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Abstract

This paper provides a survey on an asymptotic expansion approach to valuation and hedging prob-
lems in finance. The asymptotic expansion is a widely applicable methodology for analytical approxi-
mations of expectations of certain Wiener functionals. Hence not only academic researchers but also
practitioners have been applying the scheme to a variety of problems in finance such as pricing and hedg-
ing derivatives under high-dimensional stochastic environments. The present note gives an overview of
the approach.
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1 Introduction

Let (Ω,F , {Ft}t∈[0,T ], P ) denote a probability space with filtration, on which a r-dimensional standard
Wiener process W is defined, where P is an appropriate pricing measure (a risk neutral measure) in
finance, and T denotes some positive constant. Now, let F (ω) be a Wiener functional and then V, the
security or portfolio value can be expressed as V = E[F (ω)] under certain conditions. Evaluating this
expectation is one of the main issues in finance. Moreover, if F depends on the parameter θ, computation
of ∂V

∂θ = ∂
∂θE[F (ω; θ)], the sensitivity of the security value with respect to the change in this parameter

(so called Greeks) is also an important task in practice.
As an example, let us consider a d-dimensional diffusion process X(ϵ) which is obtained as a strong

solution to the stochastic differential equation;

dX
(ϵ)
t = V0(X

(ϵ)
t , ϵ)dt+ V (X

(ϵ)
t , ϵ)dWt, t ∈ [0, T ]; X

(ϵ)
0 = x0,

where ϵ ∈ [0, 1] is a known parameter. Here, the coefficients are assumed to satisfy some regularity
conditions. In finance, many problems of pricing derivatives and evaluating the portfolios in investment

theories are reduced to the problems of computing E[f(X
(ϵ)
T )], the expectation of f(X

(ϵ)
T ), that is a function

of X
(ϵ)
T .
In finance applications, it is important to deal with not only a smooth function f(x) but also non-smooth

one. For example, when various options are evaluated, f is expressed as f = T ◦g, where T (x) = max{x, 0}
and g stands for a smooth function of Rd 7→ R. In general, it is difficult to represent this expectation
explicitly except for special cases. Hence, numerical methods such as Monte Carlo simulations or numerical
solutions of partial differential equations (PDEs) are employed and various speeding up techniques are
developed, since fast and precise computation is required in practice.

As a different approach, an approximation of the expectation by an asymptotic expansion of the

stochastic differential equation around ϵ = 0 may be considered. Furthermore, because ∂
∂x0

E[f(X
(ϵ)
T )]

and ∂
∂ϵE[f(X

(ϵ)
T )], the sensitivities of the security value with respect to the changes in the initial value

∗I dedicate this note to the late Koji Takahashi.
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x0 and in the parameter ϵ are important indicators for practical purposes, the approximations with high
accuracies are so valuable. Moreover, some schemes that combine Monte Carlo simulations with asymptotic
expansions with low orders are developed, since the asymptotic expansion up to the first or second order
can be easily evaluated. Those schemes are able to improve the efficiencies of Monte Carlo simulations and
the accuracies of approximations obtained by the asymptotic expansions.

An asymptotic expansion approach in finance has been developed for the past two decades, which is
mathematically justified by Watanabe theory (Watanabe [111]) in Malliavin calculus (e.g. Malliavin [64],
Chapter V-8 in Ikeda. and Watanabe [39], Nualart [73]). To the best of our knowledge, the asymptotic ex-
pansion technique is firstly applied to finance for evaluation of average options that are popular derivatives
in commodity markets. Kunitomo and Takahashi [48] and [85] derive approximation formulas for aver-
age options by an asymptotic expansion method based on log-normal approximations for average prices
distributions, when the underlying asset prices follow geometric Brownian motions. Yoshida [119] derives
an asymptotic expansion of an average option price around a normal distribution for a general diffusion
model, which is a byproduct of his result in statistics [118] based on the Watanabe theory.

Thereafter, the asymptotic expansion approach have been applied to a broad class of valuation problems
in finance, which includes pricing options with stochastic volatility models, pricing options under Heath-
Jarrow-Morton (HJM) models ([37]) or Libor market models (LMM) (Brace, Gatarek and Musiela [7],
Jamshidian [43]) of interest rates, and pricing so called exotic-type options such as basket and barrier
options in addition to average options.

For instance, please see Kawai [44], Kobayashi, Takahashi and Tokioka [45], Kunitomo and Takahashi
[49], [50], [51], Li [59] Matsuoka, Takahshi and Uchida [66], Muroi [67], Nishiba [71], Osajima [75], Shiraya
and Takahashi [78], [79], [80], Shiraya, Takahashi and Toda [81], Shiraya, Takahashi and Yamada [83],
Shiraya, Takahashi and Yamazaki [82], Takahashi and Matsushima [88], Takahashi and Saito [89], Takahashi
and Takehara [90], [91], [92], [93], [94], Takahashi, Takehara and Toda [90], [91], Takahashi and Tsuzuki[98],
Takahashi and Uchida [99], Takahashi and Yamada [100], [101], [102], [103], [104], Takahashi and Yoshida
[106], [107], Takehara, Takahashi and Toda[92], [93], Violante[110], Xu and Zheng [112], [113], and [86],
[87].

We briefly introduce some of above works in Section 3.6. Moreover, we remark that the asymptotic
expansion approach is employed by Yamanobe [116], [117] in physics for analyses of the impulse-driven
stochastic biological oscillator and global dynamics of a stochastic neuronal oscillator.

We also note that there exist many other types of the expansion/perturbation methods which have
turned out to be so useful for applications in finance. For example, see Bayer and Laurence [2], Ben Arous
and Laurence [3], Benaim, Friz and Lee [4], Col, Gnoatto and Grasselli [9], Davydov and Linetsky [11],
Deuschel, Friz, Jacquier and Violante [12], [13], Forde and Jacquier [18], Forde, Jacquier and Lee [17],
Foschi, Pagliarani, Pascucci [19], Fouque, Papanicolaou and Sircar [20], [21], Fujii [24], Fujii and Takahashi
[25], [26], [27], [29], Gatheral, Hsu, Laurence, Ouyang, and Wang [30], Gnoatto and Grasselli [31], Gulisas-
hvili [32], Hagan, Kumar, Lesniewski and Woodward [33], Henry-Labordere [38], Kato Takahashi and
Yamada [46], [47], Kusuoka and Osajima [57], Lee [58], Lipton [60], Linetsky[61], Osajima [76], Pagliarani
and Pascucci [77], Siopacha and Teichmann [84], Yamamoto, Sato and Takahashi [114], Yamamoto and
Takahashi [115], and references therein.

The organization of the paper is as follows. The next section describes the outline of the asymptotic
expansion approach in a general diffusion setting. Then, Section 3 explains a computational scheme for the
expansion method. Section 4 provides an extension of the general computational scheme in the previous
section, and Section 5 briefly introduces two improvement scheme for the expansion method. Section 6
extends the approach to non-diffusion Wiener functionals by using an instantaneous forward rates model
as an example. Section 7 and Section 8 introduce an asymptotic expansion in jump-diffusion models and a
perturbation scheme in forward backward stochastic differential equations (FBSDEs). Section 9 concludes.

2 Asymptotic Expansion in General Diffusion Setting

Following [87] and [96], this section briefly describes an asymptotic expansion method in a general diffusion
setting.

Let us consider a d-dimensional diffusion process X
(ϵ)
t = (X

(ϵ),1
t , · · · , X(ϵ),d

t )⊤ which is the solution to
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the following stochastic differential equation:

dX
(ϵ),j
t = V j

0 (X
(ϵ)
t , ϵ)dt+ ϵV j(X

(ϵ)
t )dWt (j = 1, · · · , d) (1)

X
(ϵ)
0 = x0 ∈ Rd,

where W = (W 1, · · · ,W r)⊤ is a r-dimensional standard Wiener process, and ϵ ∈ (0, 1] is a known param-
eter. Here, x⊤ denotes the transpose of x. Next, let us define V0 = (V 1

0 , · · · , V d
0 )

⊤ : Rd × (0, 1] 7→ Rd and
V : Rd 7→ Rd ⊗Rr whose j-th row is V j , j = 1, · · · , d. Suppose also that V0 and V satisfy some regularity
conditions. (For example, V0 and V are smooth functions with bounded derivatives of all orders.)

Next, let a function g : Rd 7→ R be smooth and all of its derivatives have polynomial growth. Then, a

smooth Wiener functional g(X
(ϵ)
T ) has its asymptotic expansion:

g(X
(ϵ)
T ) ∼ g0T + ϵg1T + ϵ2g2T + · · ·

in D∞ as ϵ ↓ 0 where g0T , g1T , g2T , · · · ∈ D∞. For any k ∈ N, q ∈ (1,∞) and s > 0, this expansion means
that

1

ϵk
∥g(X(ϵ)

T )− (g0T + ϵg1T + · · ·+ ϵk−1gk−1,T )∥q,s = O(1) (as ϵ ↓ 0),

where ∥G∥q,s represents the sum of Lq -norms of Malliavin derivatives of a Wiener functional G up to
the s-th order. Further, a Banach space Dq,s = Dq,s(R) can be regarded as the totality of random
variables bounded with respect to (q, s)-norm ∥ · ∥q,s, and D∞ = ∩s>0 ∩1<q<∞ Dq,s. The coefficients
gnT ∈ D∞(n = 0, 1, · · · ) in the expansion can be obtained by Taylor’s formula and represented based on
multiple Wiener-Itô integrals. For the details of definitions and proofs above, please consult Watanabe
[111], chapter V of Ikeda and Watanabe [39], Malliavin [64], or Chapter 7 of Malliavin and Thalmaier [65].

Remark 1. As an example of applications in finance, X(ϵ) consists of n stocks, X(ϵ) = (S
(ϵ)
1 , · · · , S(ϵ)

n )⊤

and g(·) is those weighted sum g(x) = w1x1 + · · · + wnxn for x = (x1, · · · , xn)⊤ with constant weights
wi(i = 1, · · · , n). Then, g(x) would represent the spread, the average or the basket price of the stock prices.

As another example, we can set X(ϵ) is a vector of N forward Libor rates, X(ϵ) = (L
(ϵ)
1 , · · · , L(ϵ)

N )⊤,
and

g(X
(ϵ)
T ) = SR

(ϵ)
T =

1−
∏N−1

j=0
1

1+τL
(ϵ)
jT

τ
∑N−1

i=0

∏i
j=0

1

1+τL
(ϵ)
jT

,

that is a swap rate with inception date T and maturity date TN = T + Nτ . Here, LjT stands for the
forward Libor rate at T fixing at T + jτ with tenor τ .

Let Akt = 1
k!

∂kX
(ϵ)
t

∂ϵk
|ϵ=0 and Aj

kt, j = 1, · · · , d denote the j-th elements of Akt. In particular, A1t is
represented by

A1t =

∫ t

0

YtY
−1
u

(
∂ϵV0(X

(0)
u , 0)du+ V (X(0)

u )dWu

)
, (2)

where Y denotes the solution to the ordinary differential equation:

dYt = ∂V0(X
(0)
t , 0)Ytdt; Y0 = Id.

Here, ∂V0 denotes the d× d matrix whose (j, k)-element is ∂kV
j
0 =

∂V j
0 (x,ϵ)
∂xk

, V j
0 is the j-th element of V0,

and Id denotes the d× d identity matrix.

3



For k ≥ 2, Aj
kt, j = 1, · · · , d is recursively determined by the following equation:

Aj
kt =

1

k!

∫ t

0

∂kϵ V
j
0 (X

(0), 0)du

+
k∑

l=1

(l)∑
l⃗β ,d⃗β

1

(k − l)!

1

β!

∫ t

0

 β∏
j=1

A
dj

lju

 ∂β
d⃗β
∂k−l
ϵ V j

0 (X
(0)
u , 0)du

+

(k−1)∑
l⃗β ,d⃗β

1

β!

∫ t

0

 β∏
j=1

A
dj

lju

 ∂β
d⃗β
V j(X(0)

u )dWu, (3)

where ∂lϵ =
∂l

∂ϵl
, ∂β

d⃗β
= ∂β

∂xd1
···∂xdβ

,

(l)∑
l⃗β ,d⃗β

:=
l∑

β=1

∑
l⃗β∈Ll,β

∑
d⃗β∈{1,··· ,d}β

(4)

for l ≥ 1,

Ll,β :=

l⃗β = (l1, · · · , lβ);
β∑

j=1

lj = l; (l, lj , β ∈ N)

 , (5)

and for l = 0,

(0)∑
l⃗β ,d⃗β

=
∑
β=0

∑
l⃗0=(∅)

∑
d⃗0=(∅)

.

Then, g0T and g1T can be written as

g0T = g(X
(0)
T ),

g1T =
d∑

j=1

∂jg(X
(0)
T )Aj

1T ,

where ∂jg(x) =
∂

∂xj
g(x), j = 1, · · · , d.

For n ≥ 2, gnT is expressed as follows:

gnT =

(n)∑
l⃗β ,d⃗β

1

β!
∂β
d⃗β
g(X

(0)
T )Ad1

l1T
· · ·Adβ

lβT
. (6)

Here, we note that each Ai
lt(i = 1, · · · , d, l = 1, 2, · · · , k, 0 ≤ t ≤ T ) has all finite moments due to a

grading structure. We describe the definition of the grading structure by following pp.45-47 in Bichteler,
Gravereaux and Jacod [5]: Consider the stochastic differential equation of the form:

dSt = µ(St, t)dt+ σ(St, t)dWt; S0 = s0 ∈ Rd, (7)

where µ : Rd ×R+ → Rd and σ : Rd ×R+ → Rd ⊗Rr.

Definition 1. A grading of Rd is a decomposition Rd = Rd1 × · · · × Rdq with d = d1 + · · · + dq. The
coordinates of a point in Rd are always arranged in an increasing order along the subspace Rdi , and we
set M0 = 0 and Ml = d1+ · · ·+ dl for 1 ≤ l ≤ q. We say that the coefficients µ and σ are graded according
to the grading Rd = Rd1 × · · · × Rdq if µi(x, t) and σi

j(x, t), j = 1, · · · , r depend upon only through the

coordinates (xk)1≤k≤Mp when Mp−1 ≤ i ≤Mp.

Theorem 1. We assume that the coefficients µ and σ in (7) are graded according to Rd = Rd1 ×· · ·×Rdq .
Moreover for F (x, t) = µ(x, t) or σj(x, t), j = 1, · · · , r, we assume that F is differentiable in x on Rd and
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1. |F i(0, t)| ≤ Zt for i = 1, · · · , d

2. | ∂
∂xj F

i(x, t)| ≤ Ẑt(1 + |x|θ) for all i, j

3. | ∂
∂xj F

i(x, t)| ≤ ζ if Mp−1 ≤ i, j ≤Mp for some p ≤ q,

where ζ, θ ≥ 0 are constants, and Z, Ẑ are predictable processes such that ∥Z∥p and ∥Ẑ∥p are finite for all

p ≥ 1 where ∥Z∥p =
{∫ T

0
E[|Zt|p]dt

}1/p

. Then (7) have a unique solution S, and for every p ≥ 1 there are

constants cp and γp depending only upon (ζ, θ, {||Ẑ||p′}p′≥1), such that

|| sup
0≤t≤T

St||Lp ≤ cp(s0 + ||Z||γp).

For the detail of the definition and theorem above, see pp.45-47 in Bichteler, Gravereaux and Jacod [5].
Applying Theorem 1 to the system of stochastic differential equations consisting of Ai

lt(i = 1, · · · , d, l =
1, · · · , k, 0 ≤ t ≤ T ) as well as any products of them, we obtain the following lemma.

Lemma 1. Each coefficient in the expansion, Ai
lt(i = 1, · · · , d, l = 1, · · · , k, 0 ≤ t ≤ T ) has all finite

moments.

(Proof) We consider the system of stochastic differential equations (SDEs) forA1
1, · · · , Ad

1, A
1
1A

1
1, · · · , Ad

1A
d
1,

A1
2, · · · , Ad

2,· · · . Then, the coefficients of the SDEs are represented by the derivatives at ϵ = 0 of Ṽ0(X
(ϵ)
u , ϵ)

and Ṽ (X
(ϵ)
u ), which are bounded in [0, T ]. Moreover, it is easily shown that the coefficients of the equation

are graded and satisfy the conditions in Theorem 1. Hence each coefficient in the expansion, Ai
kt has all

finite moments.2

Next, let normalize g(X
(ϵ)
T ) to

G(ϵ) =
g(X

(ϵ)
T )− g0T
ϵ

for ϵ ∈ (0, 1]. Then, we have
G(ϵ) ∼ g1T + ϵg2T + · · ·

in D∞.
Next, for h ∈ H, where H denotes the Cameron-Martin subspace of the r-dimensional Wiener space,

the H-derivative of G(ϵ) is expressed as

DhG
(ϵ) =

1

ϵ

d∑
i=1

∂ig(X
(ϵ)
T )DhX

(ϵ),i
T =

d∑
i=1

∂ig(X
(ϵ)
T )

∫ T

0

[Y
(ϵ)
T (Y

(ϵ)
t )−1V (X

(ϵ)
t )ḣt]i dt,

where Y (ϵ) is the Rd ⊗ Rd-valued stochastic process which is the solution to the stochastic differential
equation:

dY
(ϵ)
t = ∂V0(X

(ϵ)
t , ϵ)Y

(ϵ)
t dt+ ϵ

m∑
i=1

∂V i(X
(ϵ)
t )Y

(ϵ)
t dwit; Y

(ϵ)
0 = Id,

In fact, Yt = Y
(0)
t . Here, ∂V i(i = 0, 1, · · · ,m) denotes the d × d matrix whose (j, k)-element is ∂kV

i
j .

(∂k = ∂
∂xk

.)

Moreover, with a notation V̂
(ϵ)
t that is defined by

V̂
(ϵ)
t =

(
∂g(X

(ϵ)
T )
)⊤ [

Y
(ϵ)
T (Y

(ϵ)
t )−1V (X

(ϵ)
t )
]
,

where
(
∂g(X

(ϵ)
T )
)⊤

= (∂1g(X
(ϵ)
T ), · · · , ∂dg(X(ϵ)

T )), the Malliavin (co)variance of G(ϵ) is given by

σG(ϵ) =

∫ T

0

V̂
(ϵ)
t (V̂

(ϵ)
t )⊤dt. (8)
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Moreover, let

V̂t := V̂
(0)
t =

(
∂g(X

(0)
T )
)⊤ [

YTY
−1
t V (X

(0)
t )
]

and make the following assumption:

(Assumption 1) ΣT =

∫ T

0

V̂tV̂
⊤
t dt > 0.

Note that g1T follows a normal distribution with variance ΣT , and the density function of g1T denoted by
fg1T (x) is given as

fg1T (x) =
1√

2πΣT

exp

(
− (x− C)2

2ΣT

)
where

C :=
(
∂g(X

(0)
T )
)⊤ ∫ T

0

YTY
−1
t ∂ϵV0(X

(0)
t , 0)dt. (9)

Since ΣT is the variance of the random variable g1T , which follows a normal distribution, (Assumption 1)
means the condition that the distribution of g1T does not degenerate. In application, as it is easy to check
this condition in most cases, it plays an important role for practical purposes.

Next, let us briefly introduce a truncated version of the Watanabe theory ([111]) based on Yoshida

[118], [119]. Under (Assumption 1), σG(ϵ) is uniformly non-degenerate for {|η(ϵ)c | ≤ 1}; that is, it can be
shown that there exists a positive real number c0 > 0 such that for any c > c0 and p > 1,

sup
ϵ∈(0,1]

E[1{|η(ϵ)
c |≤1}(|σG(ϵ) |)−p] <∞, (10)

where η
(ϵ)
c = c

∫ T

0
|V̂ (ϵ)

t − V̂t|dt.
Let S be the real Schwartz space of rapidly decreasing C∞-functions on R and S ′ be its dual space.

Then, for Φ : R 7→ R, Φ ∈ S ′
, a composite function ψ(η

(ϵ)
c )Φ ◦ G(ϵ) = ψ(η

(ϵ)
c )Φ(G(ϵ)) is well-defined as

an element of D̃−∞ = ∪s<0 ∩1<p<∞ Dp,s. Here, ψ(x), x ∈ R denotes a smooth function 0 ≤ ψ(x) ≤ 1,
defined as ψ(x) = 1 for |x| ≤ 1/2 and ψ(x) = 0 for |x| ≥ 1. Here, a Banach space Dp,s, s < 0 is the dual
space of Dq,−s(R)(q = p/(p− 1)).

Moreover, the coupling with the function 1 is well-defined, which is called as generalized expectation

and is written as E[ψ(η
(ϵ)
c )Φ ◦G(ϵ)]. Further, ψ(η

(ϵ)
c )Φ ◦G(ϵ) can be expanded in D̃−∞.

In addition, it can be shown that {η(ϵ)c (w); ϵ ∈ (0, 1]} ⊂ D∞, η
(ϵ)
c (w) is O(1) in D∞ as ϵ ↓ 0, and that

for any a0 > 0 there exist positive constants ai, i = 1, 2, 3 such that P ({|η(ϵ)c | > a0}) ≤ a1 exp(−a2ϵ−a3).
Hence, for any k = 1, 2, · · · , we have

lim
ϵ↓0

P (|η(ϵ)c | > 1
2 )

ϵk
<∞.

This means that the probability of the events truncated by ψ(η
(ϵ)
c ) is smaller than any polynomial orders

of ϵ. Then, in the expansion of ψ(η
(ϵ)
c )Φ ◦G(ϵ), the coefficients expressed as generalized Wiener functionals

belonging to D̃−∞ can be written by applying Taylor’s formula to Φ(g0T + ϵg1T + ϵ2g2T + · · · ). Therefore,
the asymptotic expansion of the expectation E[Φ(G(ϵ))] can be obtained relatively easily. For the details of
Watanabe theory and its truncated version above, please consult Watanabe [111] and Yoshida [118], [119].
For its application to valuation problems in finance, please also see [50].

In particular, if we take the delta function at y ∈ R, δy as Φ, that is Φ(x) = δy(x), we obtain
an asymptotic expansion of the density function of G(ϵ). Moreover, because functions such as Φ(x) =
max{x, 0} that is measurable but not smooth, frequently appear in finance, the framework mentioned
above is necessary for the asymptotic expansion.
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For instance, when we take max{x, 0}, min{x, 0} or δy(x) as Φ(x) for a useful application in finance,
the expectation of Φ(G(ϵ)) is expanded as follows: for N = 0, 1, 2, · · · ,

E[Φ(G(ϵ))] =
N∑

n=0

ϵn
(n)∑
k⃗m

1

m!
E

Φ(m)(g1T )

 m∏
j=1

g(kj+1)T

+ o(ϵN )

=
N∑

n=0

ϵn
(n)∑
k⃗m

1

m!
E
[
Φ(m)(g1T )X

k⃗m

]
+ o(ϵN )

=
N∑

n=0

ϵn
(n)∑
k⃗m

1

m!

∫ ∞

−∞
Φ(m)(x)E[X k⃗m |g1T = x]fg1T (x)dx+ o(ϵN )

=

N∑
n=0

ϵn
(n)∑
k⃗m

1

m!

∫ ∞

−∞
Φ(x)(−1)m

dm

dxm

{
E[X k⃗m |g1T = x]fg1T (x)

}
dx+ o(ϵN )

(11)

where Φ(m)(g1T ) =
dmΦ(x)
dxm

∣∣∣
x=g1T

,
∑(n)

k⃗m
=
∑n

m=1

∑
k⃗m∈Ln,m

, and

X k⃗m :=

m∏
j=1

g(kj+1)T . (12)

In order to compute the asymptotic expansion (11), we need to evaluate the conditional expectations of
the form:

E
[
X̃ k⃗m

∣∣∣ g1T = x
]
,

where X̃ k⃗m is represented by a product of multiple Wiener-Itô integrals.
In the preceding works on application of the asymptotic expansion, the conditional expectations in (11)

were directly computed with some formulas including multi-dimensional ones given for example, in [85] and
[86]. Recently, while the formulas up to the third order are given in the works, [95] has developed a high-
order computation scheme for the conditional expectations by using the fact that each of these {Aj

k,t}j,k,
{gnT }n and also {X k⃗m}k⃗m

can be decomposed into a finite sum of iterated multiple Wiener-Itô integrals by
applications of the Itô’s formula with certain properties of iterated multiple Wiener-Itô integrals. (Please
see Section 4 of [95] for the detail.)

On the other hand, as shown in the next section, we can develop an alternative method which does not
evaluate the conditional expectations directly.

3 Computational Scheme

This section follows [96] to introduce a computational scheme for the asymptotic expansion, which is an
alternative to the direct calculation method for the conditional expectations given in [95].

3.1 Preparation

To compute the conditional expectations on the right hand side of (11), we use the following lemma
which can be derived from a property of Hermite polynomials and leads us to compute the unconditional
expectations instead of the conditional ones.

Lemma 2. Let (Ω, F, P ) be a probability space. Suppose that X ∈ L2(Ω, P ) and Z is a random variable
with Gaussian distribution with mean 0 and variance Σ. Then, the conditional expectation E[X|Z = x]
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has the following expansion in L2(R, µ) where µ is the Gaussian measure on R with mean 0 and variance
Σ:

E[X|Z = x] =

∞∑
n=0

an
Σn

Hn(x; Σ) (13)

where Hn(x; Σ) is the Hermite polynomial of degree n which is defined as

Hn(x; Σ) = (−Σ)nex
2/2Σ dn

dxn
e−x2/2Σ

and the coefficients an are given by

an =
1

n!

1

in
∂n

∂ξn

∣∣∣∣
ξ=0

{
e

ξ2

2 ΣE[eiξZX]

}
, (i =

√
−1). (14)

(Proof) Since the system of Hermite polynomials {Hn(x; Σ)} is an orthogonal basis of L2(R, µ), and
E[X|Z = x] ∈ L2(R, µ), we have the following unique expansion of E[X|Z = x] in L2(R, µ):

E[X|Z = x] =

∞∑
n=0

an
Σn

Hn(x; Σ).

Since we have another Taylor expansion

eiξx = e−
ξ2

2 Σ
∞∑

n=0

Hn(x; Σ)

n!
(iξ)n,

then,

e
ξ2

2 ΣE[eiξZX] = e
ξ2

2 Σ

∫
R

eiξxE[X|Z = x]µ(dx)

=

∫
R

∞∑
m=0

Hm(x; Σ)

m!
(iξ)m

∞∑
n=0

an
Hn(x; Σ)µ(dx)

Σn

=
∞∑

n=0

an(iξ)
n.

Comparing to the coefficients of the Taylor series of e
ξ2

2 ΣE[eiξZX] around 0 with respect to ξ, we see that
an can be written as (14).2

Next, we write V̂t = (∂g(X
(0)
T ))⊤YTY

−1
t V (X

(0)
t ) as V̂ (X

(0)
t ). Then, we define ĝ1 = {ĝ1t; t ∈ R+} and

Z⟨ξ⟩ = {Z⟨ξ⟩
t ; t ∈ R+} as the stochastic processes

ĝ1t =

∫ t

0

V̂ (X(0)
u )dWu

and

Z
⟨ξ⟩
t = exp

(
iξĝ1t +

ξ2

2
Σt

)
,

respectively, where Σt :=
∫ t

0
V̂ (X

(0)
u )V̂ (X

(0)
u )⊤du.

Then, from Lemma 2, the conditional expectations appearing on the right hand side of the equation
(11) is expressed as

E[X k⃗m |g1T = x] = E[X k⃗m |ĝ1T = x− C]

=
∞∑
l=0

ak⃗m

l

Σl
T

Hl(x− C; ΣT ) (15)
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where

ak⃗m

l =
1

l!

1

il
∂l

∂ξl

∣∣∣∣
ξ=0

{
E[X k⃗mZ

⟨ξ⟩
T ]
}
. (16)

Here it is noted that with this expression we now need to compute unconditional expectationsE
[
X k⃗δZ

⟨ξ⟩
T

]
instead of the conditional expectations.

3.2 Asymptotic Expansion of Density Function

In this subsection, we explain a new computational method through deriving a general formula for the
expansion (11) with an arbitrary specification of its order N . In particular, we show that the coefficients
in the expansion are obtained through a system of ordinary differential equations that is solved easily.

First, we define η
d⃗β

l⃗β
(t; ξ) for l⃗β ∈ Ln,β and d⃗β ∈ {1, · · · , d}β (n ≥ β ≥ 1) as

η
d⃗β

l⃗β
(t; ξ) = E

 β∏
j=1

A
dj

ljt

Z
⟨ξ⟩
t

 , (17)

and for n = 0 as

η
(∅)
(∅)(t; ξ) = E

[
Z

⟨ξ⟩
t

]
. (18)

Then, by using (6) we write the unconditional expectations E[X k⃗mZ
⟨ξ⟩
T ] in (16) in terms of η as follows:

E[X k⃗mZ
⟨ξ⟩
T ] = E

 m∏
j=1

g(kj+1)T

Z
⟨ξ⟩
T


= E


 m∏

j=1


(kj+1)∑
l⃗jβj

,d⃗j
βj

1

βj !
∂
βj

d⃗j
βj

g(X
(0)
T )A

dj
1

lj1T
· · ·A

dj
βj

ljβjT


Z

⟨ξ⟩
T


=

(k1+1)∑
l⃗1β1

,d⃗1
β1

· · ·
(km+1)∑
l⃗mβm

,d⃗δ
βm

 m∏
j=1

1

βj !
∂
βj

d⃗j
βj

g(X
(0)
T )

 η
d⃗1
β1

⊗···⊗d⃗m
βm

l⃗1β1
⊗···⊗l⃗δβδ

(T ; ξ)

(19)

where

d⃗iβi
⊗ d⃗jβj

:= (di1, · · · , diβi
, dj1, · · · , d

j
βj
),

l⃗iβi
⊗ l⃗jβj

:= (li1, · · · , liβi
, lj1, · · · , l

j
βj
).

So, we have to calculate η
d⃗β

l⃗β
(T ; ξ) to evaluate the asymptotic expansion (11).

In the following, we derive a system of ODEs satisfied by these {ηd⃗β

l⃗β
}. Before showing a general result,

we first derive the ODEs for a few leading-low-order terms explicitly to give a better intuition of a key idea

of our method. Particularly, let us consider the evaluation of ηj(2)(T ; ξ) = E[Aj
2TZ

⟨ξ⟩
T ] which appears in the

ϵ-order. Here, for simplicity, we assume that V0 does not depend on ϵ, and write V0(x, ϵ) as V0(x). In this
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case, we first note that the SDEs of Aj
1t and A

j
2t (j = 1, · · · , d) are given as follows:

dAj
1t =

d∑
j′=1

Aj
′

1t∂j′V
j
0 (X

(0)
t )dt+ V j(X

(0)
t )dWt (20)

dAj
2t =

 d∑
j′=1

Aj
′

2t∂j′V
j
0 (X

(0)
t ) +

1

2

d∑
j′ ,k′=1

Aj
′

1tA
k
′

1t∂j′∂k′V j
0 (X

(0)
t )

 dt
+

d∑
j′=1

Aj
′

1t∂j′V
j(X

(0)
t )dWt. (21)

Also, the SDE of Z
⟨ξ⟩
t is expressed as:

dZ
⟨ξ⟩
t = (iξ)V̂ (X(0))Z

⟨ξ⟩
t dWt. (22)

Then, applying Itô’s formula to Aj
2tZ

⟨ξ⟩
t , we have

d(Aj
2tZ

⟨ξ⟩
t ) = Aj

2tdZ
⟨ξ⟩
t + Z

⟨ξ⟩
t dAj

2t + d⟨Aj
2, Z

⟨ξ⟩⟩t

=

{
(iξ)

d∑
j′=1

Aj′

1tZ
⟨ξ⟩
t V̂ (X

(0)
t )∂j′V

j(X
(0)
t )′ +

d∑
j′=1

Aj′

2tZ
⟨ξ⟩
t ∂j′V

j
0 (X

(0)
t )

+
1

2

d∑
j′,k′=1

Aj′

1tA
k′

1tZ
⟨ξ⟩
t ∂j′∂k′V j

0 (X
(0)
t )

}
dt

+

(iξ)Aj
2tZ

⟨ξ⟩
t V̂ (X

(0)
t ) +

d∑
j′=1

Aj′

1tZ
⟨ξ⟩
t ∂j′V

j(X
(0)
t )

 dWt.

Since the last term is a martingale, taking expectation on both sides, we have the following ordinary
differential equation for ηj(2):

d

dt
ηj(2)(t; ξ) = (iξ)

d∑
j′=1

ηj
′

(1)(t; ξ)V̂ (X
(0)
t )∂j′V

j(X
(0)
t )⊤

+
d∑

j′=1

ηj
′

(2)(t; ξ)∂j′V
j
0 (X

(0)
t ) +

1

2

d∑
j′,k′=1

ηj
′,k′

(1,1)(t; ξ)∂j′∂k′V j
0 (X

(0)
t ).

Here, ηj(1)(j = 1, · · · , d) appearing in the right hand side of the above ODE are evaluated in the similar
manner:

d(Aj
1tZ

⟨ξ⟩
t ) = Aj

1tdZ
⟨ξ⟩
t + Z

⟨ξ⟩
t dAj

1t + d⟨Aj
1, Z

⟨ξ⟩⟩t

=

(iξ)Z
⟨ξ⟩
t V̂ (X

(0)
t )V j(X

(0)
t )⊤ +

d∑
j′=1

Aj′

1tZ
⟨ξ⟩
t ∂j′V

j
0 (X

(0)
t )

 dt

+
{
(iξ)Aj

1tZ
⟨ξ⟩
t V̂ (X

(0)
t ) + Z

⟨ξ⟩
t V j(X

(0)
t )
}
dWt,

hence, we have

d

dt
ηj(1)(t; ξ) = (iξ)V̂ (X

(0)
t )V j(X

(0)
t )⊤ +

d∑
j′=1

ηj
′

(1)(t; ξ)∂j′V
j
0 (X

(0)
t ).

ηj,k(1,1) and other higher-order terms can be evaluated in the same way. The key observation is that each

ODE does not involve any higher-order terms, and only lower- or the same order- terms appear in the
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right hand side of the ODE. So, one can easily solve (analytically or numerically) the system of ODEs and
evaluate the expectations.

The following proposition provides a way to calculate general η
d⃗β

l⃗β
(T ; ξ) as a solution to the system of

the ordinary differential equations:

Proposition 1. For η
d⃗β

l⃗β
(t; ξ) defined in (17), the following system of ordinary differential equations is

satisfied:

d

dt

{
η
d⃗β

l⃗β
(t; ξ)

}
=

β∑
k=1

1

lk!

{
η
d⃗β/k

l⃗β/k

(t; ξ)

}{
∂lkϵ V

dk
0 (X

(0)
t , 0)

}

+

β∑
k=1

lk∑
l=1

(l)∑
m⃗γ ,

⃗̃
dγ

1

(lk − l)!

1

γ!

{
η
(d⃗β/k)⊗

⃗̃
dγ

(⃗lβ/k)⊗m⃗γ
(t; ξ)

}{
∂γ⃗̃
dγ

∂lk−l
ϵ V dk

0 (X
(0)
t , 0)

}

+

β∑
k,m=1

k<m

(lk−1)∑
m⃗γ ,

⃗̃
dγ

(lm−1)∑
m⃗δ,

⃗̂
dδ

1

γ!δ!

{
η
(d⃗β/k,m)⊗ ⃗̃

dγ⊗ ⃗̂
dδ

(⃗lβ/k,m)⊗m⃗γ⊗m⃗δ
(t; ξ)

}{
∂γ⃗̃
dγ

V dk(X
(0)
t )

}{
∂δ⃗̂
dδ

V dm(X
(0)
t )
}

+ (iξ)

β∑
k=1

(lk−1)∑
m⃗γ ,

⃗̃
dγ

1

γ!

{
η
(d⃗β/k)⊗

⃗̃
dγ

(⃗lβ/k)⊗m⃗γ
(t; ξ)

}{
∂γ⃗̃
dγ

V dk(X
(0)
t )

}
V̂ (X

(0)
t ) (23)

where
∑(l)

m⃗γ ,
⃗̃
dγ

is defined in (4), and

l⃗β/k := (l1, · · · , lk−1, lk+1, · · · , lβ)

l⃗β/k,n := (l1, · · · , lk−1, lk+1, · · · , ln−1, ln+1, · · · , lβ), 1 ≤ k < n ≤ β

l⃗β ⊗ m⃗γ := (l1, · · · , lβ ,m1, · · · ,mγ)

for l⃗β = (l1, · · · , lβ) and m⃗γ = (m1, · · · ,mγ).
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(Proof) We firstly apply Itô’s formula to
(∏β

j=1A
dj

ljt

)
by using (3) to obtain the following:

d

 β∏
j=1

A
dj

ljt

 =

β∑
k=1

 β∏
j=1

j ̸=k

A
dj

ljt

 dAdk

lkt
+

β∑
k,m=1

k<m

 β∏
j=1

j ̸=k,m

A
dj

ljt

 d⟨Adk

lk
, Adm

lm
⟩t

=

β∑
k=1

 β∏
j=1

j ̸=k

A
dj

ljt

 1

lk!
∂lkϵ V

dk
0 (X

(0)
t , 0)dt

+

β∑
k=1

 β∏
j=1

j ̸=k

A
dj

ljt

 lk∑
l=1

(l)∑
m⃗γ ,

⃗̃
dγ

1

(lk − l)!

1

γ!

 γ∏
j′=1

A
d̃j′
mj′ t

 ∂γ
d̃γ
∂lk−l
ϵ V dk

0 (X
(0)
t , 0)dt

+

β∑
k=1

 β∏
j=1

j ̸=k

A
dj

ljt

 (lk−1)∑
m⃗γ ,

⃗̃
dγ

1

γ!

 γ∏
j′=1

A
d̃j′
mj′ t

 ∂γ
d̃γ
V dk(X

(0)
t )dWt

+

β∑
k,m=1

k<m

 β∏
j=1

j ̸=k,m

A
dj

ljt

 (lk−1)∑
m⃗γ ,

⃗̃
dγ

(lm−1)∑
m⃗δ,

⃗̂
dδ

1

γ!δ!

×

 γ∏
j′=1

A
d̃j′
mj′ t

 ∂γ
d̃γ
V dk(X

(0)
t )

 δ∏
j′=1

A
d̂j′
mj′ t

 ∂δ
d̂δ
V dm(X

(0)
t )dt.

(24)

Note also that dZ
⟨ξ⟩
t = (iξ)V̂ (X

(0)
t )Z

⟨ξ⟩
t dWt. Then, applying Itô’s formula again to

(∏β
j=1A

dj

ljt
Z

⟨ξ⟩
t

)
and

take expectations on both sides to obtain the result. 2

Remark 2. Due to η
(∅)
(∅)(t; ξ) = E[Z

⟨ξ⟩
t ] = 1, and the hierarchical structure of the ODEs with respect to

n =
∑β

j=1 lj, one can easily solve these ODEs successively from lower-order terms to higher-order terms

with initial conditions η
d⃗β

l⃗β
(0; ξ) = 0 for (⃗lβ , d⃗β) ̸= (∅, ∅).

Remark 3. Further, due to the structure of the system of the differential equations, it is easily shown

by induction that each η
d⃗β

l⃗β
(t; ξ) is expressed as a polynomial of degree n =

∑β
j=1 lj with respect to (iξ).

Then, we can also show that E[X k⃗mZ
⟨ξ⟩
T ] is a polynomial of degree (n +m) with respect to (iξ), and thus

ak⃗m

l = 0(l > n+m) for k⃗m ∈ Ln,m. This ensures a convergence of the infinite sum in (15).

Then, from Lemma 2 and (11), we have the following expression of E[Φ(G(ϵ))]:

E[Φ(G(ϵ))] =

N∑
n=0

ϵn
(n)∑
k⃗m

1

m!

∫
R

Φ(x)(−1)m
dm

dxm

{
n+m∑
l=0

ak⃗m

l

Σl
T

Hl(x− C; ΣT )fg1T (x)

}
dx+ o(ϵN )

=

N∑
n=0

ϵn
(n)∑
k⃗m

1

m!

∫
R

Φ(x)

{
n+m∑
l=0

ak⃗m

l

Σl+m
T

Hl+m(x− C; ΣT )fg1T (x)

}
dx+ o(ϵN )

Here we have used the well-known property of the Hermite polynomial:

dm

dxm
{Hl(x− C; ΣT )fg1T (x)} =

(
−1

ΣT

)m

Hl+m(x− C; ΣT )fg1T (x).
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In particular, let Φ be the delta function at x ∈ R, δx, we obtain the asymptotic expansion of the
density of G(ϵ):

fG(ϵ)(x) = E[δx(G
(ϵ))]

=
N∑

n=0

ϵn
(n)∑
k⃗m

1

m!

n+m∑
l=0

ak⃗m

l

Σl+m
T

Hl+m(x− C; ΣT )fg1T (x) + o(ϵN ). (25)

We summarize the discussion above as the following theorem:

Theorem 2. Let X(ϵ) be the solution to the stochastic differential equation (1). Suppose a function
g : Rd 7→ R is smooth and all of its derivatives have polynomial growth. Then, the asymptotic expansion

of the density function of G(ϵ) =
g(X

(ϵ)
T )−g(X

(0)
T )

ϵ up to ϵN -order is given by

fG(ϵ)(x) = fg1T (x)

+
N∑

n=1

ϵn

(
3n∑

m=0

CnmHm(x− C; ΣT )

)
fg1T (x) + o(ϵN ),

(26)

where

fg1T (x) =
1√

2πΣT

exp

(
− (x− C)2

2ΣT

)
(27)

with

C =
(
∂g(X

(0)
T )
)⊤ ∫ T

0

YTY
−1
t ∂ϵV0(X

(0)
t , 0)dt,

ΣT =

∫ T

0

V̂ (X
(0)
t )V̂ (X

(0)
t )⊤dt > 0,

V̂ (X
(0)
t ) = (∂g(X

(0)
T ))⊤YTY

−1
t V (X

(0)
t ).

Hn(x; Σ) is the Hermite polynomial of degree n with parameter Σ, which is defined as

Hn(x; Σ) = (−Σ)nex
2/2Σ dn

dxn
e−x2/2Σ, (28)

and

Cnm =
1

Σm
T

(m)∑
k⃗δ

(k1+1)∑
l⃗1β1

,d⃗1
β1

· · ·
(kδ+1)∑
l⃗δβδ

,d⃗δ
βδ

1

δ!(m− δ)!

×

 δ∏
j=1

1

βj !
∂
βj

d⃗j
βj

g(X
(0)
T )

 1

im−δ

∂m−δ

∂ξm−δ

∣∣∣∣
ξ=0

{
η
d⃗1
β1

⊗···⊗d⃗δ
βδ

l⃗1β1
⊗···⊗l⃗δβδ

(T ; ξ)

}
,
(
i =

√
−1
)
. (29)
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η
d⃗β

l⃗β
(T ; ξ) are obtained as a solution to the following system of ODEs:

d

dt

{
η
d⃗β

l⃗β
(t; ξ)

}
=

β∑
k=1

1

lk!
η
d⃗β/k

l⃗β/k

(t; ξ)∂lkϵ V
dk
0 (X

(0)
t , 0)

+

β∑
k=1

lk∑
l=1

(l)∑
m⃗γ ,

⃗̃
dγ

1

(lk − l)!

1

γ!
η
(d⃗β/k)⊗

⃗̃
dγ

(⃗lβ/k)⊗m⃗γ
(t; ξ)∂γ⃗̃

dγ

∂lk−l
ϵ V dk

0 (X̃
(0)
t , 0)

+

β∑
k,m=1

k<m

(lk−1)∑
m⃗γ ,

⃗̃
dγ

(lm−1)∑
m⃗δ,

⃗̂
dδ

1

γ!δ!
η
(d⃗β/k,m)⊗ ⃗̃

dγ⊗ ⃗̂
dδ

(⃗lβ/k,m)⊗m⃗γ⊗m⃗δ
(t; ξ)

×∂γ⃗̃
dγ

V dk(X
(0)
t )∂δ⃗̂

dδ

V dm(X
(0)
t )

+ (iξ)

β∑
k=1

(lk−1)∑
m⃗γ ,

⃗̃
dγ

1

γ!
η
(d⃗β/k)⊗

⃗̃
dγ

(⃗lβ/k)⊗m⃗γ
(t; ξ)∂γ⃗̃

dγ

V dk(X
(0)
t )V̂ (X

(0)
t , t)

η
d⃗β

l⃗β
(0; ξ) = 0 for (⃗lβ , d⃗β) ̸= (∅, ∅), η(∅)(∅)(t; ξ) = 1 for (⃗lβ , d⃗β) = (∅, ∅). (30)

Here, we use the following notations:

l⃗β/k := (l1, · · · , lk−1, lk+1, · · · , lβ)

l⃗β/k,n := (l1, · · · , lk−1, lk+1, · · · , ln−1, ln+1, · · · , lβ), 1 ≤ k < n ≤ β

l⃗β ⊗ m⃗γ := (l1, · · · , lβ ,m1, · · · ,mγ)

for l⃗β = (l1, · · · , lβ) and m⃗γ = (m1, · · · ,mγ).

Remark 4. Particularly, in order to calculate the expansion above up to the ϵ2-order, we need the Hermite
polynomials Hn(x; Σ) up to n = 6, which are given as follows:

H0(x; Σ) = 1,

H1(x; Σ) = x,

H2(x; Σ) = x2 − Σ,

H3(x; Σ) = x3 − 3Σx,

H4(x; Σ) = x4 − 6Σx2 + 3Σ2,

H5(x; Σ) = x5 − 10Σx3 + 15Σ2x,

H6(x; Σ) = x6 − 15Σx4 + 45Σ2x2 − 15Σ3.

3.3 Remarks on the Asymptotic Expansion for Multi-dimensional Density
Functions

We can also apply the conditional expectation formulas for the multi-dimensional case in Lemma 1.1’ of
[85] and Lemma 2.1 of [86] to derive an asymptotic expansion up to the third order of the multi-dimensional
density functions. This is particularly useful for pricing exotic-type options such as barrier options with
discrete monitoring (e.g. [83]), and pricing Bermudan-type or approximate American-type derivatives (e.g.
Nishiba [71] ).

Moreover, we obtain the following result as an extension of Lemma 2, which easily leads to an asymptotic
expansion of a multi-dimensional density function in the similar manner as in the one dimensional case in
Theorem 2.

Lemma 3. Let (Ω,F , P ) be a probability space. Suppose that X ∈ L2(Ω, P ) and Z⃗ is a d-dimensional ran-
dom variable with Gaussian distribution with mean 0⃗(d-dimensional zero vector) and variance-covariance
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matrix Σ. Then, the conditional expectation E[X|Z⃗ = x⃗] for x⃗ ∈ Rd has the following expansion in
L2(Rd, µ) where µ is the Gaussian measure on Rd with mean 0⃗ and variance-covariance matrix Σ:

E[X|Z⃗ = x⃗] =
∞∑

|n⃗|=0

an⃗!Hn⃗(x⃗; Σ), (31)

where n⃗ = (n1, n2, · · · , nd), |n⃗| = n1 + n2 + · · ·+ nd, n⃗! = n1!n2! · · ·nd! and

an⃗ =
1

n⃗

1

i|n⃗|
∂n⃗

∂ξ⃗

∣∣∣∣
ξ⃗=0⃗

{
e

1
2 (ξ⃗)

⊤Σξ⃗E
[
ei(ξ⃗)

⊤Z⃗X
]}

,
(
i =

√
−1
)
. (32)

Here, (ξ⃗)⊤ denotes the transpose of ξ⃗. Hn⃗(x⃗; Σ) stands for the d-dimensional multiple Hermite polynomial
of degree |n⃗| with n⃗ = (n1, n2, · · · , nd):

Hn⃗(x⃗; Σ) =
1

n[x⃗ : Σ]

(
− ∂

∂x1

)(
− ∂

∂x2

)
· · ·
(
− ∂

∂xd

)
n[x⃗ : Σ]; x⃗ = (x1, x2, · · · , xd) (33)

where

n[x⃗ : Σ] =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
x⃗⊤Σ−1x⃗

}
. (34)

(Proof) Basically, we can make a similar discussion as in the proof of Lemma 2. Indeed we first note that
the system of the following Hermite polynomials is a complete biorthogonal system in L2(Rd, µ):

{Hn⃗(x⃗ : Σ) : n⃗ = (n1, n2, · · · , nd);ni = 0, 1, 2 · · · , (i = 1, 2, · · · , d)},
{H̃n⃗(x⃗ : Σ) : n⃗ = (n1, n2, · · · , nd);ni = 0, 1, 2 · · · , (i = 1, 2, · · · , d)},

where Hn⃗(x⃗ : Σ) is given by (33) and H̃n⃗(x⃗ : Σ) is defined as follows:

H̃n⃗(x⃗; Σ) =
1

n[x⃗ : Σ]

(
− ∂

∂y1

)(
− ∂

∂y2

)
· · ·
(
− ∂

∂yd

)
n[x⃗ : Σ], (35)

y⃗ = (y1, y2, · · · , yd)⊤ = Σ−1x⃗.

Thus, we have the following expansion of E[X|Z⃗ = x⃗] in L2(Rd, µ):

E[X|Z⃗ = x⃗] =
∞∑

|n⃗|=0

an⃗Hn⃗(x⃗; Σ).

On the other hand, we know the relation:

∞∑
|⃗j|=0

(iξ⃗)j⃗

j⃗!
H̃j⃗(x⃗; Σ) = eiξ⃗

⊤x⃗e
1
2 ξ⃗

⊤Σξ⃗, (36)

where (iξ⃗)j⃗ = (iξ1)
j1(iξ2)

j2 · · · (iξd)jd . Hence,

eiξ⃗
⊤x⃗ = e−

1
2 ξ⃗

⊤Σξ⃗
∞∑

|⃗j|=0

(iξ⃗)j⃗

j⃗!
H̃j⃗(x⃗ : Σ).

It is also well known that∫
Rd

Hm⃗(x⃗ : Σ)H̃n⃗(x⃗ : Σ)n[x⃗ : Σ]dx⃗ =

{
m⃗! (if m⃗ = n⃗),

0 (if m⃗ ̸= n⃗).
(37)
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Therefore,

e
1
2 ξ⃗

⊤Σξ⃗E
[
eiξ⃗

⊤Z⃗X
]

= e
1
2 ξ⃗

⊤Σξ⃗E
[
eiξ⃗

⊤Z⃗E
[
X|Z⃗

]]
=

∫
Rd


∞∑

|⃗j|=0

H̃j⃗(x⃗ : Σ)
(iξ⃗)j⃗

j⃗!




∞∑
|n⃗|=0

an⃗Hn⃗(x⃗ : Σ)

µ(dx⃗) (38)

=
∞∑

|n⃗|=0

an⃗i
|n⃗|(ξ⃗)n⃗; ((ξ⃗)n⃗ = ξn1

1 ξn2
2 · · · ξnd

d ), (39)

and making n⃗ = (n1, · · · , nd)-th order differentiation of both sides in the equation above with respect to

ξ⃗ = (ξ1, · · · , ξd) at ξ⃗ = 0⃗, we obtain (32) and hence the result, (31) - (34).

3.4 Expansion of Option Prices

Now, we apply the approximate density function in Theorem 2 obtained by the asymptotic expansion
technique to option pricing.

In particular, we consider a plain vanilla option on the underlying asset price process (g(X
(ϵ)
t ))t∈[0,T ],

where (X
(ϵ)
t )t∈[0,T ] is the solution to the stochastic differential equation expressed as the equation (1). As

an example, we obtain an approximation of a call option price as follows.

Theorem 3. An asymptotic expansion up to the ϵ(N+1)-order of a call option price at time 0 with maturity

T and strike price K where K = g(X
(0)
T )− ϵy for arbitrary y ∈ R is given as follows:

C(K,T ) = ϵP (0, T )

[√
ΣT n

(
y + C√

ΣT

)
+ CN

(
y + C√

ΣT

)
+ yN

(
y + C√

ΣT

)]
(40)

+

N∑
n=1

ϵn+1P (0, T )Cn0

[√
ΣT n

(
y + C√

ΣT

)
+ CN

(
y + C√

ΣT

)]

+
N∑

n=1

ϵn+1P (0, T )Cn1

[
ΣT N

(
y + C√

ΣT

)
−
√
ΣT y n

(
y + C√

ΣT

)]

+
N∑

n=1

ϵn+1P (0, T )
3n∑

m=2

Cnm

[
−y
√

ΣT Hm−1 (−(y + C); ΣT ) n

(
y + C√

ΣT

)
+Σ

3
2

T Hm−2 (−(y + C); ΣT ) n

(
y + C√

ΣT

)]

+y
N∑

n=1

ϵn+1P (0, T ) Cn0N

(
y + C√

ΣT

)

+y
N∑

n=1

ϵn+1P (0, T )
3n∑

m=1

Cnm

√
ΣTHm−1 (−(y + C); ΣT ) n

(
y + C√

ΣT

)
+ o(ϵ(N+1)).

Here, Cnm is given by (29), and Hn(x; Σ) is the Hermite polynomial of degree n with parameter Σ, which
is defined as

Hn(x; Σ) = (−Σ)nex
2/2Σ dn

dxn
e−x2/2Σ.

C and ΣT are given respectively by

C =
(
∂g(X

(0)
T )
)⊤ ∫ T

0

YTY
−1
t ∂ϵV0(X

(0)
t , 0)dt

and

ΣT =

∫ T

0

V̂ (X
(0)
t )V̂ (X

(0)
t )⊤dt,
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where

V̂ (X
(0)
t ) = (∂g(X

(0)
T ))⊤YTY

−1
t V (X

(0)
t ).

Also, P (0, T ) denotes the price at time 0 of a zero coupon bond with maturity T . N(x) stands for the

standard normal distribution function, and its density function is given by n(x) = 1√
2π
e−x2/2.

(Proof) We firstly note that the call price is expanded as follows:

C(K,T ) = P (0, T )E[max{g(X(ϵ)
T )−K, 0}]

= ϵP (0, T )E

[
max

{(
g(X

(ϵ)
T )− g(X

(0)
T )

ϵ

)
+

(
g(X

(0)
T )−K

ϵ

)
, 0

}]
= ϵP (0, T )E

[
max

{
G(ϵ) + y, 0

}]
= ϵP (0, T )

∫ ∞

−y

(x+ y)fG(ϵ),N (x)dx+ o(ϵ(N+1)). (41)

Here, fG(ϵ),N is the asymptotic expansion of the density of G(ϵ) up to ϵN -order, which is given by the first
two terms on the right hand side of (26) in Theorem 2:

fG(ϵ),N (x) = fg1T (x) +
N∑

n=1

ϵn

(
3n∑

m=0

CnmHm(x− C; ΣT )

)
fg1T (x), (42)

where

fg1T (x) =
1√

2πΣT

exp

(
− (x− C)2

2ΣT

)
.

Next, we note the well-known properties of the Hermite polynomials:

d

dx
Hn(x; Σ) = nHn−1(x; Σ) (43)

dm

dxm
{Hn(x; Σ)n(x; Σ)} =

(
−1

Σ

)m

Hn+m(x; Σ)n(x; Σ)

Hn+1(x; Σ) = xHn(x; Σ)− ΣnHn−1(x; Σ),

where n(x; Σ) = 1√
2πΣ

e−
x2

2Σ .

Then, we can obtain the following expressions for the Integrals appearing on the right hand side of (41):∫ ∞

−y

fg1T (x)dx = N

(
y + C√

ΣT

)
, (44)∫ ∞

−y

xfg1T (x)dx =
√
ΣT n

(
y + C√

ΣT

)
+ CN

(
y + C√

ΣT

)
,∫ ∞

−y

Hm (x− C; ΣT ) fg1T (x)dx =
√
ΣTHm−1 (−(y + C); ΣT ) n

(
y + C√

ΣT

)
; m ≥ 1,∫ ∞

−y

xHm (x− C; ΣT ) fg1T (x)dx = −
√
ΣT y Hm−1 (−(y + C); ΣT ) n

(
y + C√

ΣT

)
+Σ

3
2

T Hm−2 (−(y + C); ΣT ) n

(
y + C√

ΣT

)
; m ≥ 2.

2
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Remark 5. In practical applications, usually the underlying model is given as a non-perturbed form:

dX̂j
t = V̂ j

0 (X̂t)dt+ V̂ j(X̂t)dWt (j = 1, · · · , d) (45)

X̂0 = x0 ∈ Rd.

Then, in order to apply the asymptotic expansion method, we may rewrite the model for instance, as

dX
(ϵ),j
t = V j

0 (X
(ϵ)
t )dt+ ϵV j(X

(ϵ)
t )dWt (j = 1, · · · , d) (46)

X
(ϵ)
0 = x0 ∈ Rd,

where by rescaling V̂ j(x) we set V j(x) so that V̂ j(x) = ϵV j(x) for some ϵ ∈ (0, 1]. Consequently, an
approximate call price under the original model (45) is obtained by (40) without o(ϵN+1).

3.5 Application to Computation of Greeks

We already have a so called closed form approximate formula (40) for the option price, and hence are able
to obtain approximations of its Greeks (that is, sensitivities to the changes in parameters in a model) as
closed forms as well (or at least with easy numerical method such as the difference quotient method with
the approximate option pricing formula).

For instance, [68] implements direct differentiations of the approximate formulas for option values under
a time-homogeneous general local volatility model, and obtains closed form approximate formulas for the
Deltas and Vegas. Moreover, [68] applies the similar technique to computing the Deltas and Vegas for
average options with continuous monitoring, and gets their closed form approximate formulas as well.
They also confirms the validity of the approximations through numerical experiments in the CEV model.

By deriving asymptotic expansions of characteristic functions of option values, [93] and [94] propose a
new expansion scheme for pricing options on long-term currencies under a Libor market model (LMM) and
a general diffusion stochastic volatility model with jump of spot exchange rates. Furthermore, applying the
approximate formulas, they provide analytical (closed form) approximations for the Deltas and Gammas
of the options. Please see [93] and [94] for the detail.

Alternatively, for a parameter θ, the sensitivity of a call price C(K,T ) with respect to the change in θ
is expressed as follows:

∂

∂θ
C(K,T ) = P (0, T )E[max{g(X(ϵ)

T )−K, 0}]

=
∂

∂θ

(
ϵP (0, T )E

[
max

{
G(ϵ) + y, 0

}])
=

(
∂

∂θ
{ϵP (0, T )}

)
E
[
max

{
G(ϵ) + y, 0

}]
+ ϵP (0, T )

(
∂

∂θ
E
[
max

{
G(ϵ) + y, 0

}])
=

(
∂{ϵP (0, T )}

∂θ

)
CAE(K,T )

ϵP (0, T )
+ ϵP (0, T )E

[(
∂G(ϵ)

∂θ
+
∂y

∂θ

)
1{G(ϵ)>−y}

]
, (47)

where CAE(K,T ) stands for the approximate call price with strike K and maturity T , which is obtained
by the asymptotic expansion.

Then, we are able to obtain an approximation of the sensitivity by a direct application of the asymptotic
expansion to the above equation, particularly, the second term in the last equation. For example, under one
dimensional diffusion setting, that is a general time homogeneous local volatility model, [66] successfully
applies the expansion technique to computation of the Deltas and the Vegas with numerical experiments.

More generally, we note that the similar method as in option pricing in the previous subsection can
be applied in Greeks, since we can take Φ ∈ S ′

for E[Φ(G(ϵ))] in (11) and apply the integration-by-parts
method in Malliavin calculus. Recently, [103] takes this approach and derives asymptotic expansions of
Greeks around the Black-Scholes model in stochastic volatility environment, and develop a unified method
for precise estimates of the expansion errors. Particularly, they make use of the so called Kusuoka-Stroock
functions introduced by Kusuoka [52], which is a powerful tool to clarify the order of a Wiener functional
with respect to the time parameter t in a unified manner. Then, they estimate the error bounds for the
Malliavin weights of both the coefficient and the residual terms in the expansions.
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3.6 Approximations of Asset Values under Diffusion Processes

The framework of the asymptotic expansion can be applied not only to the simple cases mentioned above,
but also to evaluation of much broader range of asset and security values. In particular, there are many
cases where the asymptotic expansion can be applied to approximate their values when the underlying asset
prices of financial securities, cash flows and interest rates are expressed as some functions of a random vector
X(ϵ) that follows a diffusion process. The method is almost the same as the one illustrated above and hence
it is omitted. In this subsection, we only review how to represent the values of financial assets.

First, just as in the previous subsections, we consider a d-dimensional diffusion process X(ϵ) defined
as the strong solution to the stochastic differential equation (1). As an example, the present value V of a
financial asset which generates a cash flow at the maturity date T is represented as

V = E
[
e−

∫ T
0

R2(X
(ϵ)
u )duF (g(X

(ϵ)
T ))

]
, (48)

where g denotes the underlying asset price and F is the cash flow which characterizes the asset to be
evaluated. Note that the underlying asset price g follows a diffusion process, whose drift term (the coefficient

of the dt term) is R1(X
(ϵ)
t )g − D(X

(ϵ)
t ) under an equivalent martingale measure. Moreover, R1 at time

t ∈ [0, T ] is represented as

R1(X
(ϵ)
t ) = r(X

(ϵ)
t ) +

J1∑
j=1

s1j(X
(ϵ)
t ),

where r denotes the risk-free interest rate and s1j , j = 1, · · · , J1 stand for various spreads (the differences
from the risk-free rate) such as credit spreads and liquidity spreads. Suppose also that those are expressed

as functions of the variable X(ϵ). Further, D(X
(ϵ)
t ) denotes a payoff generated by the underlying asset such

as a dividend or an interest rate and is also represented as a function of the variable X(ϵ). Meanwhile, the

discount rate at time t that is, R2(X
(ϵ)
t ) of the target asset F to be evaluated is also expressed as

R2(X
(ϵ)
t ) = r(X

(ϵ)
t ) +

J2∑
j=1

s2j(X
(ϵ)
t ),

where s2j , j = 1, · · · , J2 are various spreads related to the objective asset or security. We again assume
that those are expressed as some functions of the variable X(ϵ).

As an example, let F = 1 in (48) for a zero-coupon bond with the face value 1 and the maturity
date T . Also, let Vi denote the price of the zero-coupon bond with the maturity Ti. Then, V , the value
of a coupon bond with the maturity TN and coupon (and principal) payments ci at Ti(i = 1, · · · , N ,

T1 < · · · < TN ) is represented by the equation V =
∑N

i=1 ciVi. Moreover, the present value of a call option
on the coupon bond with the option maturity T (< T1) can be evaluated if we set F (x) = (x −K)+ and

g(X
(ϵ)
T ) =

∑N
i=1 cigi(X

(ϵ)
T ) in the equation (48), where gi(X

(ϵ)
T ), i = 1, · · · , N are given by

gi(X
(ϵ)
T ) = E

[
e−

∫ Ti
T R1(X

(ϵ)
u )du|X(ϵ)

T

]
.

Finally, we briefly review applications of the asymptotic expansion technique to numerical problems in
finance, which can not be introduced in the present note due to the limitation of the space.

[106] applies an asymptotic expansion to a dynamic investment problem with utility maximization
for the asset at the end of the investment period, and derives an approximation formula for evaluating
the optimal portfolio. Although the optimal portfolio has been numerically evaluated as a function of
derivatives of the solution to some Bellman equation except for special cases, it is a hard task to implement
it when the number of assets is large. [106] provides its approximation based on the representation which
Ocone-Karatzas [74] derives by using the so called Clark-Ocone formula. Moreover, [45] applies this method
to a dynamic bond portfolio problem.

In evaluation of the expectation of a Wiener functional based on Monte Carlo simulations, [107] proposes
a new estimator with a control variate which has its expectation explicitly obtained by an asymptotic
expansion, and has a high correlation with the target Wiener functional. The convergence of the simulation
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based on this estimator becomes much faster and the approximation error with the asymptotic expansion
up to a low order such as the first or second order is decreased. As for the extension of this method, please
see [51], [88], and [99].

For pricing American options, [89] extends a well-know decomposition formula for an American op-
tion value by Carr-Jarrow-Myneni [8], and proposes an approximation of the value by making use of the
approximate density function of the underlying asset, which is obtained by the asymptotic expansion.

Moreover, because of its generality and unified nature of this approach with analytical (so called closed
from) formulas, the asymptotic expansion method has been applied to broad class of valuation models
which have become popular recently in practice. Especially, comparing to other numerical approximation
schemes such as the Monte Carlo simulations and numerically solving methods for the partial differential
equations (PDEs), it has an advantage in high dimensional problems. We list the following works as
examples.

Applying the framework described above to default risk models, Muroi [67] derives asymptotic expan-
sions for approximations of CDS (credit default swap) spreads.

[82] applies the expansion technique to obtain an approximation of swaption values under the Libor mar-
ket model(LMM) of interest rates (Brace, Gatarek and Musiela [7], Jamshidian [43]) with local-stochastic
volatility models.

[90], [91] and [92] develop asymptotic expansion formulas for pricing long-term currency options with a
Libor market model(LMM) of interest rates and diffusion or jump-diffusion stochastic volatility processes
of spot exchange rates. Moreover, [92] presents a new characteristic-function-based Monte Carlo simulation
scheme with the asymptotic expansion as a control variate.

[96] develops a general computation scheme for a high-order expansion method explained in this sec-
tion, and applies it to the SABR model(Hagan,Kumar,Lesniewski,and Woodward [33]). They derives the
expansions of the option prices up to the fifth order to show that the higher order expansion improves the
approximations.

[108] and [109] also apply this scheme to the long-term currency options such as the 10 year maturity
one under a Libor market model(LMM) of interest rates and stochastic volatility processes of spot exchange
rates. Again, they confirm that the fourth or the fifth order expansion provides the better approximations
than the lower order ones.

Furthermore, we are able to apply the expansion method to pricing the so called exotic type options.
For instance, [78] derives expansions of average options with discrete monitoring under stochastic volatility
models in order to obtain approximate prices of commodities average options. Moreover, they implement
calibration to real futures plain-vanilla option prices of the underlying commodities, and evaluate average
options based on the parameters obtained by the calibration.

[83] develops new approximation formulas for pricing single and double barrier options with discrete
monitoring under stochastic volatility models. In addition, they demonstrate its validity through numerical
experiments.

[81] presents a new approximation scheme for pricing continuous barrier options in stochastic volatility
environment. Particularly, they make use of a static hedging scheme and the fifth order expansions of
the vanilla options to obtain accurate approximate prices. Further, they derives the fifth order expansions
for pricing average options with continuous monitoring under stochastic volatility models to achieve very
precise approximations.

[79] develops a general scheme for evaluation of the so called multi-asset cross currency options. In
particular, they derive the expansions of basket option prices with 100 underlying assets (200 state variables
with their stochastic volatilities), and cross currency average/basket options with discrete monitoring under
stochastic volatility models to obtain accurate approximations.

[46] and [47] develop a new expansion scheme for solutions of Cauchy-Dirichlet problems for second
order parabolic partial differential equations(PDEs) and apply it to pricing down-and-out/up-and-out
barrier options with continuous monitoring under stochastic volatility models.
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4 Extension

This section follows [97] which presents an extension of the general computational scheme of the asymptotic
expansion described in the previous section. In particular, by a change of variable technique and by various
ways of setting the perturbation parameters in the expansion, we are able to provide the flexibility of setting
the benchmark distribution around which the expansion is made, and an automatic way for computation
up to any order in the expansion. For instance we introduce expansions, called the log-normal expansion
and the CEV expansion.

4.1 Change of Variable and Perturbation

We consider a d-dimensional diffusion process Xt = (X1
t , · · · , Xd

t ) which is the solution to the following
stochastic differential equation:

dXj
t = V j

0 (Xt)dt+ V j(Xt)dWt (j = 1, · · · , d) (49)

X0 = x0 ∈ Rd

where W = (W 1, · · · ,W r) is an r-dimensional standard Wiener process; V j
0 : Rd 7→ R and V j : Rd 7→ Rd

are smooth functions with bounded derivatives of all orders.
Next, let C : Rd 7→ Rd be a C2-function which has the unique inverse function, C−1, and define X̃t as

X̃t = C(Xt). Then, the dynamics of X̃ is given by

dX̃j
t = Ṽ j

0 (X̃t)dt+ Ṽ j(X̃t)dWt (j = 1, · · · , d), (50)

X̃0 = x̃0,

where

Ṽ j
0 (x̃) :=

d∑
j′=1

∂j′C
j(C−1(x̃))V j′

0 (C−1(x̃)) +
1

2

d∑
j′,k′=1

∂j′k′Cj(C−1(x̃))V j′(C−1(x̃))V k′
(C−1(x̃))⊤,

Ṽ j(x̃) :=
d∑

j′=1

∂j′C
j(C−1(x̃))V j′(C−1(x̃)),

and x̃0 = C(x0). ((C
−1(x̃))⊤ denotes the transpose of (C−1(x̃)).)

Next, we introduce a perturbation parameter ϵ ∈ (0, 1] as follows:

X̃t 7→ X̃
(ϵ)
t

Ṽ j
0 (x̃) 7→ Ṽ

(ϵ),j
0 (x̃, ϵ)

Ṽ j(x̃) 7→ ϵṼ j(x̃),

and hence, the dynamics of X̃(ϵ) is expressed as

dX̃
(ϵ),j
t = Ṽ

(ϵ),j
0 (X̃

(ϵ)
t , ϵ)dt+ ϵṼ j(X̃

(ϵ)
t )dWt (j = 1, · · · , d). (51)

Then, we are able to apply the technique developed in the previous section to the transformed SDE
(51).

4.2 Applications to Option Pricing under Local-Stochastic Volatility Model

We assume that the underlying process is the unique solution to the following SDE:

dSt = σ(Xt)h(St)dWt

dXj
t = V j

0 (Xt)dt+ V j(Xt)dWt (j = 2, · · · , d) (52)

S0 = s0 ∈ R, X0 = x0 ∈ Rd−1,
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where σ : Rd−1 → Rr, h : R → R, and W is a r-dimensional Brownian motion. Then, we evaluate a call
option with strikeK and maturity T , whose underlying price process is given by S. Under the zero discount
interest rate for simplicity, the call price Call(K,T ) with strike price K and maturity T is obtained by

Call(K,T ) = E[(ST −K)+]. (53)

First, for x = (x1, x2, · · · , xd), let

C(x) = (C1(x
1), x2, · · · , xd),

where C1 : R → R is an invertible C2-function. Then, S̃t = C1(St), which S̃ follows a process of the
solution to the following SDE:

dS̃t =
1

2
|σ(Xt)|2h(C−1

1 (S̃t))
2C

(′′)
1 (C−1

1 (S̃t))dt+ σ(Xt)h(C
−1
1 (S̃t))C

(′)
1 (C−1

1 (S̃t))dWt, s̃0 = C1(s0), (54)

where C
(′)
1 (x) := d

dxC1(x) and C
(′′)
1 (x) := d2

dx2C1(x).
Next, we introduce a perturbation parameter ϵ as follows:

dS̃
(ϵ)
t =

η(ϵ)

2
|σ(X(ϵ)

t )|2h(C−1
1 (S̃

(ϵ)
t ))2C

(′′)
1 (C−1

1 (S̃
(ϵ)
t ))dt+ ϵσ(X

(ϵ)
t )h(C−1

1 (S̃t))C
(′)
1 (C−1

1 (S̃
(ϵ)
t ))dWt,

dX
(ϵ),j
t = V j

0 (X
(ϵ)
t , ϵ)dt+ ϵV j(X

(ϵ)
t )dWt (j = 2, · · · , d), (55)

where η(ϵ) = ϵk and k is a nonnegative integer such as k = 0, 1, 2, · · · . Note that

St = C−1
1 (S̃t) = C−1

1 (S̃
(1)
t ),

where S̃
(1)
t = S̃

(ϵ)
t |ϵ=1.

According to Theorem 2 in the previous section, we have already an asymptotic expansion of the density

function of G(ϵ) =
S̃

(ϵ)
T −S̃

(0)
T

ϵ up to ϵN -order, denoted by fG(ϵ),N (x).
Therefore, an approximation formula of the call price is given as follows:

Call(K,T ) = E[(ST −K)+] = E

[(
C−1

1

(
S̃
(1)
T

)
−K

)
+

]
(56)

≈
∫ ∞

y

(
C−1

1 (x+ S̃
(0)
T )−K

)
fG(1),N (x)dx, (57)

where y = C1(K)− S̃
(0)
T .

A simple example is the following. Set the local volatility function to be linear:

dSt = σ(Xt)StdWt

dXj
t = V j

0 (Xt)dt+ V j(Xt)dWt (j = 2, · · · , d). (58)

For x = (x1, x2, · · · , xd), let

C(x) = (log x1, x2, · · · , xd),

and set η(ϵ) = ϵk where k is 0, 1 or 2. Then, we have S̃
(ϵ)
t = logS

(ϵ)
t , where

dS̃
(ϵ)
t = −ϵ

k

2
σ(X

(ϵ)
t )2dt+ ϵσ(X

(ϵ)
t )dWt, (59)

dX
(ϵ),j
t = V j

0 (X
(ϵ)
t , ϵ)dt+ ϵV j(X

(ϵ)
t )dWt (j = 2, · · · , d).

This case corresponds to some existing researches. (e.g. [91], [92], [95], [96], [100])

4.3 Examples

This subsection shows more specific examples in the local-stochastic volatility model.
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4.3.1 CEV Model

The first example is on the well-known CEV (Constant Elasticity of Variance) model (Cox [10]) :

dSt = σ(Sβ
t S

1−β
0 )dWt, σ and S0 are positive constants, β ∈ [0, 1], (60)

where the term S1−β
0 makes the level of σ is of the same order for different β. For x > 0, let us take the

change of variable function to be C(x) = log(x/S0), that is x = C−1(x̃) = S0 exp(x̃). Hence, S̃t = log St

S0

and we have

dS̃t = −1

2
σ2e2(β−1)S̃tdt+ σe(β−1)S̃tdWt; S̃0 = 0. (61)

Next, we introduce a perturbation ϵ ∈ [0, 1], again as follows:

dS̃
(ϵ)
t = −η(ϵ)

2
σ2e2(β−1)S̃

(ϵ)
t dt+ ϵσe(β−1)S̃

(ϵ)
t dWt; S̃0 = 0. (62)

where η(ϵ) = ϵj and j is a nonnegative integer.
Because

ST = C−1
(
S̃
(1)
T

)
= S0 exp

(
S̃
(1
T

)
= S0 exp

(
G(1) + S

(0)
T

)
,

an approximation formula of the call price with strike K and maturity T is given as follows:

Call(K,T ) = E[(ST −K)+] = E

[(
S0 exp

(
G(1) + S̃

(0)
T

)
−K

)
+

]
≈

∫ ∞

y

(
S0 exp

(
x+ S̃

(0)
T

)
−K

)
fG(1),N (x)dx; (63)

y = C(K)− S̃
(0)
T = log

K

S0
− S̃

(0)
T . (64)

Note that fg1T , the first term in the asymptotic expansion of the density fG(ϵ) is a normal density and
hence, the underlying asset price is expanded around a log-normal distribution. Thus, we could call this
case a log-normal asymptotic expansion. We also remark that the case of η(ϵ) = ϵ0 = 1 is harder to be

evaluated than the other cases, which is essentially due to difficulty in computation of S̃
(0)
t for η(ϵ) = 1.

• On the Validity of the Asymptotic Expansion for CEV model

Previous works such as [107], [85] and [86] have considered an asymptotic expansion of (average and
vanilla) option prices based on the following type of a perturbed process: For β ∈ [1/2, 1),

dS
(ϵ)
t = ϵ(S

(ϵ)
t ∨ 0)βdWt; S

(ϵ)
0 = s0. (65)

Although the coefficient function in this model is not smooth at 0, the asymptotic expansion method
is still applicable. For instance, we could use a smooth modification technique.(e.g. [106], [107]).

That is, let us take a modified process (S̃
(ϵ)
t )t∈[0,T ] of (S

(ϵ)
t )t∈[0,T ] as follows:

dS̃
(ϵ)
t = ϵg(S̃

(ϵ)
t )dWt. (66)

Here, g(x) is a smooth modification of g(x) = (x ∨ 0)β such that g(x) = xβ when x ≥ a1 for some
small a1 ∈ (0, a) for a = 1

2s0 and g(x) = 0 when x ≤ a2 for some a2 ∈ (0, a1). Specifically, we may
set g(x) as follows. For t ∈ [0, T ],

g(x) = h(x)xβ

h(x) =
ψ(x− a2)

ψ(x− a2) + ψ(a1 − x)
, 0 < a2 < a1

ψ(x) = e−1/x for x > 0, ψ(x) = 0 for x ≤ 0.
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Suppose that for a R-valued function f , E
[∣∣f(S(ϵ))

∣∣2] < ∞ and E

[∣∣∣f(S̃(ϵ))
∣∣∣2] < ∞. (e.g. we can

take option payoff functions as f in our setting.) Then, we have

E
[∣∣∣f(S(ϵ))− f(S̃(ϵ))

∣∣∣ 1{S(ϵ) ̸=S̃(ϵ)}

]
≤
(
E
[
|f(S(ϵ))|2

] 1
2

+ E
[
|f(S̃(ϵ))|2

] 1
2

)
P
(
{S(ϵ) ̸= S̃(ϵ)}

) 1
2

.

It also holds that

P
(
{Sϵ ̸= S̃ϵ}

)
= P ({Sϵ

t ≤ a1 for some t ∈ [0, T ]})

≤ P

(
{ sup
0≤t≤T

|Sϵ
t − S0

t | > a}
)

+P

(
{Sϵ

t ≤ a1 for some t ∈ [0, T ]} ∩ { sup
0≤t≤T

|Sϵ
t − S0

t | ≤ a}
)
.

We can easily see that the second term after the last inequality is 0. The first term is smaller than
any ϵn for n = 1, 2, · · · by the following lemma of a large deviation inequality:

Lemma 4. Suppose that Zϵ
t , t ∈ [0, T ] follows a process of the solution to the SDE:

dZϵ
t = µ(Zϵ

t )dt+ ϵσ(Zϵ
t )dWt.

where µ(z) satisfies the Lipschitz and linear growth conditions, and σ(z) satisfies the linear growth
condition. We assume that the unique strong solution exists. Then, there exists positive constants c1
and c2 independent of ϵ such that

P ({ sup
0≤s≤T

|Zϵ
s − Z0

s | > c}) ≤ c1 exp(−c2ϵ−2) (67)

for all c > 0.

The lemma can be proved by slight modification of the lemma 5.3 in [119] or the lemma 7.1 in [50].
Note also that Sϵ and S̃ϵ satisfy the conditions in the lemma above.

Hence,

E
[∣∣∣f(S(ϵ))− f(S̃(ϵ))

∣∣∣] = o(ϵn), n = 1, 2, · · · . (68)

Therefore, the difference between f(S(ϵ)) and f(S̃(ϵ)) is negligible in a small disturbance asymptotic

theory, and hence we could apply an asymptotic expansion to E
[
f(S̃(ϵ))

]
instead of E

[
f(S(ϵ))

]
.

In particular, [107] considered the case that β = 1/2 and f(x) =
(

1
T

∫ T

0
xtdt−K

)+
, x = S(ϵ), S̃(ϵ) (an

average call option’s payoff). The similar modification could be applied to the asymptotic expansions
for transformed processes in this section. Please also see [88] for numerical experiments under the
smooth and bounded modification of this kind for volatility functions in a HJM-type model of interest
rates.

4.3.2 SABR Model

Next, let us consider a stochastic volatility model so called SABR [33] (or λ-SABR [38])) Model:

dSt = σt(S
β
t S

1−β
0 )dW 1

t ; S0 > 0, (69)

dσt = λ(θ − σt)dt+ νσtdW
2
t ; σ0 > 0

where β ∈ [0, 1], λ ≥ 0, θ > 0, ν > 0, and W = (W 1,W 2) is a two dimensional Wiener process with
correlation ρ ∈ [0, 1].
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• Log-normal Asymptotic Expansion

Let us take a log-normal asymptotic expansion for the underlying asset price S, that is for x1 > 0,
set C(x1, x2) = (log(x1/S0), x2) and S̃t = log St

S0
:

dS̃t = −1

2
σ2
t e

2(β−1)S̃tdt+ σte
(β−1)S̃tdW 1

t ; S̃0 = 0 (70)

dσt = λ(θ − σt)dt+ νσtdW
2
t ; σ0 > 0.

Next, we introduce a perturbation ϵ ∈ [0, 1], again as follows:

dS̃
(ϵ)
t = −η1(ϵ)

2
σ2e2(β−1)S̃

(ϵ)
t dt+ ϵσe(β−1)S̃

(ϵ)
t dWt; S̃0 = 0, (71)

dσ
(ϵ)
t = η2(ϵ)λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0,

where ηi(ϵ) = ϵji , i = 1, 2 and ji is a nonnegative integer.

For instance, typical cases are η2(ϵ) = ϵ0 = 1 with η2(ϵ) = ϵ (an extension of the log-normal asymptotic
expansion in [95] and [100] ), or η2(ϵ) = ϵ2 (an extension of [90] to the CEV-type local volatility).

An approximation formula of the call price with strike K and maturity T is given as follows:

Call(K,T ) = E[(ST −K)+] = E

[(
S0 exp

(
G(1) + S̃

(0)
T

)
−K

)
+

]
≈

∫ ∞

y

(
S0 exp

(
x+ S̃

(0)
T

)
−K

)
fG(1),N (x)dx; (72)

y = C(K)− S̃
(0)
T = log

K

S0
− S̃

(0)
T . (73)

Again, we note that the case of η(ϵ) = ϵ0 = 1 is harder to be evaluated than the other cases, which

results from difficulty in computation of S̃
(0)
t for η(ϵ) = 1.

• CEV Asymptotic Expansion

Let us take change of variable function C as C(x1, x2) = (C1(x1), x2) for (x1, x2), where for x > 0
and β ∈ [0, 1),

C1(x) =
1

1− β

x1−β

S1−β
0

(
=

∫ x dz

zβS1−β
0

)
. (74)

That is,

C−1
1 (x̃) = S0(1− β)

1
(1−β) x̃

1
(1−β) . (75)

Then, as S̃t = C1(St), we have

dS̃t = −1

2

β

1− β
σ2
t

1

S̃t

dt+ σtdW
1
t ; S̃0 =

1

1− β
> 0 (76)

dσt = λ(θ − σt)dt+ νσtdW
2
t ; σ0 > 0.

Again, we set a perturbed process as follows:

dS̃
(ϵ)
t = −η1(ϵ)

2

β

1− β
(σ

(ϵ)
t )2

1

S̃
(ϵ)
t

dt+ ϵσ
(ϵ)
t dW 1

t ; S̃
(ϵ)
0 =

1

1− β
(77)

dσ
(ϵ)
t = η2(ϵ)λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0,

where ηi(ϵ) = ϵji , i = 1, 2 and ji is a nonnegative integer.
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For illustrative purpose, let us set η1(ϵ) = η2(ϵ) = ϵ. That is,

dS̃
(ϵ)
t = − ϵ

2

β

1− β
(σ

(ϵ)
t )2

1

S̃
(ϵ)
t

dt+ ϵσ
(ϵ)
t dW 1

t ; S̃
(ϵ)
0 =

1

1− β
, (78)

dσ
(ϵ)
t = ϵλ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0.

In this case, as S̃
(0)
t = 1

1−β and σ
(0)
t = σ0 for all t ∈ [0, T ], the first two terms in the asymptotic

expansion, g̃1t =
1

1−β + ∂
∂ϵ

∣∣
ϵ=0

S̃
(ϵ)
t follows a Gaussian process:

dg̃1t =
−βσ2

0

2
dt+ σ0dW

1
t ; g̃10 =

1

1− β
. (79)

Then, by applying Itô’s formula to

ĝ1t := C−1
1 (g̃1t) = S0(1− β)

1
(1−β) g̃

1
(1−β)

1t , (80)

and using

g̃1t =
1

1− β

ĝ1−β
1t

S1−β
0

, (81)

we formally obtain the SDE of ĝ1t though it is generally well-defined only for g̃1t ≥ 0:

dĝ1t =
βσ2

0S
1−β
0

2
ĝβ1t

[
−1 + S1−β

0 ĝβ−1
1t

]
dt+ σ0S

1−β
0 ĝβ1tdW

1
t ; ĝ10 = S0. (82)

Here, because the diffusion coefficient of ĝ1t is given by σ0S
1−β
0 (ĝ1t)

β and we may think that S is
expanded around ĝ1, we call this case a CEV asymptotic expansion (though ĝ1 is not exactly a CEV
process).

In particular, when β = 1/2,

dĝ1t =
σ2
0

4

[
−
√
S0ĝ1t + S0

]
dt+ σ0

√
S0ĝ1tdW

1
t ; ĝ10 = S0, (83)

and because

ĝ1T =
S0

4
g̃21T , (84)

ĝ1T /(S0σ
2
0T/4) follows a non-central χ2 distribution, around which the original underlying asset price

ST is expanded.

Finally, for ηi(ϵ) = ϵji , i = 1, 2 and ji is a nonnegative integer, an approximation formula of the call
price with strike K and maturity T is obtained as follows:

Call(K,T ) = E[(ST −K)+] = E

[(
C−1

1 (S̃T )−K
)
+

]
= E

[({
S0(1− β)

1
(1−β) (S̃T )

1
(1−β)

}
−K

)
+

]
= E

[({
S0(1− β)

1
(1−β) (S̃

(1)
T )

1
(1−β)

}
−K

)
+

]
= E

[({
S0(1− β)

1
(1−β) (G(1) + S̃

(0)
T )

1
(1−β)

}
−K

)
+

]
≈

∫ ∞

y

({
S0(1− β)

1
(1−β) (x+ S̃

(0)
T )

1
(1−β)

}
−K

)
fG(1),N (x)dx; (85)

y = C1(K)− S̃
(0)
T =

1

1− β

(
K

S0

)1−β

− S̃
(0)
T . (86)
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As numerical examples, [97] examines normal, log-normal and CEV expansions up to the third order
for approximations of option prices under SABR model, which implies that CEV expansion provides
the most stable approximations. We also observe that CEV expansion becomes more precise with the
same level of absolute errors across the whole range of β along the higher order expansions. Thus, we
expect a higher order CEV expansion will produce the better and more stable approximation than
the other expansions, though further investigation seems necessary. Please see the original paper [97]
for the detail of the numerical experiment.

Remark 6. If necessary, applying a similar technique as mentioned in Section 4.3.1, we could use the
asymptotic expansion for a model with smooth (and bounded) modification of the underlying processes. For
a concrete example please see Remark 3 in [97].

5 Improvement Scheme for Asymptotic Expansion

Although the asymptotic expansion up to the fifth order is known to be sufficiently accurate for option
pricing (e.g. [81], [95], [96], [108], [109]), one of the main criticisms against the method would be that
the approximate density function admits negative values typically at its tails that is, some region of the
deep Out-of-The-Money (OTM), which could create an arbitrage opportunity in option trading. Also, even
if the domain of a true density is restricted to be positive, the domain of its approximation may include
negative values unless an appropriate boundary condition is assigned. To overcome the problems, we briefly
introduce two recent researches related to the present asymptotic expansion approach.

5.1 New Improvement Scheme for Approximation Methods of Probability
Density Functions

[98] develops a new scheme for improving density approximation methods, which also provides precise
approximations of option values. Specifically, the scheme is inspired by the idea in in the Hilbert space
projection theorem, and so called “Dykstra’s cyclic projections algorithm” is applied for its implementation.
(Please consult Deutsch [14] for the detail of the algorithm.) We also remark that the scheme can be easily
implemented in practice, where we need only market data used for usual calibration such as option prices
with strikes.

Furthermore, numerical experiments for vanilla option pricing under SABR model demonstrate the
validity of the scheme. In fact, in terms of approximation accuracies this scheme improves the third and
fifth order asymptotic expansions preserving the required conditions such as nonnegative densities under
an appropriate forward measure.

We finally remark that the scheme is general and flexible enough to include a set of conditions and
information as one would like to put on an approximate density, and it can be applied to approximation
methods other than the asymptotic expansion method. For example, a number of researches have been
going on in order to extend SABR model with fixing the problem of the negative densities in the method
of [33]. (For instance, see Doust [15].) We note that the scheme is also a candidate for handling this
issue. Also, the estimate of the absorption probability based on Monte Carlo simulations as in [15] can be
consistently incorporated in the scheme.

5.2 A Weak Approximation with Asymptotic Expansion and Multidimen-
sional Malliavin Weights

[105] develops a new weak approximation scheme for expectations of functions of the solutions to SDEs.
In particular, the scheme connects approximate operators constructed based on the asymptotic expansion.
More concretely, a diffusion semigroup is defined as the expectation of an appropriate function of the
solution to a certain SDE: for example, P ϵ

t f(x) = E[f(Xx,ϵ
t )] with the solution Xx,ϵ

t of a SDE with
perturbation parameter ϵ and a function f . Then, we approximate P ϵ

t by an operator Qϵ,m
t which is

constructed based on the asymptotic expansion up to a certain order m. Thus, given a partition of [0, T ],
π = {(t0, t1, · · · , tn) : 0 = t0 < t1 < · · · < tn = T}, we are able to approximate P ϵ

T f(x) by connecting the
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expansion-based approximations with the use of multi-dimensional Malliavin weights sequentially: that is,
roughly speaking, with sk = tk − tk−1, k = 1, · · · , n,

P ϵ
T f(x) ≃ Qϵ,m

sn Qϵ,m
sn−1

· · ·Qϵ,m
s1 f(x).

The present research justifies this idea by applying Malliavin calculus, particularly, theories developed by
Watanabe [111] and Kusuoka [52],[53],[54]. In computation, in order to evaluate the Malliavin weights, the
paper makes use of conditional expectation formulas for multi-dimensional asymptotic expansions in [86].

Moreover, the paper shows through numerical examples for option pricing under local and stochastic
volatility models that very few partition such as n = 2 is mostly enough to substantially improve the errors
at deep OTMs of expansions with the first or second order (m = 1, 2).

6 Asymptotic Expansion in an Instantaneous Forward Rates Model

Among main stochastic models in finance, there exist models in which the stochastic processes of the un-
derlying variables do not belong to the class of diffusion processes. This section illustrates an instantaneous
forward rates model as a typical example.

6.1 Asymptotic Expansion for General Wiener Functionals

Watanabe [111] derives an asymptotic expansion for general Wiener functionals. As an example of the
Watanabe’s expansion, [100] shows the following result:

Theorem 4. Let us consider a family of smooth Wiener functionals F ϵ = (F ϵ
1 , · · · , F ϵ

n), F
ϵ
i ∈ D∞ (i =

1, · · · , n) such that F ϵ
i has an asymptotic expansion in D∞. Moreover, F ϵ satisfies the uniformly non-

degenerate condition:

lim sup
ϵ↓0

∥(detσF ϵ)−1∥Lp <∞, for all p <∞, (87)

where σF ϵ stands for the Malliavin covariance matrix of F ϵ. Then, for a Schwartz distribution T ∈ S ′(Rn),
we have an asymptotic expansion in R:∣∣∣∣∣∣E[T (F ϵ)]−


∫
Rn

T (x)pF
0

(x)dx+
N∑
j=1

ϵj
∫
Rn

T (x)E

 (j)∑
k

Hα(k)

(
F 0,

k∏
l=1

F 0,βl
αl

)
|F 0 = x

 pF 0

(x)dx


∣∣∣∣∣∣ = O(ϵN+1),

(88)

Equivalently,∣∣∣∣∣∣E[T (F ϵ)]−


∫
Rn

T (x)pF
0

(x)dx+

N∑
j=1

ϵj
(j)∑
k

(−1)k
∫
Rn

T (x)∂kα(k)

{
E

[
k∏

l=1

F 0,βl
αl

|F 0 = x

]
pF

0

(x)

}
dx


∣∣∣∣∣∣ = O(ϵN+1),

(89)

where F 0,k
i := 1

k!
dk

dϵk
F ϵ
i |ϵ=0, k ∈ N (i = 1, · · · , n), α(k) denotes a multi-index, α(k) = (α1, · · · , αk) and

(j)∑
k

≡
j∑

k=1

∑
β1+···+βk=j,βi≥1

∑
α(k)∈{1,··· ,n}k

1

k!
.

pF
0

(x) stands for the density function of F 0. The Malliavin weight Hα(k) is recursively defined as follows:

Hα(k)(F,G) = H(αk)(F,Hα(k−1)(F,G)), (90)
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where

H(l)(F,G) = D∗

(
n∑

i=1

GγFliDFi

)
. (91)

Here, Fi ∈ D∞, G ∈ D∞, D∗ (∑n
i=1Gγ

F
liDFi

)
is the divergence of

∑n
i=1Gγ

F
liDFi, DFi is the Malliavin

derivative of Fi, and γ
F =

(
γFij
)
1≤i,j≤n

denotes the inverse matrix of the Malliavin covariance matrix of

F . Moreover, we use the notation
∫
T (x)g(x)dx for T ∈ S ′(Rn) and g ∈ S(Rn) meaning that S′⟨T, g⟩S .

(See the section 2 of [100] for the details of those definitions.)

Remark 7. The asymptotic expansion formula (89) is the formula developed by Watanabe [111]. Hence,
this theorem shows the expansion (88) based on push down(conditional expectation) of Malliavin weights
(divergences) is equivalent to the Watanabe’s formula.

(Proof) We use α as an abbreviation of α(k) in the proof, and the notation ⟨·, ·⟩pF0 (x)dx is defined as
follows:

⟨T,EF 0

[·]⟩pF0 (x)dx := S′⟨T,EF 0

[·] pF
0

⟩S .

Under the uniformly non-degenerate condition of F ϵ ∈ D∞(Rn), the lifting up of T ∈ S ′(Rn) that is,
(EF ϵ

)∗T , has the asymptotic expansion in distributions on the Wiener space D−∞, that is for N ∈ N,
there exists s ∈ N such that∥∥∥∥∥∥(EF ϵ

)∗T −

T ◦ F 0 +
N∑
j=1

ϵj
(j)∑
k

(∂kαT ) ◦ F 0
k∏

l=1

F 0,βl
αl


∥∥∥∥∥∥
Dq,−s

= O(ϵN+1), ϵ ∈ (0, 1], q <∞. (92)

Then, there exists an asymptotic expansion of ⟨(EF ϵ

)∗T,1⟩D−∞×D∞ .
The push-down of the divergence are computed as follows:⟨

∂kαT (F
0),

k∏
l=1

F 0,βl
αl

⟩
D−∞×D∞

=

⟨
T (F 0),Hα

(
F 0,

k∏
l=1

F 0,βl
αl

)⟩
D−∞×D∞

=

⟨
T,EF 0

[
Hα

(
F 0,

k∏
l=1

F 0,βl
αl

)]⟩
pF0 (x)dx

=

∫
Rn

T (x)E

[
Hα

(
F 0,

k∏
l=1

F 0,βl
αl

)
|F 0 = x

]
pF

0

(x)dx. (93)

On the other hand,⟨
∂kαT (F

0),

k∏
l=1

F 0,βl
αl

⟩
D−∞×D∞

=

⟨
∂kαT,E

F 0

[
k∏

l=1

F 0,βl
αl

]⟩
pF0 (x)dx

=

⟨
T, (∂∗)kαE

F 0

[
k∏

l=1

F 0,βl
αl

]⟩
pF0 (x)dx

= (−1)k
∫
Rn

T (x)∂kα

{
E

[
k∏

l=1

F 0,βl
αl

|F 0 = x

]
pF

0

(x)

}
dx. (94)

Here, (∂∗)kα means (∂∗)kα = ∂∗α · · · ∂∗α(k times), and ∂∗α denotes the divergence operator on the space(
Rn, pF

0

(x)dx
)
.

2
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Corollary 1. The asymptotic expansion of the density function of F ϵ, pF
ϵ

(y) is expressed with the push-
down of the Malliavin weights as the follows:

pF
ϵ

(y) = pF
0

(y) +
m∑
j=1

ϵjE

 (j)∑
k

Hα(k)

(
F 0,

k∏
l=1

F 0,βl
αl

)
|F 0 = y

 pF 0

(y) +O(ϵm+1), (95)

where pF
0

(y) is the density function of F 0. An alternative expression is given as follows:

pF
ϵ

(y) = pF
0

(y) +
m∑
j=1

ϵj
(j)∑
k

(−1)k∂kα(k)

{
E

[
k∏

l=1

F 0,βl
αl

|F 0 = y

]
pF

0

(y)

}
+O(ϵm+1). (96)

(Proof) Take a delta function δy ∈ S ′(Rn) in the theorem above. 2

6.2 Instantaneous Forward Rates Model

As a typical stochastic model for pricing the interest rate derivatives, there exists a model developed by
Heath-Jarrow-Morton [37], the so called HJM model, which is formulated based on the forward rates with
infinitesimal terms of the interest rates, that is the instantaneous forward rates {f(s, t) : 0 ≤ s ≤ t ≤ T}.
Here, s is the time when the forward rate is fixed and t denotes the inception time when the forward rate
is applied.

The stochastic processes for the instantaneous forward rates are considered in the framework of the
asymptotic expansion by introducing a parameter ϵ ∈ [0, 1]. For example, let W be a m-dimensional
standard Wiener process and let f(0, t), t ∈ [0, T ] be a given Lipschitz continuous function of t. Then,
under the equivalent martingale measure, the stochastic processes of {f (ϵ)(s, t) : 0 ≤ s ≤ t ≤ T} are
solutions to the following stochastic integral equations:

f (ϵ)(s, t) = f(0, t) + ϵ2
∫ s

0

m∑
i=1

[
σi(f

(ϵ)(v, t), v, t)

∫ t

v

σi(f
(ϵ)(v, y), v, y)dy

]
dv

+ ϵ
m∑
i=1

∫ s

0

σi(f
(ϵ)(v, t), v, t)dWi(v) ; ϵ ∈ [0, 1], (97)

where the volatility functions {σi(x, s, t); i = 1, · · · ,m} are smooth and satisfy the regularity conditions
which guarantee that the equation (97) has its unique strong solution. It is to be noted that the drift
term (the coefficient of the dv term ) of f (ϵ)(s, t) depends on {f (ϵ)(v, y); 0 ≤ v < s, v ≤ y < t}. Moreover,
the stochastic process of the instantaneous short-term interest rate r(ϵ)(t) is determined by the relation,
r(ϵ)(t) = f (ϵ)(t, t).

For this model, the approximations of the values for interest rate derivatives can still be considered in a
unified framework with derivation of asymptotic expansions of the instantaneous forward rates when ϵ ↓ 0
and with use of the relation between the instantaneous forward rates and a zero-coupon bond price:

P (ϵ)(t, T ) = exp

{
−
∫ T

t

f (ϵ)(t, u)du

}
. (98)

As an example, we consider pricing an option on a coupon bond (or a swaption), which is a standard
interest rate derivative. The payoff at maturity of a call option is given by

Vc(T ) = max

{
n∑

i=1

ciP
(ϵ)(t, Ti)−K, 0

}
,

where 0 ≤ T ≤ T1 < · · · < Tn, ci (i = 1, · · · , n) are positive constants and K(> 0) is a strike price. Then,
its present value is given by

Vc(0) = E
[
e−

∫ T
0

r(ϵ)u duVc(T )
]
. (99)
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When ϵ ↓ 0, the forward rate f (ϵ)(s, t) is expanded around f(0, t) as

f (ϵ)(s, t) ∼ f(0, t) + ϵf1(s, t) + ϵ2f2(s, t) + · · · in D∞, (100)

where the coefficients of ϵn, n = 1, 2, · · · , that is f1(t, u), f2(t, u) · · · are also in D∞.
As a result, we obtain an expansion of the zero-coupon bond price P (ϵ)(t, T ) around the current forward

bond price P (0,T )
P (0,t) , and an expansion of the discount factor exp

{
−
∫ T

0
r(ϵ)(t)dt

}
around the current zero-

coupon bond price P (0, T ) as follows:

P (ϵ)(t, T ) ∼ P (0, T )

P (0, t)

[
1− ϵ

∫ T

t

f1(t, u)du− ϵ2
∫ T

t

f2(t, u)du

+ ϵ2
1

2

{∫ T

t

f1(t, u)du

}2
+ · · · in D∞, (101)

e−
∫ T
0

r(ϵ)(s)ds ∼ P (0, T )

[
1− ϵ

∫ T

0

f1(t, t)dt− ϵ2
∫ T

0

f2(t, t)dt

+ ϵ2
1

2

{∫ T

0

f1(t, t)dt

}2
+ · · · in D∞, (102)

where fi(s, t), i = 1, 2 are given by

f1(s, t) = ∂f(ϵ)(s,t)
∂ϵ |ϵ=0 =

∫ s

0

m∑
i=1

σ
(0)
i (v, t)dWi(v),

f2(s, t) = 1
2
∂2f(ϵ)(s,t)

∂2ϵ |ϵ=0

=

∫ s

0

b(0)(v, t)dv +

∫ s

0

m∑
i=1

∂σ
(0)
i (v, t)f1(v, t)dWi(v).

Here, σ
(0)
i (v, t) = σi(f

(0)(v, t), v, t), and b(0)(v, t) and ∂σ
(0)
i (v, t) are defined as

b(0)(v, t) =

n∑
i=1

σi(f
(0)(v, t), v, t)

∫ t

v

σi(f
(0)(v, y), v, y)dy,

∂σ
(0)
i (v, t) =

∂σi(x, v, t)

∂x
|x=f(0,t).

Therefore, in a similar way as in the framework for diffusion cases in the previous sections, we define X
(ϵ),1
t

and X
(ϵ),i
t (i = 2, · · · , n) as

X
(ϵ),1
t = exp

{
−
∫ t

0

r(ϵ)(u)du

}
(103)

X
(ϵ),i
t = P (ϵ)(t, Ti) = exp

{
−
∫ Ti

t

f (ϵ)(t, u)du

}
, i = 2, · · · , n. (104)

Then, the payoff at maturity of the call option on a coupon bond is written as

Vc(T ) = max

{
n∑

i=2

ciX
(ϵ),i
t −K, 0

}
. (105)

Moreover, let x = (x1, x2, · · · , xn) and define g(x) as

g(x) = x1

(
n∑

i=2

cixi −K

)
. (106)
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In this way, we are able to employ a similar technique to pricing derivatives as in the case of diffusion pro-
cesses. For example, with redefinition of variables such as ΣT , the approximation of the option price Vc(0)
in (99) can be obtained based on the almost same asymptotic expansion method as in the previous sections.
In fact, by using the above expansions of instantaneous forward rates, zero-coupon bond prices and the

discount factor, we can apply the expansion to E[max{g(X(ϵ)
T ), 0}], whereX(ϵ)

T = (X
(ϵ),1
T , X

(ϵ),2
T · · · , X(ϵ),n

T ).
For the details and numerical examples, please see [49], [50] and [88]. In particular, [88] imple-

ments numerical experiments under a smooth and bounded modification of two factor CEV-type volatility
functions (as explained in Section 4.3.1), and the variance reduction technique in proposed in [107] to
demonstrate the effectiveness of the method. We remark that the boundedness of the volatility functions
{σi(x, s, t); i = 1, · · · ,m} for the instantaneous forward rates f (ϵ)(s, t) is one of the sufficient conditions
that guarantee the existence of the unique strong solution of the stochastic integral equation (97).

For evaluation of other various interest rate derivatives, approximations based on the asymptotic ex-
pansion approach can be derived in the similar manner. Moreover, an example of an approximate formula
for derivative prices dependent on the instantaneous forward rates in the HJM model and other variables
following general diffusion processes is given by [85].

7 Asymptotic Expansion in Jump and Jump-Diffusion Models

So far, we have used stochastic models whose randomnesses are generated by only Wiener processes.
However, we are also able to apply the asymptotic expansion approach to stochastic processes including
jumps in their sample paths. This section provides its very brief review. For the details, please see the
cited papers.

In terms of the mathematical viewpoint, Yoshida [120] presented an extension of Watanabe theory to
develop a framework for providing a validity of asymptotic expansions in Wiener-Poisson spaces, which can
be applied to jump-diffusion models under some regularity conditions. Hayashi [34] applied a Malliaivin
calculus of jump-type to prove an asymptotic expansion theorem for functionals of a Poisson random
measure, and Hayashi [35] derived the coefficients in the expansion of a call option price under a pure jump
model. Moreover, Hayashi and Ishikawa [36] proved an asymptotic expansion formula for the compositions
of a smooth Wiener-Poisson functional with Schwartz distributions.

In direct applications to finance problems, [51] and [87] derived asymptotic expansion to approximate
bond prices or/and plain-vanilla option prices under jump-diffusion with local volatility models.

Subsequently, [93] and [94] found a new expansion scheme for pricing long-term European currency
options under a Libor market model (LMM) and a general diffusion stochastic volatility model with jumps
of spot exchange rates. Particularly, thanks to a linear structure of the underlying asset price process
in their model, they separated the jump component with a known characteristic function to apply the
expansion technique developed in the diffusion models. Also, [100] took a Malliavin calculus approach to
derive asymptotic expansions of vanilla option prices in a jump-diffusion with stochastic volatility model.

Recently, [80] has generalized the preceding researches such as [51], [87] and [100] in the asymptotic
expansion approach, and developed a new approximation formula for pricing basket options in a local-
stochastic volatility model with jumps. In particular, the model admits local volatility functions and jump
components in not only the underlying asset price processes, but also the volatility processes. Moreover,
they implemented some numerical experiments to confirm the validity of the method. Please see the paper
for the details.

As an example of asymptotic expansions of option prices under jump-diffusion models, the next sub-
section describes the outline of the method by using a simplified version of [80].

7.1 Pricing Basket Options under Local Stochastic Volatility with Jumps

In the first place, we define the model of the underlying asset prices and its volatility processes, which
is used for pricing the European type basket options. In particular, suppose that the filtered probability
space (Ω,F , P, {Ft}t≥0) is given, where P is an equivalent martingale measure and the filtration satisfies
the usual conditions. The risk-free interest rate is assumed to be a nonnegative constant r for simplicity.
Then, (Si

t)t∈[0,T ] and (σi
t)t∈[0,T ], i = 1, · · · , d represent the underlying asset prices and their volatilities
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for t ∈ [0, T ], respectively. Particularly, let us assume that Si
T and σi

T are given by the solutions of the
following stochastic integral equations:

Si
T = si0 +

∫ T

0

αiSi
t−dt+

∫ T

0

ϕSi

(
σi
t−, S

i
t−
)
dWSi

t

+
n∑

l=1

Nl,T∑
j=1

hSi,l,jS
i
τj,l− −

∫ T

0

ΛlS
i
t−E[hSi,l,j ]dt

 , (107)

σi
T = σi

0 +

∫ T

0

λi(θi − σi
t−)dt+

∫ T

0

ϕσi

(
σi
t−
)
dWσi

t

+
n∑

l=1

Nl,T∑
j=1

hσi,l,jσ
i
τj,l− −

∫ T

0

Λlσ
i
t−E[hσi,l,j ]dt

 , (108)

where si0 and σi
0, i = 1, · · · , d are given as some constants. The notations are defined as follows:

• αi (i = 1, · · · , d) are constants.

λi and θi (i = 1, · · · , d) are nonnegative constants.

• ϕSi(x, y) and ϕσi(x) are some functions with appropriate regularity conditions.

• WSi

and Wσi

, (i = 1, · · · , d) are correlated Brownian motions.

• Each Nl, (l = 1, · · · , n) is a Poisson process with constant intensity Λl. Nl, l = 1, · · · , n are

independent, and also independent of all WSi

and W σi

.

• τj,l stands for the j-th jump time of Nl.

• For each l = 1, · · · , n and i = 1, · · · , d, both
(∑Nl,t

j=1 hSi,l,j

)
t≥0

and
(∑Nl,t

j=1 hσi,l,j

)
t≥0

are compound

Poisson processes. (
∑Nl,t

j=1 ≡ 0 when Nl,t = 0.)

• For each l and xi, hxi,l,j (j ∈ N) are independent and identically distributed random variables, where
xi stands for one of Si and σi (i = 1, · · · , d).

– for the log-normal jump case, hxi,l,j = eYxi,l,j − 1, where
Yxi,l,j is a random variable which follows a normal distribution with mean mxi,l and variance
γ2xi,l that is, N(mxi,l, γ

2
xi,l) for all j.

• hxi,l,j and hxi′ ,l′,j′ (l ̸= l′) are independent.

hxi,l,j and hxi′ ,l′,j′ (j ̸= j′) are independent.

Nl and hxi,l′,j are independent.

For the same l and j, hSi,l,j and hσi′ ,l,j (i, i′ = 1, · · · , d) are allowed to be dependent, that is YSi,l,j

and Yσi′ ,l,j (i, i′ = 1, · · · , d) are generally correlated.

Remark 8. By specifying the functions ϕS and ϕσ, we can express various types of local-stochastic volatility
models. For example, the model with ϕS(σ, S) = (aS2 + bS + c)

√
σ and ϕσ(σ) =

√
σ corresponds to an

extension of the Quadratic Heston model. The model with ϕS(σ, S) = SβSσ and ϕσ(σ) = σ corresponds to
an extended SABR (λ-SABR) model, and the one with ϕS(σ, S) = SβSσ and ϕσ(σ) = σβσ corresponds to
a local volatility on volatility with jumps model.
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Next, we introduce perturbations to the model (107) and (108). That is, for a known parameter ϵ ∈ [0, 1]
we consider the following stochastic integral equations: for i = 1, · · · , d,

S
i,(ϵ)
T = si0 +

∫ T

0

αiS
i,(ϵ)
t− dt+ ϵ

∫ T

0

ϕSi

(
σ
i,(ϵ)
t− , S

i,(ϵ)
t−

)
dWSi

t

+

n∑
l=1

Nl,T∑
j=1

h
(ϵ)
Si,l,jS

i,(ϵ)
τj,l− −

∫ T

0

ΛlS
i,(ϵ)
t− E[h

(ϵ)
Si,l,1]dt

 , (109)

σ
i,(ϵ)
T = σi

0 +

∫ T

0

λi(θi − σ
i,(ϵ)
t− )dt+ ϵ

∫ T

0

ϕσi

(
σ
i,(ϵ)
t−

)
dW σi

t

+
n∑

l=1

Nl,T∑
j=1

h
(ϵ)
σi,l,jσ

i,(ϵ)
τj,l− −

∫ T

0

Λlσ
i,(ϵ)
t− E[h

(ϵ)
σi,l,1]dt

 , (110)

where h
(ϵ)
xi,l,j = eϵYxi,l,j − 1, that is, we assume that the jump size follows a log-normal distribution,

ϵYxi,l,j ∼ N(ϵmxi,l, ϵ
2γ2xi,l).

We assume the asymptotic expansions of S
i,(ϵ)
T and σ

i,(ϵ)
T around ϵ = 0 as follows:

S
i,(ϵ)
T = S

i,(0)
T + ϵS

i,(1)
T +

ϵ2

2!
S
i,(2)
T + · · · , (111)

σ
i,(ϵ)
T = σ

i,(0)
T + ϵσ

i,(1)
T +

ϵ2

2!
σ
i,(2)
T + · · · , (112)

h
(ϵ)
xi,l,j = h

(0)
xi,l,j + ϵh

(1)
xi,l,j +

ϵ2

2!
h
(2)
xi,l,j + · · · , (113)

where S
i,(ι)
t :=

∂ιS
i,(ϵ)
t

∂ϵι

∣∣∣
ϵ=0

, σ
i,(ι)
t :=

∂ισ
i,(ϵ)
t

∂ϵι

∣∣∣
ϵ=0

, h
(ι)
xi,l,j :=

∂ιh
(ϵ)

xi,l,j

∂ϵι

∣∣∣
ϵ=0

.

We also suppose that (WS1

, · · · ,WSd

,W σ1

, · · · ,W σd

)′ = ϱ ·Z where ϱ is a 2d× 2d correlation matrix,
and Z is a 2d-dimensional (independent) Brownian motion.

For ease of the expressions we introduce the following notations:

• ΦSi,j := ϕSi(σi, Si)(ϱ)i,j and Φσi,j := ϕσi(σi)(ϱ)d+i,j , where (ϱ)i,j denotes the (i, j)-element of ϱ.

• ΦSi := (ΦSi,1, · · · ,ΦSi,2d) and Φσi := (Φσi,1, · · · ,Φσi,2d) are 2d-dimensional vectors.

• ΦS := (ΦS1 , · · · ,ΦSd)′ and Φσ := (Φσ1 , · · · ,Φσd)′ are d× 2d matricies.

• We define a operator ”∗” as follows: When A and B are d× 2d matrices,

A ∗B :=

 (A)1,1(B)1,1 · · · (A)1,2d(B)1,2d
...

. . .
...

(A)d,1(B)d,1 · · · (A)d,2d(B)d,2d

 . (114)

When A is a d× 2d matrix and B is a d-dimensional vector,

A ∗B = B ∗A :=

 (A)1,1(B)1 · · · (A)1,2d(B)1
...

. . .
...

(A)d,1(B)d · · · (A)d,2d(B)d

 . (115)

When A and B are d-dimensional vectors,

A ∗B :=

 (A)1(B)1
...

(A)d(B)d

 . (116)
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• We also define ∂xΦS (x = S or σ) as

∂xΦS :=


∂

∂x1 (ΦS)1,1 · · · ∂
∂x1 (ΦS)1,2d

...
. . .

...
∂

∂xd (ΦS)d,1 · · · ∂
∂xd (ΦS)d,2d

 , (117)

where (ΦS)i,j denotes the (i, j)-element of the d× 2d matrix ΦS .

• Let us introduce the following notations:

St = (S1
t , · · · , Sd

t ), σt = (σ1
t , · · · , σd

t ),

h
(i)
S,l,j = (h

(i)
S1,l,j , · · · , h

(i)

Sd,l,j
), h

(i)
σ,l,j = (h

(i)
σ1,l,j , · · · , h

(i)

σd,l,j
),

eαt = (eα
1t, · · · , eαdt) and eλt = (eλ

1t, · · · , eλdt).

Based on these preparations, we obtain the next proposition.

Proposition 2. The coefficients, S
(i)
T , σ

(i)
T and h

(i)
x,l,j(x =, S, σ), i = 0, 1, 2 in the expansions (111), (112)

and (113) are given as follows:

S
(0)
T = eαT ∗ s0, (118)

σ
(0)
T = θ + (σ0 − θ) ∗ e−λT , (119)

h
(0)
x,l,j = 0, (120)

S
(1)
T =

∫ T

0

eα(T−t) ∗ ΦS

(
σ
(0)
t− , S

(0)
t−

)
dZt +

n∑
l=1

Nl,T∑
j=1

h
(1)
S,l,j .− ΛlTE

[
h
(1)
S,l,1

] ∗ S(0)
T , (121)

σ
(1)
T =

∫ T

0

e−λ(T−t) ∗ Φσ

(
σ
(0)
t−

)
dZt +

n∑
l=1

Nl,T∑
j=1

h
(1)
σ,l,j ∗ e

−λ(T−τj,l) ∗ σ(0)
τj,l−

−ΛlE
[
h
(1)
σ,l,1

]
∗ e−λT ∗

∫ T

0

eλt ∗ σ(0)
t− dt

)
, (122)

h
(1)
x,l,j = Yx,l,j := (Yx1,l,j , · · · , Yxd,l,j), (123)

S
(2)
T = 2

∫ T

0

eα(T−t) ∗ ∂SΦS

(
σ
(0)
t− , S

(0)
t−

)
∗ S(1)

t− dZt + 2

∫ T

0

eα(T−t) ∗ ∂σΦS

(
σ
(0)
t− , S

(0)
t−

)
∗ σ(1)

t− dZt

+
n∑

l=1

(
Nl,T∑
j=1

h
(2)
S,l,j − ΛlTE

[
h
(2)
S,l,1

] ∗ S(0)
T

+2

Nl,T∑
j=1

h
(1)
S,l,j ∗ e

α(T−τj,l) ∗ S(1)
τj,l− − 2ΛlE

[
h
(1)
S,l,1

]
∗ eαT ∗

∫ T

0

e−αt ∗ S(1)
t− dt

)
, (124)

h
(2)
x,l,j = Yx,l,j ∗ Yx,l,j . (125)

Next, let us define the payoff of a basket call option with strike price K as

(g(x)−K)
+
(:= max{g(x)−K, 0}), (126)

g(x) := w · x =

d∑
i=1

wix
i,

where g(x) represents a weighted sum of the underlying asset prices of x1, · · · , xd with the constant weights
w1, · · · , wd. Here, we set x := (x1, · · · , xd) and w := (w1, · · · , wd).
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For an approximation of a basket option price, we firstly note that g
(
S
(ϵ)
T

)
is expanded around ϵ = 0

as:

g
(
S
(ϵ)
T

)
= g

(
S
(0)
T

)
+ ϵg

(
S
(1)
T

)
+
ϵ2

2
g
(
S
(2)
T

)
+ o(ϵ2). (127)

Then, for a strike price K = g(S0
T )− ϵy for an arbitrary y ∈ R, the payoff of the call option with maturity

T is expanded as follows:

(
g
(
S
(ϵ)
T

)
−K

)+
= ϵ

(
g(S

(ϵ)
T )− g(S

(0)
T )

ϵ
+ y

)+

= ϵ
(
g
(
S
(1)
T

)
+
ϵ

2
g
(
S
(2)
T

)
+ y + o(ϵ)

)+
= ϵ

(
g(S

(1)
T ) + y

)+
+
ϵ2

2
1{

g(S
(1)
T )>−y

}g (S(2)
T

)
+ o(ϵ2). (128)

We next note that when the number of jumps is kl (l = 1, · · · , n), that is on {Nl = kl} := {N1,T = k1, · · · , Nn,T = kn},
S
(1)
T in the equation (121) becomes

ξ{kl} + ŜT , (129)

where

ξ{kl} :=
n∑

l=1

(kl − ΛlT )mS,l ∗ S(0)
T (130)

and

ŜT :=

∫ T

0

eα(T−t) ∗ ΦS

(
σ
(0)
t , S

(0)
t

)
dZt +

n∑
l=1

 kl∑
j=1

γS,l ∗ ζS,j,l ∗ S(0)
T

 . (131)

Here, we use the following notations:

• γS,l = (γS1,l, · · · , γSd,l)

• ζS,j,l = (ζS1,j,l, · · · , ζSd,j,l) is a vector of random variables, where ζSi,j,l follows N(0, 1), that is the
standard normal distribution.

We remark that the distribution of g(ŜT ) is N
(
0,Σ

{kl}
T

)
, that is the normal distribution with mean zero

and variance Σ
{kl}
T whose density function is expressed as

n
(
x; 0,Σ

{kl}
T

)
:=

1√
2πΣ

{kl}
T

exp

{
−x2

2Σ
{kl}
T

}
. (132)

Here, Σ
{kl}
T is defined as follows:

Σ
{kl}
T :=

∫ T

0

(
w ∗ eα(T−t) ∗ ΦS

(
σ
(0)
t , S

(0)
t

))⊤ (
w ∗ eα(T−t) ∗ ΦS

(
σ
(0)
t , S

(0)
t

))
dt

+
n∑

l=1

kl(w ∗ γS,l ∗ S(0)
T )⊤ϑζS,l

(w ∗ γS,l ∗ S(0)
T ), (133)

where ϑζS,l
stands for the correlation matrix of ζS,j,l = (ζS1,j,l, · · · , ζSd,j,l), and x

⊤ denotes the transpose
of x.
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Next, we define

η2(x, {kl}) = E
[
g
(
S
(2)
T

) ∣∣∣g(ŜT ) = x, {Nl = kl}
]
. (134)

With those preparations, we approximate the expectation of the basket call payoff under an equivalent
martingale measure in the following way:

E

[(
g
(
S
(ϵ)
T

)
−K

)+]
= ϵE

[
E

[(
g(S

(1)
T ) + y

)+ ∣∣∣g(ŜT ) = x, {Nl = kl}
]]

+
ϵ2

2
E

[
E

[
1{

g(S
(1)
T )>−y

}g (S(2)
T

) ∣∣∣g(ŜT ) = x, {Nl = kl}
]]

+ o(ϵ2). (135)

We also note that the probability of {Nl = kl} := {N1,T = k1, · · · , Nn,T = kn} is expressed as

p{kl} :=
n∏

l=1

(ΛlT )
kle−ΛlT

kl!
, (136)

which is the product of the kl times of the jump probabilities of Nl,T (l = 1, · · · , n),
that is

∏n
l=1 P ({Nl,T = kl}), thanks to the independence of Nl,T (l = 1, · · · , n).

Then, we calculate the coefficients of ϵ and ϵ2

2 on the right hand of (135) as follows: The coefficient of
ϵ is given by:

E

[
E

[(
g
(
S
(1)
T

)
+ y
)+ ∣∣∣g(ŜT ) = x, {Nl = kl}

]]
=

∞∑
k=0

∑
∑n

l=1 kl=k

p{kl}

∫ ∞

−(g(ξ{kl})+y)

(
x+ g(ξ{kl}) + y

)
n(x; 0,Σ

{kl}
T )dx, (137)

and the coefficient of ϵ2

2 is given by:

E

[
E

[
1{

g(S
(1)
T )>−y

}g (S(2)
T

) ∣∣∣g(ŜT ) = x, {Nl = kl}
]]

=

∞∑
k=0

∑
∑n

l=1 kl=k

p{kl}

∫ ∞

−(g(ξ{kl})+y)

η2(x, {kl})n(x; 0,Σ{kl}
T )dx. (138)

Then, the initial value, C(K,T ) of the basket call option with maturity T and strike K is expanded
around ϵ = 0 as follows:

C(K,T ) =
∞∑
k=0

∑
∑n

l=1 kl=k

p{kl}e
−rT

{
ϵ

∫ ∞

−y{kl}

(x+ y{kl}) n(x; 0,Σ
{kl}
T )dx+ ϵ2

∫ ∞

−y{kl}

η2(x, {kl})n(x; 0,Σ{kl}
T )dx

}
+ o(ϵ2),

(139)

where y{kl} := g(ξ{kl}) + y, and r is a constant risk-free rate.
In order to evaluate η2(x, {kl}), that is the conditional expectation defined in (134), we apply some

formulas derived in Lemma 3.2 of [80].
Consequently, with ϵ = 1 we obtain an approximate pricing formula for a basket call option, which

corresponds to an asymptotic expansion of the basket option price up to the ϵ2-order.
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Theorem 5. An approximation formula for the initial value C(K,T ) of an basket call option with maturity
T and strike price K is given by the following equation:

∞∑
k=0

∑
∑n

l=1 kl=k

p{kl}e
−rT

{
(ykl

+ C1)N

(
ykl√
Σ

{kl}
T

)
+

(
C2Σ

{kl}
T + C3

H1

(
ykl

; Σ
{kl}
T

)
Σ

{kl}
T

+C4

H2

(
ykl

; Σ
{kl}
T

)
(
Σ

{kl}
T

)2 + C5

)
n
(
ykl

; 0,Σ
{kl}
T

)}
, (140)

where p{kl} =
∏n

l=1
(ΛlT )kle−ΛlT

kl!
, r is a constant risk-free rate, y = g(S

(0)
T )−K, y{kl} = g(ξ{kl}) + y, N(x)

denotes the standard normal distribution function and n(x; 0,Σ) = 1√
2πΣ

exp
(

−x2

2Σ

)
. Here, Σ

{kl}
T is given

by (133), and ξ{kl} is defined by (130). C1, C2 C3, C4 and C5 are some constants, which are given with the

derivations in Appendix B of [80]. Moreover, Hk

(
x; Σ

{kl}
T

)
denotes the k-th order Hermite polynomial:

particularly, H1

(
x; Σ

{kl}
T

)
= x and H2

(
x; Σ

{kl}
T

)
= x2 − Σ

{kl}
T .

8 Perturbation Scheme in Forward Backward Stochastic Differ-
ential Equations (FBSDEs)

The FBSDEs have become quite popular in finance community since El Karoui, Peng and Quenez [16],
especially after the recent financial crises and the subsequent quite volatile markets, which leads us to
recognize the importance of counter party risk management, particularly the credit value adjustments
(CVA).

However, an explicit solution for a FBSDE has been known only for a simple linear or quadratic
example. Although several techniques have been proposed in the last decade, they seem very limited in
practical applications since they rely on numerical methods for non-linear partial differential equations
(PDEs) or regression based Monte Carlo simulations, which are generally very difficult to implement or
quite time-consuming especially for high-dimensional and long-horizon problems.

Recently, [25] has developed a simple analytical approximation scheme for the nonlinear FBSDEs,
notably for not only the so called decoupled cases but also the coupled cases. [25] has introduced a
perturbation parameter to the generator of a backward stochastic differential equation (BSDE) to expand
recursively the non-linear terms around a relevant linear FBSDE. In the computation of each order, [25]
explicitly represents the backward elements as the functions of the forward components and take those
expectations. Hence, except the cases that the distributions of the forward process are explicitly known,
we need to apply some approximations of the distributions, and so, again, the asymptotic expansion
technique for the forward stochastic differential equation (FSDE) is useful in the approximations. Section
8.1 below illustrates the scheme briefly. [25] also provided two numerical examples, where the second-order
analytic approximations work quite well compared to numerical techniques such as the finite difference
method and the regression-based Monte Carlo simulation. Please see the paper for the detail.

Moreover, their subsequent work [26] has applied this scheme to the optimal portfolio problem in an
incomplete market with stochastic volatility, and demonstrated the accurate approximations even for long
maturities such as 10 years, as opposed to the regression based Monte Carlo simulation which works well
only up to short maturities such as one year.

We also note that the method has a great advantage of deriving explicit expressions of the optimal
portfolios and hedging strategies, that is very important in practice. Furthermore, we can employ the
method for the general multi-dimensional cases.

In order to achieve further reduction of computational burdens in this method, the scheme with an
interacting particle method has been recently developed. Section 8.2 describes the outline. Please also see
[29] as an application of the method to American option pricing.

Furthermore, [104] provides a mathematical foundation for the original scheme in the decoupled case
proposed in [25]. (The justification for the coupled case seems an important and interesting research topic.)
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It mainly consisted of two parts. That is, for the BSDE expansion with a perturbed generator they have
obtained the coefficients up to an arbitrary order as the solution to a system of the associated BSDEs with
the base FSDE, and present the error estimate of the expansion. Accordingly, they showed a concrete
representation for each expansion coefficient of the volatility component, that is the martingale integrand
in the BSDE. For the FSDE expansion, they derived an expansion formula with its sharp error estimate
for the expectation of the solution to the base FSDE in terms of a small diffusion. Then, they combine
the both results, particularly applying the FSDE expansion formula to the BSDE expansion coefficients
to obtain a main result, that is an asymptotic expansion of FBSDEs with a perturbed generator. In the
proofs, [104] effectively applied the representation results in Ma and Zhang [63] for the BSDE expansion
and the properties of the Kusuoka-Stroock functions in Kusuoka [52] for the FSDE expansion.

In a different stream, [102] has proposed a new semi closed-form approximation for the solutions of
FBSDEs. In particular, applying the asymptotic expansion method in [100] and [103] to the forward
SDEs with a Picard-type iteration scheme for the BSDEs, they have obtained an error estimate for the
approximation. Moreover, they demonstrated the effectiveness of the method through numerical examples
for pricing options with counter party risk under the local and stochastic volatility models, where the credit
value adjustment (CVA) is taken into account. Roughly speaking, considering a perturbed forward SDE
Xε, ε ∈ (0, 1] and an associated backward SDE (Y ε, Zε), they have the following recursive asymptotic
expansion around some non-degenerate gaussian model X̄0. That is, for k ≥ 0, N ≥ 1

Y ε,t,x
t ≃ uε,k+1,N (t, x) = E[g(X̄0,t,x

T )] + E

[∫ T

t

f(s, X̄0,t,x
s , Y ε,k,N,t,x

s , Zε,k,N,t,x
s )ds

]

+
N∑
i=1

εiE[g(X̄0,t,x
T )π0,t

i,T ] +
N∑
i=1

εiE

[∫ T

t

f(s, X̄0,t,x
s , Y ε,k,N,t,x

s , Zε,k,N,t,x
s )π0,t

i,sds

]
, (141)

Zε,t,x
t ≃ (∇uε,k+1,Nσ)(t, x) =

{
E[g(X̄0,t,x

T )N0,t
0,T ] + E

[∫ T

t

f(s, X̄0,t,x
s , Y ε,k,N,t,x

s , Zε,k,N,t,x
s )N0,t

0,sds

]

+

N∑
i=1

εiE[g(X̄0,t,x
T )N0,t

i,T ] +

N∑
i=1

εiE

[∫ T

t

f(s, X̄0,t,x
s , Y ε,k,N,t,x

s , Zε,k,N,t,x
s )N0,t

i,s ds

]}
εσ(t, x),

(142)

where Y ε,k,N,t,x
s = uε,k,N (s, X̄0,t,x

s ) and Zε,k,N,t,x
s = (∇xu

ε,k,Nσ)(s, X̄0,t,x
s ). Here, the processes π0

i,t and

N0
i,t, i = 1, · · · , N are the Malliavin weights and in particular, N0

0,t corresponds to the weight appeared in
a representation theorem in Ma and Zhang [63].

8.1 Expansion with Perturbed Generator in BSDE

This subsection briefly describes the perturbation method following [25]. Firstly, let us consider the fol-
lowing decoupled FBSDE:

dVt = −f(Xt, Vt, Zt)dt+ Zt · dWt (143)

VT = Φ(XT ),

where V takes the value in R, W is a r-dimensional Winer process, and Xt valued in R is assumed to
follow a diffusion process, which is the solution to the (forward) SDE:

dXt = γ0(Xt)dt+ γ(Xt) · dWt; X0 = x . (144)

Hereafter, we assume the appropriate regularity conditions that guarantee the mathematical validity. For
example, pleases see [104] on this point.

In order to approximate the pair of (Vt, Zt) in terms of Xt, we extract the linear term from the generator
f and treat the residual non-linear term as a perturbation to the linear FBSDE. That is, let us introduce
a perturbation parameter ϵ, and then write the equation as

dV
(ϵ)
t = c(Xt)V

(ϵ)
t dt− ϵg(Xt, V

(ϵ)
t , Z

(ϵ)
t )dt+ Z

(ϵ)
t · dWt (145)

V
(ϵ)
T = Φ(XT ).
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Here, the above equation with ϵ = 1 corresponds to the original model:

f(Xt, Vt, Zt) = −c(Xt)Vt + g(Xt, Vt, Zt) . (146)

We remark that as in the previous asymptotic expansion cases, the residual part g should be small for a

precise approximation. Hence, one should choose the linear term c(Xt)V
(ϵ)
t in such a way that the residual

non-linear term g becomes as small as possible.

Now, we are going to expand the solution of BSDE (145) with respect to ϵ. That is, suppose V
(ϵ)
t and

Z
(ϵ)
t are expanded as follows:

V
(ϵ)
t = V

(0)
t + ϵV

(1)
t + ϵ2V

(2)
t + · · · (147)

Z
(ϵ)
t = Z

(0)
t + ϵZ

(1)
t + ϵ2Z

(2)
t + · · · . (148)

For illustrative purpose, let us show a first few steps of the expansion. For the zero-th order of ϵ, it is easily

seen that V
(0)
t is a solution to the following equation:

dV
(0)
t = c(Xt)V

(0)
t dt+ Z

(0)
t · dWt (149)

V
(0)
T = Φ(XT ) . (150)

Then, V
(0)
t can be represented as follows:

V
(0)
t = E

[
e−

∫ T
t

c(Xs)dsΦ(XT )
∣∣∣Ft

]
, (151)

which is equivalent to the value of a standard European contingent claim with the terminal payoff Φ(XT )

and the discount rate c(Xt) under a suitable pricing measure. Clearly, V
(0)
t is a function of Xt due to the

Markovain nature of the model. Moreover, applying Itô’s formula (or the Malliavin derivative), we are able

to obtain Z
(0)
t as a function of Xt as well.

Next, let us consider the process V (ϵ) − V (0):

d
(
V

(ϵ)
t − V

(0)
t

)
= c(Xt)

(
V

(ϵ)
t − V

(0)
t

)
dt

− ϵg(Xt, V
(ϵ)
t , Z

(ϵ)
t )dt+

(
Z

(ϵ)
t − Z

(0)
t

)
· dWt

V
(ϵ)
T − V

(0)
T = 0 . (152)

Now, by extracting the ϵ-first order term, we can once again recover the linear FBSDE:

dV
(1)
t = c(Xt)V

(1)
t dt− g(Xt, V

(0)
t , Z

(0)
t )dt+ Z

(1)
t · dWt

V
(1)
T = 0 , (153)

which leads to

V
(1)
t = E

[∫ T

t

e−
∫ u
t

c(Xs)dsg(Xu, V
(0)
u , Z(0)

u )du

∣∣∣∣∣Ft

]
. (154)

Because V
(0)
u and Z

(0)
u are some functions of Xu, we obtain V

(1)
t as a function of Xt, and also Z

(1)
t through

Itô’s formula (or Malliavin derivative).
In exactly the same way, we are able to derive an arbitrarily higher order correction. Particularly, due to

the ϵ in front of the non-linear term g, the system remains to be linear in every order of the approximation.

For example, V
(2)
t that is the ϵ2-order’s coefficient of the expansion of V

(ϵ)
t is the solution to the following

equation:

dV
(2)
t = c(Xt)V

(2)
t dt−

(
∂

∂v
g(Xt, V

(0)
t , Z

(0)
t )V

(1)
t

+ ∇zg(Xt, V
(0)
t , Z

(0)
t ) · Z(1)

t

)
dt+ Z

(2)
t · dWt (155)

V
(2)
T = 0.
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In general, suppose that we have succeeded to represent backward components (Vt, Zt) in terms of Xt

up to the (i− 1)-th order. Then, in order to proceed to a higher order approximation, we need to obtain
the following form of expressions with some deterministic function G(·) in terms of the forward components
Xt.

V
(i)
t = E

[∫ T

t

e−
∫ u
t

c(Xs)dsG
(
Xu

)
du

∣∣∣∣∣Ft

]
. (156)

Even if it seems impossible to get the exact result, we can still have an analytic approximation for

(V
(i)
t , Z

(i)
t ). through again, the asymptotic expansion method.

As an example, [26] has explicitly derived an approximation formula for the dynamic optimal portfolio in
an incomplete market setting, and confirmed its accuracy comparing with the exact result by the Cole-Hopf
transformation (Zariphopoulou [121]).

Finally, let us provide a brief remark on an approximation of coupled FBSDEs. Let us consider the
following generic coupled non-linear FBSDE:

dVt = −f(t,Xt, Vt, Zt)dt+ Zt · dWt (157)

VT = Φ(XT )

dXt = γ0(t,Xt, Vt, Zt)dt+ γ(t,Xt, Vt, Zt) · dWt; X0 = x .

We are able to treat this case in the similar way as in the decoupled case by introducing perturbations to
the forward SDE in addition to the one in BSDE:

dV
(ϵ)
t = c(t,X

(ϵ)
t )V

(ϵ)
t dt− ϵg

(
t,X

(ϵ)
t , V

(ϵ)
t , Z

(ϵ)
t

)
dt+ Z

(ϵ)
t · dWt

V
(ϵ)
T = Φ

(
X

(ϵ)
T

)
dX

(ϵ)
t =

(
r
(
t,X

(ϵ)
t

)
+ ϵµ

(
t,X

(ϵ)
t , V

(ϵ)
t , Z

(ϵ)
t

))
dt

+
(
σ
(
t,X

(ϵ)
t

)
+ ϵη

(
t,X

(ϵ)
t , V

(ϵ)
t , Z

(ϵ)
t

))
· dWt

We also note that the similar method can be applied to the coupled case under a PDE (partial differential
equation) formulation based on the so called four step scheme (e.g. Ma-Yong [62].) Please see [25] for the
details. Developing a mathematical validity of the scheme for the coupled case will be one of the research
topics in the future.

8.2 Perturbation Scheme with Interacting Particle Method

This subsection briefly introduces a new scheme proposed by [27]. Except the cases that we are able to
obtain fully closed form expressions, the high orders’ expansions of perturbed FBSDEs generally contain
multi-dimensional time integrations of expectation values due to a convoluted nature of the scheme, which
makes standard Monte Carlo simulations too time consuming. To avoid nested simulations, one can
applies a particle representation inspired by the ideas of branching diffusion models(e.g. Fujita [23], Ikeda,
Nagasawa and Watanabe ([40], [41], [42]), McKean [69], Nagasawa and Sirao [70] ). Then, we are able to
provide a straightforward simulation scheme to solve nonlinear FBSDEs at each order of the approximation
based on the perturbation. In particular, comparing to the direct application of the branching diffusion
method, the method is expected to be less numerically intensive, because thanks to expansions of the
perturbed generator, the interested system is already decomposed into a set of linear problems. We
illustrate the outline of the method by following [27].

Again, let us introduce a perturbation parameter ϵ in the generator of a BSDE as follows:{
dV

(ϵ)
s = −ϵf(Xs, V

(ϵ)
s , Z

(ϵ)
s )ds+ Z

(ϵ)
s · dWs

V
(ϵ)
T = Ψ(XT ),

(158)

where Xt ∈ R is assumed to follow a generic Markovian forward SDE:

dXs = γ0(Xs)ds+ γ(Xs) · dWs; Xt = xt. (159)
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Next, let us fix the initial time as t. We denote the Malliavin derivative of Xu (u ≥ t) at time t as

DtXu ∈ Rr×d. (160)

Let us also note that in terms of the future time u, the SDE of (Yt,u)
i
j defined by (Yt,u)

i
j = ∂xj

t
Xi

u is given

in the following:

d(Yt,u)
i
j = ∂kγ

i
0(Xu)(Yt,u)

k
j du+ ∂kγ

i
a(Xu)(Yt,u)

k
j dW

a
u

(Yt,t)
i
j = δij , (161)

where ∂k denotes the partial differentiation with respect to the k-th component of X, and δij stands for
the Kronecker delta. Here, i and j run through {1, · · · , d} and {1, · · · , r} for a, and we adopt the Einstein
notation which assumes the summation of all the paired indexes. Then, it is well-known that

(DtX
i
u)a = (Yt,uγ(xt))

i
a,

where a ∈ {1, · · · , r} is the index of r-dimensional Winer process.
First, for the ϵ-zeroth order, it is easy to see

V
(0)
t = E

[
Ψ(XT )

∣∣∣Ft

]
(162)

Z
(0),a
t = E

[
∂iΨ(XT )(YtT γ(Xt))

i
a

∣∣∣Ft

]
. (163)

Then, it is clear that they can be evaluated by standard Monte Carlo simulations. However, for their
use in higher order approximations, it is crucial to obtain analytical (closed form) approximate expressions
for these two quantities, for example based on the asymptotic expansion technique as before.

In the following, let us suppose that we have obtained the solutions up to a given order of the asymptotic
expansion, and write each of them as a function of xt:{

V
(0)
t = v(0)(xt)

Z
(0)
t = z(0)(xt).

(164)

Next, for the ϵ-first order’s coefficient V
(1)
t , we obtain an expression as

V
(1)
t =

∫ T

t

E
[
f(Xu, V

(0)
u , Z(0)

u )
∣∣∣Ft

]
du

=

∫ T

t

E
[
f
(
Xu, v

(0)(Xu), z
(0)(Xu)

)∣∣∣Ft

]
du. (165)

Then, we define the new process for (s > t) by introducing a deterministic positive process λt as follows:

V̂
(1)
ts = e

∫ s
t
λuduV (1)

s , (166)

Here, λt can be a positive constant for the simplest case. Then, for the fixed initial time t, its SDE is given
by

dV̂
(1)
ts = λsV̂

(1)
ts ds− λsf̂ts(Xs, v

(0)(Xs), z
(0)(Xs))ds+ e

∫ s
t
λuduZ(1)

s · dWs ,

where

f̂ts(x, v
(0)(x), z(0)(x)) =

1

λs
e
∫ s
t
λuduf(x, v(0)(x), z(0)(x)).

Since we have V̂
(1)
tt = V

(1)
t , one can easily see the following relation holds:

V
(1)
t = E

[∫ T

t

e−
∫ u
t

λsdsλuf̂tu(Xu, v
(0)(Xu), z

(0)(Xu))du

∣∣∣∣∣Ft

]
(167)

Similarly to the cases of the standard credit risk modeling (e.g. Bielecki-Rutkowski [6]), it is the present

value of default payment where the default intensity is λs with the default payoff at s(> t) as f̂ts(Xs, v
(0)(Xs), z

(0)(Xs)).
Thus, we obtain the following proposition.
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Proposition 3. The V
(1)
t in (165) can be equivalently expressed as

V
(1)
t = 1{τ>t}E

[
1{τ<T}f̂tτ

(
Xτ , v

(0)(Xτ ), z
(0)(Xτ )

)∣∣∣Ft

]
. (168)

Here τ is the interaction time where the interaction is drawn independently from the Poisson distribution
with an arbitrary deterministic positive intensity process λt. f̂ is defined as

f̂ts(x, v
(0)(x), z(0)(x)) =

1

λs
e
∫ s
t
λuduf(x, v(0)(x), z(0)(x)) . (169)

Now, let us consider the ϵ-order’s coefficient of Z(ϵ), that is the component Z(1). It can be expressed as

Z
(1)
t =

∫ T

t

E
[
Dtf

(
Xu, v

(0)(Xu), z
(0)(Xu)

)∣∣∣Ft

]
du (170)

Firstly, we observe that the SDE of the Malliavin derivative of V (1) is given as follows:

d(DtV
(1)
s ) = −(DtX

i
s)∇i(x, v

(0), z(0))f(x, v(0), z(0)) + (DtZ
(1)
s ) · dWs;

DtV
(1)
t = Z

(1)
t , (171)

where

∇i(x, v
(0), z(0)) ≡ ∂i + ∂iv

(0)(x)∂v + ∂iz
a(0)(x)∂za , (172)

f(x, v(0), z(0)) ≡ f(x, v(0)(x), z(0)(x)). (173)

Then, we define for (s > t), D̂tV
(1)
s as

D̂tV
(1)
s = e

∫ s
t
λudu(DtV

(1)
s ), (174)

and its SDE can be written as

d(D̂tV
(1)
s ) = λs(D̂tV

(1)
s )ds− λs(DtX

i
s)∇i(Xs, v

(0), z(0))f̂ts(Xs, v
(0), z(0))ds

+e
∫ s
t
λudu(DtZ

(0)
s ) · dWs. (175)

Then, we again have

D̂tV
(1)
t = Z

(1)
t . (176)

Hence,

Z
(1)
t = E

[∫ T

t

e−
∫ u
t

λsdsλu(DtX
i
u)∇i(Xu, v

(0), z(0))f̂tu(Xu, v
(0), z(0))du

∣∣∣∣∣Ft

]
. (177)

Thus, following the same argument as for the previous proposition, we have the next result:

Proposition 4. Z
(1)
t in (170) is equivalently expressed as

Z
(1),a
t = 1{τ>t}E

[
1{τ<T}(Yt,τγ(Xτ ))

i
a∇i(Xτ , v

(0), z(0))f̂tτ (Xτ , v
(0), z(0))

∣∣∣Ft

]
, (178)

where the definitions of random time τ and the positive deterministic process λ are the same as those in
the previous proposition.
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Now, we are able to obtain a new Monte Carlo scheme. That is, we have a new particle interpretation
of (V (1), Z(1)) as follows:

V
(1)
t = 1{τ>t}E

[
1{τ<T}f̂tτ

(
Xτ , v

(0), z(0)
)∣∣∣Ft

]
(179)

Z
(1)
t = 1{τ>t}E

[
1{τ<T}(Yt,τγ(Xτ ))

i∇i(Xτ , v
(0), z(0))f̂tτ (Xτ , v

(0), z(0))
∣∣∣Ft

]
, (180)

which allows an efficient time integration with the following Monte Carlo scheme:

• Run the diffusion processes of X and Y .

• Carry out Poisson draw with probability λs∆s at each time s and if ”one” is drawn, set that time as
τ .

• Then stores the relevant quantities at τ , or in the case of (τ > T ) stores 0.

• Repeat the above procedures and take their expectation.

Finally, we remark that the higher order coefficients in the expansions are evaluated in the similar way.
Please see [27] for the details.

9 Conclusion

The present note has reviewed an asymptotic expansion approach in finance, particularly in terms of com-
putational problems arising in practice of financial derivatives. in finance. However, due to the limitation of
the space, we have not provided thorough explanations especially for recent progress such as improvement
schemes in Section 5, expansion methods in jump and jump-diffusion models in Section 7 and perturbation
schemes in forward backward stochastic differential equations (FBSDEs) in Section 8. Please see the cited
papers for the details.

Moreover, we have not introduced an application of the method to mean-variance hedging problems in
partially observable markets, which is an interesting topic as an application of stochastic filtering problems
in finance. Please see [29] for the detail.

(Acknowledgment) I am very grateful to Professor Fujii, Professor Shiraya, Professor Takehara, Dr.
Toda, Dr. Tsuzuki and Professor Yamada, my coauthors in the original articles, which are main bases for
this survey.
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