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Abstract

Using a simultaneous-move herding model of rational traders who infer other

traders’ private information on the value of an asset by observing their aggre-

gate actions, this study seeks to explain the emergence of fat-tailed distributions

of transaction volumes and asset returns in financial markets. Without mak-

ing any parametric assumptions on private information, we analytically show

that traders’ aggregate actions follow a power law distribution. We also provide

simulation results to show that our model successfully reproduces the empirical

distributions of asset returns. We argue that our model is similar to Keynes’s

beauty contest in the sense that traders, who are assumed to be homogeneous,

have an incentive to mimic the average trader, leading to a situation similar to the

indeterminacy of equilibrium. In this situation, a trader’s buying action causes

a stochastic chain-reaction, resulting in power laws for financial fluctuations.
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1 Introduction

Since Mandelbrot [25] and Fama [13], it has been well established that stock returns

exhibit fat-tailed and leptokurtic distributions. Jansen and de Vries [19], for example,

have shown empirically that the power law exponent for stock returns is in the range

of 3 to 5, which guarantees that the variance is finite but the distribution deviates

substantially from the normal distribution in terms of the fourth moment. Such an

anomaly in the tail shape, as well as kurtosis, has been regarded as one reason for the

excess volatility of stock returns.

Efforts to explain this anomaly have been long ongoing. A traditional economic

explanation for the excess volatility of transaction volumes and returns relies on rational

herd behavior by traders. In a situation where traders’ action space is coarser than

their state space, traders’ actions only partially reveals their private information on

the value of an asset. This property makes it possible for a trader’s action to cause an

avalanche of similar actions by other traders. This idea of a chain reaction through the

revelation of private information has been extensively studied in the literature on herd

behavior, informational cascades, and information aggregation. However, there have

been few attempts to explain fat tails in stock return distributions based on this idea.

This paper is the first to develop an economic model in order to show that the chain

reaction of information revelation generates fat tails in asset return distributions.

To this end, we consider a model consisting of informed and uninformed traders.

There are a large number of informed traders who receive imperfect private signals on

the true value of an asset. The informed traders simultaneously choose whether to buy

one unit of the asset or not to buy at all. To simplify the model, and unlike Glosten

and Milgrom [15] or Smith [31], we assume that informed traders cannot short-sell.

We consider a rational expectations equilibrium in which each trader submits their
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demand schedule conditional on the price of the asset. The rational choice made by an

informed trader is based on the private signal they receive as well as the information

revealed by other traders’ actions through the equilibrium price. The price is set by an

auctioneer, who aggregates informed traders’ demand and matches it with the supply

schedule submitted by uninformed traders. We show that, in this setting, the more

informed traders choose to buy the asset, the higher will be the price, which in turn is

regarded as a signal of higher asset value. As a result, some of the traders who decided

not to buy at the previous stage change their mind. In this way, traders’ strategies

exhibit complementarity, and their actions are positively correlated.

The main contribution of our study to the literature is that we characterize the

probability distribution of the equilibrium number of buying traders and show ana-

lytically that it has a power law tail with an exponent of 0.5, which is defined for a

cumulative distribution. The power law tail for the number of buying traders implies

the presence of power law tails for the equilibrium transaction volume as well as for

the equilibrium asset price.

In terms of the way it describes herding behavior, our model is similar to Keynes’s

beauty contest. Each trader recognizes that the other traders receive private signals

that are as valuable as their own. Therefore, each trader seeks to mimic the average

trader. However, when each trader tries to match the behavior of the average trader, the

resulting equilibrium is fragile due to perfect strategic complementarity. In addition,

since traders’ actions are discrete in our setting, the equilibrium is locally unique, which

allows us to quantitatively characterize fluctuations in transaction volumes and prices

due to randomness in private signals. Our analysis therefore formalizes the idea of

perfect strategic complementarity among traders with private signals and shows that

a power law distribution of transaction volumes and prices emerges naturally in this
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setup.

Our study is related to the substantial theoretical and empirical literature on imi-

tative behavior in financial markets. Important theoretical studies in this field include

those by Scharfstein and Stein [30], Banerjee [5], and Bikhchandani, Hirshleifer, and

Welch [6], who have developed models of herd behavior and informational cascades.

These models have been employed in a number of studies to examine financial market

crashes, including Caplin and Leahy [10], Lee [23] and Chari and Kehoe [11]. However,

most of these studies feature all-or-nothing herding due to the type of information

structure they assume, such as sequential trading. As a result, few studies in this liter-

ature address the issue of stochastic financial fluctuations. An important exception is

the study by Gul and Lundholm [16], who demonstrated the emergence of stochastic

herding by endogenizing traders’ choice of waiting time. We follow this approach and

focus on the stochastic aspect of financial fluctuations, but deviate from it by employing

a model in which traders move simultaneously, and the equilibrium number of traders

exhibits stochastic fluctuations and follows a power law distribution. Our model of

stochastic herding contributes to the literature by showing that informational cascades

can generate not only extremely large financial fluctuations in transaction volumes and

prices but also an empirically relevant regularity regarding the frequency distribution

of these fluctuations, which is summarized by power law distributions.

While there are many statistical models that can replicate the power law distribu-

tion of asset returns, few economic models have been developed that explain it. One

exception is the model developed by Gabaix et al. [14]. They provide a model in which

the power laws for asset returns and transaction volumes are accounted for by a power

law in a different context, namely Zipf’s law for firm sizes. Specifically, they argue

that if traders’ size follows a power law, transaction volume and price changes also
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follow a power law. Given the presence of extensive evidence on power laws in firm

size distributions, the mechanism investigated by Gabaix et al. [14] at least partially

accounts for power laws in financial fluctuations. However, our paper differs from theirs

in that we do not rely on heterogeneity across traders in accounting for power laws in

financial fluctuations; instead, we assume that traders are homogeneous in size and

in other respects. We show that, even in this symmetric setting, the interaction of a

large number of traders generates stochastic herding with different degrees (i.e., the

number of traders who decide to buy the asset differs), thereby generating power laws

in financial fluctuations. By showing this, we provide a new explanation for power laws

in financial fluctuations which is complementary to the one advocated by Gabaix et al.

[14].1

The remainder of the study is organized as follows. Section 2 presents our baseline

model. Section 3 then analytically shows that a power law distribution emerge for

transaction volumes and provides an intuition for the mechanism behind it. Section

4 presents numerical simulations to show that the equilibrium volumes follow a power

1Another area to which this study, especially the technical part, is related is the literature on critical

phenomena in statistical physics. A number of statistical physicists have investigated the empirical

fluctuations of financial markets (surveys of these studies can be found in Bouchaud and Potters [8]

and Mantegna and Stanley [26]), and some studies in this literature reproduce the empirical power

laws by applying a methodology often used for the analysis of critical phenomena to herd behavior

models (Bak, Paczuski, and Shubik [3]; Cont and Bouchaud [12]; Stauffer and Sornette [34]). However,

these studies do not model traders’ purposeful behavior and rational learning, and therefore fail to link

their analysis to the existing body of financial economics literature. More importantly, these studies

do not address why market activities exhibit criticality. This issue is important because, according

to these studies, power laws in financial fluctuations typically occur only when the parameter that

governs the connectivity of the networked traders takes a critical value. These two issues will be

addressed in this study.
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law and that the equilibrium return distribution matches its empirical counterpart.

Section 5 concludes.

2 Model

2.1 Model and equilibrium

We consider an economy with two possible states, which are denoted by H and L.

There is a large number N of informed traders, each of which receives an imperfect

and private signal xi of the state. The signal is imperfect in the sense that xi does not

fully reveal the true state. Also, the signal is private in the sense that each trader does

not observe other traders’ signals.

Traders simultaneously choose whether to buy one unit of an asset or not to buy at

all. The asset is worth 1 in state H and 0 in state L. Shares of the asset are issued and

traded. Indivisibility is introduced in that the transaction unit is fixed. Specifically,

the transaction unit is given by 1/N . We consider a rational expectations equilibrium

in which each trader submits their demand schedule conditional on the price of the

asset, p. The demand function is denoted by ai = d(p, xi) for trader i, where ai = 1

indicates buying and ai = 0 not-buying. Aggregate demand expressed in terms of the

transaction unit is D(p) =
∑N

i=1 d(p, xi)/N .

Uninformed traders decide on whether to supply the asset depending only on p.2

The aggregate supply function, which is denoted by S(p), is assumed to be continuous

and upward sloping with a bounded domain, 0 ≤ p < 1, and satisfies S(p0) = 0 for a

2The informational asymmetry between informed and uninformed traders in this model is similar

to event uncertainty, which was introduced by Avery and Zemsky [2] as a condition for herding to

occur in financial markets.
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given initial price p0. The equilibrium price is determined so that it clears the market,

i.e., D(p) = S(p). We define a sequence of exogenous price points pk, k = 1, 2, . . . , N at

which the demand from k informed traders is met by the supply from the uninformed

traders, i.e., S(pk) = k/N .

Transactions are implemented by an auctioneer, who receives the demand and sup-

ply schedules D and S from the informed and uninformed traders, and chooses price

pm such that D(pm) = S(pm).3 Note that m represents the equilibrium number of

buying traders. The belief of informed trader i that state H occurs, after observing

pm, is denoted by ri. Informed traders are assumed to be risk-neutral and maximize

their subjective expected payoff. The expected payoff of a trader is 0 when ai = 0

regardless of the belief, whereas it is ri − p when ai = 1. Thus, trader i buys the asset

if and only if ri ≥ p. The optimality condition for buying, ri ≥ p, can be rewritten as

ρi ≤ (1− p)/p using the likelihood ratio ρi ≡ (1− ri)/ri.

For each realization of a profile of private signals (xi)
N
i=1, a rational expectations

equilibrium consists of the number of buying informed traders m, price pm, allocation

(ai)
N
i=1, demand schedules d, and the posterior likelihood ratios (ρi)

N
i=1, such that (i) for

any p, d(p, xi) maximizes trader i’s expected payoff evaluated at ρi for any i, (ii) ρi is

consistent with the realized private signal xi and pm for any i, and (iii) the auctioneer

clears the market, i.e., S(pm) =
∑N

i=1 ai/N , and delivers the orders ai = d(pm, xi)

where m =
∑N

i=1 ai.

3This mechanism of implementing a rational expectations equilibrium through the submission of

demand schedules follows Bru and Vives [9]. Without information aggregation by the auctioneer, the

model would become similar to that of Minehart and Scotchmer [27], who showed that traders cannot

agree to disagree in a rational expectations equilibrium, i.e., an equilibrium may not exist, or if it

exists, it is a herding equilibrium where all traders choose the same action.
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2.2 Information structure and optimal strategy

We now specify the information structure. The private signal xi is drawn independently

across i from a known distribution F in state H and from distribution G in state L.

We impose the standard assumption on private signals that they satisfy a property

called the monotone likelihood ratio property (MLRP). We define an odds function

`(xi) = g(xi)/f(xi), where f and g are derivatives of F and G, respectively. MLRP

requires ` to be monotone. Without loss of generality, we assume that ` is strictly

decreasing. This implies that a greater level of xi is associated with a higher likelihood

of state H. We also assume that the prior belief that H will occur is common across

i with equal probabilities for H and for L. The likelihood ratio for the common prior

belief is denoted by λ = 1. Furthermore, we specify that the initial price reflects the

common prior belief as p0 = 0.5. This assumption is imposed for the sake of simplicity

and is relaxed in Appendix B, where the belief is allowed to be heterogeneous across

traders in a dynamic setting.

We derive the optimal demand schedule of trader i as a threshold rule. The optimal

threshold rule is given by

d(pk, xi) =

 1 if xi ≥ x̄(k),

0 otherwise,
(1)

for k = 1, 2, . . . , N , where x̄(k) denotes the threshold level for the private signal at

which a buying trader is indifferent between buying and not buying after observing pk.

We solve for the optimal threshold x̄ as follows. Under the threshold rule, the

likelihood ratios revealed by inaction (ai = 0) and by buying (ai = 1) given pk are
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respectively derived as follows:

A(x̄) ≡ Pr(xi < x̄ | L)

Pr(xi < x̄ | H)
=
G(x̄)

F (x̄)
, (2)

B(x̄) ≡ Pr(xi ≥ x̄ | L)

Pr(xi ≥ x̄ | H)
=

1−G(x̄)

1− F (x̄)
, (3)

where x̄ is shorthand for x̄(k). As shown by Smith and Sørensen [32], MLRP implies

that, for any value of x in the interior of the support of F and G,

A(x) > `(x) > B(x) > 0, (4)

and that A(x) and B(x) are strictly decreasing in x:

dA(x)

dx
=

g(x)

F (x)
− G(x)f(x)

F (x)2
=
f(x)

F (x)
(`(x)− A(x)) < 0, (5)

dB(x)

dx
= − g(x)

1− F (x)
+

(1−G(x))f(x)

(1− F (x))2
=

f(x)

1− F (x)
(B(x)− `(x)) < 0. (6)

Consider a trader making a buying bid at price p1. If this bid is struck by the

auctioneer, this implies that the other N − 1 informed traders do not bid at p1. Thus,

their inaction reveals the likelihood ratio A(x̄(1))N−1. The posterior likelihood ratio in

this case is ρi = A(x̄(1))N−1`(xi)λ. Thus, the threshold is determined by

1/p1 − 1 = A(x̄(1))N−1`(x̄(1))λ. (7)

Similarly, each trader knows that, if the bid is executed at pk, there are k − 1 traders

buying at pk and N −k traders not buying at pk. Then, the threshold x̄(k) is obtained

by solving

1/pk − 1 = A(x̄(k))N−kB(x̄(k))k−1`(x̄(k))λ. (8)

Given the threshold behavior shown above, we obtain aggregate demand D(pk) by

counting the number of informed traders with xi ≥ x̄(k) and dividing it by N . For the
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case of k = 0, we exogenously set D(p0) = D(p1). If D(p1) = 0 realizes as a result of

realized private signals, then p0 clears the market since D(p0) = D(p1) = S(p0) = 0. If

D(p1) > 0, then p0 cannot clear the market. With this setup, we obtain the following

property:

Lemma 1 There exists an N̄ such that for any N > N̄ , the threshold level of sig-

nal x̄(k) is strictly decreasing in k and the aggregate demand function D(pk) is non-

decreasing in k.

Proof: By taking the log-difference of (8), we obtain

log
A(x̄(k))

B(x̄(k))
+log

1/pk+1 − 1

1/pk − 1
= (N−k−1) log

A(x̄(k + 1))

A(x̄(k))
+k log

B(x̄(k + 1))

B(x̄(k))
+log

`(x̄(k + 1))

`(x̄(k))
.

(9)

Note that inf(logA−logB) is strictly positive and independent of N , while log(1/pk+1−

1)− log(1/pk − 1) converges to 0 as N →∞, since S(pk) = k/N . Hence, the left-hand

side is strictly positive for a sufficiently large N . The right-hand side is strictly positive

only if x̄(k+1) < x̄(k), sinceA′ < 0, B′ < 0, and `′ < 0. Thus, x̄(k) is strictly decreasing

in k. Since D(pk) is the number of traders with xi ≥ x̄(k) for k = 1, 2, . . . , N , divided

by N , and since D(p0) = D(p1), a decreasing x̄ implies that D(pk) is non-decreasing

in k for any realization of (xi)
N
i=1. 2

According to Lemma 1, the more informed traders are buying, the more signals in

favor of H are revealed, and hence, the more likely each informed trader is to buy.4 This

implies the presence of strategic complementarity in informed traders’ buying decision.

4A similar result was presented in Nirei [29]. However, this study differs from Nirei [29] in that

Nirei [29] used a Nash equilibrium, while the present study uses a rational expectations equilibrium.

With the Nash formulation, Nirei [29] was not able to establish the existence of equilibrium with a

finite number of traders, which is accomplished in this study, as shown in Proposition 1.
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Lemma 1 also shows that as a higher price indicates that there are more informed

traders who receive high signals, the aggregate demand curve is upward sloping when

N is sufficiently large. On the other hand, when N is small, the increment in price

pk+1/pk is substantial due to limited supply, thus leading to a higher purchasing cost

and a downward sloping demand curve.

Finally, we show the existence of equilibrium. We define the aggregate reaction

function as a mapping from the number of buying traders k inferred from pk, to the

number of buying traders determined by informed investors’ choices after observing

pk in addition to their private signals. Specifically, the aggregate reaction function is

given by Γ : S 7→ S, where S = {0, 1, 2, . . . , N}, for each realization of (xi)
N
i=1 such

that Γ(k) ≡ D(pk)N for any k ∈ S. With the upward sloping demand function, we

obtain the existence of equilibrium in a finite economy as follows.

Proposition 1 There exists an N̄ such that for any N > N̄ there exists an equilibrium

outcome m for each realization of (xi)
N
i=1.

Proof: Since Γ is a non-decreasing mapping of a finite discrete set S onto itself, there

exists a non-empty closed set of fixed points of Γ as implied by Tarski’s fixed point

theorem. Since S(pm) = m/N , such fixed points m of Γ satisfy D(pm) = S(pm). 2

In this economy, multiple equilibria may exist for each realization of (xi)
N
i=1. We

focus on the case where the auctioneer selects the minimum number of buying traders,

m∗, among possible equilibria for each (xi)
N
i=1. This assumption that the auctioneer

selects the minimum number of buying traders means that we exclude fluctuations

that arise purely from informational coordination such as in sunspot equilibria. Even

with this assumption, we can show that the equilibrium price, log pm∗ − log p0, shows

large fluctuations. Note that this equilibrium selection uniquely maps each realization
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of (xi)
N
i=1 to m∗. Thus, m∗ is a random variable whose probability distribution is

determined by the probability distribution of (xi)
N
i=1 and the equilibrium selection

mapping.

3 Analytical derivation of the power law

In this section, we characterize the minimum equilibrium aggregate action m∗ and show

that it follows a power law distribution. The power law distribution for m∗ implies a

fat tail and large volatility for the transaction volume. Since the asset price in this

model is determined by the equilibrium condition S(pm∗) = m∗/N , the power law for

the transaction volume also implies a fat-tailed distribution of the equilibrium price

pm∗ .

We start by showing that the equilibrium m∗ is obtained making use of the best

response dynamics adopted in Vives [36]. The best-response dynamics for the number

of buying traders are defined by mu = Γ(mu−1) for u = 1, 2, . . . , T , where mu is the

number of buying traders in step u, Γ is the aggregate reaction function, and T is

stopping time, which is defined as the smallest step u such that mu −mu−1 = 0. We

set m0 = 0. Throughout the study, we will assume that the true state of the economy

is H unless stated otherwise. A similar analysis can be conducted for the case that the

true state of the economy is L. Based on the above setting, we obtain the following

result.

Lemma 2 mu converges to the minimum equilibrium m∗ for each realization of (xi)
N
i=1.

Moreover, the threshold for buying, x̄, decreases over u, i.e., x̄(mu+1) < x̄(mu), for any

realization of (xi)
N
i=1.

Proof: Applying Vives [35], it can be shown that mu always reaches a fixed point mT
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with respect to Γ, since Γ is increasing, S is finite, and m0 = 0 is the minimum in S.

Further, mT must coincide with the minimum fixed point m∗ for the following reason.

Suppose that there exists another fixed point m that is strictly smaller than mT . Then

we can pick u < T such that mu < m < mu+1. Applying the non-decreasing function

Γ, we obtain Γ(mu) ≤ Γ(m). Thus, mu+1 ≤ m. This contradicts m < mu+1. Hence,

mT = m∗. Finally, x̄(mu) decreases with u, since, as shown in Lemma 1, x̄(k) is strictly

decreasing in k and mu is non-decreasing. 2

Note that since the best-response dynamics start from m0 = 0 and converge to m∗,

we can express m∗ as the cumulative sum of increments in mu. Moreover, the best-

response dynamics can be regarded as a stochastic process, because the probability of

mu conditional on m1, . . . ,mu−1 is determined by the joint distribution of the private

signal profile (xi)
N
i=1. Thus, m∗ can be expressed as the sum of a stochastic differ-

ence process that converges to zero. This approach of characterizing the equilibrium

outcome by a stochastic process is similar to the one adopted by Kirman [22].

An important implication of Lemma 2 is that there exists a non-trivial chance of

a chain reaction during the process, since the threshold x̄ decreases as u increases.

Specifically, a trader who chooses to buy in step u will continue to choose buying in

u + 1, since the threshold is lower. On the other hand, a trader who chooses not to

buy in u might switch to buying in u+ 1. The conditional probability of a non-buying

trader switching to buying in response to mu −mu−1 is defined as follows:

qu ≡
∫ x̄u−1

x̄u

f(x)dx/F (x̄u−1), u = 1, 2, . . . , N, (10)

where x̄u is shorthand for x̄(mu). Note that qu is always non-negative because of the

decreasing threshold. Thus, mu+1 −mu, the number of traders who buy in u + 1 for

the first time, conditional on the history of m up to u, follows a binomial distribution

with population parameter N −mu and probability parameter qu. The distribution of
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m1 follows a binomial distribution with population N and probability q0 ≡ 1− F (x̄0).

This completes the definition of the stochastic process mu−mu−1, which is summarized

in the following lemma.5

Lemma 3 Consider a stochastic process mu −mu−1, u = 1, 2, . . . , T , where m0 = 0.

Suppose that mu+1−mu conditional on mu−mu−1 follows a binomial distribution with

population N − mu and probability qu. Further, suppose that m1 follows a binomial

distribution with population N and probability q0. Then, the minimum equilibrium

number of buying traders m∗ follows the same distribution as mT , the cumulative sum

of the process.

This lemma establishes that the minimum equilibrium m∗ is equal to the sum of a

binomial process. A binomial distribution can be approximated by a Poisson distribu-

tion when the population is “large” and the probability is “small.” The approximation

holds if qu decreases as N−1. The next lemma shows that this is indeed the case for

u > 1.

Lemma 4 As N → ∞, the binomial process mu+1 − mu asymptotically follows a

branching process with a state-dependent Poisson random variable with mean

φu =
A(x̄u−1)

`(x̄u−1)

logA(x̄u−1)− logB(x̄u−1)

A(x̄u−1)/B(x̄u−1)− 1
, u = 2, 3, . . . , T. (11)

Proof: See Appendix A.1.

Note that the Poisson mean φu can be taken arbitrarily close to 1 for any x̄u by

setting G(x) close to F (x). Specifically, we consider a series of economies in which the

number of informed traders is N = N0, N0 + 1, . . . and the distribution function GN

evolves depending on N . This yields the following lemma.

5This is an application of the result obtained by Nirei [28] in a simple model of interactions.
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Lemma 5 Suppose that the distribution functions GN converge to F as limN→∞ supx |GN(x)−

F (x)| = 0. Then, φu = 1 for u = 2, 3, . . . , T .

It is known that when the Poisson mean takes a constant value, which is denoted

by φ, the sum of the branching process mT conditional on m1 follows a Borel-Tanner

distribution (Kingman [21]). That is,

Pr(mT = m | m1 = l) = (l/m)e−φm(φm)m−l/(m− l)!, m = l, l + 1, . . . (12)

∝ e−(φ−1−log φ)mm−1.5, (13)

where the second line holds asymptotically as m→∞. This indicates that the sum of

the Poisson branching process, conditional on the initial number of buying traders m1,

follows a power law distribution with an exponent of 0.5 with exponential truncation,6

where the truncation point is determined by φ. Using this result, we can show that

the distribution of m∗ conditional on m1, which is the number of traders who buy in

the first round of the best-response dynamics (i.e., m1 = Γ(0)), has a power law tail.

This is summarized by the following proposition.

Proposition 2 If limN→∞ supx |GN(x)−F (x)| = 0, the asymptotic distribution func-

tion (12) holds with φ = 1 for m∗ conditional on m1 = l.

Furthermore, we can characterize the unconditional distribution of m∗ in the fol-

lowing environment. We assume that F follows an exponential distributions with

positive mean 1/µ and GN follows an exponential distribution with mean 1/µN , where

µN = µ + 1/ logN . In this case, we can show that m∗ asymptotically follows a distri-

bution with a power law tail, which is summarized in the following proposition.

6Note that the power law exponent is defined for a cumulative distribution.
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Proposition 3 Given the specification of F and GN above, there exists a constant c

such that the minimum equilibrium number of buying traders m∗ asymptotically follows

Pr(m∗ = m) =
ce−(m+c)

m!
(m+ c)m−1, m = 0, 1, . . . (14)

∝ m−1.5, (15)

where the second line holds asymptotically as m→∞.

Proof: See Appendix A.2.

Proposition 3 shows the presence of a power law tail for the equilibrium number

of buying traders multiplied by 1/N , i.e., m∗/N , implying that the variance of m∗/N

is very large. A necessary condition for this to happen is that m∗/N can take a

wide range of different values in equilibrium. In other words, we need a property

similar to equilibrium indeterminacy. Indeterminacy in signal inference games is best

captured by Keynes’s beauty contest, in which voters care about who is picked by

other voters rather than who is actually beautiful, so that any candidate can win.

Our model has a similar property as that of Keynes’s beauty contest, which can be

seen from the optimal threshold condition (8). This condition reduces to the simple

form (1 − α) logA(x̄) + α logB(x̄) = 0, where α ≡ m/N , if we take the limit as N

approaches infinity while keeping α unchanged. The condition indicates that the log of

the geometric average of A and B evaluated at x̄, which can be regarded as a summary

statistic for information on the true state revealed by traders’ actions, does not change

even when α takes different values.

To explain why this happens, suppose that a trader switches from not-buying to

buying. Since α increases, the average of A and B declines, so that the optimal

threshold declines. However, this in turn increases the average likelihood ratio, since

traders learn that some of them must have received very bad signals from the fact that
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they still choose not to buy even when the threshold is lower. As a result, the impact

of a change in α on the average of A and B is exactly canceled out, so that any value

of α is compatible with the optimal threshold condition. Note that this means that

a higher value of α in an equilibrium cannot necessarily be regarded as an indication

that a larger number of traders now believe that the true state is more likely to be H.

It is important to note that the above mechanism to generate indeterminacy de-

pends on the information structure adopted. Specifically, if there were substantial

heterogeneity in the information structure as to who observes whose actions, a trader

who is observed by many traders would give a strong cue for herding. A useful exam-

ple is Banerjee’s sequential herding model, in which agents observe only the actions

of those agents who move before them. In this information structure, it is possible

that the first mover’s action cascades to all agents, with private signals of most agents

unrevealed. An important implication of this is that intermediate outcomes between

“herding” and “no herding” do not occur. This is in sharp contrast with our model

in which a symmetric information structure is assumed, and that assumption makes it

possible to have any degree of herding in equilibrium.

Proposition 3 claims not only that various levels of aggregate outcome is possible,

but also that the frequency of the occurrence of large synchronized actions m∗ has a

particular regularity signified by a power law. With exponent 0.5, the power law implies

that the variance of m∗/N decreases as N−0.5 when the number of traders N becomes

large. This makes contrast with the case when the traders act independently. When

traders’ choices (ai) are independent, the central limit theorem predicts that m∗/N

asymptotically follows a normal distribution, whose tail is thin and variance declines

as fast as N−1. The variance of m∗/N differs by factor
√
N between our model and

the model with independent choices. This signifies the effect of stochastic herding that
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magnifies the small fluctuations in the average of signals xi. While a magnification

effect occurs whenever traders’ actions are correlated, it requires a particular structure

in correlation for the magnification effect to cause the variance declining more slowly

than N−1. The magnification effect in our model is analogous to a long memory

process, in which a large deviation from the long-run mean is caused by long-range

autocorrelation. In our static model, the long-range correlation of traders’ actions is

captured by a best-response dynamics that converges to an equilibrium. We showed

that the best-response dynamics generates the power law under the condition φ = 1,

which means that the mean number of traders induced to buy by a buying trader is

1. The indeterminacy of the beauty contest underlies the condition φ = 1, because

it implies that a trader’s average action responds one-to-one to average actions. The

power law exponent 0.5 in our model is closely related to the same exponent in the

Inverse Gaussian distribution that characterizes the first passage time of a martingale.7

7The mathematical properties used in the derivations in this section have been known for long in

probability theory. We embed the best-response dynamics in a branching process. The branching

process is a stochastic integer process of population in which each parent in a generation bears a

random number of children in the next generation. Lemma 4 shows that m∗ is characterized as the

sum of a branching process with state-dependent mean. Lemma 5 establishes that m∗ follows the sum

of a Poisson branching process with φ = 1. The exponential tail holds for a large finite mT either

for the subcritical case φ < 1 or the supercritical case φ > 1 (Harris [17]). The speed of exponential

truncation is determined by |φ− 1− log φ| as in (13). The speed of the exponential decay slows down

as φ becomes close to 1, and disappears when φ = 1. At this critical level φ = 1, the branching process

becomes a martingale, and the distribution (12) has a power law tail.
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4 Numerical results on volumes and returns distri-

butions

In this section, we conduct numerical simulations of the model with a finite number of

informed traders N . By the simulations, we confirm that the probability distribution

of the number of buying traders m∗ follows a power law, which was only asymptoti-

cally shown in the previous section. Moreover, we simulate equilibrium asset returns

log pm∗ − log p0. We show that the simulated distribution of returns exhibits a fat tail

that matches well with an empirical returns distribution.

An important facet of the model to be specified is the supply function S(p), which

determines how the fluctuation of volumes is translated to the fluctuation of returns.

In our model where informed traders’ demands are absorbed by uninformed traders’

supply, the elasticity of supply function determines the impact of demand shifts on the

returns. The relation between an exogenous shift in transaction volume and a resulting

shift in asset price is often called a price impact function. In this paper, we adopt a

square-root specification of the price impact function. Namely, we specify the inverse

supply schedule of uninformed traders as pk = p0 + p0(k/N)γ, for k = 1, 2, . . . , N , with

γ = 0.5. A micro-foundation for the square-root specification is provided by Gabaix et

al. [14] in a Barra model of uninformed traders who have a mean-variance preference

and zero bargaining power against informed traders. The square-root specification is

commonly used for the price impact (e.g., Hasbrouck and Seppi [18]), and its parameter

specification, γ = 0.5, falls within the empirically identified range of the price impact

by Lillo et al. [24].

Other parts of the model are specified as follows. The distributions of signal, F

and G, are specified as normal distributions. This provides an alternative specification
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to Proposition 3, wherein F and GN were specified as exponential distributions. The

mean of F and G is normalized to 1 and 0, respectively. F and G are further specified

as having a common standard deviation σ. We set σ at 25 or 50, which is large

relative to the difference in mean, 1. The large standard deviation relative to the mean

difference captures the situation where the informativeness of signal xi is small. We

set the number of informed traders N at a finite but large value between 500 and 4000.

The numerical simulation is implemented as follows. First, the optimal threshold x̄ is

computed. Second, a profile of private signals (xi)
N
i=1 is randomly drawn for 100,000

times, and m∗ and pm∗ are computed for each draw.

Figure 1 plots the inverse cumulative distribution of m∗/N for various parameter

values of N and σ. The inverse distribution Pr>(m∗) is cumulated from above, and is

thus 0 at m∗ = N and 1 at m∗ = 0. The distribution is plotted in log-log scale, and

thus, a linear line indicates a power law Pr>(m∗) ∝ m∗−ξ, where the slope of the linear

line ξ is called the exponent of the power law. The simulated distributions appear

linear for smaller values of m∗, and decay fast when m∗/N is close to 1. This conforms

to the model prediction that m∗ asymptotically follows a power law distribution. The

simulated distribution is exponentially truncated due to the finiteness of N .

The asymptotic result in Propositions 2 predicted the exponent of power law ξ to

be 0.5. As shown in the left panel of Figure 1, we observe that the power law exponent

of the simulated m∗ is roughly equal to 0.5 when N = 1000 and σ = 25. Proposition 3

also predicted that the power law distribution with exponent 0.5 asymptotically holds

when N → ∞ and sup |F − GN | → 0. To confirm this, we simulate the model with a

larger number of traders and the smaller informativeness of the signal. In order to set

the informativeness smaller, we lower the mean difference µF − µG between F and G

from 1 to 0.7 or 0.5 with σ fixed. In Figure 1, we observe that the similar slope ξ = 0.5
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Figure 1: Left: Simulated inverse cumulative distributions of the minimum equilibrium

number of buying traders m∗. N is the number of traders, σ is the standard deviation

of the private information, and µF−µG denotes the difference of the mean of the private

information between F and G. Right: Simulated distributions of returns log pm−log p0.
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for the power law holds for the cases with N = 2000 (dashed line) and 4000 (dotted

line) when the informativeness of signal becomes smaller, confirming the prediction of

Proposition 3. In the simulations under other parameter sets, however, we note that ξ

can take larger values. This can be seen in the plot for a larger σ (circle-line) and a

smaller N (square-line). This deviation in the exponent might result from the fact that

the finite truncation occurs at a relatively small value of m∗ in these cases. It is also

possible that the state-dependence of φu is strong enough to cause a large deviation

from the predicted exponent ξ = 0.5, since the power law exponent in (12) increases by

1 when the parameter φ fluctuates around the criticality value, 1, as shown by Sornette

[33].

Our model also determines price pm∗ for each equilibrium number of buying traders

m∗. We interpret the shifts in log price, log pm∗ − log p0, as stock returns. We assume

that the private signal is symmetric between two states, H and L. Thus, informed

traders take demand side or supply side with probability 0.5. When the informed

traders herd in the supply side, m∗ is interpreted as the number of selling traders, and

log p∗m − log p0 is interpreted as a negative of the associated stock return. We plot the

distributions of the simulated returns in the right panel of Figure 1. The density is

logarithmically scaled, and thus, a linear decline indicates an exponential distribution.

Note that the returns are normalized by standard deviations. The normalized returns

still span a wide range from -10 to 10. Thus, the plots well indicate that the simulated

returns distributions exhibit the pattern of fat tails with exponential truncation.

The simulated distribution of returns is compared to the empirical distribution

in Figure 2. The empirical distribution is generated using the daily returns data of

TOPIX stock price index in the Tokyo Stock Exchange during 1998-2010. We define

the daily return as the log difference from the opening price to the closing price. We
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use the opening-closing difference rather than the return in a business day in order to

homogenize the time horizon of each observed return. The simulated distribution is

generated under N = 1000. The standard deviation σ of the signal is set to 48.5, at

which value the density estimate of simulated returns at 0 matches with that of the

empirical distribution. The other parameters are set as before: γ = 0.5, µF = 1, and

µG = 0.

In the left panel of Figure 2, the returns distributions are plotted in semi-log scale.

The plot shows that the simulated distribution traces the empirical distribution rather

well, especially in the left tail. In the same panel, we plot the standard normal density

by a dotted line. Even though the simulated and empirical distributions are normalized

by their standard deviations, the resulting distributions completely deviate from the

normal distribution in the tail that is more than three standard deviations away from

the mean. Note that we used σ as a free parameter in the simulation to match the

empirical density at 0, but we did not use it to match the tail distribution. This

indicates that our model is capable of generating the fat tail of empirical returns better

than models that generate the normal distribution.

To further investigate the match between the simulated and empirical distributions,

we show a Q-Q plot in the right panel of Figure 2. In the Q-Q plot, each quantile of

the Topix returns data is plotted against the same quantile of the simulated returns

data. Thus, the two distributions are identical if the Q-Q plot coincides with the 45

degree line, shown by a dashed line. Both quantiles are normalized by the standard

deviations. In Figure 2, two quantiles resemble reasonably well in the overall support,

although the simulated quantiles somewhat overshoot the empirical quantiles in the

region greater than 2.
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Figure 2: Distributions of TOPIX daily returns and simulated returns log pm − log p0.

Left: Distributions plotted in semi-log scale, where returns are normalized by standard

deviations. Empirical and model distributions are shown along with a standard normal

distribution. Right: Quantile-quantile (Q-Q) plot. Each circle represents a pair of

values, the simulated data value in the horizontal axis and the TOPIX data value

in the vertical axis, under which the two distributions in comparison have the same

fraction of the population.
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5 Conclusion

This study analyzed aggregate fluctuations that arise from information inference be-

haviors among traders in financial markets. In a class of herd behavior models in which

each trader infers other traders’ private information only by observing their actions, we

found that the number of traders who take the same action at equilibrium exhibits a

large volatility with a regularity — a power law distribution. Furthermore, the model

prediction was fitted to an empirical fat-tailed distribution of stock returns.

The power law distribution of aggregate actions emerges when the information

structure of traders is symmetric. Every trader receives a private signal of the same

magnitude of informativeness on the true value of an asset, and every trader observes

the average action of all traders. Then, an action by a trader is as informative as

an inaction by another. When some information is revealed by a trader’s buying

action, the inaction of other traders reveals their private information in favor of not

buying. Thus, each trader’s action is affected by the average action, resulting in a

near-indeterminate equilibrium analogous to the Keynes’s beauty contest. In this way,

the information inference model provides an economic foundation for the criticality

condition that generates a power law tailed fluctuations that were known in the models

of critical phenomena.

This study provides a couple of directions for extension. A dynamically extended

model is presented in Appendix B, which generates a time-series pattern similar to Lee

[23] for sudden shifts in stock prices. As the present static model is shown to match

with the quantitative properties of unconditional fluctuations, the natural next step is

to bring the dynamic model to the time-series properties as pursued by, for example,

Alfarano, et al. [1]. Another direction is to extend the model by incorporating more

realistic market structures. Kamada and Miura [20] has taken a step toward this
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direction by extending this model to the case where both public and private signals

exist and where informed traders can take both buying and selling sides.

Appendix

A Proofs

A.1 Lemma 4

Equation (9) implies that x̄(k)− x̄(k+ 1) is of order 1/N , by which we mean O(1/N),

namely that the term multiplied by N converges to a non-zero constant as N → ∞.

From Equation (10), we obtain that qu = (f(x̄u−1)/F (x̄u−1))(x̄(mu−1) − x̄(mu)) +

O(1/N2). Thus, qu is also of order 1/N . The asymptotic mean of the binomial variable

mu+1 −mu conditional on mu −mu−1 = 1 is derived as follows:

φu ≡ plim
N→∞

qu|mu−mu−1=1(N −mu)

= plim
N→∞

f(x̄u−1)

F (x̄u−1)

logA(x̄u−1)− logB(x̄u−1)
N−mu−1−1

N
A′(x̄u−1)
A(x̄u−1)

+ mu−1

N
B′(x̄u−1)
B(x̄u−1)

−(N −mu)

N
(16)

= plim
N→∞

logA(x̄u−1)− logB(x̄u−1)
N−mu−1

N

(
1− `(x̄u−1)

A(x̄u−1)

)
+ mu−1

N
F (x̄u−1)

1−F (x̄u−1)

(
`(x̄u−1)
B(x̄u−1)

− 1
)N −mu

N
, (17)

where we used (9) and the fact that the difference of log pk is of order 1/N for the

second equation and (5) and (6) for the third equation. Note that mu/N converges to

1 − F (x̄u−1) with probability 1 for a fixed threshold x̄u−1 as N → ∞ by the strong

law of large numbers. Then, (mu/(N −mu))(F (x̄u−1)/(1 − F (x̄u−1))) converges to 1

with probability 1. Applying this to (17), we obtain the expression (11). Using that

x̄(mu) − x̄(mu−1) is of order 1/N , we obtain that qu(N −mu) → φu(mu −mu−1) for
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N → ∞. Hence, mu+1 −mu asymptotically follows a Poisson distribution with mean

φu(mu−mu−1), which is equivalently a (mu−mu−1)-fold convolution of a Poisson dis-

tribution with mean φu. Thus, the binomial process asymptotically follows a branching

process in which each parent bears a random number of children that follows a Poisson

distribution with mean φu.

Define AN , BN , and φNu similarly to A, B, and φu, respectively, by using GN and

F . Then, AN(x̄)/BN(x̄) → 1 holds since AN/BN = (1/F − 1)/(1/GN − 1). As the

term A/B tends to 1, the first fraction in the right-hand side of (11) converges to 1

because of A > ` > B, and the second fraction also converges to 1 by l’Hospital’s rule.

Then, φNu → 1 obtains as N →∞.

A.2 Proposition 3

We show that m1 asymptotically follows a Poisson distribution with some constant

mean c as the number of traders N increases to infinity. Let x̄1
N denote the threshold

for traders to buy when there is no other trader buying in the economy with N traders.

Using the exponential specification, the logarithm of Equation (7) that determines x̄1
N

is rewritten as:(
1/p1 − 1

λ

)
/

(
1 +

1

µ logN

)
=

(
1 +

1− e−x̄1
N/ logN

eµx̄
1
N − 1

)N−1

e−x̄
1
N/ logN (18)

Now define RN = 1−e−x̄
1
N/ logN

e
µx̄1
N−1

. The first component of the right-hand side (1 +

RN)N−1 converges to a constant if RN declines as 1/N . We make a guess that x̄1
N/ logN

converges to constant a. Suppose that a < 1/µ holds. Then, RN declines slower than

1/N , and thus, (1 + RN)N−1 diverges to infinity. Then, the right-hand side of (18)

diverges, since its second component e−x̄
1
N/ logN converges to a constant. Thus, this x̄1

N

cannot solve (18). Suppose that a > 1/µ holds. Then, RN declines faster than 1/N ,
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and thus, (1 + RN)N−1 converges to 1. Noting that p1 converges to p0 as N → ∞,

(18) is solved at the limit of N if a satisfies (1/p0 − 1)/λ = e−a. However, this

condition is not satisfied for a > 1/µ, since p0 = 0.5 and λ = 1. Finally, consider

the case a = 1/µ. We write x̄1
N as (logN)/µ + εN . Then, (18) at the limit becomes

((1/p0 − 1)/λ)) exp(1/µ) = exp((1 − e−1/µ)/elimN→∞ µεN ). Thus, x̄1
N = (logN)/µ + εN

holds and εN converges to constant (1/µ) log(µ(1− e−1/µ)) as N →∞.

The asymptotic mean of m1 is defined as c ≡ limN→∞Ne
−µx̄1

N . Substituting x̄1
N =

(logN)/µ + εN , we obtain that c = (µ(1− e−1/µ))−1 > 0. Equation (14) is derived by

mixing the Borel-Tanner distribution when φ = 1 and the Poisson distribution with

mean c. (For the explicit derivation of (14), see Nirei [28].) Finally, (15) is obtained

by applying Stirling’s formula.

B Dynamic extension of the model

The results in the basic model were derived under the assumption of homogeneous prior

belief. The results hold even if the prior belief is heterogeneous. A particularly inter-

esting case is when the belief evolves over time as private signals are drawn repeatedly.

In this case, even though we maintain the assumption that the prior belief in the initial

period is homogeneous, the belief in the subsequent periods will be heterogeneous due

to the past private signals. In this sequence of static equilibria, we show that each

static equilibrium in any period is characterized as in the basic static model.

The dynamic extension not only relaxes the assumption of common prior belief

but also ensures that the propagation effect shown in the static model is triggered at

some point of time. The limiting behavior of q0, the mean number of traders who buy

at p0, when N → ∞ was ambiguous in the static model except for the exponentially
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specified case of Proposition 3. This leaves a possibility that the chain reaction in the

best-response dynamics is practically never triggered for a large N if q0N → 0 holds.

This is because the traders rarely react to the private signal when no other traders

reveal their signals, if the prior belief is very low.

It turns out in the dynamic model that the traders eventually learn the true state as

they accumulate private signals. This implies that, regardless of the level of the initial

prior belief or N , the belief increases to the level at which traders start buying even

though no other traders are buying. This triggers the chain reaction of buying. This

dynamics is similar to the self-organized criticality advocated by Bak et al. [4] in the

sense that traders’ average belief converges to the state at which the size distribution

of synchronized actions follows a power law.

B.1 Heterogeneous belief

We dynamically extend the basic model as follows. Each trader i draws private signal

xi,t repeatedly over periods for t = 1, 2, . . .. The private signal is identically and

independently distributed across traders and periods. We consider the same asset as

before that is worth 1 in H and 0 in L. Traders are given an opportunity to buy

this asset in each period regardless of their past actions. Uninformed traders provide

the supply function that has the same elasticity as in the static model and intercept

S(pt−1) = 0. The intercept pt−1 reflects the equilibrium price in the previous period, as

it incorporates the information revealed to the public in that period. Informed traders

submit their demand schedules to an auctioneer who clears the market each period as

in the static model. To maximize the expected payoff of the transaction in t, trader i

buys the asset in t if ρi,t ≥ (1−pt)/pt and does not buy otherwise. There is no dynamic

aspect involved in the traders’ decision other than updating the belief.
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Let at and ρt denote the profiles of actions (ai,t)
N
i=1 and likelihood ratios (ρi,t)

N
i=1, re-

spectively. Informed traders observe their private signal history xti = (xi,1, xi,2, . . . , xi,t).

We study a sequence of static equilibria (pt, at, ρt), t = 1, 2, . . ., such that action ai,t

maximizes trader i’s expected period payoff under subjective belief ρi,t, which is con-

sistent with the trader’s observation.

The prior belief at the initial period is common and its likelihood ratio is denoted

by λ. However, the belief is allowed to evolve stochastically as the traders draw signals

repeatedly. Thus, the belief in each period t > 1 is heterogeneous across traders

with a particular structure wherein the heterogeneity stems only from the distribution

functions F and G that are ordered by MLRP.

Let at denote an action profile history (a1, a2, . . . , at). Let ati denote i′s action

history (ai,1, ai,2, . . . , ai,t). The set of possible ati has 2t elements, since ai,τ is binary

for any i and τ . Thus, for each at−1, all traders are divided into 2t−1 groups according

to their action history at−1
i . Let nk,t denote the number of traders in the k-th group

for k = 1, 2, . . . , 2t−1 (hence,
∑2t−1

k=1 nk,t = N), and mk,t denote the number of buying

traders in the same group. Let Xk,s for s < t denote the domain of xi,s that is consistent

with asi under the threshold strategy defined below in (22) for trader i who belongs to

group k. The likelihood ratios revealed by an action history of a non-buying trader i

and a buying trader j in group k are written as follows:

Ak,t =

∫
Xk,1
· · ·
∫
Xk,t−1

G(x̄t(Pk,t, x
t−1
i ))dG(xi,t−1) · · · dG(xi,1)∫

Xk,1
· · ·
∫
Xk,t−1

F (x̄t(Pk,t, x
t−1
i ))dF (xi,t−1) · · · dF (xi,1)

, (19)

Bk,t =

∫
Xk,1
· · ·
∫
Xk,t−1

(1−G(x̄t(Pk,t, x
t−1
j )))dG(xj,t−1) · · · dG(xj,1)∫

Xk,1
· · ·
∫
Xk,t−1

(1− F (x̄t(Pk,t, x
t−1
j )))dF (xj,t−1) · · · dF (xj,1)

, (20)

where Pk,t denotes the information inferred from observing (mh,t)h by a buying trader
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i in group k,

Pk,t ≡

(∏
h

A
nh,t−mh,t
h,t B

mh,t
h,t

)
/Bk,t. (21)

Note that the right-hand side of (21) is divided by Bk,t because mk,t includes the

inferring trader i herself.

In the static model, informed traders submit the demand schedules conditional on

pm, where the conditioning on pm is equivalent to conditioning on m. In the dynami-

cally extended model, we assume that informed traders submit their demand schedules

conditional on the vector of the number of buying traders in each group, (mk,t)k.

We show that the equilibrium threshold strategy still exists in this setup.

Proposition 4 For each realization of xt, there exists an equilibrium outcome (mk,t)

and thresholds x̄t such that the action profile at satisfies the optimal threshold rule:

ai,t =

 1 if xi,t ≥ x̄t(Pk,t, x
t−1
i ),

0 otherwise.
(22)

Proof: See Appendix B.3.

In the proof, we show that the threshold function is decreasing in the total number

of buying traders in each period. Hence, as in the static model, we can define the

best-response dynamics within each period, where a chain reaction of buying actions

occurs. The best-response dynamics is characterised by a set of binomial distributions

with population nk and probability qk,u for each group k and step u in the best-response

dynamics. When N is large, the sum of traders who buy in step u can be approximated

by a Poisson with mean
∑

k nkqk,u. Thus, the best-response dynamics approximately

follows a Poisson branching process as in the static model.
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B.2 Self-organized criticality

In the dynamic extension, traders accumulate private signals that are independent

across periods. Thus, through Bayesian learning by observing private signals and

aggregate actions, traders eventually learn the true state almost surely.

Proposition 5 The subjective belief ρi,t converges to 0 as t→∞ almost surely.

Proof: See Appendix B.4.

Proposition 5 means that the belief converges to the true state eventually. This

is a natural consequence of the fact that traders have infinitely precise information in

the long run as they accumulate their own private signals. The convergence of belief

implies that there is no possibility for “wrong” herd behavior in the long run in the

narrow sense that we have an infinite sequence of traders taking actions on the basis

of a wrong belief or of traders completely neglecting their private information.

The convergence of belief to the true state H means that all traders will buy even-

tually. This implies that some traders start buying even without any other trader

buying at some point of the process toward convergence. Such a buying action triggers

the chain reaction of buying. Thus, the converging belief assures that the triggering

actions eventually occur and almost surely cause the fat-tailed aggregate actions. The

logic is analogous to the self-organized criticality proposed by Bak et al. [4]. In Bak’s

sand-pile model, the distribution of avalanche size depends on a slowly-varying variable

(the slope of the sand pile), and the dynamics of the slope variable has a global sink ex-

actly at the critical point at which the avalanche size exhibits a power law distribution.

In our model, the average belief corresponds to the slope in the sand-pile model. The

chain reaction is rarely triggered when the average belief is far below the threshold.

As private information accumulates, the average belief increases toward the threshold.
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This ensures that the triggering buying action will occur eventually.

B.3 Proof of Proposition 4

We define the threshold function x̄t(Pk,t, x
t−1
i ) at which trader i is indifferent between

buying and not buying. It is implicitly determined by

1

pt
− 1 = Pk,tλ`(x̄t)

t−1∏
τ=1

`(xi,τ ). (23)

It follows that `(x̄t(Pk,t, x
t−1
i ))

∏t−1
τ=1 `(xi,τ ) is equal to (1/pt − 1)/(λPk,t), and thus, is

constant across i in group k. Then, Ak,t > (1/pt − 1)/(λPk,t) > Bk,t can be shown as

follows. The numerator of Ak,t is expanded as∫
Xk,1

· · ·
∫
Xk,t−1

G(x̄t(Pk,t, x
t−1
i ))`(xi,t−1)dF (xi,t−1) · · · `(xi,1)dF (xi,1) (24)

>

∫
Xk,1

· · ·
∫
Xk,t−1

F (x̄t(Pk,t, x
t−1
i ))`(x̄t(Pk,t, x

t−1
i ))Πt−1

τ=1 (`(xi,τ )dF (xi,τ )) (25)

=
1/pt − 1

λPk,t

∫
Xk,1

· · ·
∫
Xk,t−1

F (x̄t(Pk,t, x
t−1
i ))dF (xi,t−1) · · · dF (xi,1). (26)

The integral in (26) is equal to the denominator of Ak,t, and thus, Ak,t > (1/pt −

1)/(λPk,t) holds. Similarly, we obtain Bk,t < (1/pt − 1)/(λPk,t).

Define mt ≡
∑

hmh,t. Suppose that mt increases due to an increase in mk,t. Pk,t

decreases by Ak,t > Bk,t and (21). Then, x̄t needs to adjust in order to satisfy (23).

By using Ak,t > (1/pt − 1)/(λPk,t) > Bk,t, we obtain that the logarithms of Ak,t and

Bk,t are decreasing in x̄t as in the static model. Furthermore, MLRP ensures that

`(x̄t) is decreasing in x̄t. Thus, x̄t in (23) decreases in response to the increase in mt.

The decreasing x̄t entails a non-decreasing reaction function of mt+1 defined for each

realization of xt. Hence, the existence of an equilibrium is established by Tarski’s fixed

point theorem as in the static model. This completes the proof.
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B.4 Proof of Proposition 5

A likelihood ratio for a private signal history,
∏t

τ=1 `(xi,τ ), converges to zero as in

Billingsley [7]. The proof is outlined as follows. Likelihood ratio ρi,t follows a martingale

in the probability measure of the private signal under the true state: E(ρi,t | ρi,t−1, H) =

ρi,t−1. Furthermore, the likelihood ratio is bounded from below at zero by construction.

Then, the martingale convergence theorem asserts that the likelihood ratio converges in

distribution to a random variable. Moreover, the probability measures for a sequence of

private signal (xi,1, xi,2, . . . , xi,T ) under H and L are mutually singular when T →∞,

since xi,t is independent across t. Then,
∏t

τ=1 `i,τ converges to zero.

Hence, ρi,t converges to zero if Pk,t remains finite for t → ∞. Pk,t is finite for a

finite x̄t when N is finite. When x̄t tends to a positive infinity, Pk,t decreases to a finite

value since Ak,t and Bk,t are decreasing in x̄t and positive. When x̄t tends to a negative

infinity, all traders eventually choose to buy. Hence,
∏

hA
nh,t−mh,t
h,t tends to one, and

Pk,t tends to
∏

hB
mh,t
h,t /Bk,t. We showed that Bk,t < (1/pt − 1)/(λPk,t) in the proof

of Proposition 4. If Pk,t tends to a positive infinity as x̄t tends to a negative infinity,

then, this inequality contradicts the fact that Pk,t tends to ΠhB
mh,t
h,t /Bk,t for any finite

N . Thus, Pk,t is finite as t→∞. Hence, ρi,t is dominated by private signal as t→∞

and converges to zero.
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