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Abstract

In this paper, we study a class of quadratic-exponential growth BSDEs with jumps.
The quadratic structure was introduced by Barrieu & El Karoui (2013) and yields a
very useful universal bound on the possible solutions. With the bounded terminal
condition as well as an additional local Lipschitz continuity, we give a simple and
streamlined proof for the existence and the uniqueness of the solution. The univer-
sal bound and the stability result for the locally Lipschitz BSDEs with coefficients
in the BMO space enable us to show the strong convergence of a sequence of glob-
ally Lipschitz BSDEs. The result is then used to generalize the existing results on
the Malliavin’s differentiability of the quadratic BSDEs in the diffusion setup to the
quadratic-exponential growth BSDEs with jumps.

Keywords : jump, random measure, Lévy, Malliavin derivative, asymptotic expansion

1 Introduction

The backward stochastic differential equations (BSDEs) have been subjects of strong in-
terest of many researchers since they were introduced by Bismut (1973) [5] and generalized
later by Pardoux & Peng (1990) [30]. This is particularly because they provide a truly
probabilistic approach to stochastic control problems, which has been soon recognized as
a very powerful tool both for theoretical as well as numerical issues in many important
applications.

More recently, there has appeared an acute interest in quadratic-growth BSDEs be-
cause of their various fields of applications such as, risk sensitive control problems, dynam-
ics risk measures and indifference pricing in an incomplete market. The first breakthrough
was made by Kobylanski (2000) [24] in a Brownian filtration with a bounded terminal con-
dition. The result was then extended by Briand & Hu (2006, 2008) [7, 8] to unbounded
solutions. Direct convergence based on a fixed-point theorem was proposed by Tevzadze
(2008) [33]. Various extensions/applications can be found in, for example, Hu, Imkeller
& Muller (2005) [18], Mania & Tevzadze (2006) [26], Morlais (2009) [27], Hu & Schweizer
(2011) [19], Delbaen, Hu & Richou (2011) [11].

In contrast to the diffusion setup, the number of researches on quadratic BSDEs with
jumps has been rather small. Morlais (2010) [28] deals with a particular BSDE appearing
in the exponential utility optimization with jumps using the technique of Kobylanski [24],

∗All the contents expressed in this research are solely those of the author and do not represent any
views or opinions of any institutions. The author is not responsible or liable in any manner for any losses
and/or damages caused by the use of any contents in this research.

†Quantitative Finance Course, Graduate School of Economics, The University of Tokyo.
‡Quantitative Finance Course, Graduate School of Economics, The University of Tokyo.
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from which it inherits the complexity in showing the strong convergence of martingale
components. Cohen & Elliott (2015) [9] and also Kazi-Tani, Possamai & Zhou (2015) [23]
have adopted the fixed-point approach of Tevzadze [33], from which they inherit the re-
quirement of the second order differentiability of the driver.

Recently, Barrieu & El Karoui (2013) [4] have proposed a totally new approach based
on a stability of quadratic semimartingales by introducing a so-called quadratic structure
condition. They have shown the existence of a solution, without the uniqueness, under
the minimal assumption allowing the unbounded terminal condition in a continuous setup.
Their result has been extended to the exponential utility optimization in a market with
counterparty default risks by generalizing quadratic structure condition to a quadratic-
exponential (Qexp) structure condition in Ngoupeyou (2010) [29] (See also Jeanblanc,
Matoussi & Ngoupeyou (2013) [20].).

In this paper, we propose a new application of the result [4] to a class of BSDEs
satisfying theQexp-growth as well as the local Lipschitz continuity with a bounded terminal
condition in the presence of σ-finite random Poisson measures. In contrast to the existing
works, we exploit the universal bound found in [4, 29] and the properties of the BSDEs with
the local Lipschitz condition whose coefficients belong to the space of H2

BMO. By deriving
a new stability result, we are able to show the uniqueness in a very simple fashion without
relying on the comparison principle. Note that, in order for the comparison principle to
hold, one needs a stronger assumption than the Lipschitz continuity in the setups with
jumps (See, Barles, Buckdahn & Pardoux (1997) [3].). Furthermore, we have shown the
existence of a solution by the convergence of a sequence of globally Lipschitz BSDEs in
the space S∞ ×H2

BMO × J2BMO by directly applying the stability result used in the proof
of the uniqueness. This approach greatly simplifies the classical result of Kobylanski [24]
for the martingale components in particular.

Moreover, the strongly converging sequence of Lipschitz BSDEs allows us to obtain
the sufficient conditions for the Malliavin’s differentiability of the Qexp-growth BSDEs
with jumps. This extends the work of Ankirchner, Imkeller & Dos Reis (2007) [1] on the
Malliavin’s differentiability in the diffusion setup. The obtained representation theorem
will be useful for the optimal hedging problems in financial applications, investigations on
the path regularity necessary for numerical as well as analytical issues, and also for the
development of an asymptotic expansion for the BSDEs 1.

The organization of the paper is as follows: Section 2 gives preliminaries including some
important results on the BMO martingales. Section 3 explains the setup of Qexp-growth
BSDEs with jumps and gives the uniqueness result. Section 4 constructs a sequence
of regularized BSDEs and then shows the existence of a solution by their convergence.
Sections 5 deals with the Malliavin’s differentiability of the Qexp-growth BSDEs, which
is then applied to a forward-backward system to obtain a representation theorem on the
martingale components in Section 6. Appendix A is a simple generalization of the results
by Ankirchner, Imkeller & Dos Reis (2007) [1] and Briand & Confortola (2008) [6] on
the locally Lipschitz BSDEs with BMO coefficients to the setup with jumps. Appendix
B gives a detailed proof for the Malliavin’s differentiability of the Lipschitz BSDEs with
jumps, which generalizes the result of Delong & Imkeller (2010) [13] and Delong (2013) [12]
to local (instead of global) Lipschitz continuity for the Malliavin derivative of the driver,
which becomes necessary to investigate a forward-backward system driven by a Markovian
forward process.

1Recently, we have proposed an analytic approximation method of the Lipschitz BSDEs with jumps in
Fujii & Takahashi (2015) [16], which is based on the small-variance asymptotic expansion (See, Takahashi
(2015) [34] as a general review.). Its extension to the Qexp-growth BSDEs is now ready to be investigated
using the new results obtained here, which will be pursued in a different opportunity.
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2 Preliminaries

2.1 General Setting

Let us first state the general setting to be used throughout the paper. T > 0 is some
bounded time horizon. The space (ΩW ,FW ,PW ) is the usual canonical space for a d-
dimensional Brownian motion equipped with the Wiener measure PW . We also denote
(Ωµ,Fµ,Pµ) as a product of canonical spaces Ωµ := Ω1

µ × · · · × Ωkµ, Fµ := F1
µ × · · · × Fk

µ

and P1
µ × · · · × Pkµ with some constant k ≥ 1, on which each µi is a Poisson measure

with a compensator νi(dz)dt. Here, νi(dz) is a σ-finite measure on R0 = R\{0} sat-
isfying

∫
R0

|z|2νi(dz) < ∞. Throughout the paper, we work on the filtered probability
space (Ω,F ,F = (Ft)t∈[0,T ],P), where the space (Ω,F ,P) is the product of the canoni-
cal spaces (ΩW × Ωµ,FW × Fµ,PW × Pµ), and that the filtration F = (Ft)t∈[0,T ] is the
canonical filtration completed for P and satisfying the usual conditions. In this con-
struction, (W,µ1, · · · , µk) are independent. We use a vector notation µ(ω, dt, dz) :=
(µ1(ω, dt, dz1), · · · , µk(ω, dt, dzk)) and denote the compensated Poisson measure as µ̃ :=
µ− ν. We represent the F-predictable σ-field on Ω× [0, T ] by P.

2.2 Notation

We use basically the same notation as [16]. We denote a generic constant by C, which
may change line by line, is sometimes associated with several subscripts (such as CK,T )
showing its dependence when necessary. T T

0 denotes the set of F-stopping times τ ∈ [0, T ].
Let us introduce a sup-norm for a Rr-valued function x : [0, T ] → Rr as

||x||[a,b] := sup{|xt|, t ∈ [a, b]}

and write ||x||t := ||x||[0,t]. We also use the following spaces for stochastic processes for
p ≥ 2:
• Spr [s, t] is the set of Rr-valued adapted càdlàg processes X such that

||X||Spr [s,t] := E
[
||X(ω)||p[s,t]

]1/p
<∞ .

• S∞r is the set of Rr-valued essentially bounded càdlàg processes X such that

||X||S∞r :=
∣∣∣∣∣∣ sup
t∈[0,T ]

|Xt|
∣∣∣∣∣∣
∞
<∞.

• Hp[s, t] is the set of progressively measurable Rd-valued processes Z such that

||Z||Hp
r [s,t]

:= E
[(∫ t

s
|Zu|2du

) p
2

] 1
p

<∞.

• Jp[s, t] is the set of k-dimensional functions ψ = {ψi, 1 ≤ i ≤ k}, ψi : Ω× [0, T ]×R0 → R
which are P × B(R0)-measurable and satisfy

||ψ||Jp[s,t] := E

[( k∑
i=1

∫ t

s

∫
R0

|ψiu(x)|2νi(dx)du
) p

2

] 1
p

<∞.

and J∞ is the space of functions which are dP⊗ ν(dz) essentially bounded i.e.,

||ψ||J∞ :=
∣∣∣∣ sup
t∈[0,T ]

||ψt||L∞(ν)

∣∣∣∣
∞ <∞.
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For notational simplicity, we use (E, E) = (Rk0,B(R0)
k) and denote the above maps

{ψi, 1 ≤ i ≤ k} as ψ : Ω× [0, T ]×E → Rk and say ψ is P⊗E-measurable without referring
to each component. We also use the notation such that∫ t

s

∫
E
ψu(x)µ̃(du, dx) :=

k∑
i=1

∫ t

s

∫
R0

ψiu(x)µ̃
i(du, dx)

for simplicity. The similar abbreviation is used also for the integrals with respect to µ and
ν. When we use E and E , one should always interpret it in this way so that the integral
with the k-dimensional Poisson measure does make sense. On the other hand, when we
use the range R0 with the integrators (µ̃, µ, ν), for example,∫

R0

ψu(x)ν(dx) :=
(∫

R0

ψiu(x)ν
i(dx)

)
1≤i≤k

we interpret it as a k-dimensional vector.
• Kp[s, t] is the set of functions (Y, Z, ψ) in the space Sp[s, t] × Hp[s, t] × Jp[s, t] with the
norm defined by

||(Y, Z, ψ)||Kp[s,t] :=
(
||Y ||pSp[s,t] + ||Z||pHp[s,t] + ||ψ||pJp[s,t]

) 1
p
.

We frequently omit the subscripts specifying the dimension r and the time interval
[s, t] when they are unnecessary or obvious in the context. We use

(
Θs, s ∈ [0, T ]

)
as a

collective argument

Θs =
(
Ys, Zs, ψs

)
(2.1)

to lighten the notation. We use the notation of partial derivatives such that for x ∈ Rd

∂x = (∂x1 , · · · , ∂xd) =
( ∂

∂x1
, · · · , ∂

∂xd

)
and for Θ, ∂Θ =

(
∂y, ∂z, ∂ψ

)
. We use the similar notations for every higher order derivative

without a detailed indexing. We suppress the obvious summation of indexes throughout
the paper for notational simplicity.

Remark

The contents up to Section 4 can be easily extendable to P ⊗ E-measurable compensator
νt(dx) as long as (W,µ− ν) is assumed to have the weak property of predictable represen-
tation (See Chapter XIII in [17].).

2.3 BMO-martingale and its properties

The properties of the BMO-martingales play a crucial role throughout this work. This
section summarizes the necessary facts used in the following discussions.

Definition 2.1. Let M be a square integrable martingale. When it satisfies

||M ||2BMO := sup
τ∈T T

0

∣∣∣∣∣∣E[(MT −Mτ−1τ>0)
2|Fτ

]∣∣∣∣∣∣
∞
<∞

then M is called a BMO-martingale and denoted by M ∈ BMO.
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Lemma 2.1. Suppose M is a square integrable martingale with initial value M0 = 0. If
M is a BMO-martingale, then its jump component is essentially bounded ∆M ∈ S∞. On
the other hand, if ∆M ∈ S∞ and

sup
τ∈T T

0

∣∣∣∣∣∣E[⟨M⟩T − ⟨M⟩τ |Fτ
]∣∣∣∣∣∣

∞
<∞,

then M is a BMO-martingale.

Proof. From Lemma 10.7 in [17], we have

||M ||2BMO = sup
τ∈T T

0

∣∣∣∣∣∣E[[M ]T − [M ]τ |Fτ
]
+M2

01τ=0 + (∆Mτ )
2
∣∣∣∣∣∣
∞

= sup
τ∈T T

0

∣∣∣∣∣∣E[⟨M⟩T − ⟨M⟩τ |Fτ
]
+ (∆Mτ )

2
∣∣∣∣∣∣
∞
.

Thus,

sup
τ∈T T

0

∣∣∣∣∣∣E[⟨M⟩T − ⟨M⟩τ |Fτ
]∣∣∣∣∣∣

∞
∨ ||∆M ||2S∞ ≤ ||M ||2BMO

≤ sup
τ∈T T

0

∣∣∣∣∣∣E[⟨M⟩T − ⟨M⟩τ |Fτ
]∣∣∣∣∣∣

∞
+ ||∆M ||2S∞

and hence the claim is proved.

Let us introduce the following spaces. H2
BMO is the set of progressively measurable

Rd-valued function Z satisfying 2

||Z||2H2
BMO

:=
∣∣∣∣∣∣∫ ·

0
ZsdWs

∣∣∣∣∣∣2
BMO

= sup
τ∈T T

0

∣∣∣∣∣∣E[∫ T

τ
|Zs|2ds|Fτ

]∣∣∣∣∣∣
∞
<∞.

J2BMO and J2B are the sets of P⊗E-measurable functions ψ : Ω× [0, T ]×E → Rk satisfying

||ψ||2J2BMO
:=

∣∣∣∣∣∣∫ ·

0

∫
E
ψs(x)µ̃(ds, dx)

∣∣∣∣∣∣2
BMO

= sup
τ∈T T

0

∣∣∣∣∣∣E[∫ T

τ

∫
E
|ψs(x)|2µ(ds, dx)|Fτ

]∣∣∣∣∣∣
∞
<∞ ,

and

||ψ||2J2B := sup
τ∈T T

0

∣∣∣∣∣∣E[∫ T

τ

∫
E
|ψs(x)|2ν(dx)ds|Fτ

]∣∣∣∣∣∣
∞
<∞,

respectively. Note that (||ψ||2J2B ∨ ||ψ||2J∞) ≤ ||ψ||2J2BMO
≤ ||ψ||2J2B + ||ψ||2J∞ from the proof

of Lemma 2.1.

2We sometimes include a scalar function satisfying the rightmost inequality also in H2
BMO. By multi-

plying a d-dimensional unit vector, one can always connect to it the BMO norm if necessary.
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Lemma 2.2 (energy inequality). Let Z ∈ H2
BMO and ψ ∈ J2BMO. Then, for any n ∈ N,

E
[(∫ T

0
|Zs|2ds

)n]
≤ n!

(
||Z||2H2

BMO

)n
,

E
[(∫ T

0

∫
E
|ψs(x)|2µ(ds, dx)

)n]
≤ n!

(
||ψ||2J2BMO

)n
,

E
[(∫ T

0

∫
E
|ψs(x)|2ν(dx)ds

)n]
≤ n!

(
||ψ||2J2B

)n
≤ n!

(
||ψ||2J2BMO

)n
.

Proof. See proof of Lemma 9.6.5 in [10].

Let E(M) be a Doléan-Dade exponential of M .

Lemma 2.3 (reverse Hölder inequality). Let δ > 0 be a positive constant and M be a
BMO-martingale satisfying ∆Mt ≥ −1 + δ P-a.s. for all t ∈ [0, T ]. Then,

(
Et(M), t ∈

[0, T ]
)
is a uniformly integrable martingale, and for every stopping time τ ∈ T T

0 , there
exists some p > 1 such that

E [ET (M)p|Fτ ] ≤ Cp,MEτ (M)p

with some positive constant Cp,M depending only on p and ||M ||BMO.

Proof. See Kazamaki (1979) [21], and also Remark 3.1 of Kazamaki (1994) [22].

Note here that the condition δMt ≥ −1+δ is the very reason why one needs a stronger
assumption than the Lipschitz continuity for the comparison principle to hold for the
BSDEs with jumps (See Proposition 2.6 in Barles et.al. (1997) [3].). If one relies on the
comparison theorem to show the uniform convergence of the BSDE’s solution, the same
assumption is required. In the current work, by deriving the new stability result, we can
restrict its use only to the continuous martingale part and hence avoid this condition.

The following properties of the continuous BMO martingales by Kazamaki [22] are
very useful.

Lemma 2.4. Let M be a square integrable continuous martingale and M̂ := ⟨M⟩ −M .
Then, M ∈ BMO(P) if and only if M̂ ∈ BMO(Q) with dQ/dP = ET (M). Furthermore,
||M̂ ||BMO(Q) is determined by some function of ||M ||BMO(P) and vice versa.

Proof. See Theorem 3.3 and Theorem 2.4 in [22].

Remark

For continuous martingales, Theorem 3.1 [22] also tells that there exists some decreasing
function Φ(p) with Φ(1+) = ∞ and Φ(∞) = 0 such that if ||M ||BMO(P) satisfies

||M ||BMO(P) < Φ(p)

then E(M) satisfies the reverse Hölder inequality with power p. This implies together with
Lemma 2.4, one can take a common positive constant r̄ satisfying 1 < r̄ ≤ r∗ such that
both of the E(M) and E(M̂) satisfy the reverse Hölder inequality with power r̄ under the
respective probability measure P and Q. Furthermore, the upper bound r∗ is determined
only by ||M ||BMO(P) (or equivalently by ||M ||BMO(Q)).
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3 Qexp-growth BSDEs with Jumps

3.1 Universal Bound

We now introduce, for t ∈ [0, T ], the quadratic-exponential (Qexp) growth BSDE;

Yt = ξ +

∫ T

t
f(s, Ys, Zs, ψs)ds−

∫ T

t
ZsdWs −

∫ T

t

∫
E
ψs(x)µ̃(ds, dx) , (3.1)

where ξ : Ω → R, f : Ω× [0, T ]× R× Rd × L2(E, ν;Rk) → R and denote Z and ψ as row
vectors for simplicity.

Let us introduce the quadratic-exponential structure condition proposed by Barrieu &
El Karoui (2013) [4] and extended to a jump diffusion case by Ngoupeyou (2010) [29].

Assumption 3.1. The map (ω, t) 7→ f(ω, t, ·) is F-progressively measurable. For every
(y, z, ψ) ∈ R×Rd×L2(E, ν;Rk), there exist two constants β ≥ 0 and γ > 0 and a positive
F-progressively measurable process (lt, t ∈ [0, T ]) such that

−lt − β|y| − γ

2
|z|2 −

∫
E
jγ(−ψ(x))ν(dx)

≤ f(t, y, z, ψ) ≤ lt + β|y|+ γ

2
|z|2 +

∫
E
jγ(ψ(x))ν(dx)

dP⊗ dt-a.e. (ω, t) ∈ Ω× [0, T ], where jγ(u) :=
1

γ

(
eγu − 1− γu

)
.

This assumption yields a very useful universal bound for the possible solutions of (3.1).
The following result is an adaptation of Proposition 3.2 in [4] and Proposition 16 in [29]
to our case.

Lemma 3.1. Assume the driver f of (3.1) satisfies Assumption 3.1 and exp
(
γeβT |ξ|

)
and exp

(
γeβT

∫ T
0 lsds

)
are in L1(Ω,FT ;P). Then, if there exists a solution to the BSDE

(3.1), it satisfies

|Yt| ≤
1

γ
lnE

[
exp
(
γeβ(T−t)|ξ|+ γ

∫ T

t
eβ(t−s)lsds

)∣∣∣Ft] .

In particular, when ||ξ||∞, ||l||S∞ <∞, the solution Y is essentially bounded:

||Y ||S∞ ≤ eβT
(
||ξ||∞ + T ||l||S∞

)
.

Proof. A simple application of Itô formula yields

d
(
eβs|Ys|

)
= eβs

(
β|Ys|ds+ d|Ys|

)
= eβs

{
β|Ys|ds+ sign(Ys−)

(
−f(s,Θs)ds+ ZsdWs +

∫
E
ψs(x)µ̃(ds, dx)

)
+ dLYs

}
where LY is a non-decreasing process including a local time of Y at the origin. Let us
define the process (Bs, s ∈ [0, T ]) with B0 = 0 by

dBs = −sign(Ys)f(s,Θs)ds+
(
ls + β|Ys|+

γ

2
|Zs|2 +

∫
E
jγ(sign(Ys)ψs(x))ν(dx)

)
ds

7



which is also a non-decreasing process by Assumption 3.1. Using this process,

d(eβs|Ys|) = eβs(dBs + dLYs ) + eβssign(Ys−)
(
ZsdWs +

∫
E
ψs(x)µ̃(ds, dx)

)
−eβs

(
ls +

γ

2
|Zs|2 +

∫
E
jγ(sign(Ys)ψs(x))ν(dx)

)
ds ,

which is further transformed as

d(eβs|Ys|) = eβssign(Ys−)
(
ZsdWs +

∫
E
ψs(x)µ̃(ds, dx)

)
−γ
2

∣∣eβssign(Ys)Zs∣∣2ds− ∫
E
jγ(e

βssign(Ys)ψs(x))ν(dx)ds− eβslsds

+
γ

2

(
e2βs|Zs|2 − eβs|Zs|2

)
ds+

∫
E

(
jγ(e

βssign(Ys)ψs(x))− eβsjγ(sign(Ys)ψs(x))
)
ν(dx)ds

+eβs(dBs + dLYs ) .

It is easy to confirm that for k ≥ 1,

jγ(kx)− kjγ(x) =
1

γ
(ekγx − keγx − 1 + k) ≥ 0 .

Thus we obtain

d(eβs|Ys|) = eβssign(Ys−)
(
ZsdWs +

∫
E
ψs(x)µ̃(ds, dx)

)
−γ
2
|eβssign(Ys)Zs|2ds−

∫
E
jγ(e

βssign(Ys)ψs(x))ν(dx)ds− eβslsds+ dCs,

where C is a non-decreasing process.

Define the process P by Pt := exp
(
γeβt|Yt|+ γ

∫ t
0 e

βslsds
)
. Since

dPt = Pt−

(
γeβtsign(Yt)ZtdWt +

∫
E

(
exp
(
γeβtsign(Yt−)ψt(x)

)
− 1
)
µ̃(dt, dx) + γdCt

)
,

P is a submartingale. Therefore,

exp
(
γeβt|Yt|+ γ

∫ t

0
eβslsds

)
≤ E

[
exp
(
γeβT |ξ|+ γ

∫ T

0
eβslsds

)∣∣∣Ft] ,

which proves the first claim. The second claim is obvious using the first result.

Let us mention the fact that (ex − 1)2 + (e−x − 1)2 ≥ x2, ∀x ∈ R . In order to prove
this, set g(x) := (ex − 1)2 + (e−x − 1)2 − x2. Then,

g′(x) = 2(ex − 1)ex + 2(1− e−x)e−x − 2x

which is an odd function. It is easy to see that g′(x) ≥ 0 for x ≥ 0 and g′(0) = 0. Thus
g(x) ≥ g(0) = 0. The next lemma connects the bounded solution ||Y ||S∞ < ∞ and the
BMO-properties of the control variables.

Lemma 3.2. Assume ||ξ||∞, ||l||S∞ < ∞ and Assumption 3.1 hold. If there exists a
solution (Y, Z, ψ) to the BSDE (3.1), then Z ∈ H2

BMO and ψ ∈ J2BMO (and hence
ψ ∈ J∞) and ||Z||H2

BMO
+ ||ψ||J2BMO

is bounded by some constant depending only on

(γ, β, T, ||ξ||∞, ||l||S∞).
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Proof. By Lemma 3.1, we have ||Y ||S∞ <∞. Since ||ψ||J∞ ≤ 2||Y ||S∞ , it is clear that ψ ∈
J∞. Applying Itô formula to e2γYt and using the equality 2γj2γ(x) = (eγx− 1)2+2γjγ(x),
one obtains∫ τn

τ
e2γYs2γ2|Zs|2ds+

∫ τn

τ
e2γYs

(
eγψs(x) − 1

)2
ν(dx)ds

= e2γYτn − e2γYτ + 2γ

∫ τn

τ
e2γYs

(
f(s, Ys, Zs, ψs)−

∫
E
jγ(ψs(x))ν(dx)

)
ds

−
∫ τn

τ
e2γYs2γZsdWs −

∫ τn

τ

∫
E
e2γYs−

(
e2γψs(x) − 1

)
µ̃(ds, dx) ,

where τ ∈ T T
0 , and {τn}n∈N is a localizing sequence of the last line.

Taking a conditional expectation and using Assumption 3.1, one obtains

E
[∫ τn

τ
e2γYsγ2|Zs|2ds+

∫ τn

τ
e2γYs

(
eγψs(x) − 1

)2
ν(dx)ds

∣∣∣Fτ]
≤ E

[
e2γYτn + 2γ

∫ τn

τ
e2γYs

(
ls + β|Ys|

)
ds
∣∣∣Fτ]

≤ e2γ||Y ||S∞ + 2γe2γ||Y ||S∞T
(
β||Y ||S∞ + ||l||S∞

)
.

By taking n→ ∞,

E
[∫ T

τ
γ2|Zs|2ds+

∫ T

τ

(
eγψs(x) − 1

)2
ν(dx)ds

∣∣∣Fτ]
≤ e4γ||Y ||S∞ + 2γe4γ||Y ||S∞T

(
β||Y ||S∞ + ||l||S∞

)
. (3.2)

Similar calculation for e−2γYt yields

E
[∫ T

τ
γ2|Zs|2ds+

∫ T

τ

(
e−γψs(x) − 1

)2
ν(dx)ds

∣∣∣Fτ]
≤ e4γ||Y ||S∞ + 2γe4γ||Y ||S∞T

(
β||Y ||S∞ + ||l||S∞

)
. (3.3)

Thus, adding (3.2) and (3.3), and then taking supτ || ||∞ separately for Z and ψ terms
yields

||Z||2H2
BMO

+ ||ψ||2J2B ≤ e4γ||Y ||S∞

γ2

(
3 + 6γT

(
β||Y ||S∞ + ||l||S∞

))
<∞.

Since ||ψ||J∞ ≤ 2||Y ||S∞ , one also sees ||ψ||J2BMO
≤ ||ψ||J2B + ||ψ||J∞ <∞.

3.2 Stability and Uniqueness

We now introduce local Lipschitz conditions to derive a stability and uniqueness result for
a bounded solution.

Assumption 3.2. (i) |ξ| and (lt, t ∈ [0, T ]) are essentially bounded: ||ξ||∞ + ||l||S∞ <∞.
(ii) For each M > 0, and for every (y, z, ψ), (y′, z′, ψ′) ∈ R× Rd × L2(E, ν;Rk) satisfying

|y|, |y′|, ||ψ||L∞(ν), ||ψ′||L∞(ν) ≤M

9



there exists some positive constant KM possibly depending on M such that∣∣f(t, y, z, ψ)− f(t, y′, z′, ψ′)
∣∣ ≤ KM

(
|y − y′|+ ||ψ − ψ′||L2(ν)

)
+KM

(
1 + |z|+ |z′|+ ||ψ||L2(ν) + ||ψ′||L2(ν)

)
|z − z′|

dP⊗ dt-a.e. (ω, t) ∈ Ω× [0, T ].

Consider the two BSDEs with i ∈ {1, 2} satisfying Assumptions 3.1 and 3.2;

Y i
t = ξi +

∫ T

t
f i(s, Y i

s , Z
i
s, ψ

i
s)ds−

∫ T

t
ZisdWs −

∫ T

t

∫
E
ψis(x)µ̃(ds, dx), (3.4)

for t ∈ [0, T ] and let us denote

δY := Y 1 − Y 2, δZ := Z1 − Z2, δψ := ψ1 − ψ2,

δf(s) := (f1 − f2)(s, Y 1
s , Z

1
s , ψ

1
s) .

Lemma 3.3. Suppose Assumptions 3.1 and 3.2 hold for the two BSDEs (3.4) with i ∈
{1, 2}. Then, if there exists a solution (Y i, Zi, ψi), i ∈ {1, 2} to the BSDEs, the following
inequality is satisfied;

(a) ||δZ||H2
BMO

+ ||δψ||J2BMO
≤ C

(
||δY ||S∞ + ||δξ||∞ + sup

τ∈T T
0

∣∣∣∣∣∣E [∫ T

τ
|δf(s)|ds

∣∣∣Fτ]∣∣∣∣∣∣
∞

)

(b)
∣∣∣∣(δY, δZ, δψ)∣∣∣∣pKp[0,T ]

≤ C ′
(
E
[
|δξ|pq̄2 +

(∫ T

0
|δf(s)|ds

)pq̄2]) 1
q̄2

, ∀p ≥ 2, ∀q̄ ≥ q∗

Here, C and q∗ (> 1) are positive constants depending only on (KM , γ, β, T, ||ξ||∞, ||l||S∞)
and the constant M is chosen such that ||Y i||S∞, ||ψi||J∞ ≤ M for both i ∈ {1, 2}. C ′ is
a positive constant depending only on (p, q̄,KM , γ, β, T, ||ξ||∞, ||l||S∞).

Proof. Proof for (a)
Firstly, due to the universal bound, it is obvious that one can choose M such that
||Y i||S∞ ≤M and ||ψi||J∞ ≤M for both i ∈ {1, 2}. Set a sequence of F-stopping times as

τn := inf
{
t ≥ 0;

∫ t

0
|δZs|2ds+

∫ t

0

∫
E
|δψs(x)|2µ(ds, dx) ≥ n

}
∧ T .

Then, for ∀τ ∈ T T
0 , one has

|δYτ |2 +
∫ τn

τ
|δZs|2ds+

∫ τn

τ

∫
E
|δψs(x)|2µ(ds, dx)

= |δYτn |2 +
∫ τn

τ
2δYs

(
δf(s) + f2(s,Θ1

s)− f2(s,Θ2
s)
)
ds

−
∫ τn

τ
2δYsδZsdWs −

∫ τn

τ

∫
E
2δYs−δψs(x)µ̃(ds, dx) .

Taking the conditional expectation and passing to the limit n→ ∞, one obtains

|δYτ |2 + E
[∫ T

τ
|δZs|2ds+

∫ T

τ

∫
E
|δψs(x)|2µ(ds, dx)

∣∣∣Fτ]
= E

[
|δξ|2 +

∫ T

τ
2δYs

(
δf(s) + f2(s,Θ1

s)− f2(s,Θ2
s)
)
ds
∣∣∣Fτ] .
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Taking supτ∈T T
0

for each term in the left gives

||δZ||2H2
BMO

+ ||δψ||2J2BMO
≤ 2||δξ||2∞

+ 4||δY ||S∞ sup
τ∈T T

0

∣∣∣∣∣∣E [∫ T

τ

(
|δf(s)|+KM

(
|δY |s + ||δψs||L2(ν) +Hs|δZs|

))
ds
∣∣∣Fτ]∣∣∣∣∣∣

∞
,

where the process H is defined by Hs := 1 +
∑2

i=1

(
|Zis| + ||ψis||L2(ν)

)
. It is clear that

H ∈ H2
BMO whose norm is dominated by the universal bound given in Lemma 3.2. One

can see

sup
τ∈T T

0

∣∣∣∣∣∣E [∫ T

τ
Hs|δZs|ds

∣∣∣Fτ]∣∣∣∣∣∣
∞

≤ sup
τ∈T T

0

∣∣∣∣∣∣E [∫ T

τ
|Hs|2ds

∣∣∣Fτ] 1
2 ∣∣∣∣∣∣

∞
sup
τ∈T T

0

∣∣∣∣∣∣E [∫ T

τ
|δZs|2ds

∣∣∣Fτ] 1
2 ∣∣∣∣∣∣

∞

≤ ||H||H2
BMO

||δZ||H2
BMO

.

Thus, with an arbitrary positive constant ϵ > 0,

||δZ||2H2
BMO

+ ||δψ||2J2BMO
≤ 2||δξ||2∞ + 2 sup

τ∈T T
0

∣∣∣∣∣∣E [∫ T

τ
|δf(s)|ds

∣∣∣Fτ]∣∣∣∣∣∣2
∞

+||δY ||2S∞
(
2 + 4KMT +

4K2
M

ϵ
+

4K2
M

ϵ
||H||2H2

BMO

)
+ ϵ
(
||δZ||2H2

BMO
+ ||δψ||2J2B

)
.

Since ||δψ||J2B ≤ ||δψ||J2BMO
, choosing ϵ < 1 yields the desired result.

Proof for (b)
Define a d-dimensional F-progressively measurable process (bs, s ∈ [0, T ]) by

bs :=
f2(s, Y 1

s , Z
1
s , ψ

1
s)− f2(s, Y 1

s , Z
2
s , ψ

1
s)

|δZs|2
1δZs ̸=0δZs

and also the map f̃ : Ω× [0, T ]× R× L2(E, ν;Rk) → R:

f̃(ω, s, ȳ, ψ̄) := δf(ω, s)− f2(ω, s,Θ2
s) + f2

(
ω, s, ȳ + Y 2

s , Z
2
s , ψ̄ + ψ2

s

)
.

Then, (δY, δZ, δψ) is the solution to the BSDE

δYt = δξ +

∫ T

t

(
f̃(s, δYs, δψs) + bs · δZs

)
ds−

∫ T

t
δZsdWs −

∫ T

t

∫
E
δψs(x)µ̃(ds, dx).(3.5)

Since |bs| ≤ KM (1+|Z1
s |+|Z2

s |+2||ψ1
s ||L2(ν)), the process b belongs toH2

BMO. Furthermore,

f̃ satisfies the linear growth property |f̃(s, ȳ, ψ̄)| ≤ |δf(s)| +KM (|ȳ| + ||ψ̄||L2(ν)). Thus,
the BSDE (3.5) satisfies Assumption A.1 with g = |δf |. One obtains the desired result
by applying Lemma A.1. The dependency of the constants C ′, q∗ is obtained from the
universal bound in Lemmas 3.1 and 3.2, as well as the properties of the reverse Hölder
inequality in Lemma 2.3 and the remarks that follow.

We now gives the uniqueness result:

Proposition 3.1. Suppose the BSDE (3.1) satisfies Assumption 3.1 and 3.2. Then, if
there exists a solution (Y, Z, ψ) to (3.1), it is unique in the space S∞ ×H2

BMO × J2BMO.

Proof. By Lemmas 3.1 and 3.2, if there exists a solution it satisfies (Y, Z, ψ) ∈ S∞ ×
H2
BMO × J2BMO. Firstly, by Lemma 3.3 (b), the solution is unique in the space Kp[0, T ]

11



for ∀p ≥ 2. Since Y ∈ S∞, the uniqueness of Y in Sp gives the uniqueness of Y also in
the space S∞. This can be shown by the argument of contradiction. Suppose that there
exist two solution Y 1, Y 2 ∈ S∞ which are equal in the space of Sp i.e., ||Y 1 − Y 2||pSp = 0
but not equal in S∞. This implies that there exists some constant a > 0 such that∣∣∣∣∣∣ sup

t∈[0,T ]
|Y 1
t − Y 2

t |
∣∣∣∣∣∣
∞

= a .

Then, for any 0 < b < a, there exists some positive constant 0 < c ≤ 1 such that

P
(

sup
t∈[0,T ]

|Y 1
t − Y 2

t | ≥ b
)
= c .

This gives ||Y 1 − Y 2||pSp ≥ bp c > 0 and hence yields a contradiction. Combined with
Lemma 3.3 (a), the solution (Y, Z, ψ) is unique in the space S∞ ×H2

BMO × J2BMO.

4 Existence of solution to a Qexp-growth BSDE

4.1 An approximating sequence of globally Lipschitz BSDEs

In this section, we shall prove the existence of a unique solution to the BSDE (3.1) under
Assumptions 3.1 and 3.2. For this purpose, we first consider an approximating sequence
of globally Lipschitz BSDEs for which the existence and uniqueness of the solutions are
well known.

Let us introduce a sequence of mollifiers φm : R → R with m ∈ N which are continu-
ously differentiable and with the following properties:

φm(x) =


−(m+ 1) for x ≤ −(m+ 2)

x for |x| ≤ m

m+ 1 for x ≥ m+ 2

and |∂xφm(x)| ≤ 1 uniformly in x ∈ R. We also denote, for any ψ ∈ L2(ν) and x ∈ R,

(ψ ◦ ζm)(x) := ψ(x)1|x|≥ 1
m
.

We then define the truncated driver fm : Ω× [0, T ]× R× Rd × L2(E, ν;Rk) by

fm(ω, t, y, z, ψ) := f
(
ω, t, φm(y), φm(z), φm(ψ ◦ ζm)

)
, (4.1)

and consider a sequence of truncated BSDEs:

Y m
t = ξ +

∫ T

t
fm(s, Y

m
s , Zms , ψ

m
s )ds−

∫ T

t
Zms dWs −

∫ T

t
ψms (x)µ̃(ds, dx) (4.2)

for t ∈ [0, T ].

Lemma 4.1. The truncated driver fm(ω, t, y, z, ψ) in (4.1) with ∀m ∈ N satisfies the
global Lipschitz condition. Furthermore it also satisfies the quadratic-exponential growth
condition given in Assumption 3.1 uniformly in m.

12



Proof. Let us put Cm := k max
i∈{1,··· ,k}

(∫
R0

1|x|≥ 1
m
νi(dx)

)
<∞ then one sees

∣∣∣∣φm(ψs ◦ ζm)∣∣∣∣2L2(ν)
=

∫
E

∣∣φm(ψs ◦ ζm(x))|2ν(dx) ≤ (m+ 1)2Cm.

Thus, by takingM ≥ (k∨d)(m+1), the truncated driver satisfies for any (y, z, ψ), (y′, z′, ψ′) ∈
R× Rd × L2(E, ν;Rk),

|fm(t, y, z, ψ)− fm(t, y
′, z′, ψ′)| ≤ KM

(
|φm(y)− φm(y

′)|+ ||φm(ψ ◦ ζm)− φm(ψ
′ ◦ ζm)||L2(ν)

)
+KM

(
1 + |φm(z)|+ |φm(z′)|+ ||φm(ψ ◦ ζm)||L2(ν) + ||φm(ψ′ ◦ ζm)||L2(ν)

)
|φm(z)− φm(z

′)|

≤ KM

(
|y − y′|+ ||ψ − ψ′||L2(ν) +

[
1 + 2d(m+ 1) + 2(m+ 1)2Cm

]
|z − z′|

)
,

which proves the global Lipschitz condition.
The truncated driver also satisfies

−lt − β|y| − γ

2
|φm(z)|2 −

∫
E
jγ

(
−φm(ψ ◦ ζm(x))

)
ν(dx)

≤ fm(t, y, z, ψ) ≤ lt + β|y|+ γ

2
|φm(z)|2 +

∫
E
jγ

(
φm(ψ ◦ ζm(x))

)
ν(dx) .

From the convexity of the positive function jγ(u), we have
∫
E jγ(±φm(ψ ◦ ζm(x)))ν(dx) ≤∫

E jγ(±ψ(x))ν(dx). Therefore,

−lt − β|y| − γ

2
|z|2 −

∫
E
jγ(−ψ(x))ν(dx)

≤ fm(t, y, z, ψ) ≤ lt + β|y|+ γ

2
|z|2 +

∫
E
jγ(ψ(x))ν(dx) ,

which proves the second claim.

We are now ready to give the existence result for the Qexp-growth BSDE.

Theorem 4.1. Under Assumptions 3.1 and 3.2, there exists a solution (Y, Z, ψ) to the
BSDE (3.1) which is unique in the space S∞ ×H2

BMO × J2BMO.

Proof. We consider a sequence of the approximating BSDEs (4.2) with m ∈ N. By the
standard result for the Lipschitz BSDEs (See, for example, Lemma B.2 in [16].), there
exists a unique solution (Y m, Zm, ψm) ∈ Kp[0, T ] for ∀p ≥ 2. Furthermore, by the sec-
ond claim of Lemma 4.1 and also by the universal bound given in Lemmas 3.1 and 3.2,
one can conclude that Θm := (Y m, Zm, ψm) ∈ S∞ × H2

BMO × J2BMO and also that the
norm ||Y m||S∞ + ||Zm||H2

BMO
+ ||ψm||J2BMO

is bounded uniformly in m by some constant

depending only on (γ, β, T, ||ξ||∞, ||l||∞). Thus, one can fix a positive constant M such
that ||Y m||S∞ , ||ψm||J∞ ≤M uniformly in m so that KM becomes m-independent.

Put, for each m,n ∈ N,

δY m,n := Y m − Y n, δZm,n := Zm − Zn, ψm,n := ψm − ψn,

δfm,n(s) := (fm − fn)(s, Y
m
s , Zms , ψ

m
s ) .

Since the BSDE (4.2) with ∀m ∈ N satisfies Assumptions 3.1 and 3.2, Lemma 3.3 (b)

implies that ||(δY m,n, δZm,n, δψm,n)||pKp ≤ C ′
(
E
[(∫ T

0 |δfm,n(s)|ds
)pq̄2]) 1

q̄2

for ∀p ≥ 2.
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Thanks to the universal bound discussed above, one can take C ′ and q̄ > 1 independent
of m,n. Assumption 3.2 and the definition of the truncated driver implies

|δfm,n(s)|
=
∣∣f(s, φm(Y m

s ), φm(Z
m
s ), φm(ψ

m
s ◦ ζm)

)
− f

(
s, φn(Y

m
s ), φn(Z

m
s ), φn(ψ

m
s ◦ ζn)

)∣∣
≤ KM

(
|Y m
s |1{|Ym

s |≥m∧n} +
(∫

E
|ψms (x)|21{|ψm

s (x)|≥m∧n}ν(dx)
) 1

2

)
+KM

(
1 + 2|Zms |+ 2||ψms ||L2(ν)

)
|Zms |1{|Zm

s |≥m∧n} .

Therefore, by the Cauchy-Schwartz inequality,

E
[(∫ T

0
|δfm,n(s)|ds

)pq̄2]
≤ CE

[
||Y m||2pq̄

2

T

] 1
2E
[(∫ T

0
1{|Ym

s |≥m∧n}ds
)2pq̄2] 1

2

+CE

[(∫ T

0

∫
E
|ψms (x)|21{|ψm

s (x)|≥m∧n}ν(dx)ds
) pq̄2

2

]

+CE
[(∫ T

0
|Hm(s)|2ds

)pq̄2] 1
2

E
[(∫ T

0
|Zms |21{|Zm

s |≥m∧n}ds
)pq̄2] 1

2

, (4.3)

where Hm := 1+ 2|Zm|+2||ψm||L2(ν) and C is some positive constant depending only on
(KM , T, p, q̄). We know that ||Y m||S∞ , ||Zm||H2

BMO
, ||ψm||J2BMO

are bounded uniformly in
m and thus the energy inequality in Lemma 2.2 allows us to apply the extended Fatou’s
lemma (See, Theorem 7.5.2 in [2], for example) to (4.3).

This gives

lim
m,n→∞

E

[(∫ T

0

∫
E
|ψms (x)|21{|ψm

s (x)|≥m∧n}ν(dx)ds
) pq̄2

2

]

≤ E

[
lim sup

m,n→∞

(∫ T

0

∫
E
|ψms (x)|21{|ψm

s (x)|≥m∧n}ν(dx)ds
) pq̄2

2

]
,

and also

lim
m,n→∞

E
[(∫ T

0
|Zms |21{|Zm

s |≥m∧n}ds
)pq̄2]

≤ E
[
lim sup

m,n→∞

(∫ T

0
|Zms |21{|Zm

s |≥m∧n}ds
)pq̄2]

,

both of which converge to zero since the integrands go to zero dP ⊗ ds-a.e., because
otherwise ||ψm||J2BMO

, ||Zm||H2
BMO

must diverge which contradicts the fact. Passing to the

limit m,n → ∞ in (4.3) yields limm,n→∞ E
[(∫ T

0 |δfm,n(s)|ds
)pq̄2]

= 0. Thus one can

conclude that limm,n→∞ ||(δY m,n, δZm,n, δψm,n)||pKp = 0 and that there exists (Y, Z, ψ) ∈
Kp to which (Y m, Zm, ψm) converges in the space Kp for ∀p ≥ 2. By construction of the
approximating BSDEs, it is easy to see that (Y, Z, ψ) satisfies the original BSDE (3.1).
The uniqueness of the solution is already proved in Proposition 3.1.

One can also see the strong convergence directly in the space S∞ × H2
BMO × J2BMO.

Since S∞ × H2
BMO × J2BMO is a Banach space, the universal bound on (Y m, Zm, ψm)

implies that (Y,Z, ψ) also belongs to this space. By the argument used in the proof in
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Proposition 3.1, one can show that limm,n→∞ ||Y m − Y n||S∞ = 0. Thus, by Lemma 3.3
(a), one obtains

lim
m,n→∞

(
||δZm,n||H2

BMO
+ ||δψm,n||J2BMO

)
≤ lim

m,n→∞
C

(
sup
τ∈T T

0

∣∣∣∣∣∣E [∫ T

τ
|δfm,n(s)|ds|Fτ

]∣∣∣∣∣∣
∞

)
.

Since
(
supτ∈T T

0

∣∣∣∣∣∣E [∫ Tτ |δfm,n(s)|ds|Fτ
]∣∣∣∣∣∣

∞

)
is bounded uniformly in m,n due to the

universal bound, one can exchange the order of lim and sup operations to get

lim
m,n→∞

(
||δZm,n||H2

BMO
+ ||δψm,n||J2BMO

)
≤ C

(
sup
τ∈T T

0

∣∣∣∣∣∣ lim
m,n→∞

E
[∫ T

τ
|δfm,n(s)|ds|Fτ

]∣∣∣∣∣∣
∞

)
,

which converges to zero since the convergence |φm(Θm) − φn(Θ
m)| → 0 as m,n → ∞

in Kp for ∀p ≥ 2 has already been shown. Thus, one can conclude that (Y m, Zm, ψm)
converges to (Y, Z, ψ) also in the space S∞ ×H2

BMO × J2BMO.

5 Malliavin Differentiability

In the reminder of the paper, we study the Malliavin differentiability of the quadratic-
exponential growth BSDEs. Among the various ways to develop Malliavin’s calculus, we
follow the conventions based on the chaos expansion used in Delong & Imkeller (2010) [13]
and Delong (2013) [12], which were adopted from the work of Solé et.al. (2007) [32]. See
also Di Nunno et.al. (2009) [14] for an extension to a multi-dimensional setup and other
applications (with only a slight adjustment of conventions).

For the detailed conventions, see Section 3 of [13]. Following the extension given
in Section 17 of [14], we denote (Di

t,0, i ∈ {1, · · · , d}) and (Di
t,z, i ∈ {1, · · · , k}) as the

Malliavin derivatives with respect to (Wi(t), i ∈ {1, · · · , d}) and (µ̃i(dt, dz), i ∈ {1, · · · , k}),
respectively.

Note that a random variable F is Malliavin differentiable if and only if F ∈ D1,2. Here,
the space D1,2 ⊂ L2(P) is defined by the completion with respect to the norm || · ||1,2 which
is given by

||F ||21,2 := E
[
|F |2

]
+

d∑
i=1

E
[∫ T

0
|Di

s,0F |2ds
]
+

k∑
i=1

E
[∫ T

0

∫
R0

|Di
s,zF |2z2νi(dz)ds

]
.

For notational convenience, let us introduce a finite measure mi(dz) = z2νi(dz) with
i ∈ {1, · · · , k} defined on R0 and also q defined on Ẽ := [0, T ]× Rk by

q(dt, dz) = 1z=0dt+

k∑
i=1

1z ̸=0z
2νi(dz)dt.

We also introduce a space L1,2(Rn) of product measurable and F-adapted processes χ :
Ω× [0, T ]× Rk → Rn satisfying

E
[∫

Ẽ
|χ(s, y)|2q(ds, dy)

]
<∞,

χ(s, y) ∈ D1,2(Rn), for q-a.e. (s, y) ∈ Ẽ,

E
[∫

Ẽ

∫
Ẽ
|Dt,zχ(s, y)|2q(ds, dy)q(dt, dz)

]
<∞.
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Note that the space L1,2 is a Hilbert space endowed with the norm

||χ||2L1,2 := E
[∫

Ẽ
|χ(s, y)|2q(ds, dy)

]
+ E

[∫
Ẽ

∫
Ẽ
|Dt,zχ(s, y)|2q(ds, dy)q(dt, dz)

]
.

The fact that the Malliavin derivative is a closed operator in L1,2 (See, Theorem 12.6 in
[14]) plays a crucial role later.

Suppose that (t, z) is a jump of size z at time t in a random measure µi. We de-
note by ωt,z

µi
a transformed family of ωµi = ((t1, z1), (t2, z2), · · · ) ∈ Ωµi into a new fam-

ily with additional jump at (t, z); ωt,z
µi

= ((t, z), (t1, z1), (t2, z2), · · · ) ∈ Ωµi . As for an

element ω = (ωW , ωµ1 , ωµ2 , · · · , ωµk) ∈ Ω in the full canonical product space, we de-
note ωt,z ∈ Ω as the above transformation only in the corresponding element, such as
ωt,z = (ωW , ωµ1 , · · · , ω

t,z
µi
, · · · , ωµk) ∈ Ω without specifying the relevant coordinate for no-

tational simplicity. By the same reason, we also frequently omit i denoting the direction of
derivative Di

s,z by assuming that we consider each Wiener (z = 0, i ∈ {1, · · · , d}) and jump
(z ̸= 0, i ∈ {1, · · · , k})) direction separately (and summing them up whenever necessary,
such as when considering integration on Ẽ).

In order to apply the chain rule of the Malliavin derivative (Theorem 3.5 and Theorem
12.8 in [14] with the division by the jump size in the current convention), we adopt the
following explicit form of the driver:

Yt = ξ +

∫ T

t
f
(
s, Ys, Zs,

∫
R0

ρ(x)G(s, ψs(x))ν(dx)
)
ds

−
∫ T

t
ZsdWs −

∫ T

t

∫
E
ψx(x)µ̃(ds, dx), t ∈ [0, T ], (5.1)

where ξ : Ω → R, f : Ω× [0, T ]× R× Rd × Rk → R, and ρi : R → R, Gi : [0, T ]× R → R
for each i ∈ {1, · · · , k}. The last arguments of the driver denotes a k-dimensional vector
whose i-th element is given by∫

R0

ρi(x)Gi(s, ψis(x))ν
i(dx) .

With slight abuse of notation, we adopt

Θr :=
(
Yr, Zr,

∫
R0

ρ(z)G(r, ψr(z))ν(dz)
)
, r ∈ [0, T ]

as a collective argument in this section.
Let us make the following assumptions for ρ and G:

Assumption 5.1. (i) For every i ∈ {1, · · · , k}, ρi is a continuous function satisfying∫
R0

|ρi(x)|2νi(dx) <∞.

(ii) For every i ∈ {1, · · · , k}, Gi(s, v) is a continuous function in the both arguments and
one-time continuously differentiable with respect to v with continuous derivative. More-
over, for every R > 0,

GR := sup
(s,v)∈[0,T ]×(|v|≤R)

k∑
i=1

|Gi(s, v)| <∞,

G′
R := sup

(s,v)∈[0,T ]×(|v|≤R)

k∑
i=1

|∂vGi(s, v)| <∞ .
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We put without loss of generality that Gi(·, 0) = 0 for every i ∈ {1, · · · , k}.

We modify Assumptions 3.1 and 3.2 according to the current parametrization:

Assumption 5.2. The map (ω, t) 7→ f(ω, t, ·) is F-progressively measurable. For every
(y, z, ψ) ∈ R×Rd×L2(E, ν;Rk), there exist two constants β ≥ 0 and γ > 0 and a positive
F-progressively measurable process (lt, t ∈ [0, T ]) such that

−lt − β|y| − γ

2
|z|2 −

∫
E
jγ(−ψ(x))ν(dx) ≤ f

(
t, y, z,

∫
R0

ρ(x)G(t, ψ(x))ν(dx)
)

≤ lt + β|y|+ γ

2
|z|2 +

∫
E
jγ(ψ(x))ν(dx)

dP⊗ dt-a.e. (ω, t) ∈ Ω× [0, T ], where jγ(u) :=
1

γ

(
eγu − 1− γu

)
.

Assumption 5.3. (i) |ξ| and (lt, t ∈ [0, T ]) are essentially bounded: ||ξ||∞ + ||l||S∞ <∞.
(ii) For each M > 0, and for every (y, z, ψ), (y′, z′, ψ′) ∈ R× Rd × L2(E, ν;Rk) satisfying

|y|, |y′|, ||ψ||L∞(ν), ||ψ′||L∞(ν) ≤M

there exists some positive constant KM possibly depending on M such that∣∣∣f(t, y, z, ut)− f
(
t, y′, z′, u′t

)∣∣∣ ≤ KM

(
|y − y′|+ |ut − u′t|

)
+KM

(
1 + |z|+ |z′|+ |ut|+ |u′t|

)
|z − z′|

dP ⊗ dt-a.e. (ω, t) ∈ Ω × [0, T ], where we have used ut :=
∫
R0
ρ(x)G(t, ψ(x))ν(dx) and

u′t :=
∫
R0
ρ(x)G(t, ψ′(x))ν(dx) for notational simplicity.

Remark

In the above assumption, using the fact that

|ut| ≤ ||ρ||L2(ν)G
′
M ||ψ||L2(ν), |ut − u′t| ≤ ||ρ||L2(ν)G

′
M ||ψ − ψ′||L2(ν) ,

one can see the consistency with Assumption 3.2. Therefore, under Assumptions 5.1, 5.2
and 5.3, there exists a unique solution (Y, Z, ψ) ∈ S∞×H2

BMO×J2BMO to the BSDE (5.1).
In order to obtain Malliavin differentiability, we need the following additional assump-

tions:

Assumption 5.4. With the notation ut =
∫
R0
ρ(x)G(t, ψ(x))ν(dx), u′t =

∫
R0
ρ(x)G(t, ψ′(x))ν(dx),

(i) The terminal value is Malliavin differentiable; ξ ∈ D1,2.
(ii) For eachM > 0, and for every (y, z, ψ) ∈ R×Rd×L2(E, ν;Rk) satisfying |y|, ||ψ||L∞(ν) ≤
M , the driver

(
f(t, y, z, ut), t ∈ [0, T ]

)
belongs to L1,2(R) and its Malliavin derivative is

denoted by (Ds,zf)(t, y, z, ut). Furthermore, the driver f is one-time continuously differ-
entiable with respect to its spacial variables with continuous derivatives.
(iii) For every Wiener as well as jump direction, for every M > 0 and dP ⊗ dt-a.e.
(ω, t) ∈ Ω × [0, T ], and for every (y, z, ψ), (y′, z′, ψ′) ∈ R × Rd × L2(E, ν;Rk) satisfy-
ing |y|, |y′|, ||ψ||L∞(ν), ||ψ′||L∞(ν) ≤ M , the Malliavin derivative of the driver satisfies the
following local Lipschitz conditions;∣∣(Di

s,0f)(t, y, z, ut)− (Di
s,0f)(t, y

′, z′, u′)
∣∣

≤ KM,i
s,0 (t)

(
|y − y′|+ |ut − u′t|+

(
1 + |z|+ |z′|+ |ut|+ |u′t|

)
|z − z′|

)
17



for ds-a.e. s ∈ [0, T ] with i ∈ {1, · · · , d}, and∣∣(Di
s,zf)(t, y, z, ut)− (Di

s,zf)(t, y
′, z′, u′t)

∣∣
≤ KM,i

s,z (t)
(
|y − y′|+ |ut − u′t|+

(
1 + |z|+ |z′|+ |ut|+ |u′t|

)
|z − z′|

)
for mi(dz)ds-a.e. (s, z) ∈ [0, T ] × R0 with i ∈ {1, · · · , k}. For every M > 0 and

(s, z),
(
KM,i
s,0 (t), t ∈ [0, T ]

)
i∈{1,··· ,d}

and
(
KM,i
s,z (t), t ∈ [0, T ]

)
i∈{1,··· ,k}

are R+-valued F-
progressively measurable processes.
(iv) There exists some positive constant p ≥ 2 such that

∫
Ẽ

(
E
[
|Ds,zξ|pq +

(∫ T

0
|(Ds,zf)(r, 0)|dr

)pq
+ ||KM

s,z||
2pq
T

]) 1
q

q(ds, dz) <∞

hold for ∀q ≥ 1 and ∀M > 0.
(v) For the constant p ≥ 2 in (iv), the following equality

lim
ϵ↓0

k∑
i=1

∫ T

0

∫
|z|≤ϵ

(
E
[
|Ds,zξ|pq +

(∫ T

0
|(Ds,zf)(r, 0)|dr

)pq
+ ||KM

s,z||
2pq
T

]) 1
p

mi(dz)ds = 0

hold for ∀q ≥ 1 and ∀M > 0.

Remark

Assumption 5.4 (iv) implies, for q(ds, dz)-a.e. (s, z) ∈ Ẽ,

E
[
|Ds,zξ|p

′
+
(∫ T

0
|(Ds,zf)(r, 0)|dr

)p′
+ ||KM

s,z||
2p′

T

]
<∞

for ∀p′ ≥ 2. We now give the main result of this section.

Theorem 5.1. Suppose that Assumptions 5.1, 5.2, 5.3 and 5.4 hold true and denote the
solution to the BSDE (5.1) as (Y,Z, ψ) ∈ S∞ × H2

BMO × J2BMO. Then, the following
statements hold: (a) For each Wiener direction i ∈ {1, · · · , d} and ds-a.e. s ∈ [0, T ], there
exists a unique solution (Y s,0,i, Zs,0,i, ψs,0,i) ∈ Kp′ [0, T ] with ∀p′ ≥ 2 to the BSDE

Y s,0,i
t = Di

s,0ξ +

∫ T

t
fs,0,i(r)dr −

∫ T

t
Zs,0,ir dWr −

∫ T

t

∫
E
ψs,0,ir (x)µ̃(dr, dx) (5.2)

for 0 ≤ s ≤ t ≤ T , where

fs,0,i(r) := (Di
s,0f)(r,Θr) + ∂Θf(r,Θr)Θ

s,0,i
r

= (Di
s,0f)(r,Θr) + ∂yf(r,Θr)Y

s,0,i
r + ∂zf(r,Θr)Z

s,0,i
r

+∂uf(r,Θr)

∫
E
ρ(x)∂vG(r, ψr(x))ψ

s,0,i
r (x)ν(dx) .

The solution also satisfies

∫ T

0
||(Y s,0,i, Zs,0,i, ψs,0,i)||pKp[0,T ]ds <∞ .

(b) For each jump direction i ∈ {1, · · · , k} and mi(dz)ds-a.e (s, z) ∈ [0, T ] × R0, there
exists a unique solution (Y s,z,i, Zs,z,i, ψs,z,i) ∈ S∞ ×H2

BMO × J2BMO to the BSDE

Y s,z,i
t = Di

s,zξ +

∫ T

t
fs,z,i(r)dr −

∫ T

t
Zs,z,ir dWr −

∫ T

t

∫
E
ψs,z,ir (x)µ̃(dr, dx) (5.3)
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for 0 ≤ s ≤ t ≤ T and z ̸= 0, where

f s,z,i(r) :=
1

z

(
f(ωs,z, r,Θr + zΘs,z,i

r )− f(ω, r,Θr)
)
=

1

z

{
f
(
ωs,z, r, Yr + zY s,z,i

r

, Zr + zZs,z,ir ,

∫
R0

ρ(x)G
(
r, ψr(x) + zψs,z,ir (x)

)
ν(dx)

)
− f(ω, r,Θr)

}
.

The solution also satisfies

∫ T

0

∫
R0

||(Y s,z,i, Zs,z,i, ψs,z,i)||pKp[0,T ]m
i(dz)ds <∞ .

(c) The solution of the BSDE (5.1) is Malliavin differentiable (Y, Z, ψ) ∈ L1,2×L1,2×L1,2.

Put, for every i, Y s,·,i
t = Zs,·,it = ψs,·,it (·) ≡ 0 for t < s ≤ T , then

(
(Y s,z,i
t , Zs,z,it , ψs,z,it (x)), 0 ≤

s, t ≤ T, x ∈ R0, z ∈ R
)
is a version of the Malliavin derivative

(
(Di

s,zYt, D
i
s,zZt, D

i
s,zψt(x)), 0 ≤

s, t ≤ T, x ∈ R0, z ∈ R
)
for every Wiener and jump direction.

Proof. Firstly, from Assumptions 5.1, 5.2 and 5.3, Theorem 4.1 tells us that there exists
a unique solution (Y,Z, ψ) ∈ S∞ × H2

BMO × J2BMO. Since ||Y ||S∞ , ||ψ||J∞ < ∞, one can
choose a constant M > 0 big enough so that the local Lipschitz conditions hold true for
the whole relevant range. We choose one such M and fix it throughout the proof. We also
omit the superscript i denoting the direction of derivative by assuming that we always
discuss each direction separately.

Proof for (a): Firstly, the continuous differentiability of f with respect to the spacial
variables and the local Lipschitz conditions imply that

|∂yf(t, y, z, ut)| ≤ KM , |∂uf(t, y, z, ut)| ≤ KM ,

|∂zf(t, y, z, ut)| ≤ KM (1 + 2|z|+ 2|ut|) .

Thus, it is easy to check that the BSDE (5.2) satisfies Assumption A.2. Note that

|(Ds,0f)(r,Θr)| ≤ |(Ds,0f)(r, 0)|+KM
s,0(|Yr|+ ||ρ||L2(ν)G

′
M ||ψr||L2(ν))

+KM
s,0(1 + |Zr|+ ||ρ||L2(ν)G

′
M ||ψ||L2(ν))|Zr|

Thus, by Assumption 5.4 (iv) and Theorem A.1, there exists a unique solution to the
BSDE (5.2) satisfying, for ∀p′ ≥ 2,

||(Y s,0, Zs,0, ψs,0)||p
′

Kp′ [0,T ]
≤ C

(
E
[
|Ds,0ξ|p

′q̄2 +
(∫ T

0
|(Ds,0f)(r,Θr)|dr

)p′q̄2]) 1
q̄2

≤ C

(
1 + E

[
|Ds,0ξ|p

′q̄2 +
(∫ T

0
|(Ds,0f)(r, 0)|dr

)p′q̄2
+ ||KM

s,0||
2p′q̄2

T

+||Y ||2p
′q̄2

T +
(∫ T

0
|Zr|2dr

)2p′q̄2
+
(∫ T

0
||ψr||2L2(ν)dr

)2p′q̄2]) 1
q̄2

<∞,

where C is a positive constant depending only on (p′, q̄, β, γ, T, ||ξ||∞, ||l||S∞ ,KM ) and q̄ is
a positive constant satisfying 1 < q∗ ≤ q̄ < ∞ where the lower bound q∗ is an increasing
function of the H2

BMO-norm of Zs,0’s coefficient, which is also controlled by the universal
bound given by (β, γ, T, ||ξ||∞, ||l||S∞). We have also used Lemma 2.2 to obtain the last
inequality. When p′ = p, the above inequality together with Assumption 5.4 (iv) implies∫ T

0
||(Y s,0, Zs,0, ψs,0)||pKp[0,T ]ds <∞ .
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Proof for (b): Let us first consider the BSDE

Ys,zt = ξ(ωs,z) +

∫ T

t
f
(
ωs,z, r,Ys,zr ,Zs,z

r ,

∫
R0

ρ(x)G(r,Ψs,z
r (x))ν(dx)

)
dr

−
∫ T

t
Zs,z
r dWr −

∫ T

t

∫
E
Ψs,z
r (x)µ̃(dr, dx) . (5.4)

Although each path ω has an additional jump, the BSDE satisfies the same local Lipschitz
as well as the quadratic-exponential structure conditions (Assumptions 3.1 and 3.2) for
m(dz)ds-a.e. (s, z) ∈ [0, T ] × R0. Thus, by Theorem 4.1, there exists a unique solution
(Ys,z,Zs,z,Ψs,z) ∈ S∞×H2

BMO × J2BMO to the BSDE (5.4) satisfying the universal bound
given in Lemma 3.1 and 3.2. Now, let us define,

Y s,z :=
Ys,z − Y

z
, Zs,z :=

Zs,z − Z

z
, ψs,z :=

Ψs,z − ψ

z
,

and then (Y s,z, Zs,z, ψs,z) ∈ S∞×H2
BMO×J2BMO is a solution to the BSDE (5.3). Note that

Ds,zξ :=
1
z (ξ(ω

s,z)− ξ(ω)). The uniqueness is obvious since otherwise (zY s,z + Y, zZs,z +
Z, zψs,z+ψ) gives another solution to to the BSDE (5.4). Let us introduce a new collective

argument as Ξs,z :=
(
Ys,z,Zs,z,

∫
R0
ρ(x)G(r,Ψs,z

r (x))ν(dx)
)
. Then,

f s,z(r) =
1

z

(
f(ωs,z, r,Ξs,z)− f(ω, r,Θr)

)
= (Ds,zf)(r,Θr) +

f(ωs,z, r,Ξs,zr )− f(ωs,z, r,Θr)

z

Let us put a d-dimensional F-progressively measurable process (bs,zr , r ∈ [0, T ]) by

bs,zr (ω) :=
1

|Zs,z
r − Zr|2

{
f
(
ωs,z, r, Yr,Zs,z

r ,

∫
R0

ρ(x)G(r, ψr(x))ν(dx)
)

−f
(
ωs,z, r, Yr, Zr,

∫
R0

ρ(x)G(r, ψr(x))ν(dx)
)}

1Zs,z
r −Zr ̸=0(Zs,z

r − Zr)

and the map f̃s,z : Ω× [0, T ]× R× L2(E, ν;Rk) → R by,

f̃ s,z(ω, r, ȳ, ψ̄) := Ds,zf(r,Θr) +
1

z

{
f
(
ωs,z, r, zȳ + Yr,Zs,z

r ,

∫
R0

ρ(x)G(r, zψ̄(x) + ψr(x))ν(dx)
)

−f
(
ωs,z, r, Yr,Zs,z

r ,

∫
R0

ρ(x)G(r, ψr(x))ν(dx)
)}

.

Then, (Y s,z, Zs,z, ψs,z) can also be expressed as a solution to the BSDE

Y s,z
t = Ds,zξ +

∫ T

t

(
f̃s,z(r, Y s,z

r , ψs,zr ) + bs,zr · Zs,zr
)
dr −

∫ T

t
Zs,zr dWr −

∫ T

t

∫
E
ψs,zr (x)µ̃(dr, dx) .

Note that |br| ≤ Hr, r ∈ [0, T ] whereHr := KM

(
1+|Zr|s,z+|Zr|+2||ρ||L2(ν)G

′
M ||ψr||L2(ν)

)
and that H ∈ H2

BMO. Furthermore, the new driver satisfies a linear growth property

|f̃(r, ȳ, ψ̄)| ≤ |(Ds,zf)(r,Θr)|+KM

(
|ȳ|+||ρ||L2(ν)G

′
M ||ψ̄||L2(ν)

)
. Thus, Lemma A.1 implies
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that

||(Y s,z, Zs,z, ψs,z)||p
′

Kp′ [0,T ]
≤ C

(
E
[
|Ds,zξ|p

′q̄2 +
(∫ T

0
|(Ds,zf)(r,Θr)|dr

)p′q̄2]) 1
q̄2

≤ C

(
1 + E

[
|Ds,zξ|p

′q̄2 +
(∫ T

0
|(Ds,zf)(r, 0)|dr

)p′q̄2
+ ||KM

s,z||
2p′q̄2

T

+||Y ||2p
′q̄2

T +
(∫ T

0
|Zr|2dr

)2p′q̄2
+
(∫ T

0
||ψr||2L2(ν)dr

)2p′q̄2]) 1
q̄2

<∞

for ∀p′ ≥ 2, where a positive constant C depending only on (p′, q̄, β, γ, T, ||ξ||∞, ||l||S∞ ,KM )
and q̄ is a positive constant satisfying q∗ ≤ q̄ < ∞ where q∗ > 1 is determined by
||H||H2

BMO
. Choosing p′ = p together with Assumption 5.4 (iv) implies∫ T

0

∫
R0

||(Y s,z, Zs,z, ψs,z)||pKp[0,T ]m(dz)ds <∞ ,

which proves the second claim of (b). Note that, we also have∫
Ẽ
||(Y s,z, Zs,z, ψs,z)||pKp[0,T ]q(ds, dz) <∞

by combining the results (a) and (b).

Proof for (c): First step (Approximating sequence of globally Lipschitz BSDEs)
We finally proceed to the proof for (c). Firstly, let us introduce a truncated driver as in
Section 4.1. For m ∈ N, we define

Gm(s, ψ(x)) := G
(
s, φm(ψ ◦ ζm(x))

)
, fm(s, y, z, u) := f

(
s, φm(y), φm(z), u

)
,

and thus for every (s, y, z, ψ) ∈ [0, T ]× R× Rd × L2(E, ν;Rk),

fm

(
s, y, z,

∫
R0

ρ(x)Gm(s, ψ(x))ν(dx)
)

= f
(
s, φm(y), φm(z),

∫
R0

ρ(x)G
(
s, φm(ψ ◦ ζm(x))

)
ν(dx)

)
.

We now introduce a sequence of approximating BSDEs,

Y m
t = ξ +

∫ T

t
fm

(
r, Y m

r , Zmr ,

∫
R0

ρ(x)Gm(r, ψ
m
r (x))ν(dx)

)
dr

−
∫ T

t
Zmr dWr −

∫ T

t

∫
E
ψmr (x)µ̃(dr, dx) . (5.5)

As in Lemma 4.1, it is not difficult to check that for each m the truncated driver fm
is globally Lipschitz. Furthermore, it also satisfies the quadratic-exponential structure
condition in Assumption 5.2 uniformly in m ∈ N. Thus there exists a unique solution
(Y m, Zm, ψm) ∈ S∞ × H2

BMO × J2BMO to the BSDE (5.5) satisfying the universal bound
given in Lemma 3.1 and 3.2. Thus, there exists some constant C > 0 depending only on
(β, γ, T, ||ξ||∞, ||l||S∞) such that

sup
m∈N

(
||Y m||S∞ + ||Zm||H2

BMO
+ ||ψm||J2BMO

)
≤ C .
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This also impliesM > 0 can be chosen such that fm satisfies the same local Lipschitz prop-
erty as the original driver f given in Assumption 5.3 with the coefficient KM independent
of m. From the proof for Theorem 4.1, (Y m, Zm, ψm) → (Y,Z, ψ) in S∞×H2

BMO×J2BMO.
One can also check that, for each m ∈ N, the BSDE (5.5) satisfies Assumptions B.1 as

well as B.2. Therefore Theorem B.1 implies that the approximating BSDEs are Malliavin
differentiable i.e., (Y m, Zm, ψm) ∈ L1,2 × L1,2 × L1,2 for ∀m ∈ N.

Second step (Uniform boundedness of L1,2-norm of the approximating BSDEs)
From the first step, one can define the Malliavin derivatives of (Y m, Zm, ψm) for every

m ∈ N as the solution to the following BSDEs: For every Wiener direction i ∈ {1, · · · , d},
ds-a.e. s ∈ [0, T ] and s ≤ t ≤ T ,

Di
s,0Y

m
t = Di

s,0ξ +

∫ T

t
Di
s,0fm(r)dr −

∫ T

t
Di
s,0Z

m
r dWr −

∫ T

t

∫
E
Di
s,0ψ

m
r (x)µ̃(dr, dx),

Di
s,0fm(r) := (Ds,0fm)(r,Θ

m
r ) + ∂Θfm(r,Θ

m
r )D

i
s,0Θ

m
r , (5.6)

and for jump direction i ∈ {1, · · · , k}, mi(dz)ds-a.e. (s, z) ∈ [0, T ]× R0 and s ≤ t ≤ T ,

Di
s,zY

m
t = Di

s,zξ +

∫ T

t
Di
s,zfm(r)dr −

∫ T

t
Di
s,zZ

m
r dWr −

∫ T

t

∫
E
ψmr (x)µ̃(dr, dx),

Di
s,zfm(r) :=

1

z

(
fm(ω

s,z, r,Θm
r + zDi

s,zΘ
m
r )− fm(ω, r,Θ

m
r )
)

= (Di
s,zfm)(r,Θ

m
r ) +

1

z

(
fm(ω

s,z, r,Θm
r + zDi

s,zΘ
m
r )− fm(ω

s,z, r,Θm
r )
)
. (5.7)

Here, we have defined Θm
r :=

(
Y m
r , Zmr ,

∫
R0
ρ(x)Gm(r, ψ

m
r (x))ν(dx)

)
for r ∈ [0, T ] and

slightly abused its notation in such a way that

fm(ω
s,z, r,Θm

r + zDi
s,zΘ

m
r ) := fm

(
ωs,z, r, Y m

r + zDi
s,zY

m
r , Zmr + zDi

s,zZ
m
r

,

∫
R0

ρ(x)Gm
(
r, ψmr (x) + zDi

s,zψ
m
r (x)

)
ν(dx)

)
to save the space. For 0 ≤ t < s, one has Ds,zΘ

m
t ≡ 0. Let us omit the superscript i

denoting the direction of derivative in the following discussions.
Let us also define (for each direction i ∈ {1, · · · , k})

Yms,z(t) := Y m
t + zDs,zY

m
t , Zm

s,z(t) := Zmt + zDs,zZ
m
t ,

Ψm
s,z(t, ·) := ψmt (·) + zDs,zψ

m
t (·) ,

for (s, z) ∈ [0, T ]× R0 and t ∈ [0, T ], and denote its collective argument as

Ξms,z(t) :=
(
Yms,z(t),Zm

s,z(t),

∫
R0

ρ(x)Gm(t,Ψ
m
s,z(t, x))ν(dx)

)
.

By Theorem B.1, we have already known that for q(ds, dz)-a.e. (s, z) ∈ [0, T ] × Rk,
the BSDEs (5.6) and (5.7) have a unique solution (Ds,zY

m, Ds,zZ
m, Ds,zψ

m) ∈ K2[0, T ].
Furthermore, the arguments used in the proof for (b) and the fact that fm satisfies the
quadratic-exponential structure condition uniformly in m also imply that

sup
m∈N

(
||Yms,z||S∞ + ||Zm

s,z||H2
BMO

+ ||Ψm
s,z||J2BMO

)
≤ C ,
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with some positive constant C depending only on (β, γ, T, ||ξ||∞, ||l||S∞). It then shows
(Ds,zY

m, Ds,zZ
m, Ds,zψ

m) ∈ S∞ × H2
BMO × J2BMO. Note also that, by the proof of The-

orem 4.1, we have the convergence Ξms,z := (Yms,z,Zm
s,z,Ψ

m
s,z) → Ξs,z := (Ys,z,Zs,z,Ψs,z) in

the space S∞ ×H2
BMO × J2BMO.

By the same arguments used in Proof for (a), (b), one can apply Theorem A.1 to the
BSDE (5.6) and Lemma A.1 (or equivalently Lemma 3.3 (b) ) to the BSDE (5.7) to obtain,

∣∣∣∣(Ds,zY
m, Ds,zZ

m, Ds,zψ
m)
∣∣∣∣p′
Kp′ [0,T ]

≤ C

(
E
[
|Ds,zξ|p

′q̄2 +
(∫ T

0
|(Ds,zfm)(r,Θ

m
r )|dr

)p′q̄2]) 1
q̄2

≤ C

(
1 + E

[
|Ds,zξ|p

′q̄2 +
(∫ T

0
|(Ds,zf)(r, 0)|dr

)p′q̄2
+ ||Ks,z||2p

′q̄2

T

+||Y m||2p
′q̄2

T +
(∫ T

0
|Zmr |2dr

)2p′q̄2
+
(∫ T

0
||ψmr ||2L2(ν)dr

)2p′q̄2]) 1
q̄2

(5.8)

both for Wiener (z = 0) as well as jump (z ̸= 0) directions. Here, C is a positive constant
depending only on (p′, q̄, β, γ, T, ||ξ||∞, ||l||S∞ ,KM ) and q̄ is a positive constant satisfying
1 < q∗ ≤ q̄ < ∞ where the lower bound q∗ is an increasing function of the H2

BMO-
norm of Ds,zZ

m’s coefficients, which are also controlled by the universal bound given by
(β, γ, T, ||ξ||∞, ||l||S∞). In particular, they are independent of m. For ∀p′ ≥ 2, due to the
energy inequality in Lemma 2.2, together with Lemmas 3.1 and 3.2 imply that the right-
hand side of (5.8) is bounded by some positive constant independent of m for q(ds, dz)-a.e.
(s, z) ∈ Ẽ. In particular, Ds,zΘ

m ∈ Kp′ [0, T ] for ∀p′ ≥ 2.
When one chooses p′ = p, Assumption 5.4 (iv) gives

sup
m∈N

∫
Ẽ

∣∣∣∣(Ds,zY
m, Ds,zZ

m, Ds,zψ
m)
∣∣∣∣p
Kp[0,T ]

q(ds, dz) <∞ . (5.9)

Assumption 5.4 (v) and the fact that (Θm)m∈N satisfy the universal bound also imply that
the convergence

lim
ϵ↓0

k∑
i=1

∫ T

0

∫
|z|>ϵ

∣∣∣∣(Di
s,zY

m, Di
s,zZ

m, Di
s,zψ

m)
∣∣∣∣p
Kp[0,T ]

mi(dz)ds

=

k∑
i=1

∫ T

0

∫
R0

∣∣∣∣(Di
s,zY

m, Di
s,zZ

m, Di
s,zψ

m)
∣∣∣∣p
Kp[0,T ]

mi(dz)ds

is uniform in m ∈ N. (See the discussion given just below (B.10). Thanks to the universal
bound, the arguments are much simpler here.)

Third step (Convergence of Ds,0Θ
m → Θs,0 as n→ ∞ in L1,2)

For ds-a.e. s ∈ [0, T ] and m ∈ N, set

∆s,0Y m := Y s,0 −Ds,0Y
m, ∆s,0Zm := Zs,0 −Ds,0Z

m, ∆s,0ψm := ψs,0 −Ds,0ψ
m

and then (∆s,0Y m,∆s,0Zm,∆s,0ψm) ∈ Kp′ [0, T ] with ∀p′ ≥ 2 is the unique solution to the
BSDE

∆s,0Y m
t =

∫ T

t

(
fs,0(r)−Ds,0fm(r)

)
dr −

∫ T

t
∆s,0Zmr dWr −

∫ T

t

∫
E
∆s,0ψmr (x)µ̃(dr, dx) .
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Since

• f s,0(r)−Ds,0fm(r) = fs,0(r)−
(
(Ds,0fm)(r,Θ

m
r ) + ∂Θfm(r,Θ

m
r )Θ

s,0
r

)
+∂Θfm(r,Θ

m
r )(Θ

s,0
r −Ds,0Θ

m
r ) ,

•
∣∣∣fs,0(r)− ((Ds,0fm)(r,Θ

m
r ) + ∂Θfm(r,Θ

m
r )Θ

s,0
r

)∣∣∣
≤ |(Ds,0f)(r,Θr)− (Ds,0f)(r,Θ

m
r )|+ |(Ds,0f)(r,Θ

m
r )− (Ds,0fm)(r,Θ

m
r )|

+|∂Θf(r,Θr)− ∂Θfm(r,Θ
m
r )||Θs,0

r | ,

Lemma A.2 implies that∫ T

0

∣∣∣∣(∆s,0Y m,∆s,0Zm,∆s,0ψm)
∣∣∣∣p
Kp[0,T ]

ds

≤ C

∫ T

0

(
E
[(∫ T

0
|(Ds,0f)(r,Θr)− (Ds,0f)(r,Θ

m
r )|dr

)pq̄2
+
(∫ T

0
|(Ds,0f)(r,Θ

m
r )− (Ds,0fm)(r,Θ

m
r )|dr

)pq̄2
+
(∫ T

0
|∂Θf(r,Θr)− ∂Θfm(r,Θ

m
r )||Θs,0

r |dr
)pq̄2]) 1

q̄2

ds (5.10)

where, as before, C > 0 and q̄ > 1 are constants independent of m. By (5.9), in order to
obtain

lim
m→∞

∫ T

0

∣∣∣∣(∆s,0Y m,∆s,0Zm,∆s,0ψm)
∣∣∣∣p
Kp[0,T ]

ds = 0

it suffices to show limm→∞
∣∣∣∣(∆s,0Y m,∆s,0Zm,∆s,0ψm)

∣∣∣∣p
Kp[0,T ]

= 0. for ds-a.e. s ∈ [0, T ].

Let us check, each term in (5.10). By the local Lipschitz property, the first term yields

E
[(∫ T

0
|(Ds,0f)(r,Θr)− (Ds,0f)(r,Θ

m
r )|dr

)pq̄2]
≤ CE

[
||KM

s,0||2pq̄
2
] 1

2E
[
||δY m||2pq̄

2

T +
(∫ T

0
||δψmr ||2L2(ν)dr

)pq̄2] 1
2

+CE
[
||KM

s,0||
2pq̄2

T

(∫ T

0
|Hm(r)|2dr

)pq̄2] 1
2

E
[(∫ T

0
|δZmr |2dr

)pq̄2] 1
2

,(5.11)

where the process Hm is defined by Hm(r) := 1 + |Zr| + |Zmr | + ||ψr||L2(ν) + ||ψmr ||L2(ν)

and (δY m, δZm, δψm) := (Y − Y m, Z − Zm, ψ − ψm). Since Hm ∈ H2
BMO with the norm

dominated by constant independent of m, the convergence of Θm → Θ in S∞ ×H2
BMO ×

J2BMO implies that (5.11) converges to zero as m → ∞. Secondly, by definition of the
truncated driver, one has

(Ds,0fm)(r,Θ
m
r ) = (Ds,0f)

(
r, φm(Y

m
r ), φm(Z

m
r ),

∫
R0

ρ(x)G(r, φm(ψ
m
r ◦ ζm)(x))ν(dx)

)
.

Since both of (Θm, φm(Θ
m)) converge to Θ, the convergence of the second term can be

shown in the same way as the first term. Let us now consider the third term. By the
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Cauchy-Schwartz inequality,

E
[(∫ T

0
|∂Θf(r,Θr)− ∂Θfm(r,Θ

m
r )||Θs,0

r |dr
)pq̄2]

≤ E
[(∫ T

0
|∂Θf(r,Θr)− ∂Θfm(r,Θ

m
r )|2dr

)pq̄2] 1
2

E
[(∫ T

0
|Θs,0

r |2dr
)pq̄2] 1

2

.

Using the extended Fatou’s lemma for uniformly integrable variables (Theorem 7.5.2 in
[2]), one obtains

lim
m→∞

E
[(∫ T

0
|∂Θf(r,Θr)− ∂Θfm(r,Θ

m
r )|2dr

)pq̄2]
≤ E

[
lim sup

m→∞

(∫ T

0
|∂Θf(r,Θr)− ∂Θfm(r,Θ

m
r )|2dr

)pq̄2]
= 0

since the integrand goes dP ⊗ dr-a.e. to zero by the convergence φm(Θ
m) → Θ. This

finishes the proof.

Fourth step (Convergence of Ds,zΘ
m → Θs,z (z ̸= 0) as n→ ∞ in L1,2)

For each direction of jump, let us put

∆s,zY m := Y s,z −Ds,zY
m, ∆s,zZm = Zs,z −Ds,zZ

m, ∆ψm = ψs,z −Ds,zψ
m .

Then, (∆s,zY m,∆s,zZm,∆s,zψm) ∈ S∞ ×H2
BMO × J2BMO is the unique solution to

∆s,zY m
t =

∫ T

t

(
fs,z(r)−Ds,zfm(r)

)
dr −

∫ T

t
∆s,zZmr dWr −

∫ T

t

∫
E
∆s,zψmr (x)µ̃(dr, dx) ,

with t ∈ [0, T ].
Let us define a d-dimensional F-progressively measurable process (bms,z(r), r ∈ [0, T ])

by

bms,z(ω, r) :=
fm(ω

s,z, r, Ξ̌ms,z(r))− fm(ω
s,z, r,Ξms,z(r))

z|∆s,zZmr |2
1∆s,zZm

r ̸=0∆
s,zZmr

where Ξ̌ms,z := (Yms,z, Zm + zZs,z,
∫
R0
Gm(r,Ψ

m
s,z(·, x))ν(dx)) which differs from Ξms,z only in

the second component. It also converges Ξ̌ms,z → Ξs,z in S∞ × H2
BMO × J2BMO. We also

introduce a map f̃ms,z : Ω× [0, T ]× R× L2(E, ν;Rk) → R by

f̃ms,z(ω, r, ȳ, ψ̄) := (Ds,zf)(r,Θr)− (Ds,zfm)(r,Θ
m
r )−

1

z

[
f(ωs,z, r,Θr)− fm(ω

s,z, r,Θm
r )
]

+
1

z

{
f
(
ωs,z, r, zȳ + Yms,z(r) + δY m

r ,Zs,z
r

,

∫
R0

ρ(x)G(r, zψ̄(x) + Ψm
s,z(r, x) + δψmr (x))ν(dx)

)
− fm(ω

s,z, r, Ξ̌ms,z(r))
}
.
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Then, one can see that (∆s,zY m,∆s,zZm,∆s,zψm) is the solution to the BSDE

∆s,zY m
t =

∫ T

t

(
f̃ms,z(r,∆

s,zY m
r ,∆s,zψmr ) + bms,z(r) ·∆s,zZmr

)
dr

−
∫ T

t
∆s,zZmr dWr −

∫ T

t

∫
E
∆s,zψmr (x)µ̃(dr, dx).

By denoting an F-progressively measurable process Hm
s,z as

Hm
s,z(r) := KM

(
1 + |Zm

s,z(r)|+ |Zs,z
r |+ |δZm|+ 2||ρ||L2(ν)G

′
M ||Ψm

s,z(r, ·)||L2(ν)

)
,

one obtains |bms,z(r)| ≤ Hm
s,z(r) for ∀r ∈ [0, T ]. Here, Hm

s,z ∈ H2
BMO and for m(dz)ds-a.e.

(s, z) ∈ [0, T ] × R0, its norm ||Hm
s,z||H2

BMO
is dominated by some constant independent of

m thank to the universal bound. Furthermore, the new driver satisfies the linear growth
property

|f̃ms,z(r, ȳ, ψ̄)| ≤ |f̃ms,z(r, 0, 0)|+KM

(
|ȳ|+ ||ρ||L2(ν)G

′
M ||ψ̄||L2(ν)

)
and

|f̃m(s, z)(r, 0, 0)| ≤ |(Ds,zf)(r,Θr)− (Ds,zfm)(r,Θ
m
r )|+

1

|z|
|f(ωs,z, r,Θr)− fm(ω, r,Θ

m
r )|

+
1

|z|
|f(ωs,z, r, Ξ̌ms,z(r))− fm(ω

s,z, r, Ξ̌ms,z(r))|

+ CKM
1

|z|

(
|δY m

r |+ ||δψmr ||L2(ν) +Hm
s,z(r)|δZmr |

)
(5.12)

where C is a positive constant depending only on ||ρ||L2(ν), G
′
M and

Hm
s,z(r) := 1 + 2|Zs,z

r |+ |δZmr |+ 2||Ψm
s,z(r, ·)||L2(ν) + ||δψmr ||L2(ν) .

One sees Hm
s,z ∈ H2

BMO and its norm is dominated by m-independent constant m(dz)ds-
a.e. (s, z) ∈ [0, T ]× R0 thanks to the universal bound.

By applying Lemma A.1, one obtains∣∣∣∣(∆s,zY m,∆s,zZm,∆s,zψm)
∣∣∣∣p
Kp[0,T ]

≤ CE
[(∫ T

0
|(Ds,zf)(r,Θr)− (Ds,zfm)(r,Θ

m
r )|dr

)pq̄2] 1
q̄2

+
C

|z|p
E
[(∫ T

0
|f(ωs,z, r,Θr)− fm(ω

s,z, r,Θm
r )|dr

)pq̄2] 1
q̄2

+
C

|z|p
E
[(∫ T

0
|f(ωs,z, r, Ξ̌ms,z(r))− fm(ω

s,z, r, Ξ̌ms,z(r))|dr
)pq̄2] 1

q̄2

+
C

|z|p
E
[(∫ T

0

[
|δY m

r |+ ||δψmr ||L2(ν) +Hm
s,z(r)|δZmr |

]
dr
)pq̄2] 1

q̄2

, (5.13)

where the positive constants C and q̄ > 1 are m-independent as before.
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Due to the result of the Second step, the order of limit operations can be changed,

lim
m→∞

lim
ϵ↓0

∫ T

0

∫
|z|>ϵ

∣∣∣∣(∆s,zY m,∆s,zZm,∆s,zψm)
∣∣∣∣p
Kp[0,T ]

m(dz)ds

= lim
ϵ↓0

lim
m→∞

∫ T

0

∫
|z|>ϵ

∣∣∣∣(∆s,zY m,∆s,zZm,∆s,zψm)
∣∣∣∣p
Kp[0,T ]

m(dz)ds

= lim
ϵ↓0

∫ T

0

∫
|z|>ϵ

lim
m→∞

∣∣∣∣(∆s,zY m,∆s,zZm,∆s,zψm)
∣∣∣∣p
Kp[0,T ]

m(dz)ds,

where (5.9) is used to obtain the second equality. Therefore, in order to prove the conver-
gence ∆s,zΘm → Θs,z in L1,2, it suffices to show, for m(dz)ds-a.e. (s, z) ∈ [0, T ]× R0,

lim
m→∞

∣∣∣∣(∆s,zY m,∆s,zZm,∆s,zψm)
∣∣∣∣p
Kp[0,T ]

= 0.

This can be easily confirmed from (5.13) by noticing the fact that (Θm, φm(Θ
m)) → Θ

and (Ξ̌ms,z, φm(Ξ̌
m
s,z)) → Ξs,z converge in S∞ × H2

BMO × J2BMO and hence also in Kp′ for
∀p′ ≥ 2.

Finally, the closability of the Malliavin derivatives in L1,2 (See Theorem 12.6 in [14].),
one concludes (Y, Z, ψ) ∈ L1,2 and that (Y s,z, Zs,z, ψs,z) is a version of (Ds,zY,Ds,zZ,Ds,zψ).

Corollary 5.1. Under the assumptions of Theorem 5.1, we have

(i)
(
(Di

t,0Yt)
P , t ∈ [0, T ]

)
is a version of

(
Zit , t ∈ [0, T ]

)
for i ∈ {1, · · · , d},

(ii)
(
(zDi

t,zYt)
P , (t, z) ∈ [0, T ] × R0

)
is a version of

(
ψit(z), (t, z) ∈ [0, T ] × R0

)
for

i ∈ {1, · · · , k},
where (·)P denotes the predictable projection of a process.

Proof. See Corollory 4.1 in [13].

6 An application: Markovian forward-backward system

6.1 Forward SDE

As an important application, we consider a Qexp-growth BSDE driven by an n-dimensional
Markovian process

(
Xt,x
s , s ∈ [0, T ]

)
defined by the next SDE:

Xt,x
s = x+

∫ s

t
b(r,Xt,x

r )dr +

∫ s

t
σ(r,Xt,x

r )dWr +

∫ s

t

∫
E
γ(r,Xt,x

r−, e)µ̃(dr, de) (6.1)

for s ∈ [t, T ] and put Xt,x
s ≡ x for s < t. Here, x ∈ Rn, b : [0, T ] × Rn → Rn, σ :

[0, T ] × Rn → Rn×d and γ : [0, T ] × Rn × E → Rn×k. Let us introduce η : R → R+ by
η(e) = 1 ∧ |e|.

Assumption 6.1. The functions b(t, x), σ(t, x) and γ(t, x, e) are continuous in all their
arguments and one-time continuously differentiable with respect to x with continuous
derivatives. Furthermore, there exists some positive constant K such that
(i) |b(t, 0)|+ |σ(t, 0)| ≤ K uniformly in t ∈ [0, T ].
(ii) |∂xb(t, x)|+ |∂xσ(t, x)| ≤ K uniformly in t ∈ [0, T ].
(iii) For each column vector i ∈ {1, · · · , k}, |γi(t, 0, e)| ≤ Kη(e) uniformly in (t, e) ∈
[0, T ]× R0.
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(iv) For each column vector i ∈ {1, · · · , k}, |∂xγi(t, x, e)| ≤ Kη(e) uniformly in (t, x, e) ∈
[0, T ]× Rn × R0.

We have the following result:

Proposition 6.1. Under Assumption 6.1, there exists a unique solution Xt,x ∈ Sp[0, T ]
with ∀p ≥ 2 for every initial data (t, x) ∈ [0, T ] × Rn. Furthermore, the process Xt,x is
Malliavin differentiable Xt,x ∈ L1,2 and satisfies, for ∀p ≥ 2,∫

Ẽ
E
[
||Du,zX

t,x||pT
]
q(du, dz) ≤ C(1 + |x|p)

with some positive constant C depending only on (p, T,K).

Proof. The fact that Xt,x ∈ Sp[0, T ] with ∀p ≥ 2 is rather standard. See, for example,
Lemma A.3 in [16]. The existence of Malliavin derivative follows from Theorem 3 of Petrou
(2008) [31]. This implies, for u ∈ [t, s] and i ∈ {1, · · · , d},

Di
u,0X

t,x
s = σi(u,Xt,x

u ) +

∫ s

u
∂xb(r,X

t,x
r )Di

u,0X
t,x
r +

∫ s

u
∂xσ(r,X

t,x
r )Di

u,0X
t,x
r dWr

+

∫ s

u

∫
E
∂xγ(r,X

t,x
r−, e)D

i
u,0X

t,x
r µ̃(dr, de) ,

and for (u, z) ∈ [t, s]× R0 and i ∈ {1, · · · , k},

Di
u,zX

t,x
s =

γi(u,Xt,x
u−, z)

z
+

∫ s

u
Di
u,zb(r,X

t,x
r )dr +

∫ s

u
Di
u,zσ(r,X

t,x
r )dWr

+

∫ s

u

∫
E
Di
u,zγ(r,X

t,x
r−, e)µ̃(dr, de) ,

where both σi and γi denote the i-th column vectors, and for φ = b, σ, γ,

Di
u,zφ(r,X

t,x
r ) :=

φ(r,Xt,x
r + zDi

u,zX
t,x
r )− φ(r,Xt,x

r )

z
.

By Lemma A.3 [16], the above SDEs satisfy the a priori estimates

E
[
||Du,0X

t,x||pT
]
≤ Cp,T,KE

[
|σ(u,Xt,x

u )|p
]

≤ Cp,T,KE
[
|σ(u, 0)|p + ||Xt,x||pT

]
≤ Cp,T,K(1 + |x|p)

and

E
[
||Du,zX

t,x||pT
]
≤ Cp,T,KE

[∣∣∣γ(u,Xt,x
u−, z)

z

∣∣∣p]

≤ Cp,T,KE
[∣∣∣γ(u, 0, z)

z

∣∣∣p + ||Xt,x||pT

]
≤ Cp,T,K(1 + |x|p) .

Since q(du, dz) on Ẽ is a finite measure, the claim is proved.

6.2 Qexp-growth BSDE driven by X t,x

In many applications, there appears a BSDE driven by a Markovian forward process. Let
us consider a Qexp-BSDE driven by the process

(
Xt,x
s , s ∈ [0, T ]

)
introduced in the last
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section;

Y t,x
s = ξ(Xt,x

T ) +

∫ T

s
f
(
r,Xt,x

r , Y t,x
r , Zt,xr ,

∫
R0

ρ(e)G(r, ψr(e))ν(de)
)
dr

−
∫ t

s
Zt,xr dWr −

∫ T

s

∫
E
ψt,xr (e)µ̃(dr, de) (6.2)

for s ∈ [t, T ] and put (Y t,x
s , Zt,xs , ψt,xs ) ≡ (Y t,x

t , 0, 0) for s < t. Here, ξ : Rn → R,
f : [0, T ] × Rn × R × Rd × Rk → R are measurable functions. We treat Z and ψ as
row vectors for notational simplicity. In this setup, the driver f is deterministic without
explicit dependence on ω, which is now provided by the dependence on Xt,x.

Assumption 6.2. For every (x, y, z, ψ) ∈ Rn × R × Rd × L2(E, ν;Rk), there exist two
positive constants β ≥ 0, γ > 0 and the non-negative measurable function l : [0, T ] → R+

such that the measurable function f satisfies

−lt − β|y| − γ

2
|z|2 −

∫
E
jγ
(
−ψ(e)

)
ν(de) ≤ f

(
t, x, y, z,

∫
R0

ρ(e)G(t, ψ(e))ν(de)
)

≤ lt + β|y|+ γ

2
|z|2 +

∫
E
jγ
(
ψ(e)

)
ν(de)

dt-a.e. t ∈ [0, T ], where jγ(u) :=
1

γ

(
eγu − 1− γu

)
.

Assumption 6.3. (i) |ξ(x)|+ lt is bounded uniformly in (t, x) ∈ [0, T ]× Rn.
(ii) For each M > 0, for every x ∈ Rn and (y, z, ψ), (y′, z′, ψ′) ∈ R × Rd × L2(E, ν;Rk)
satisfying

|y|, |y′|, ||ψ||L∞(ν), ||ψ′||L∞(ν) ≤M,

there exists some positive constant KM (possibly dependent on M) such that∣∣f(t, x, y, z, ut)− f(t, x, y′, z′, u′t)
∣∣

≤ KM

(
|y − y′|+ |ut − u′t|

)
+KM

(
1 + |z|+ |z′|+ |ut|+ |u′t|

)
|z − z′|

where we have used the short-hand notation ut :=
∫
R0
ρ(e)G(t, ψ(e))ν(de) and u′t :=∫

R0
ρ(e)G(t, ψ′(e))ν(de) .

The following result is obvious:

Lemma 6.1. Under Assumptions 5.1, 6.1, 6.2 and 6.3, there exists a unique solution
(Y t,x, Zt,x, ψt,x) ∈ S∞[0, T ]×H2

BMO[0, T ]×J2BMO[0, T ] to the BSDE (6.2) for every (t, x) ∈
[0, T ]× Rn.

We denote Θt,x
r :=

(
Y t,x, Zt,x,

∫
R0
ρ(e)G(r, ψt,xr (e))ν(de)

)
as a collective arguments for

the solution indexed by the initial data (t, x).

Assumption 6.4. (i) ξ and the driver f are one-time continuously differentiable with
respect to the spacial variables with continuous derivatives.
(ii) There exists some positive constant K such that |∂xξ(x)| ≤ K as well as |∂xf(t, x, 0, 0, 0)| ≤
K uniformly in (t, x) ∈ [0, T ]× Rn.
(iii) For each M > 0, for every x ∈ Rn and (y, z, ψ), (y′, z′, ψ′) ∈ R × Rd × L2(E, ν;Rk)
satisfying

|y|, |y′|, ||ψ||L∞(ν), ||ψ′||L∞(ν) ≤M,
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there exists some positive constant KM (possibly dependent on M) such that∣∣∂xf(t, x, y, z, ut)− ∂xf(t, x, y
′, z′, u′t)

∣∣
≤ KM

(
|y − y′|+ |ut − u′t|

)
+KM

(
1 + |z|+ |z′|+ |ut|+ |u′t|

)
|z − z′|

with the short-hand notation ut :=
∫
R0
ρ(e)G(t, ψ(e))ν(de) and u′t :=

∫
R0
ρ(e)G(t, ψ′(e))ν(de) .

One sees that Assumption 6.4, together with Assumption 6.3, implies

|∂xf(t, x, y, z, ut)| ≤ CKM

(
1 + |y|+ |z|2 + |ut|2

)
, |∂yf(t, x, y, z, ut)| ≤ KM ,

|∂zf(t, x, y, z, ut)| ≤ KM

(
1 + 2|z|+ 2|ut|

)
, |∂uf(t, x, y, z, ut)| ≤ KM ,

where C is some positive constant.

Theorem 6.1. Under Assumptions 5.1, 6.1, 6.2, 6.3 and 6.4, the solution of the BSDE
(6.2) is Malliavin differentiable (Y t,x, Zt,x, ψt,x) ∈ L1,2 × L1,2 × L1,2 for every initial data

(t, x) ∈ [0, T ] × Rn. A version of
((
Di
s,0Y

t,x
r , Di

s,0Z
t,x
r , Di

s,0ψ
t,x
r (e)

)
, 0 ≤ s, r ≤ T, e ∈

R0

)
i∈{1,··· ,d}

is the unique solution of the BSDE

Di
s,0Y

t,x
u = Di

s,0Z
t,x
u = Di

s,0ψ
t,x
u (·) = 0, 0 ≤ u < s ≤ T,

Di
s,0Y

t,x
u = ∂xξ(X

t,x
T )Di

s,0X
t,x
T +

∫ T

u
fs,0,i(r)dr −

∫ T

u
Di
s,0Z

t,x
r dWr

−
∫ T

u

∫
E
Di
s,0ψ

t,x
r µ̃(dr, de), u ∈ [s, T ]

where

f s,0,i(r) := ∂xf(r,X
t,x
r ,Θt,x

r )Ds,0X
t,x
r + ∂Θf(r,X

t,x
r ,Θt,x

r )Ds,0Θ
t,x
r .

Moreover, for a given ds-a.e. s ∈ [0, T ], (Di
s,0Y

t,x, Di
s,0Z

t,x, Di
s,0ψ

t,x) ∈ Kp[0, T ] with
∀p ≥ 2.

A version of
((
Di
s,zY

t,x
r , Di

s,zZ
t,x
r , Di

s,zψ
t,x
r (e)

)
, 0 ≤ s, r ≤ T, e, z ∈ R0

)
i∈{1,··· ,k}

is the

unique solution of the BSDE

Di
s,zY

t,x
u = Di

s,zZ
t,x
u = Di

s,zψ
t,x
u (·) = 0, 0 ≤ u < s ≤ T,

Di
s,zY

t,x
u = ξs,z,i +

∫ T

u
fs,z,i(r)dr −

∫ T

u
Di
s,zZ

t,x
r dWr −

∫ T

u

∫
E
Di
s,zψ

t,x
r (e)µ̃(dr, de) ,

for u ∈ [s, T ] where

ξs,z,i :=
ξ(Xt,x

T + zDi
s,zX

t,x
T )− ξ(Xt,x

T )

z
,

fs,z,i(r) :=
1

z

{
f
(
r,Xt,x

r + zDi
s,zX

t,x
r , Y t,x

r + zDi
s,zY

t,x
r , Zt,xr + zDi

s,zZ
t,x
r

,

∫
R0

ρ(e)G(r, ψt,xr (e) + zDi
s,zψ

t,x
r (e))ν(e)de

)
− f(r,Xt,x

r ,Θt,x
r )
}
.

Moreover, for a given mi(dz)ds-a.e. (s, z) ∈ [0, T ] × R0, (D
i
s,zY

t,x, Di
s,zZ

t,x, Di
s,zψ

t,x) ∈
S∞[0, T ]×H2

BMO[0, T ]× J2BMO[0, T ].

Proof. It suffices to check Assumption 5.4 to hold so that Theorem 5.1 can be applied.

30



(i), (ii) are obviously satisfied due to the Malliavin’s differential rule (Theorem 3.5 and
Theorem 12.8 in [14]). The local Lipschitz condition (iii) is satisfied if we replace KM

s,z(r)

by KM |Ds,zX
t,x
r |. This is easy to see for a Wiener direction (z = 0). For a jump direction

(z ̸= 0), notice that

(Ds,zf)(r, y, z, ur) =
1

z

[
f(r,Xt,x

r + zDs,zX
t,x
r , y, z, ur)− f(r,Xt,x

r , y, z, ur)
]

=

(∫ 1

0
∂xf

(
r,Xt,x

r + θzDs,zX
t,x
r , y, z, ur

)
dθ

)
Ds,zX

t,x
r ,

which implies∣∣(Ds,zf)(r, y, z, ur)− (Ds,zf)(r, y
′, z′, u′r)

∣∣
≤ |Ds,zX

t,x
r |
∫ 1

0

∣∣∣∂xf(r,Xt,x
r + θzDs,zX

t,x
r , y, z, ur)− ∂xf(r,X

t,x
r + θzDs,zX

t,x
r , y′, z′, u′r)

∣∣∣dθ
≤ KM |Ds,zX

t,x
r |
(
|y − y′|+ |ur − u′r|+

(
1 + |z|+ |z′|+ |ur|+ |u′r|

)
|z − z′|

)
.

Since |Ds,zξ| ≤ K|Ds,zX
t,x
T | and |(Ds,zf)(r, 0, 0, 0)| ≤ K|Ds,zX

t,x
r |, one can confirm that

(iv), (v) are satisfied from an inequality

E
[
|Ds,zξ|p +

(∫ T

0
|(Ds,zf)(r, 0, 0, 0)|dr

)p
+K2p

M ||Ds,zX
t,x||2pT

]
≤ Cp,K,KM ,TE

[
1 + ||Ds,zX

t,x||2pT
]
≤ Cp,K,KM ,T (1 + |x|2p)

uniformly in (s, z) ∈ [0, T ]× R for ∀p ≥ 2 (See, proof of Proposition 6.1.).

Corollary 6.1. Under the assumptions of Theorem 6.1, let us define the deterministic
function u : [0, T ]× Rn → R by u(t, x) := Y t,x

t . Then, u(t, x) is continuous in (t, x), one-
time continuously differentiable with respect to x with continuous derivative. Moreover,(

Zt,x(s)
)i

= ∂xu(s,X
t,x
s−)σ

i(s,Xt,x
s−), t ≤ s ≤ T , i ∈ {1, · · · , d}(

ψt,xs (z)
)i

= u(s,Xt,x
s− + γi(s,Xt,x

s− , z))− u(s,Xt,x
s−), t ≤ s ≤ T , i ∈ {1, · · · , k}

where σi and γi denotes the i-th column vectors.

Proof. By replacing a priori estimates for the Lipschitz BSDEs of Lemma 5.1 in [16] with
the local Lipschitz ones given in Theorem A.1 and Lemma A.2, one can follow the same
arguments in Theorem 3.1 in [25] to show that the function u(t, x) is continuous in the
both arguments and one-time continuously differentiable with respect to x with continuous
derivatives. Then the fact that

Di
s,0X

t,x
s = σi(s,Xt,x

s ), zDi
s,zX

t,x
s = γi(s,Xt,x

s , z) ,

Corollary 5.1, and the Malliavin differential rule for a continuously differentiable function
give the desired result.
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A An a priori estimate and BMO-Lipschitz BSDEs

A.1 An a priori estimate

Firstly, we establish a priori estimate which plays a crucial role throughout the paper.
Although it is very similar to that of BMO-Lipschitz BSDEs, which will be discussed in
the next section, it has a much wider range of application. See discussion in Section 3 of
Ankirchner et.al. [1] for diffusion setup. Let us consider the BSDE, for t ∈ [0, T ],

Yt = ξ +

∫ T

t
f(s, Ys, Zs, ψs)ds−

∫ T

t
ZsdWs −

∫ T

t

∫
E
ψs(x)µ̃(ds, dx) , (A.1)

where ξ : Ω → R, f : Ω× [0, T ]×R×Rd×L2(E, ν;Rk) → R. We treat Z, ψ are row vectors
for simplicity. We introduce another driver f̃ : Ω × [0, T ] × R × Rd × L2(E, ν;Rk) → R.
The crucial point of the next assumption is that the process (Ht)t∈[0,T ] is not forbidden
to be a function of (Yt, Zt, ψt)t∈[0,T ].

Assumption A.1. (i) The maps (ω, t) 7→ f(ω, t, ·), f̃(ω, t, ·) are F-progressively measur-
able. ξ is an FT -measurable random variable.
(ii) There exists a solution (Y,Z, ψ) to the BSDE (A.1) satisfying Y ∈ Sp for ∀p ≥ 2.
(iii) For every (y, z, ψ) ∈ R× Rd × L2(E, ν;Rk), the driver f̃ satisfies with some positive
constant K such that 3

|f̃(ω, t, y, z, ψ)| ≤ gt +K
(
|y|+ |z|+ ||ψ||L2(ν)

)
dP ⊗ dt-a.e. (ω, t) ∈ Ω × [0, T ], where (gt, t ∈ [0, T ]) is an F-progressively measurable

positive process. Moreover, ξ and g satisfy, for ∀p ≥ 2, E
[
|ξ|p +

(∫ T
0 gsds

)p]
<∞.

(iv) With the solution (Y, Z, ψ) to the BSDE (A.1), there exists an F-progressively mea-
surable positive process (Ht, t ∈ [0, T ]), H ∈ H2

BMO such that

|f(s, Ys, Zs, ψs)− f̃(s, Ys, Zs, ψs)| ≤ Hs|Zs|

for dP⊗ ds-a.e. (ω, s) ∈ Ω× [0, T ].

Lemma A.1. Suppose Assumption A.1 hold true. Then the solution (Y, Z, ψ) to the
BSDE (A.1) satisfies, for ∀p ≥ 2,

∣∣∣∣(Y, Z, ψ)∣∣∣∣pKp[0,T ]
≤ C

(
E
[
|ξ|pq̄2 +

(∫ T

0
gsds

)pq̄2]) 1
q̄2

with a positive constant q̄ satisfying q∗ ≤ q̄ < ∞ whose lower bound q∗ > 1 is controlled
only by ||H||H2

BMO
, and some positive constant C depending only on (p, q̄, T,K, ||H||H2

BMO
).

Proof. Define a d-dimensional progressively measurable process (bs, s ∈ [0, T ]) by

bs :=
f(s, Ys, Zs, ψs)− f̃(s, Ys, Zs, ψs)

|Zs|2
1Zs ̸=0Zs,

which satisfies |bs| ≤ Hs and hence b ∈ H2
BMO whose norm is dominated by ||H||H2

BMO
.

Using the process b, (A.1) can be written as

Yt = ξ +

∫ T

t

(
f̃(s, Ys, Zs, ψs) + bs · Zs

)
ds−

∫ T

t
ZsdWs −

∫ T

t

∫
E
ψs(x)µ̃(ds, dx)

3This can be generalized to a monotone condition.
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and hence under the new measure Q defined by dQ/dP = ET (b ∗W ), one obtains

Yt = ξ +

∫ T

t
f̃(s, Ys, Zs, ψs)ds−

∫ T

t
ZsdW

Q
s −

∫ T

t

∫
E
ψs(x)µ̃

Q(ds, dx) (A.2)

where WQ := W −
∫ ·
0 bsds and µ̃Q = µ̃ due to the independence of (W, µ̃). By the linear

growth property of f̃ , one has

Ysf̃(s, Ys, Zs, ψ) ≤ |Ys|
(
gs +K(|Ys|+ |Zs|+ ||ψs||L2(ν))

)
,

and hence for ∀λ > 0

Ysf̃(s, Ys, Zs, ψ) ≤ |Ys|2
(
K +

K2

2λ

)
+ |Ys|gs + λ(|Zs|2 + ||ψs||2L2(ν)) .

Thus by choosing V λ
t :=

(
K+ K2

2λ

)
t and Nλ

t =
∫ t
0 gsds, the BSDE (A.2) satisfies Assump-

tion B.1 in [16]. Then Lemma B.1 in [16] of an a prior estimate for the BSDEs with a
monotone driver implies, for ∀p ≥ 2,

∣∣∣∣(Y, Z, ψ)∣∣∣∣pKp(Q)[0,T ]
≤ CEQ

[
|ξ|p +

(∫ T

0
gsds

)p]
with some positive constant C = Cp,K,T depending only on (p,K, T ).

By the properties of the BMO martingales, one can choose r̄ > 1 with which both of
E(b∗W ) and E(−b∗WQ) satisfy the reverse Hölder inequality (See Lemma 2.4 and the fol-
lowing remark.). Define q̄ = r̄

r̄−1 as its dual. Let us putD := max
(
||E(b∗W )||Lr̄(P), ||E(−b∗

WQ)||Lr̄(Q)

)
, which is dominated by some constant depending only on ||H||H2

BMO(P). Then
one obtains∣∣∣∣(Y, Z, ψ)∣∣∣∣pKp(P)[0,T ] = EQ

[
ET (−b ∗WQ)

(
||Y ||pT +

(∫ T

0
|Zs|2ds

) p
2
+
(∫ T

0
||ψs||2L2(ν)ds

) p
2

)]
≤ D

∣∣∣∣(Y, Z, ψ)∣∣∣∣pKpq̄(Q)[0,T ]

≤ Cp,q̄,K,TD

(
EQ
[
|ξ|pq̄ +

(∫ T

0
gsds

)pq̄]) 1
q̄

≤ Cp,q̄,K,TD
1+ 1

q̄

(
E
[
|ξ|pq̄2 +

(∫ T

0
gsds

)pq̄2]) 1
q̄2

,

which proves the desired result.

A.2 BMO-Lipschitz BSDE

In this subsection, we study the properties of the BSDE with a locally Lipschitz driver
where the Lipschitz coefficient for the control variable belongs to H2

BMO. In the diffusion
setup, the details have been discussed by Briand & Confortola (2008) [6]. As we have
announced before, we keep the reverse Hölder property only to the continuous part and
assume only the standard Lipschitz continuity for the jump coefficient.

Assumption A.2. The map (ω, t) 7→ f(ω, t, ·) is F-progressively measurable.
(i) There exist a positive constant K and a positive F-progressively measurable process
(Ht, t ∈ [0, T ]) ∈ H2

BMO such that, for every (y, z, ψ), (y′, z′, ψ′) ∈ R× Rd × L2(E, ν;Rk),

|f(ω, t, y, z, ψ)− f(ω, t, y′, z′, ψ′)| ≤ K
(
|y − y′|+ ||ψ − ψ′||L2(ν)

)
+Ht(ω)|z − z′|
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dP⊗ dt-a.e. (ω, t) ∈ Ω× [0, T ].
(ii) ξ is FT -measurable and, for ∀p ≥ 2,

E
[
|ξ|p +

(∫ T

0
|f(s, 0, 0, 0)|ds

)p]
<∞ .

Theorem A.1. Under Assumption A.2, there exists a unique solution (Y, Z, ψ) to the
BSDE (A.1) and it satisfies, for ∀p ≥ 2,

∣∣∣∣(Y, Z, ψ)∣∣∣∣pKp[0,T ]
≤ C

(
E
[
|ξ|pq̄2 +

(∫ T

0
|f(s, 0, 0, 0)|ds

)pq̄2]) 1
q̄2

with a positive constant q̄ satisfying q∗ ≤ q̄ < ∞ whose lower bound q∗ > 1 is controlled
only by ||H||H2

BMO
, and some positive constant C depending only on (p, q̄, T,K, ||H||H2

BMO
).

Proof. Define a progressively measurable process (bs, s ∈ [0, T ]) taking values in Rd by

bs :=
f(s, Ys, Zs, ψs)− f(s, Ys, 0, ψs)

|Zs|2
1Zs ̸=0Zs

then |bs| ≤ Hs and hence b ∈ H2
BMO and its norm is dominated by ||H||H2

BMO
. Under the

measure Q defined by dQ/dP = ET (b ∗W ),

Yt = ξ +

∫ T

t
f(s, Ys, 0, ψs)ds−

∫ T

t
ZsdW

Q
s −

∫ T

t
ψs(x)µ̃

Q(ds, dx) (A.3)

where WQ =W −
∫ ·
0 bsds and µ̃Q = µ̃. As discussed in Lemma A.1, one can choose r̄ > 1

with which both of E(b ∗W ) and E(−b ∗WQ) satisfy the reverse Hölder inequality and
q̄ = r̄

r̄−1 as its dual. Let us put D := max
(
||E(b ∗W )||Lr̄(P), ||E(−b ∗WQ)||Lr̄(Q)

)
, which is

dominated by some constant depending only on ||H||H2
BMO(P).

It is clear that the BSDE satisfies the global Lipschitz properties under the measure
Q. Furthermore, the following inequality is satisfied due to (reverse) Hölder inequalities:

EQ
[
|ξ|p +

(∫ T

0
|f(s, 0)|ds

)p]
= E

[
E(b ∗W )

(
|ξ|p +

(∫ T

0
|f(s, 0)|ds

)p)]
≤
(
E
[
E(b ∗W )r̄

]) 1
r̄

(
E
[(

|ξ|p +
(∫ T

0
|f(s, 0)|ds

)p)q̄]) 1
q̄

≤ Cq̄DE
[
|ξ|pq̄ +

(∫ T

0
|f(s, 0)|ds

)pq̄] 1
q̄

<∞ .

Thus, by Lemma B.2 in [16], one concludes that there exists a unique solution (Y, Z, ψ) to
(A.3) in Q and hence also to (A.1) in P. Furthermore by the same Lemma, it also satisfies,

||(Y,Z, ψ)||pKp(Q) ≤ Cp,K,TEQ
[
|ξ|p +

(∫ T

0
|f(s, 0)|ds

)p]
.

We thus have ∣∣∣∣(Y,Z, ψ)∣∣∣∣pKp(P) ≤ Cq̄D
∣∣∣∣(Y, Z, ψ)∣∣∣∣pKpq̄(Q)

≤ Cp,q̄,K,TD
1+ 1

q̄

(
E
[
|ξ|pq̄2 +

(∫ T

0
|f(s, 0)|ds

)pq̄2]) 1
q̄2

,
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which proves the second part of the claim.

Now, we gives the stability result which is required to show the strong convergence
of the quadratic-exponential growth BSDE. Consider the two BSDEs with i ∈ {1, 2}
satisfying Assumption A.2;

Y i
t = ξi +

∫ T

t
f i(s, Y i

s , Z
i
s, ψ

i
s)ds−

∫ T

t
ZisdWs −

∫ T

t

∫
E
ψis(x)µ̃(ds, dx) (A.4)

and put

δY := Y 1 − Y 2, δZ := Z1 − Z2, δψ := ψ1 − ψ2,

δf(s) := (f1 − f2)(s, Y 1
s , Z

1
s , ψ

1
s).

Lemma A.2. The unique solutions (Y i, Zi, ψi), i ∈ {1, 2} to the BSDEs (A.4) under
Assumption A.2 satisfy

∣∣∣∣(δY, δZ, δψ)∣∣∣∣pKp[0,T ]
≤ C

(
E
[
|δξ|pq̄2 +

(∫ T

0
|δf(s)|ds

)pq̄2]) 1
q̄2

with a positive constant q∗ ≤ q̄ < ∞ whose lower bound q∗ > 1 is controlled only by
||H||H2

BMO
, and some positive constant C depending only on (p, q̄, T,K, ||H||H2

BMO
).

Proof. Let a process (bs, s ∈ [0, T ]) be defined by

bs =
f2(s, Y 1

s , Z
1
s , ψ

1
s)− f2(s, Y 1

s , Z
2
s , ψ

1
s)

|δZs|2
1δZs ̸=0δZs

which satisfies |bs| ≤ Hs by the assumption and hence b ∈ H2
BMO. By defining the measure

Q by dQ/dP = ET (b ∗W ), one obtains

δYt = δξ +

∫ T

t

(
δf(s) + f2(s, Y 1

s , Z
2
s , ψ

1
s)− f2(s, Y 2

s , Z
2
s , ψ

2
s)
)
ds

−
∫ T

t
δZsdW

Q
s −

∫ T

t

∫
E
δψs(x)µ̃

Q(ds, dx). (A.5)

As in the previous theorem, we can choose r̄ > 1 with which both of E(b ∗ W ) and
E(−b ∗WQ) satisfy the reverse Hölder inequality and q̄ as its dual. We also put D :=
max

(
||E(b ∗W )||Lr̄(P), ||E(−b ∗WQ)||Lr̄(Q)

)
as before.

Since |f2(t, y, z, ψ) − f2(t, y′, z, ψ′)| ≤ K(|δy| + ||δψ||L2(ν)), the driver of the BSDE
(A.5) satisfies the linear growth. Thus, the same technique used to derive an a priori
estimate for the linear-growth BSDEs yields

∣∣∣∣(δY, δZ, δψ)∣∣∣∣pKp(Q)
≤ Cp,K,TEQ

[
|δξ|p +

(∫ T

0
|δf(s)|ds

)p]
.

(See, for example, Lemma B.1 of [16] and its proof.) Thus, one obtains from the same
procedures used in the previous theorem

∣∣∣∣(δY, δZ, δψ)∣∣∣∣pKp(P) ≤ Cp,q̄,K,TD
1+ 1

q̄

(
E
[
|δξ|pq̄2 +

(∫ T

0
|δf(s)|ds

)pq̄2]) 1
q̄2

,

which proves the claim.
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B Malliavin differentiability for Lipschitz BSDEs with jumps

In order to show Malliavin’s differentiability of Qexp-growth BSDEs, we have to establish
the differentiability for Lipschitz BSDEs with slightly more general setup than what was
proved in [13] and [12]. For convenience of the readers, we give the detailed proof in
this section. We closely follow the arguments used in El Karoui et.al. (1997) [15]. The
complication relative to a diffusion case is the treatment of small jumps. The difference
from the work [13] is a local Lipschitz condition instead of the global Lipschitz condition
for the Malliavin derivative of the driver 4.

We consider a BSDE defined by

Yt = ξ +

∫ T

t
f
(
s, Ys, Zs,

∫
R0

ρ(x)G(s, ψs(x))ν(dx)
)
ds

−
∫ T

t
ZsdWs −

∫ T

t

∫
E
ψs(x)µ̃(ds, dx) , (B.1)

where ξ : Ω → Rm, f : Ω× [0, T ]× Rm×d × Rm×k → Rm. Here,
∫
R0
ρ(x)G(s, ψs(x))ν(dx)

denotes a k-dimensional vector whose i-th element is given by
∫
R0
ρi(x)Gi(s, ψis(x))ν

i(dx)

where ρi : R → R, Gi : [0, T ]× R → R. With slight abuse of notation, we use

Θr :=
(
Yr, Zr,

∫
R0

ρ(x)G(r, ψr(x))ν(dx)
)

as a collective argument in this section.

Assumption B.1. (i) For every i ∈ {1, · · · , k}, ρi(s) and Gi(s, v) are continuous func-
tions in s ∈ [0, T ] and (s, v) ∈ [0, T ] × R, respectively. We set without loss of generality
that Gi(·, 0) = 0 . In addition

∫
R0

|ρi(x)|2νi(dx) <∞, and with some positive constant K,

Gi satisfies

|Gi(s, v)−Gi(s, v′)| ≤ K|v − v′|, for every s ∈ [0, T ] and v, v′ ∈ R.

(ii) The map (ω, t) 7→ f(ω, t, ·) is F-progressively measurable, and for every (y, z, u), (y′, z′, u′) ∈
Rm × Rm×d × Rm×k, there exists some positive constant K such that

|f(ω, t, y, z, u)− f(ω, t, y′, z′, u′)| ≤ K(|y − y′|+ |z − z′|+ |u− u′|)

dP⊗ dt-a.e. (ω, t) ∈ Ω× [0, T ].
(iii) ξ ∈ L4(Ω,FT ,P) and

(
f(t, 0), t ∈ [0, T ]

)
∈ H4[0, T ].

Remark

Due to the property of G and ρ, it is easy to see that∣∣∣∫
R0

ρ(x)G(s, ψs(x))ν(dx)−
∫
R0

ρ(x)G(s, ψ′
s(x))ν(dx)

∣∣∣ ≤ K ′||ψs − ψ′
s||L2(ν)

4In addition, we think that the result of [13] misses the one condition for the driver

lim
ϵ↓0

∫ T

0

∫
|z|≤ϵ

E
[(∫ T

0

|(Ds,zf)(r, 0)|dr
)2

]
z2ν(dz)ds = 0 .

This stems from an error in the estimate (4.15) and (4.16) (and hence (4.21),(4.22)) in the proof of Theorem

4.1 of [13]. Note that if one choose f̃ = f , then (Ỹ s,z, Z̃s,z, Ũs,z) cannot be chosen as zero. The left hand

side of (4.16), for example, should still be ||Y s,z − Ỹ s,z||S2 + · · · . Adding the contributions from Ỹ s,z etc
would yield the consistent result to the analysis given here.
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with some constant K ′ > 0. Thus, Assumption B.1 yields the standard global Lipschitz
conditions. By Lemma B.2 in [16], the BSDE (B.1) has a unique solution (Y, Z, ψ) ∈
K4[0, T ]. In order to show the Malliavin differentiability, we need additional assumptions.

Assumption B.2. (i) For every i ∈ {1, · · · , k}, Gi is one-time continuously differentiable
with respect to its spacial variable v with a uniformly bounded and continuous derivative.
(ii) The terminal value is Malliavin differentiable ξ ∈ D1,2 and satisfies

E
[∫

Ẽ
|Ds,zξ|2q(ds, dz)

]
<∞.

(iii) The driver f(·, y, z, u) is one-time continuously differentiable with respect to (y, z, u)
with uniformly bounded and continuous derivatives. For every (y, z, u) ∈ Rm × Rm×d ×
Rm×k, the driver

(
f(t, y, z, u), t ∈ [0, T ]

)
belongs to L1,2(Rm) and its Malliavin derivative

is denoted by (Ds,zf)(t, y, z, u).
(iv) For every Wiener as well as jump direction, and for every (y, z, u), (y′, z′, u′) ∈ Rm×
Rm×d × Rm×k and dP ⊗ dt-a.e. (ω, t) ∈ Ω × [0, T ], the Malliavin derivative of the driver
satisfies the following local Lipschitz conditions 5;

|(Di
s,0f)(t, y, z, u)− (Di

s,0f)(t, y
′, z′, u′)| ≤ Ki

s,0(t)
(
|y − y′|+ |z − z′|+ |u− u′|

)
,

for ds-a.e. s ∈ [0, T ] with i ∈ {1, · · · , d}, and

|(Di
s,zf)(t, y, z, u)− (Di

s,zf)(t, y
′, z′, u′)| ≤ Ki

s,z(t)
(
|y − y′|+ |z − z′|+ |u− u′|

)
,

formi(dz)ds-a.e. (s, z) ∈ [0, T ]×R0 with i ∈ {1, · · · , k}. Here,
(
Ki
s,0(t), t ∈ [0, T ]

)
i∈{1,··· ,d}

and
(
Ki
s,z(t), t ∈ [0, T ]

)
i∈{1,··· ,k}

are R+-valued F-progressively measurable processes sat-

isfying
∫
Ẽ
||Ks,z(·)||4S4[0,T ]q(ds, dz) <∞.

(v) The following equality is supposed to hold;

lim
ϵ↓0

k∑
i=1

∫ T

0

∫
|z|≤ϵ

E
[
|Di

s,zξ|2 +
(∫ T

0
|(Di

s,zf)(r, 0)|dr
)2

+ ||Ki
s,z||4T

]
z2νi(dz)ds = 0 .

Theorem B.1. Suppose that Assumptions B.1 and B.2 hold true and denote the solution
to the BSDE (B.1) as (Y, Z, ψ) ∈ K4[0, T ]. Then, the following statements hold:
(a) For each Wiener direction i ∈ {1, · · · , d} and ds-a.e. s ∈ [0, T ], there exists a unique
solution (Y s,0,i, Zs,0,i, ψs,0,i) ∈ K2[0, T ] to the BSDE

Y s,0,i
t = Di

s,0ξ +

∫ T

t
fs,0,i(r)dr −

∫ T

t
Zs,0,ir dWr −

∫ T

t

∫
E
ψs,0,ir (x)µ̃(dr, dx) (B.2)

for 0 ≤ s ≤ t ≤ T , where

fs,0,i(r) := (Di
s,0f)(r,Θr) + ∂Θf(r,Θr)Θ

s,0,i
r

= (Di
s,0f)(r,Θr) + ∂yf(r,Θr)Y

s,0,i
r + ∂zf(r,Θr)Z

s,0,i
r

+∂uf(r,Θr)

∫
R0

ρ(x)∂vG(r, ψr(x))ψ
s,0,i
r (x)ν(dx) .

5Delong & Imkeller (2010) [13] has treated a special case where (Ks,0, Ks,z) are positive constants.
The current generalization is necessary when one introduces a Markovian process X driven by a FSDE to
create a forward-backward SDE system, which is the subject of interests in many applications.
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(b) For each jump direction i ∈ {1, · · · , k} and mi(dz)ds-a.e. (s, z) ∈ [0, T ] × R0, there
exists a unique solution (Y s,z,i, Zs,z,i, ψs,z,i) ∈ K2[0, T ] to the BSDE

Y s,z,i
t = Di

s,zξ +

∫ T

t
fs,z,i(r)dr −

∫ T

t
Zs,z,ir dWr −

∫ T

t

∫
E
ψs,z,ir (x)µ̃(dr, dx) (B.3)

for 0 ≤ s ≤ t ≤ T and z ̸= 0, where

fs,z,i(r) :=
1

z

(
f(ωs,z, r,Θr + zΘs,z,i

r )− f(ω, r,Θr)
)

=
1

z

{
f
(
ωs,z, r, Yr + zY s,z,i

r , Zr + zZs,z,ir

,

∫
R0

ρ(x)G
(
r, ψr(x) + zψs,z,ir (x)

)
ν(dx)

)
− f(ω, r,Θr)

)}
.

(c) Solution of the BSDE (B.1) is Malliavin differentiable (Y,Z, ψ) ∈ L1,2×L1,2×L1,2. Put,

for every i, Y s,·,i
t = Zs,·,it = ψs,·,it (·) ≡ 0 for t < s ≤ T , then

(
(Y s,z,i
t , Zs,z,it , ψs,z,it (x)), 0 ≤

s, t ≤ T, x ∈ R0, z ∈ R
)
is a version of the Malliavin derivative

(
(Di

s,zYt, D
i
s,zZt, D

i
s,zψt(x)), 0 ≤

s, t ≤ T, x ∈ R0, z ∈ R
)
for every Wiener and jump direction.

Proof. For notational simplicity, we omit i denoting the direction of derivative by assuming
that we consider each direction separately (and summing them up whenever necessary,
such as when considering integration on Ẽ).

Proof for (a) and (b)
It is easy to see that both of the BSDEs (B.2) and (B.3) satisfy the standard global
Lipschitz conditions. We have

|fs,0(r)| ≤ |(Ds,0f)(r, 0)|+Ks,0(r)|Θr|+K|Θs,0
r | .

Since

fs,z(r) =
f(ωs,z, r,Θr)− f(ω, r,Θr)

z
+
f(ωs,z, r,Θr + zΘs,z

r )− f(ωs,z, r,Θr)

z

= (Ds,zf)(r,Θr) +
f(ωs,z, r,Θr + zΘs,z

r )− f(ωs,z, r,Θr)

z
.

we also have |f s,z(r)| ≤ |(Ds,zf)(r, 0)|+Ks,z(r)|Θr|+K|Θs,z
r | . Thus, Lemma B.2 in [16]

tells us that for all (s, z) ∈ [0, T ]× R (thus including Θs,0) there exists a unique solution
Θs,z ∈ K2[0, T ] satisfying

||(Y s,z, Zs,z, ψs,z)||2K2[0,T ] ≤ CK,TE
[
|Ds,zξ|2 +

(∫ T

0

[
|(Ds,zf)(r, 0)|+Ks,z(r)|Θr|

]
dr
)2]

≤ CK,TE
[
|Ds,zξ|2 +

(∫ T

0
|(Ds,zf)(r, 0)|dr

)2
+ ||Ks,z||4T +

(∫ T

0
|Θr|2dr

)2]
<∞.

Note that Θ ∈ K4[0, T ]. Assumption B.2 also yields∫
Ẽ
||(Y s,z, Zs,z, ψs,z)||2K2[0,T ]q(ds, dz) <∞ .

Proof for (c)
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We consider an approximating sequence of BSDEs;

Y n+1
t = ξ +

∫ T

t
fn(r)−

∫ T

t
Zn+1
r dWr −

∫ T

t

∫
E
ψn+1
r (x)µ̃(dr, dx), (B.4)

for t ∈ [0, T ] and n ∈ N, where

fn(r) := f
(
r, Y n

r , Z
n
r ,

∫
R0

ρ(x)G(r, ψnr (x))ν(dx)
)
.

It converges to (Y, Z, ψ) of (B.1) in K4[0, T ] by the standard arguments of contraction
mapping for the Lipschitz BSDEs. See, for example, Lemma B.2 in [16] and its proof.

First step: confirm (Y n+1, Zn+1, ψn+1) ∈ (L1,2)⊗3

We now suppose that (Y n, Zn, ψn) ∈ K4[0, T ] ∩ (L1,2)⊗3 and are going to prove that
(Y n+1, Zn+1, ψn+1) ∈ K4[0, T ]∩ (L1,2)⊗3. Firstly, the chain rules (Theorem 3.5 and Theo-
rem 12.8 in [14] with the division by the jump size in the current convention) and Lemma
3.2 in [13] shows that ∫

R0

ρ(x)G(r, ψnr (x))ν(dx)dr ∈ D1,2 . (B.5)

In particular, this is because∫
Ẽ

∣∣∣∣∣∣Dt,zG(·, ψn· )
∣∣∣∣∣∣2
J2[0,T ]

q(dt, dz) ≤ K2

∫
Ẽ

∣∣∣∣∣∣Dt,zψ
n
·

∣∣∣∣∣∣2
J2[0,T ]

q(dt, dz) <∞,

where we have used the bounded derivative and the Lipschitz condition for G and the
assumption that ψn ∈ L1,2. This also shows that G(·, ψn· ) ∈ L1,2. By (B.5) and again by
the chain rule, we see fn(r) = f(r,Θn

r ) ∈ D1,2 for every r ∈ [0, T ].
It is obvious to see ||fn(·)||2H2[0,T ] < ∞. Moreover, with some positive constant CK

depending only on the Lipschitz constant,∫
Ẽ
||Dt,zf

n(·)||2H2[0,T ]q(dt, dz)

≤ CK

∫
Ẽ
E
[∫ T

0

(
|(Dt,zf)(r, 0)|2 + |Kt,z(r)|2|Θn

r |2 + |Dt,zΘ
n
r |2
)
dr

]
q(dt, dz)

≤ CK

∫
Ẽ
E
[∫ T

0

(
|(Dt,zf)(r, 0)|2 + |Dt,zΘ

n
r |2
)
dr + ||Kt,z||4T +

(∫ T

0
|Θn

r |2dr
)2]

q(dt, dz)

<∞

due to Assumption B.2 and the fact that Θn ∈ K4[0, T ] ∩ (L1,2)⊗3. Thus, Lemma 3.2 [13]

shows that
∫ T
t fn(r)dr ∈ D1,2 for every t ∈ [0, T ].

As a result, we have for t ∈ [0, T ], ξ +
∫ T
t fn(r) ∈ D1,2. Thus, by Lemma 3.1 [13], we

conclude that Y n+1
t = E

[
ξ +

∫ T
t fn(r)

∣∣∣Ft] ∈ D1,2, which then implies

∫ T

t
Zn+1
r dWr +

∫ T

t

∫
E
ψn+1
r (x)µ̃(dr, dx)

= −Y n+1
t + ξ +

∫ T

t
fn(r)dr ∈ D1,2 ,

which, together with Lemma 3.3 [13], shows Zn+1, ψn+1 ∈ L1,2.
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We are now going to prove Y n+1 ∈ L1,2. For a Wiener (z = 0) as well as a jump
(z ̸= 0) direction, we have, by Lemma 3.3 [13], that

Ds,zY
n+1
t = Ds,zξ +

∫ T

t
Ds,zf

n(r)dr −
∫ T

t
Ds,zZ

n+1
r dWr −

∫ T

t

∫
E
Ds,zψ

n+1
r (x)µ̃(dr, dx)

for q(ds, dz)-a.e. (s, z) ∈ [0, T ]× Rk. One can check that

|Ds,zf
n(r)| ≤ |(Ds,zf)(r, 0)|+Ks,z(r)|Θn

r |+K|Ds,zΘ
n
r | . (B.6)

Thus, by Lemmas B.1 in [16], one can show that∫
Ẽ

∣∣∣∣(Ds,zY
n+1, Ds,zZ

n+1, Ds,zψ
n+1)

∣∣∣∣2
K2[0,T ]

q(ds, dz)

≤ CK,T

∫
Ẽ
E
[
|Ds,zξ|2 +

(∫ T

0

[
|(Ds,zf)(r, 0)|+Ks,z|Θn

r |+ |Ds,zΘ
n
r |
]
dr
)2]

q(ds, dz)

≤ CK,T

∫
Ẽ
E
[
|Ds,zξ|2 +

∫ T

0

(
|(Ds,zf)(r, 0)|2 + |Ds,zΘ

n
r |2
)
dr

+||Ks,z||4T +
(∫ T

0
|Θn

r |2dr
)2]

q(ds, dz) <∞ . (B.7)

This proves Y n+1 ∈ L1,2. As a result, we have shown Θn+1 ∈ L1,2.

Second step: convergence of Ds,0Θ
n → Θs,0 as n→ ∞ in L1,2

Let us set the difference process as follows:

∆s,0Y n := Y s,0 −Ds,0Y
n, ∆s,0Zn := Zs,0 −Ds,0Z

n, ∆s,0ψn := ψs,0 −Ds,0ψ
n.

and denote ∆s,0Θn := (∆s,0Y n,∆s,0Zn,∆s,0ψn) for every n ∈ N. Since the derivative of
the driver is uniformly bounded, one has

|fs,0(r)−Ds,0f
n(r)| ≤ Ks,0(r)|Θr −Θn

r |+ |∂Θf(r,Θr)− ∂Θf(r,Θ
n
r )||Θs,0

r |+K|∆s,0Θn
r |

then, the a priori estimate given in Lemma B.1 [16] gives∫ T

0

∣∣∣∣(∆s,0Y n+1,∆s,0Zn+1,∆s,0ψn+1)||2K2[0,T ]ds ≤ CT

∫ T

0
E
[(∫ T

0
|fs,0(r)−Ds,0f

n(r)|dr
)2]

ds

≤ CT

∫ T

0
E
[(∫ T

0

[
Ks,0(r)|Θr −Θn

r |+ |∂Θf(r,Θr)− ∂Θf(r,Θ
n
r )||Θs,0

r |
]
dr
)2]

ds

+CT,K

∫ T

0
E
[(∫ T

0
|∆s,0Θn

r |dr
)2]

ds .

One sees that the first line converges to zero when passing to the limit n→ ∞. Thus, by
a sequence of small positive constants ϵn, n ∈ N which converges to zero, one can write∫ T

0

∣∣∣∣(∆s,0Y n+1,∆s,0Zn+1,∆s,0ψn+1)||2K2[0,T ]ds ≤ ϵn + CT,K

∫ T

0
E
[(∫ T

0
|∆s,0Θn

r |dr
)2]

ds

≤ ϵn + C ′
T,K max(T 2, T )

∫ T

0

∣∣∣∣(∆s,0Y n,∆s,0Zn,∆s,0ψn)
∣∣∣∣2
K2[0,T ]

ds. (B.8)
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We first consider a short maturity case. Choosing the terminal time T small so that

α := C ′
T,K max(T 2, T ) < 1 (B.9)

then one obtains∫ T

0
||(∆s,0Θn+1)||2K2[0,T ]ds ≤ ϵn + α

∫ T

0
||(∆s,0Θn)||2K2[0,T ]ds .

Then, fixing some n0 ∈ N, it yields∫ T

0
||(∆s,0Θn+n0)||2K2[0,T ]ds ≤

ϵn0

1− α
+ αn

∫ T

0
||(∆s,0Θn0)||2K2[0,T ]ds.

Thus, passing n and then n0 to ∞, one can conclude that

lim
n→∞

∫ T

0
||(∆s,0Θn)||2K2[0,T ]ds = 0.

For general maturity T > 0, one can use a time partition 0 = T0 < T1 < · · · < TN = T
fine enough to make α < 1 in every time interval. Due to the uniqueness of the solution,
by setting Y s,0

Ti
as the common terminal condition for the interval [Ti−1, Ti], one can repeat

the same arguments to obtain the convergence in L1,2 for the whole range.

Third step: convergence of Ds,zΘ
n → Θs,z(z ̸= 0) as n→ ∞ in L1,2

Choosing one direction of jump (omit i for simplicity) and put

∆s,zY n := Y s,z −Ds,zY
n, ∆s,zZn := Zs,z −Ds,zZ

n, ∆s,zψn := ψs,z −Ds,zψ
n.

and denote ∆s,zΘn := (∆s,zY n,∆s,zZn,∆s,zψn) for every n ∈ N. By Lemma B.1 [16], one
can show that ∫ T

0

∫
R0

∣∣∣∣(∆s,zΘn+1)
∣∣∣∣2
K2[0,T ]

m(dz)ds

≤ CT

∫ T

0

∫
R0

E
[(∫ T

0
|f s,z(r)−Ds,zf

n(r)|dr
)2]

m(dz)ds .

Before discussing limn→∞, we have to prove that the convergence

lim
ϵ↓0

∫ T

0

∫
|z|>ϵ

∣∣∣∣(∆s,zΘn+1)
∣∣∣∣2
K2[0,T ]

m(dz)ds =

∫ T

0

∫
R0

∣∣∣∣(∆s,zΘn+1)
∣∣∣∣2
K2[0,T ]

m(dz)ds (B.10)

occurs uniformly in n.
By Assumption B.2 (v), for an arbitrary small ϵ > 0, there exists ϵ̄ > 0 such that

•
∫ T

0

∫
|z|≤ϵ̄

E
[
|Ds,zξ|2 +

(∫ T

0
|(Ds,zf)(r, 0)|dr

)2
+ ||Ks,z||4T

]
m(dz)ds < ϵ (B.11)

•
∫ T

0

∫
|z|≤ϵ̄

m(dz)ds < ϵ. (B.12)

For proving the claim, it suffices to show that there exists a positive constant independent
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of n such that ∫ T

0

∫
|z|≤ϵ̄

∣∣∣∣(∆s,zΘn+1)
∣∣∣∣2
K2[0,T ]

m(dz)ds < Cϵ

for the above defined ϵ̄.
Using the (local) Lipschitz properties, it is easy to show that

|f s,z(r)−Ds,zf
n(r)| ≤ Ks,z(r)|Θr −Θn

r |+K|Θs,z
r |+K|Ds,zΘ

n
r |

and hence∫ T

0

∫
|z|≤ϵ̄

∣∣∣∣(∆s,zΘn+1)
∣∣∣∣2
K2[0,T ]

m(dz)ds ≤ CT,K

∫ T

0

∫
|z|≤ϵ̄

E
[(∫ T

0
Ks,z(r)|Θr −Θn

r |dr
)2

+
(∫ T

0
|Θs,z

r |dr
)2

+
(∫ T

0
|Ds,zΘ

n
r |dr

)2]
m(dz)ds .

We are now going to discuss each term. The first term can be evaluated as

CT,K

∫ T

0

∫
|z|≤ϵ̄

E
[(∫ T

0
Ks,z(r)|Θr −Θn

r |dr
)2]

≤ CT,K

∫ T

0

∫
|z|≤ϵ̄

E
[
||Ks,z||4T +

(∫ T

0
|Θr −Θn

r |2dr
)2]

m(dz)ds < Cϵ

where the last inequality follows from (B.11), (B.12) and the fact that Θn → Θ in K4[0, T ].
For the second term, one can show

CT,K

∫ T

0

∫
|z|≤ϵ̄

E
[(∫ T

0
|Θs,z

r |dr
)2]

m(dz)ds

≤ CT,K

∫ T

0

∫
|z|≤ϵ̄

||(Θs,z)||2K2[0,T ]m(dz)ds

≤ CT,K

∫ T

0

∫
|z|≤ϵ̄

E
[
|Ds,zξ|2 +

(∫ T

0
|(Ds,zf)(r, 0)|dr

)2
+ ||Ks,z||4T

+
(∫ T

0
|Θr|2dr

)2]
m(dz)ds < Cϵ (B.13)

where the last equality follows from (B.11), (B.12) and the fact that Θ ∈ K4[0, T ].
Finally, the third term can be evaluated as

CT,K

∫ T

0

∫
|z|≤ϵ̄

E
[(∫ T

0
|Ds,zΘ

n
r |dr

)2]
m(dz)ds

≤ CT,K

∫ T

0

∫
|z|≤ϵ̄

||(Ds,zΘ
n)||2K2[0,T ]m(dz)ds .
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Here, by the same a priori estimate used in (B.7),

CT,K ||(Ds,zΘ
n)||2K2[0,T ] ≤ CK,TE

[
|Ds,zξ|2 +

(∫ T

0
|(Ds,zf)(r, 0)|dr

)2
+ ||Ks,z||4T

+
(∫ T

0
|Θn−1

r |2dr
)2]

+ CK,TE
[(∫ T

0
|Ds,zΘ

n−1
r |dr

)2]
≤ CK,TE

[
ϵn−1 + |Ds,zξ|2 +

(∫ T

0
|(Ds,zf)(r, 0)|dr

)2
+ ||Ks,z||4T +

(∫ T

0
|Θr|2dr

)2]
+CK,T max(T 2, T )||(Ds,zΘ

n−1)||2K2[0,T ] . (B.14)

By the convergence of Θn → Θ in K4[0, T ], (ϵn)n∈N with ϵn → 0 is a sequence positive
constants bounded uniformly in n.

Choosing the terminal time T small enough so that α := CK,T max(T 2, T ) < 1, (B.14)
yields

CT,K

∫ T

0

∫
|z|≤ϵ̄

||(Ds,zΘ
n)||2K2[0,T ]m(dz)ds

≤
CK,T
1− α

∫ T

0

∫
|z|≤ϵ̄

E
[
ϵ1 + |Ds,zξ|2 +

(∫ T

0
|(Ds,zf)(r, 0)|dr

)2
+ ||Ks,z||4T

+
(∫ T

0
|Θr|2dr

)2]
m(dz)ds+ αn

∫ T

0

∫
|z|≤ϵ̄

||(Ds,zΘ
1)||2K2[0,T ]m(dz)ds.

It is free to choose Θ1 ≡ 0 in our fixed point iteration (B.4). Thus, the right hand side is
dominated by Cϵ with n independent constant C due to (B.11) and (B.12).

Small terminal time T

By the previous arguments, we have shown that the convergence of (B.10) is uniform in
n, at least for small terminal time T . Firstly, let us consider this case, where one can
exchange the order of limit operations and obtain

lim
n→∞

lim
ϵ↓0

∫ T

0

∫
|z|>ϵ

∣∣∣∣(∆s,zΘn+1)
∣∣∣∣2
K2[0,T ]

m(dz)ds

= lim
ϵ↓0

lim
n→∞

∫ T

0

∫
|z|>ϵ

∣∣∣∣(∆s,zΘn+1)
∣∣∣∣2
K2[0,T ]

m(dz)ds . (B.15)

Therefore, in order to show the convergence of Ds,zΘ
n → Θs,z in L1,2, it is enough to

prove

lim
n→∞

∫ T

0

∫
|z|>ϵ

∣∣∣∣(∆s,zΘn+1)
∣∣∣∣2
K2[0,T ]

m(dz)ds = 0

for a given ∀ϵ > 0. An inequality from the Lipschitz property of the driver

|fs,z(r)−Ds,zf
n(r)| ≤ 1

|z|
∣∣f(ωs,z, r,Θr + zΘs,z

r )− f(ωs,z, r,Θn
r + zDs,zΘ

n
r )
∣∣

+
1

|z|
∣∣f(ω, r,Θr)− f(ω, r,Θn

r )
∣∣

≤ 2K

|z|
|Θr −Θn

r |+K|∆s,zΘn
r |
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implies ∫ T

0

∫
|z|>ϵ

∣∣∣∣(∆s,zΘn+1)
∣∣∣∣2
K2[0,T ]

m(dz)ds

≤ CT,K

∫ T

0

∫
|z|>ϵ

E
[

1

|z|2
(∫ T

0
|Θr −Θn

r |dr
)2

+
(∫ T

0
|∆s,zΘn

r |dr
)2]

m(dz)ds

≤ ϵn + CT,K max(T 2, T )

∫ T

0

∫
|z|≤ϵ̄

||(∆s,zΘn)||2K2[0,T ]m(dz)ds

where ϵn → 0 as n→ 0 due to the convergence of Θn → Θ. If necessary by re-choosing T
small enough so that α := CT,K max(T 2, T ) < 1, one gets∫ T

0

∫
|z|>ϵ

∣∣∣∣(∆s,zΘn+n0)
∣∣∣∣2
K2[0,T ]

m(dz)ds

≤ ϵn0

1− α
+ αn

∫ T

0

∫
|z|>ϵ

∣∣∣∣(∆s,zΘn0)
∣∣∣∣2
K2[0,T ]

m(dz)ds.

Passing to the limit n, n0 → ∞, one obtains the desired result.

General terminal time T

For general T > 0, one can construct a partition 0 = T0 < T1 < · · · < TN = T fine enough
so that one can conclude by the previous arguments

lim
n→0

∫ T

TN−1

∫
|z|>ϵ

∣∣∣∣(∆s,zΘn)
∣∣∣∣2
K2[0,T ]

m(dz)ds = 0 ,

and hence Ds,zΘ
n converges to Θs,z in L1,2 in [TN−1, TN ]. Note that (B.13) holds for

arbitrary T > 0, which implies in particular

lim
ϵ↓0

∫ T

0

∫
|z|<ϵ̄

E
[
|Y s,z
TN−1

|2
]
m(dz)ds = 0.

Therefore, by the same procedures with a new terminal value Y s,z
TN−1

instead of Ds,zξ, one

can prove the convergence in [TN−2, TN−1]. Now, repeat the same arguments, one can
conclude Ds,zY

n → Y s,z in L1,2 for the whole region.

Finally, thanks to the closability of the Malliavin derivatives in L1,2 (See Theorem
12.6 in [14].), one can conclude (Y, Z, ψ) ∈ L1,2 and that (Y s,z, Zs,z, ψs,z) is a version of
(Ds,zY,Ds,zZ,Ds,zψ).
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[32] Solé, J.L., Utzet, F. and Vives, J., 2007, Canonical Lévy process and Malliavin cal-
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