 ≥ x̄1∗n+1 from (78), the first

inequality here is strict at least when x̄1∗n
(

x−1
i

)

= x̄1,0n

(

x−1
i

)

, which holds for sufficiently

large mink∈J−j xki because x̄1,0n is bounded from θ̄j∗n ∈ B̃s(RN−1) and Lemma 3. A similar
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statement applies to the third inequality. Therefore, θ̄1∗n+1 > θ̄1∗n+2 > θ1∗n+2 > θ1∗n+1 from

Lemma 5. Thus, by induction, the claim holds for any n ∈ N, which proves (c). Then,

from the argument above, x̄1∗n ≥ x̄1∗n+1 > x1∗n+1 ≥ x1∗n for any n ∈ N, which proves (C).

Lemma 14 bounds the range of functions xj,kn , x̄j,kn for k ∈ J−j and k = 0.

Lemma 14 Under the assumptions of Lemma 13, for any j ∈ J , n ∈ N, and x−j
i ∈

R
N−1, a) xj,kn

(

x−j
i

)

∈ [xki − dn, x
k
i ) and x̄j,kn

(

x−j
i

)

∈ (xki , x
k
i + dn] for any k ∈ J−j, (b)

x̄j,0n
(

x−j
i

)

− xj,0n
(

x−j
i

)

∈ (0, dn].

Proof. Note from Lemma 13 that θj∗n , θ̄j∗n ∈ B̃s(RN−1) ⊂ B̃(RN−1) for any j ∈ J and

n ∈ N, such that one may invoke Lemmas 2, 3, and 6. Moreover, the argument in the

proof of Lemma 13 implies that for any j ∈ J and n ∈ N, Γj∗
n and Γ̄j∗

n are continuous,

decreasing in xji , and nondecreasing in x−j
i , and further, Γ̄j∗

n > Γ̄j∗
n+1 > Γj∗

n+1 > Γj∗
n .

I prove the claim for j = 1, and k = 2 in (a). Fix any x−1
i ∈ R

N−1. For (a), note

from Lemma 2 that

Γ1∗
n

(

x1,2n

(

x−1
i

)

, x−1
i

)

= Γ̄2∗
n

(

x1,2n

(

x−1
i

)

, x−1
i

)

, (79)

Γ̄1∗
n

(

x̄1,2n

(

x−1
i

)

, x−1
i

)

= Γ2∗
n

(

x̄1,2n

(

x−1
i

)

, x−1
i

)

. (80)

Also, from Lemma 13,
(

θj∗n
)

j∈J
and

(

θ̄j∗n
)

j∈J
are symmetric across j, and thus so are

(

Γj∗
n

)

j∈J
and

(

Γ̄j∗
n

)

j∈J
, because given that

(

ψ̃−j
)

j∈J
are symmetric across j and Ψj = Ψ

for all j ∈ J , the functional forms of (23) and (24) are common to all j. Thus, given

x−1
i =

(

x2i , x
3
i , . . . , x

N
i

)

, Γ1∗
n (xi) = Γ2∗

n (xi) and Γ̄1∗
n (xi) = Γ̄2∗

n (xi) if and only if x1i = x2i ,

and thus,

Γ1∗
n

(

x2i , x
−1
i

)

= Γ2∗
n

(

x2i , x
−1
i

)

, (81)

Γ̄1∗
n

(

x2i , x
−1
i

)

= Γ̄2∗
n

(

x2i , x
−1
i

)

. (82)

Therefore,

Γ1∗
n

(

x2i , x
−1
i

)

= Γ2∗
n

(

x2i , x
−1
i

)

< Γ̄2∗
n

(

x2i , x
−1
i

)

, (83)

where the equality follows from (81), and the inequality follows since Γ2∗
n < Γ̄2∗

n . Moreover,

Γ1∗
n

(

x2i − dn, x
−1
i

)

≥ Γ̄1∗
n

(

x2i , x
−1
i

)

= Γ̄2∗
n

(

x2i , x
−1
i

)

≥ Γ̄2∗
n

(

x2i − dn, x
−1
i

)

, (84)

where the first inequality is from Lemma 6, the equality is from (82), and the second

inequality follows since Γ̄2∗
n is nondecreasing in x1i . Noting that Γ1∗

n − Γ̄2∗
n is decreasing in

x1i and recalling (79), (83) implies x1,2n

(

x−1
i

)

< x2i , and (84) implies x1,2n

(

x−1
i

)

≥ x2i − dn.

To establish the desired property of x̄1,2n , note that

Γ̄1∗
n

(

x2i , x
−1
i

)

> Γ1∗
n

(

x2i , x
−1
i

)

= Γ2∗
n

(

x2i , x
−1
i

)

, (85)

where the inequality follows from Γ̄1∗
n > Γ1∗

n , and the equality is from (81). Moreover,

Γ̄1∗
n

(

x2i + dn, x
−1
i

)

≤ Γ1∗
n

(

x2i , x
−1
i

)

= Γ2∗
n

(

x2i , x
−1
i

)

≤ Γ2∗
n

(

x2i + dn, x
−1
i

)

, (86)
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where the first inequality is from Lemma 6, the equality is from (81), and the second

inequality follows since Γ2∗
n is nondecreasing in x1i . Noting that Γ̄1∗

n −Γ2∗
n is decreasing in

x1i and recalling (80), (85) implies x̄1,2n

(

x−1
i

)

> x2i , and (86) implies x̄1,2n

(

x−1
i

)

≤ x2i + dn.

For (b), note from the proof of Lemma 13 that x̄1,0n

(

x−1
i

)

> x1,0n

(

x−1
i

)

. Moreover,

Γ̄1∗
n

(

x̄1,0n

(

x−1
i

)

, x−1
i

)

= Γ1∗
n

(

x1,0n

(

x−1
i

)

, x−1
i

)

≥ Γ̄1∗
n

(

x1,0n

(

x−1
i

)

+ dn, x
−1
i

)

, (87)

where the equality is from Lemma 3, and the inequality is from Lemma 6. Since Γ̄1∗
n is

decreasing in x1i , (87) implies x̄1,0n

(

x−1
i

)

≤ x1,0n

(

x−1
i

)

+ dn.

Since Lemma 14 implies xki − dn ≤ xj,kn
(

x−j
i

)

and xki + dn ≥ x̄j,kn
(

x−j
i

)

for any k ∈
J−1 and x−j

i ∈ R
N−1, the definitions of xj∗n and x̄j∗n in (77) and (78) guarantee xj∗n ≤

mink∈J−1

0

xj,kn and x̄j∗n ≥ mink∈J−1

0

x̄j,kn . Therefore, performing iterative deletion using xj∗n
and x̄j∗n thus defined does not result in deletion of undominated strategies.

Lemma 15 Under the assumptions of Lemma 13, x̄j∗n
(

x−j
i

)

− xj∗n
(

x−j
i

)

≤ 2dn for any

j ∈ J , n ∈ N, and x−j
i ∈ R

N−1.

Proof. Recall (77). If xj∗n
(

x−j
i

)

= xj,0n
(

x−j
i

)

, then x̄j∗n
(

x−j
i

)

− xj∗n
(

x−j
i

)

≤ x̄j,0n
(

x−j
i

)

−
xj,0n

(

x−j
i

)

≤ dn, where the first inequality follows since x̄j∗n
(

x−j
i

)

≤ x̄j,0n
(

x−j
i

)

from (78),

and the second inequality follows from Lemma 14(b). If xj∗n
(

x−j
i

)

= mink∈J−j xki − dn,

then x̄j∗n
(

x−j
i

)

− xj∗n
(

x−j
i

)

≤
[

mink∈J−j xki + dn
]

−
[

mink∈J−j xki − dn
]

= 2dn, where the

first inequality follows since x̄j∗n
(

x−j
i

)

≤ mink∈J−j xki + dn from (78).

To conclude the proof of Proposition 2, let z be a zero vector in R
N−1 in Lemma 7.

Then, combining with Lemma 15, it follows for all n ∈ N that

dn+1 =
∥

∥θ̄j∗n+1 − θj∗n+1

∥

∥ ≤ λ
∥

∥x̄j∗n − xj∗n
∥

∥ ≤ 2λdn. (88)

Since 2λ < 1 by assumption, as n → ∞, dn+1 ≤ (2λ)n d1 → 0, or
∥

∥θ̄j∗n+1 − θj∗n+1

∥

∥ → 0.

Then, from Lemma 15, ‖x̄j∗n − xj∗n ‖ → 0. Thus, the lower and upper threshold functions

converge uniformly to the equilibrium threshold functions (xj∗, θj∗)j∈J in Proposition 2.�

Proof of Proposition 4

Given the assumptions on the common prior of θj and the distribution of ǫji , conditional

on receiving xji , the posterior distribution of θj follows N
(

αw+βx
j
i

α+β
, 1/ (α+ β)

)

. Thus,

Pr
(

θj ≤ θj∗|xji
)

= Φ
(√

α + β
(

θj∗ − αw+βx
j
i

α+β

))

for a fixed θj∗. Now, let ǫ̂ji ≡
αw+βx

j
i

α+β
− θj

for any j ∈ J . Conditional on receiving xji , ǫ̂
j
i follows N (0, 1/ (α + β)), hence the pdf is√

α + βφ
(√

α + βǫ̂ji
)

. Thus, for any θj∗ : RN−1→ R,

Pr
(

θj ≤ θj∗
(

θ−j
)

|xi
)

(89)

=

∫

ǫ̂
−j
i ∈RN−1

φ̂−j
(

ǫ̂−j
i

)

Φ

(

√

α + β

(

θj∗
(αw−j + βx−j

i

α + β
− ǫ̂−j

i

)

− αw + βxji
α + β

))

dǫ̂−j
i ,
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where φ̂−j is the pdf of ǫ̂−j
i , given by φ̂−j

(

ǫ̂−j
i

)

= Πk∈J−j

√
α + βφ

(√
α + βǫ̂ki

)

, and w−j is

a N − 1 vector, (w,w, . . . , w). Thus,

Γj∗
n (xi) (90)

=

∫

ǫ̂
−j
i ∈RN−1

φ̂−j
(

ǫ̂−j
i

)

Φ

(

√

α + β

(

θj∗n

(αw−j + βx−j
i

α + β
− ǫ̂−j

i

)

− αw + βxji
α + β

))

dǫ̂−j
i − c,

Γ̄j∗
n (xi) (91)

=

∫

ǫ̂
−j
i ∈RN−1

φ̂−j
(

ǫ̂−j
i

)

Φ

(

√

α + β

(

θ̄j∗n

(αw−j + βx−j
i

α + β
− ǫ̂−j

i

)

− αw + βxji
α + β

))

dǫ̂−j
i − c.

Let γ ≡ (α + β) /β. Among Lemmas 1–7, only Lemma 6 is affected, and is modified

as follows.

Lemma 16 Under the assumptions of Lemma 2,

Γ̄j∗
n (xi) ≤ Γj∗

n

(

x1i , . . . , x
j−1

i , xji − γdjn, . . . , x
N
i

)

for any j ∈ J and xi ∈ R
N .

Proof. Since θ̄j∗n (θ−j) ≤ θj∗n (θ−j) + djn for any j ∈ J and θ−j ∈ R
N−1,

θ̄j∗n

(αw−j + βx−j
i

α + β
− ǫ̂−j

i

)

− αw + βxji
α + β

≤ θj∗n

(αw−j + βx−j
i

α + β
− ǫ̂−j

i

)

− αw + β
(

xji − γdjn
)

α + β
(92)

for any xi ∈ R
N and ǫ̂−j

i ∈ R
N−1. The claim then follows from (90), (91), and the

monotonicity of the integral.

I now prove Proposition 4(1) and 4(2) in turn.

Proof of Proposition 4(1)

In the proof of Proposition 2, the expressions for Γj∗, Γj∗
n , and Γ̂j∗

n (eqs (66), (70),

and (73)) are rewritten similarly to (90). The only part of the proof that is affected

by this modification is the argument for discounting. This time, θ̂j∗n = θj∗n + y implies

Γ̂j∗
n

(

x1i , . . . , x
j
i + γy, . . . , xNi

)

= Γj∗
n (xi), which yields x̂j,0n

(

x−j
i

)

= xj,0n
(

x−j
i

)

+γy and thus

x̂j∗n ≤ xj∗n + γy. Thus, continuing the argument by replacing y with γy, discounting

follows if λγ < 1. Now, λ = β/
(√

2π
√
β + β

)

since ‖ψ‖ =
√
β ‖φ‖ =

√
β/

√
2π. Then,

since α <
√
2π

√
β by assumption,

λγ =
β√

2π
√
β + β

α + β

β
<

β√
2π

√
β + β

√
2π

√
β + β

β
= 1.

The rest of the proof is as for Proposition 2.�
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Proof of Proposition 4(2)

The proof goes through up to proving Lemma 15, once one replaces dn with γdn, and

Lemma 6 with Lemma 16. Then, (88) becomes

dn+1 =
∥

∥θ̄j∗n+1 − θj∗n+1

∥

∥ ≤ λ
∥

∥x̄j∗n − xj∗n
∥

∥ ≤ 2λγdn. (93)

Thus, dn → 0 as before, if λγ < 1/2. But since α <
√
β
(√

2π −
√
β
)

/2 by assumption,

λγ =
β√

2π
√
β + β

α + β

β
<

β√
2π

√
β + β

√
β
(√

2π −
√
β
)

+ 2β

2β
=

1

2
, (94)

which concludes the proof.�
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Figure 1: Threshold signal function (symmetric, β = 1).
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Figure 2: Attacking decision (symmetric, β = 1).
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Figure 3: Threshold fundamentals function (symmetric, β = 1).
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Figure 4: Outcomes of attack (symmetric, β = 1).

49



−1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

θ
2

θ
1

θ
1∗(θ2)
θ
2∗(θ1)
θ
∗

s,0.5

Figure 5: θ1∗ (θ2) and θ2∗ (θ1) compared with θ∗s,0.5 (symmetric, β = 1).
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Figure 6: Outcomes of attack (symmetric, β = 4).
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Figure 7: Attacking decisions (β1 = 1, β2 = 4).
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Figure 8: Outcomes of attack (β1 = 1, β2 = 4).
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Figure 9: Threshold signal function (N = 3).
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Figure 10: Threshold fundamentals function (N = 3).
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