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Abstract

In this article, we propose a new numerical computation scheme for Markovian back-
ward stochastic differential equations (BSDEs) by connecting the semi-analytic short-term
approximation applied to each time interval, which has a very simple form to imple-
ment. We give the error analysis for BSDEs which have generators of quadratic growth
with respect to the control variables and bounded terminal conditions. Although the
scheme requires higher regularities than the standard method, one can avoid altogether
time-consuming Monte Carlo simulation and other numerical integrations for estimat-
ing conditional expectations at each space-time node. We provide numerical examples
of quadratic-growth (qg) BSDEs as well as standard Lipschitz BSDEs to illustrate the
proposed scheme and its empirical convergence rate.

Keywords : asymptotic expansion, discretization, quadratic-growth BSDEs, Lipschitz BS-
DEs, numerical scheme, BMO-martingales

1 Introduction

The research on backward stochastic differential equations (BSDEs) was initiated by Bismut
(1973) [8] for a linear case and followed by Pardoux & Peng (1990) [39] for general non-
linear setups. Since then, BSDEs have attracted strong interests among researchers and now
exists huge amount of literature. See for example, El Karoui et al. (1997) [22], El Karoui
& Mazliak (eds.) (1997) [21], Ma & Yong (2000) [35], Yong & Zhou (1999) [42], Cvitanić
& Zhang (2013) [19] and Delong (2013) [20] for excellent reviews and various applications,
and also Pardoux & Rascanu (2014) [40] for a recent thorough textbook for BSDEs in the
diffusion setup.

In the past decade, there has been significant progress of numerical computation meth-
ods for BSDEs. In particular, based on the so-called L2-regularity of the control variables
established by Zhang (2001, 2004) [48, 47], now standard backward Monte Carlo schemes
for Lipschitz BSDEs have been developed by Bouchard & Touzi (2004) [11], Gobet, Lemor
& Warin (2005) [28]. One can find many variants and extensions such as Bouchard & Elie

∗All the contents expressed in this research are solely those of the author and do not represent any views
or opinions of any institutions. The authors are not responsible or liable in any manner for any losses and/or
damages caused by the use of any contents in this research.

†Quantitative Finance Course, Graduate School of Economics, The University of Tokyo.
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(2008) [10] for BSDEs with jumps, Bouchard & Chassagneux (2008) [9] for reflected BSDEs,
and Chassagneux & Richou (2016) [15] for the system of reflected BSDEs arising from optimal
switching problems. Bender & Denk (2007) [4] proposed a forward scheme free from the lin-
early growing regression errors existing in the backward schemes; Bender & Steiner (2012) [5]
suggested a possible improvement of the scheme [28] by using martingale basis functions for
regressions; Crisan & Monolarakis (2014) [18] developed a second-order discretization using
the cubature method. A different scheme based on optimal quantization was developed by
Bally & Pagès (2003) [6]. See Pagès & Sagna (2015) [38] and references therein for its recent
developments. Recently, Chassagneux & Richou (2016) [14] extended the standard backward
scheme to quadratic-growth (qg) BSDEs with bounded terminal conditions.

Since the financial crisis in 2009, the importance of BSDEs in the financial industry has
grown significantly. This is because BSDEs have become almost unavoidable to understand
various valuation adjustments, such as CVA, FVA, KVA etc as well as the optimal risk
control under the new regulations. For market developments and related issues, see Brigo,
Morini & Pallavicini (2013) [13], Bianchetti & Morini (eds.) (2013) [7] and Crépey & Bielecki
(2014) [16]. Despite the above background, the practical use of BSDEs has not been so
widespread in the industry. This is partly because that the numerical cost required in the
standard Monte Carlo schemes becomes prohibitively high in a practical setup. In order
to mitigate the problem, a semi-analytic approximation was proposed by Fujii & Takahashi
(2012) [23] and justified in the Lipschitz case by Takahashi & Yamada (2015) [44]. An efficient
way of implementation using an interacting particle method by Fujii & Takahashi (2015) [25]
has been successfully applied to a large scale credit portfolio by Crépey & Song (2015) [17].
This is an asymptotic approximation around a linear driver motivated by the observation
that, for the financial applications, the non-linear part of the driver is typically proportional
to an interest rate spread and/or a default intensity which is, at most, of the order of a few
percentage points.

However, the non-linear effects may grow and cease to be perturbative when one deals
with longer maturities, higher volatilities, or general risk-sensitive control problems for highly
concave utility functions. For example, the quadratic-growth terms of the control variables
appearing in the exponential utility optimization may give rise to significant non-linearity
when the risk-averseness is high. Although one may try higher-order asymptotic expansions,
the required analytical calculation soon becomes intractable since one needs very lengthy
calculation for each model setup.

In this paper, we aim to achieve the advantages of both the standard Monte Carlo scheme,
in terms of generality and scalability, and also the semi-analytic approximation scheme, in
terms of the lesser numerical cost. In particular, we follow a discretized backward approxi-
mation similar to the one used in the standard scheme and replace time-consuming Monte
Carlo simulation estimating the conditional expectation by semi-analytic approximation at
each space-time node. For each short time interval, we shall see that a simple low-order
asymptotic expansion suffices to achieve necessary accuracy.1 Although it requires higher
regularities, a smaller numerical burden allows us to adopt a finer time partition, which
would be too time-consuming in the standard Monte Carlo scheme. Furthermore, we do not
have to worry about an appropriate choice of basis functions for regressions, which is a quite
delicate problem as clearly explained in [5].

The organization of the paper is as follows: Section 2 explains some important properties

1Similar ideas have been applied to stochastic filtering by Fujii (2014) [24] and to European option pricing
by Takahashi & Yamada (2016) [45].

2



of BMO-martingales which prove to be indispensable tools for the following analysis; Section 3
the setup; Section 4 gives the time-discretization and investigates a sequence of qg-BSDEs
perturbed in the terminal values; Sections 5 and 6 study the short-term expansion which
provides a semi-analytic approximation to the sequence of qg-BSDEs; Section 7 summarizes
the computation scheme and gives our main result regarding the total error estimate based on
the analysis in the previous sections; Section 8 explains a possible way of implementation using
a sparse grid and discusses the sufficient conditions for the convergence; and finally Section 9
and 10 give numerical examples of qg-BSDEs as well as Lipschitz BSDEs, respectively, in
order to illustrate the empirical convergence rate of the proposed scheme.

2 Preliminaries

2.1 General setting

Throughout the paper, we fix the terminal time T > 0. We work on the filtered probability
space (Ω,F ,F,P) carrying a d-dimensional independent standard Brownian motion W . F =
(Ft)t∈[0,T ] is the Brownian filtration satisfying the usual conditions augmented by the P-zero
sets.

2.2 Spaces and notation

We denote a generic positive constant by C, which may change line by line and it is sometimes
associated with several subscripts (such as Cp,K) when there is a need to emphasize its
dependency on those parameters. T T

0 denotes the set of all F-stopping times τ : Ω → [0, T ].
We denote the sup-norm of Rk-valued function x : [0, T ] → Rk, k ∈ N by the symbol
||x||[a,b] := sup

{
|xt|, t ∈ [a, b]

}
and write ||x||t := ||x||[0,t].

Let us introduce the following spaces for stochastic processes with p ≥ 2 and k ∈ N.
• Sp

[s,t](R
k) is the set of Rk-valued adapted processes X satisfying

||X||Sp
[s,t]

:= E
[
||X(ω)||p[s,t]

]1/p
< ∞ .

• S∞
[s,t](R

k) is the set of Rk-valued essentially bounded adapted processes X satisfying

||X||S∞
[s,t]

:=
∣∣∣∣∣∣ sup
r∈[s,t]

|Xr|
∣∣∣∣∣∣
∞

< ∞ .

• Hp
[s,t](R

k) is the set of Rk-valued progressively measurable processes Z satisfying

||Z||Hp
[s,t]

:= E
[(∫ t

s
|Zr|2dr

) p
2

] 1
p

< ∞ .

• Kp[s, t] is the set of functions (Y, Z) in the space Sp
[s,t](R) × Hp

[s,t](R
1×d) with the norm

defined by

||(Y, Z)||Kp[s,t] :=
(
||Y ||pSp

[s,t]

+ ||Z||pHp
[s,t]

)1/p
.

We frequently omit the argument Rk and subscript [s, t] when they are obvious from
the context. We use

(
Θs, s ∈ [0, T ]

)
as a collective argument Θs := (Ys, Zs) to lighten the
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notation. We use the following notation for partial derivatives with respect to x ∈ Rd such
that

∂x = (∂x1 , · · · , ∂xd) =
( ∂

∂x1
, · · · , ∂

∂xd

)
and we use ∂θ = (∂y, ∂z) for the collective argument Θ.

When there is no confusion, we adopt the so-called Einstein convention assuming the
obvious summation of duplicate indexes (such as i ∈ {1, · · · , d} of xi) without explicitly using
the summation symbol

∑
. For example, ∂xi,xjξ(XT )∂xX

i
T∂xX

j
T assumes the summation

about indexes i and j so that it denotes
∑d

i,j=1 ∂xi,xjξ(XT )∂xX
i
T∂xX

j
T .

2.3 BMO-martingale and its properties

Let us introduce BMO-martingales, the associated H2
BMO-space and their properties which

play an important role in the following discussions.

Definition 2.1. A BMO-martingale M is a square integrable martingale with the initial
value M0 = 0 and satisfying

||M ||2BMO := sup
τ∈T T

0

∣∣∣∣∣∣E[⟨M⟩T − ⟨M⟩τ |Fτ

]∣∣∣∣∣∣
∞

< ∞ ,

where the supremum is taken over all stopping times τ ∈ T T
0 .

We denote the space of BMO-martingales by BMO(P) when the probability measure P
needs to be emphasized.

Definition 2.2. H2
BMO(Rk) is the set of Rk-valued progressively measurable processes Z

satisfying

||Z||2H2
BMO

:= sup
τ∈T T

0

∣∣∣∣∣∣E [∫ T

τ
|Zs|2ds

∣∣∣Fτ

]∣∣∣∣∣∣
∞

< ∞ .

Note that if Z ∈ H2
BMO(R1×d), we have∣∣∣∣∣∣∫ ·

0
ZsdWs

∣∣∣∣∣∣2
BMO

= sup
τ∈T T

0

∣∣∣∣∣∣E [∫ T

τ
|Zs|2ds

∣∣∣Fτ

]∣∣∣∣∣∣
∞

= ||Z||2H2
BMO

< ∞ ,

and hence Z ∗W is a BMO-martingale. The next result is well-known as energy inequality.

Lemma 2.1. Let Z be in H2
BMO. Then, for any n ∈ N,

E
[(∫ T

0
|Zs|2ds

)n]
≤ n!

(
||Z||2H2

BMO

)n
.

Proof. See proof of Lemma 9.6.5 in [19].

Let E(M) be a Doléan-Dade exponential of M .

Lemma 2.2. (Reverse Hölder inequality) Let M be a BMO-martingale. Then,
(
Et(M), t ∈

[0, T ]
)
is a uniformly integrable martingale, and for every stopping time τ ∈ T T

0 , there exists
some positive constant r∗ > 1 such that the inequality

E
[
ET (M)r|Fτ

]
≤ Cr,MEτ (M)r ,
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holds for every 1 < r ≤ r∗ with some positive constant Cr,M depending only on r and
||M ||BMO.

Proof. See Theorem 3.1 of Kazamaki (1994) [30].

Lemma 2.3. Let M be a square integrable martingale and M̂ := ⟨M⟩ − M . Then, M ∈
BMO(P) if and only if M̂ ∈ BMO(Q) with dQ/dP = ET (M). Furthermore, ||M̂ ||BMO(Q) is
determined by some function of ||M ||BMO(P).

Proof. See Theorem 2.4 and 3.3 in [30].

Remark 2.1. Theorem 3.1 [30] also tells that there exists some decreasing function Φ(r)
with Φ(1+) = ∞ and Φ(∞) = 0 such that if ||M ||BMO(P) satisfies

||M ||BMO(P) < Φ(r)

then E(M) allows the reverse Hölder inequality with power r. This implies together with
Lemma 2.3, one can take a common positive constant r̄ satisfying 1 < r̄ ≤ r∗ such that
both of the E(M) and E(M̂) satisfy the reverse Hölder inequality with power r̄ under the
respective probability measure P and Q. Furthermore, the upper bound r∗ is determined only
by ||M ||BMO(P) (or equivalently by ||M ||BMO(Q)).

3 Setup

Firstly, we introduce the underlying forward process Xt, t ∈ [0, T ]:

Xt = x0 +

∫ t

0
b(r,Xr)dr +

∫ t

0
σ(r,Xr)dWr , (3.1)

where x0 ∈ Rd, b : [0, T ]× Rd → Rd, σ : [0, T ]× Rd → Rd×d.2

Assumption 3.1. (i) For all t, t′ ∈ [0, T ] and x, x′ ∈ Rd, there exists a positive constant K
such that

|b(t, x)− b(t′, x′)|+ |σ(t, x)− σ(t′, x′)| ≤ K
(
|t− t′|

1
2 + |x− x′|

)
.

(ii) ||b(·, 0)||T + ||σ(·, 0)||T ≤ K.
(iii) b and σ are continuously differentiable with arbitrary many times with respect to x and
satisfy, for every m ∈ N,

|∂m
x b(t, x)|+ |∂m

x σ(t, x)| ≤ K ,

|∂m
x b(t, x)− ∂m

x b(t′, x)|+ |∂m
x σ(t, x)− ∂m

x σ(t′, x)| ≤ K|t− t′|1/2 , (3.2)

for all t, t′ ∈ [0, T ] and x ∈ Rd.

Let us now introduce a qg-BSDE which is a target of our investigation:

Yt = ξ(XT ) +

∫ T

t
f(r,Xr, Yr, Zr)dr −

∫ T

t
ZrdWr, t ∈ [0, T ] (3.3)

where ξ : Rd → R, f : [0, T ]× Rd × R× R1×d → R.
2Useful standard estimates on the Lipschitz SDEs can be found, for example, in Appendix A of [27].
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Assumption 3.2. (i) f satisfies the quadratic structure condition [2]:

|f(t, x, y, z)| ≤ lt + β|y|+ γ

2
|z|2

where β ≥ 0, γ > 0 are constants, l : [0, T ] → R is a positive function bounded by a constant
K, i.e. ||l||T ≤ K.
(ii) f satisfies, for all t, t′ ∈ [0, T ], y, y′ ∈ R, x, x′ ∈ Rd, z, z′ ∈ R1×d,

|f(t, x, y, z)− f(t′, x, y, z)| ≤ K|t− t′|1/2 ,

|f(t, x, y, z)− f(t, x, y′, z)| ≤ K|y − y′| ,
|f(t, x, y, z)− f(t, x, y, z′)| ≤ K

(
1 + |z|+ |z′|

)
|z − z′| ,

|f(t, x, y, z)− f(t, x′, y, z)| ≤ K
(
1 + |y|+ |z|2

)
|x− x′|.

(iii) ξ is a bounded function satisfying |ξ(x)| ≤ K for all x ∈ Rd and also arbitrary many
times continuously differentiable such that

|∂m
x ξ(x)| ≤ K

for every m ∈ N uniformly in x ∈ Rd.
(iv) the driver f is arbitrary many times differentiable with respect to the spacial variables
with continuous derivatives. In particular, we assume that, for all (t, x, y, z) ∈ [0, T ]× Rd ×
R× R1×d,

|∂yf(t, x, y, z)| ≤ K

|∂zf(t, x, y, z)| ≤ K(1 + |z|)
|∂2

zf(t, x, y, z)| ≤ K

and that all the higher-order derivatives involving y, z are bounded by some constant K. On
the other hand, for every m ∈ N,

|∂m
x f(t, x, y, z)| ≤ K(1 + |y|+ |z|2) .

Note that Chassagneux & Richou (2016) [14] assumes instead the global Lipschitz conti-
nuity for the argument x in (ii). We shall discuss some generalization of the terminal function
in Section 7.

Remark 3.1. The smoothness conditions in Assumptions 3.1and 3.2 are required only in
the later part of the discussions. The third-order differentiability for the spacial variables is
required for the error estimate of the short-term expansions given in Sections 5 and 6. At
the last step where we connect the short-term expansions in Section 7, we effectively need
(n × 2) + 1-order differentiability, where n is the number of time partitions. On the other
hand, we are not assuming differentiability in time t , the non-degeneracy of σ nor uniform
Lipschitz continuity of the driver which are required in the so-called four-step scheme (Ma,
Protter & Yong (1994) [34]), the finite-difference method for a quasi-linear PDE system.

It has been well-known since the work of Kobylanski (2000) [32] that there exists a unique
solution (Y, Z) for (3.3) such that Y ∈ S∞, Z ∈ H2

BMO.

Lemma 3.1. (universal bound) Under Assumptions 3.1 and 3.2, the solution (Y,Z) of (3.3)
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satisfies

||Y ||S∞ ≤ eβT
(
||ξ(·)||L∞(Rd) + T ||l||T

)
,

||Z||2H2
BMO

≤ e4γ||Y ||S∞

γ2

(
3 + 6γT (β||Y ||S∞ + ||l||T )

)
.

Proof. This follows straightforwardly from the quadratic structure condition [2] which is given
by Assumption 3.2 (i). See, for example, Lemma 3.1 and 3.2 in [26].

4 A Sequence of qg-BSDEs perturbed in terminals

4.1 Setup

Let us introduce a time partition π : 0 = t0 < t1 < · · · < tn = T . We put hi := ti − ti−1,
|π| := max1≤i≤n hi. We denote each interval by Ii := [ti−1, ti], i ∈ {1, · · · , n} and assume
that there exists some positive constant C such that |π|n ≤ C as well as |π|/hi ≤ C for
every i ∈ {1, · · · , n}. In order to approximate the BSDE (3.3), we introduce a sequence of
qg-BSDEs perturbed in the terminal values for each interval t ∈ Ii, i ∈ {1, · · · , n} in the
following way:

Y
i
t = ûi+1(Xti) +

∫ ti

t
f(r,Xr, Y

i
r, Z

i
r)dr −

∫ ti

t
Z

i
rdWr , (4.1)

where ûi+1 : Rd → R.

Assumption 4.1. (i) Each terminal function ûi+1(x), x ∈ Rd of the period Ii is specified by

ûn+1(x) := ξ(x) ,

ûi+1(x) := Y
i+1,ti,x
ti − δi+1(x), i ∈ {1, · · · , n− 1}

where
(
Y

i+1,ti,x
t , t ∈ [ti, ti+1]

)
is the solution of (4.1) for the period Ii+1 corresponding to the

underlying process X with the initial data (ti, Xti = x) 3. The perturbation terms δi+1 : Rd →
R, i ∈ {1, · · · , n} are in C∞

b and absolutely bounded such that, for a given integer k ≥ 3,

max
1≤i≤n

||ûi+1(·)||L∞(Rd) ≤ K ′ ,

max
1≤i≤n

||∂m
x ûi+1(·)||L∞(Rd) ≤ K ′ ,

for every m ∈ {1, · · · , k} with some n-independent positive constant K ′ satisfying 4

K ′ ≥ eβT
(
||ξ(·)||L∞(Rd) + T ||l||T

)
.

3In other words, the underlying forward process is given by Xti,x
s = x+

∫ s

ti
b(r,Xti,x

r )dr+
∫ s

ti
σ(r,Xti,x

r )dWr,

s ∈ Ii+1, and hence Y
i+1,ti,x
ti is a deterministic function of x ∈ Rd.

4The exact size of K′ is somewhat arbitrary if it is big enough not to contradict the true solution of (3.3).
This condition is necessary only for making errors from short-term expansions bounded independently from
each interval.
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(ii) There exists an n-independent positive constant C such that

n−1∑
i=1

||δi+1(·)||L∞(Rd) ≤ C .

We use the convention δn+1 ≡ 0 and Y
n+1
tn = ξ(Xtn) in the following.

Remark 4.1. (ii) in the above assumption is trivial for finite n. However this becomes a
constraint when one considers the convergence in the limit n → ∞.

The classical (as well as variational) differentiability of qg-BSDEs is well-known by the
works of Ankirchner et al. (2007) [1], Briand & Confortola (2008) [12] and Imkeller & Reis
(2010) [29]. See Fujii & Takahashi (2015) [26] for the extension of these results to qg-BSDEs

with Poisson random measures. Using these results, one can show iteratively that Y
i+1,ti,x
ti is

in C∞
b and bounded when seen as a deterministic function of x ∈ Rd. Note that the absolute

bounds on higher order derivatives m > k may depend on the number of time partitions “n”.
See also the proof of Proposition 4.1 given below.

4.2 Properties of the solution

Applying the known results of qg-BSDE for each period, one sees that there exists a unique

solution (Y
i
, Z

i
) ∈ S∞

[ti−1,ti]
×H2

BMO[ti−1,ti]
. Applying Lemma 3.1 for each period Ii, one also

sees

||Y i||S∞[ti−1,ti] ≤ ||Y ||S∞ := eβ|π|
(
K ′ + |π|||l||T

)
, (4.2)

which is bounded uniformly in i ∈ {1, · · · , n}, and so is ||Zi||H2
BMO[ti−1,ti]

.

Proposition 4.1. Under Assumptions 3.1, 3.2 and Assumption 4.1 (i), there exists some

positive (i, n)-independent constant C such that the process Z
i
t, t ∈ Ii of the solution to the

BSDE (4.1) satisfies

|Zi
t| ≤ C(1 + |Xt|), t ∈ Ii

uniformly in i ∈ {1, · · · , n}.

Proof. We use the representation theorem for the control variable (Theorem 8.5 in [1]) and
follow the arguments of Theorem 3.1 in Ma & Zhang (2002) [36]. Let us introduce the

parameterized solution (Xt,x, Y
i,t,x

, Z
i,t,x

) with the initial data (t, x) ∈ [ti−1, ti]× Rd:

Xt,x
s = x+

∫ s

t
b(r,Xt,x

r )dr +

∫ s

t
σ(r,Xt,x

r )dWr, (4.3)

Y
i,t,x
s = ûi+1(Xt,x

ti
) +

∫ ti

s
f(r,Xt,x

r , Y
i,t,x
r , Z

i,t,x
r )dr −

∫ ti

s
Z

i,t,x
r dWr, (4.4)

s ∈ [t, ti] where the classical differentiability of (4.3) and (4.4) with respect to the position x

is known [1]. The differential processes (∂xX
t,x, ∂xY

i,t,x
, ∂xZ

i,t,x
) are given by the solutions
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to the following forward- and backward-SDE (FBSDE):

∂xX
t,x
s = I+

∫ s

t
∂xb(r,X

t,x
r )∂xX

t,x
r dr +

∫ s

t
∂xσ(r,X

t,x
r )∂xX

t,x
r dWr,

∂xY
i,t,x
s = ∂xû

i+1(Xt,x
ti

)∂xX
t,x
ti

dr +

∫ ti

t

{
∂xf(r,X

t,x
r ,Θ

i,t,x
r )∂xX

t,x
r

+∂θf(r,X
t,x
r ,Θ

i,t,x
r )∂xΘ

i,t,x
r

}
dr −

∫ ti

t
∂xZ

i,t,x
r dWr, (4.5)

where I is the d × d identity matrix and ∂xΘ
i,t,x

= (∂xY
i,t,x

, ∂xZ
i,t,x

). Note that |∂yf | is
bounded and

|∂zf(r,Xt,x
r ,Θ

i,t,x
r )| ≤ K

(
1 + |Zi,t,x

r |
)

by Assumption 3.2 (iv). By the facts given in (4.2) and the remark that follows, one sees

||∂zf(·, Xt,x
· ,Θ

i,t,x
· )||H2

BMO[t,ti]
≤ C

with some constant C. Thus Corollary 9 in [12] or Theorem A.1 in [26] implies that the
BSDE (4.5) has a unique solution satisfying, for any p ≥ 2,

∣∣∣∣∂xΘi,t,x∣∣∣∣p
Kp[t,ti]

≤ Cp,q̄E

[
|∂xûi+1(Xt,x

ti
)∂xX

t,x
ti

|pq̄2

+
(∫ ti

t
|∂xf(r,Xi,t,x

r ,Θ
i,t,x
r )∂xX

i,t,x
r |dr

)pq̄2] 1
q̄2

≤ Cp,q̄E
[
||∂xXt,x||2pq̄

2

[t,ti]

] 1
2q̄2

(
1 + ||Y i||pS∞[t,ti]

+ E
[(∫ ti

t
|Zi,t,x

r |2dr
)2pq̄2] 1

2q̄2

)
(4.6)

where q̄ is a positive constant satisfying q∗ ≤ q̄ < ∞. Here, q∗ = r∗

r∗−1 > 1 is the conjugate
exponent of r∗ the upper bound of power with which the Reverse Hölder inequality holds for
E(∂zf ∗W ). We have used Assumption 3.2 (iv) and Hölder inequality in the last line.

By the standard estimate of SDE 5, one can show that ||∂xXt,x||S2pq̄2 ≤ C with some

positive constant C that is independent of the initial data (t, x). The boundedness of Y
i

in (4.2) and the following remark on Z
i
together with Lemma 2.1 show that the right-hand

side of (4.6) is bounded by some positive constant. In particular, one can choose a common
constant C for every i ∈ {1, · · · , n} such that

|∂xY
i,t,x
t | ≤ ||∂xY

i,t,x||Sp[t,ti] ≤ C

uniformly in (t, x) ∈ [ti−1, ti]× Rd. By the representation theorem [1, 36], we have

Z
i
t = ∂xu

i(t,Xt)σ(t,Xt), t ∈ [ti−1, ti]

5See, for example, Appendix A in [27].
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where the function ∂xu
i : [ti−1, ti]× Rd → Rd×d is defined by ∂xu

i(t, x) := ∂xY
i,t,x
t . Now the

Lipschitz property of σ gives the desired result.

Let us now define a progressively measurable process
(
Zt, t ∈ [0, T ]

)
by

Zt :=
n∑

i=1

Z
i
t1{ti−1≤t<ti}, t ∈ [0, T ] (4.7)

so that ∫ T

0
|Zt|2dt =

n∑
i=1

∫ ti

ti−1

|Zi
t|2dt .

Proposition 4.2. Under Assumptions 3.1, 3.2 and 4.1, the process
(
Zt, t ∈ [0, T ]

)
defined

by (4.7) belongs to H2
BMO[0,T ] satisfying ||Z||H2

BMO[0,T ] ≤ C with some n-independent positive

constant C. 6

Proof. Applying Itô formula to e2γY
i

, one obtains for t ∈ Ii that∫ ti

t
e2γY

i
r2γ2|Zi

r|2dr = e2γY
i
ti − e2γY

i
t +

∫ ti

t
e2γY

i
r2γf(r,Xr, Y

i
r, Z

i
r)dr

−
∫ ti

t
e2γY

i
r2γZ

i
rdWr .

The quadratic structure condition in Assumption 3.2 (i) gives∫ ti

t
e2γY

i
rγ2|Zr|2dr ≤ e2γY

i
ti − e2γY

i
t +

∫ ti

t
e2γY

i
r2γ
(
lr + β|Y i

r|
)
dr −

∫ ti

t
e2γY

i
r2γZ

i
rdWr .

Since Y
i
ti = ûi+1(Xti) = Y

i+1
ti − δi+1(Xti), one obtains

e2γY
i
ti = e2γ

(
Y

i+1
ti

−δi+1(Xti )
)

= e2γY
i+1
ti + e2γY

i+1
ti

(
e−2γδi+1(Xti ) − 1

)
.

Since ||δi+1(·)||L∞(Rd) ≤ C uniformly in i ∈ {1, · · · , n}, there exists some positive constant C
such that

e2γY
i
ti ≤ e2γY

i+1
ti + Ce2γY

i+1
ti |δi+1(Xti)| .

It follows that, with the choice t = ti−1,∫ ti

ti−1

e2γY
i
rγ2|Zi

r|2dr ≤
(
e2γY

i+1
ti − e

2γY
i
ti−1

)
+ Ce2γY

i+1
ti |δi+1(Xti)|

+

∫ ti

ti−1

e2γY
i
r2γ
(
lr + β|Y i

r|
)
dr −

∫ ti

ti−1

e2γY
i
r2γZ

i
rdWr.

6Z ∈ H2
BMO[0,T ] is obvious for finite n since ||Z||2H2

BMO
[0,T ] ≤

∑n
i=1 ||Z

i||2H2
BMO

[ti−1,ti]
.
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Thus for any τ ∈ T T
0 and j := min

(
j ∈ {1, · · · , n} : τ ≤ tj

)
,

∫ tj

τ
e2γY

j
rγ2|Zj

r|2dr +
n∑

i=j+1

∫ ti

ti−1

e2γY
i
rγ2|Zi

r|2dr

≤ e2γY
n+1
tn − e2γY

j
τ + C

n∑
i=j

e2γY
i+1
ti |δi+1(Xti)|

+

∫ tj

τ
e2γY

j
r2γ
(
lr + β|Y j

r|
)
dr +

n∑
i=j+1

∫ ti

ti−1

e2γY
i
r2γ
(
lr + β|Y i

r|
)
dr

−
∫ tj

τ
e2γY

j
r2γZ

j
rdWr −

n∑
i=j+1

∫ ti

ti−1

e2γY
i
r2γZ

i
rdWr .

Since e2γY
j
τ > 0 and δn+1 ≡ 0, one obtains

E

∫ tj

τ
e2γY

j
rγ2|Zj

r|2dr +
n∑

i=j+1

∫ ti

ti−1

e2γY
i
rγ2|Zi

r|2dr
∣∣∣Fτ


≤ E

e2γξ(XT ) + C
n−1∑
i=j

e2γY
i+1
ti |δi+1(Xti)|+

n∑
i=j

∫ ti

ti−1∨τ
e2γY

i
r2γ
(
lr + β|Y i

r|
)
dr
∣∣∣Fτ

 .

By Assumption 4.1 (ii) and (4.2), the above inequality implies that there exists some n-
independent constant C such that

E
[∫ T

τ
|Zr|2dr

∣∣∣Fτ

]
= E

∫ tj

τ
|Zj

r|2dr +
n∑

i=j+1

∫ ti

ti−1

|Zi
r|2dr

∣∣∣Fτ


≤ e4γ||Y ||S∞

γ2

(
1 + 2γT

(
||l||T + β||Y ||S∞

)
+ C

n−1∑
i=1

||δi+1(·)||L∞(Rd)

)
≤ C ,

and hence the claim is proved.

4.3 Error estimates for the perturbed BSDEs in the terminals

Let (Y, Z) be the solution to the BSDE (3.3) and (Y
i
, Z

i
) to (4.1). Let us put

δY i
t := Yt − Y

i
t, δZi

t := Zt − Z
i
t

δf i(t) := f(t,Xt, Yt, Zt)− f(t,Xt, Y
i
t, Z

i
t) ,

for t ∈ Ii, i ∈ {1, · · · , n}. Then (δY i, δZi) follows the BSDE

δY i
t = δY i+1

ti
+ δi+1(Xti) +

∫ ti

t
δf i(r)dr −

∫ ti

t
δZi

rdWr , (4.8)

for t ∈ Ii.
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Theorem 4.1. Under Assumptions 3.1, 3.2 and Assumption 4.1 (i), the inequality

n∑
i=1

∫ ti

ti−1

E|δZi
r|2dr ≤ Cp max

1≤i≤n
E
[
sup
r∈Ii

|δY i
r |2p

]1/p
+

C

|π|

n−1∑
i=1

E|δi+1(Xti)|2 ,

holds for any p > 1 with some n-independent positive constants C and Cp.

Proof. For each interval Ii, let us define new progressively measurable processes
(
βi
r, r ∈ Ii

)
and

(
γir, r ∈ Ii

)
as follows:

βi
r :=

f(r,Xr, Yr, Zr)− f(r,Xr, Y
i
r, Zr)

δY i
r

1δY i
r ̸=0 ,

γir :=
f(r,Xr, Y

i
r, Zr)− f(r,Xr, Y

i
r, Z

i
r)

|δZi
r|2

1δZi
r ̸=0(δZ

i
r)

⊤ .

Then, |βi| ≤ K is a bounded process by the Lipschitz property, and by Proposition 4.1, there
exists some (i, n)-independent positive constant C such that

|γir| ≤ K(1 + |Zr|+ |Zi
r|) ≤ C(1 + |Xr|) (4.9)

for r ∈ Ii, i ∈ {1, · · · , n}. The BSDE (4.8) can now be written as

δY i
t = δY i+1

ti
+ δi+1(Xti) +

∫ ti

t

(
βi
rδY

i
r + δZi

rγ
i
r

)
dr −

∫ ti

t
δZi

rdWr . (4.10)

A simple application of Itô formula gives

E|δY i
ti−1

|2 +
∫ ti

ti−1

E|δZi
r|2dr

= E
∣∣δY i+1

ti
+ δi+1(Xti)

∣∣2 + ∫ ti

ti−1

E
[
2δY i

r

(
βi
rδY

i
r + δZi

rγ
i
r

)]
dr .

By Hölder inequality and (4.9), one obtains with some positive constants C,Cp that

1

2

∫ ti

ti−1

E|δZi
r|2dr ≤

(
E|δY i+1

ti
|2 − E|δY i

ti−1
|2
)
+ C|π|E|δY i+1

ti
|2 + C

|π|
E|δi+1(Xti)|2

+C

∫ ti

ti−1

E
[
|δY i

r |2(1 + |γir|2)
]
dr

≤
(
E|δY i+1

ti
|2 − E|δY i

ti−1
|2
)
+ C|π|E|δY i+1

ti
|2 + C

|π|
E|δi+1(Xti)|2

+Cp|π|E
[
sup
r∈Ii

|δY i
r |2p

]1/p(
1 + E

[
sup
r∈Ii

|Xr|2q
]1/q)

≤
(
E|δY i+1

ti
|2 − E|δY i

ti−1
|2
)
+ C|π|E|δY i+1

ti
|2 + C

|π|
E|δi+1(Xti)|2

+Cp|π|E
[
sup
r∈Ii

|δY i
r |2p

]1/p
,
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where p is an arbitrary constant satisfying p > 1 and q (> 1) is its conjugate exponent.
Summing up for i ∈ {1, · · · , n}, one obtains

1

2

n∑
i=1

∫ ti

ti−1

E|δZi
r|2dr

≤ E|δY n+1
tn |2 − E|δY 1

t0 |
2 + C|π|

n∑
i=1

E|δY i+1
ti

|2

+
C

|π|

n∑
i=1

E|δi+1(Xti)|2 + Cp|π|
n∑

i=1

E
[
sup
r∈Ii

|δY i
r |2p

]1/p
.

Since δY n+1
tn = δn+1 = 0, one gets the desired result.

Theorem 4.2. Under Assumptions 3.1, 3.2 and 4.1, there exists some n-independent positive
constants q̄ > 1 and Cp,q̄ such that

E
[
max
1≤i≤n

sup
r∈Ii

|δY i
r |p
]
≤ Cp,q̄E

[(n−1∑
i=1

|δi+1(Xti)|
)pq̄]1/q̄

for any p > 1.

Proof. Let us use the same notations βi
r, γ

i
r defined in Theorem 4.1. We also introduce the

process
(
γr, r ∈ [0, T ]

)
by

γr :=
n∑

i=1

γir1{ti−1≤r<ti} .

With Z defined by (4.7), it satisfies

|γr| ≤ K(1 + |Zr|+ |Zr|) .

By Lemma 3.1 and Proposition 4.2, both of Z and Z are in H2
BMO, and so is γ;

||γ||2H2
BMO

≤ K2(T + ||Z||2H2
BMO

+ ||Z||2H2
BMO

) ≤ C

where, in particular, the constant C is n-independent.

From the remark following Definition 2.2, one can show that γ ∗ W ∈ BMO(P). Thus
the new probability measure Q can be defined by dQ/dP = ET , where E is a Doléan-Dade

exponential Et := E
(∫ T

0 γ⊤r dWr

)
. The Brownian motion WQ under the measure Q is given

by

WQ
t = Wt −

∫ t

0
γrdr

for t ∈ [0, T ]. Furthermore, it follows from Lemma 2.2 that there exists a constant r∗ satisfying
1 < r∗ < ∞ such that, for every 1 < r̄ ≤ r∗, the reverse Hölder inequality of power r̄ holds:

1

Eτ
E
[
E r̄
T |Fτ

]1/r̄
≤ Cr̄ .
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Here, τ ∈ T T
0 is an arbitrary F-stopping time, Cr̄ is some positive constant depending only

on r̄ and the H2
BMO-norm of γ. We put q̄ > 1 as the conjugate exponent of this r̄ in the

following. By the last observation, all these constants can be chosen n-independently.

Under the new measure Q, the BSDE (4.10) is given by

δY i
t = δY i+1

ti
+ δi+1(Xti) +

∫ ti

t
βi
rδY

i
r dr −

∫ ti

t
δZi

rdW
Q
r ,

which can be solved as

δY i
t = EQ

[
e
∫ ti
t βi

rdr
(
δY i+1

ti
+ δi+1(Xti)

)∣∣∣Ft

]
,

for all t ∈ Ii. Since |βi| ≤ K, one obtains

|δY i
t | ≤ eKhiEQ

[
|δY i+1

ti
|+ |δi+1(Xti)|

∣∣∣Ft

]
,

and also

|δY i
t | ≤ EQ

 eK
∑n

j=i hj |δY n+1
tn |+

n∑
j=i

eK
∑j

k=i hk |δj+1(Xtj )|
∣∣∣Ft

 ,

by iterating the first inequality. Since δY n+1
tn = δn+1(Xtn) = 0, one concludes

|δY i
t | ≤ EQ

n−1∑
j=i

eK
∑j

k=i hk |δj+1(Xtj )|
∣∣∣Ft


for t ∈ Ii, i ∈ {1, · · · , n}.

The reverse Hölder inequality gives

|δY i
t | ≤ eKTEQ

n−1∑
j=i

|δj+1(Xtj )|
∣∣∣Ft

 =
eKT

Et
E

ET n−1∑
j=i

|δj+1(Xtj )|
∣∣∣Ft


≤ Cq̄e

KTE

(n−1∑
j=i

|δj+1(Xtj )|
)q̄∣∣∣Ft

1/q̄

,

and hence

max
1≤i≤n

sup
t∈Ii

|δY i
t | ≤ Cq̄ sup

t∈[0,T ]
E

[(n−1∑
i=1

|δi+1(Xti)|
)q̄∣∣∣Ft

]1/q̄
.
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Using Jensen and Doob’s maximal inequalities, one finally obtains

E
[
max
1≤i≤n

sup
t∈Ii

|δY i
t |p
]
≤ Cp,q̄E

 sup
t∈[0,T ]

E

[(n−1∑
i=1

|δi+1(Xti)|
)q̄∣∣∣Ft

]p/q̄
≤ Cp,q̄E

[
sup

t∈[0,T ]
E

[(n−1∑
i=1

|δi+1(Xti)|
)q̄∣∣∣Ft

]p]1/q̄
(Jensen’s inequality)

≤ Cp,q̄E

[(n−1∑
i=1

|δi+1(Xti)|
)pq̄]1/q̄

(Doob’s inequality)

which proves the claim.

From Theorems 4.1 and 4.2, we obtain the following corollary.

Corollary 4.1. Under Assumptions 3.1, 3.2 and 4.1, there exist some n-independent positive
constants q̄ > 1 and Cp,q̄ such that

max
1≤i≤n

E
[
sup
r∈Ii

|δY i
r |2p

] 1
p

+

n∑
i=1

∫ ti

ti−1

E|δZi
r|2dr ≤ Cp,q̄

|π|
E

[(n−1∑
i=1

|δi+1(Xti)|2
)pq̄] 1

pq̄

,

for any p > 1.

5 Short-term expansion: Step 1

In the following two sections, we approximate the solution (Y
i
, Z

i
) of the BSDE (4.1) semi-

analytically and also obtain its error estimate. We need two steps for achieving this goal,
which involve the linearization method and the small-variance expansion method for BSDEs
proposed in Fujii & Takahashi (2012) [23] and (2015) [27], respectively.

Standing Assumptions for Section 5

We make Assumptions 3.1, 3.2 and Assumption 4.1 (i) (but not (ii)) the standing assumptions
for this section.

Let us first introduce the following decomposition of the BSDE (4.1):

Y
i,[0]
t = ûi+1(Xti)−

∫ ti

t
Z

i,[0]
r dWr , (5.1)

Y
i,[1]
t =

∫ ti

t
f
(
r,Xr, Y

i,[0]
r , Z

i,[0]
r

)
dr −

∫ ti

t
Z

i,[1]
r dWr , (5.2)

for each interval t ∈ Ii, i ∈ {1, · · · , n}. They are the leading contributions in the linearization
method [23, 44].

Lemma 5.1. For every interval Ii, i ∈ {1, · · · , n} ≤ C, there exists a unique solution

(Y
i,[0]

, Z
i,[0]

) to the BSDE (5.1) satisfying, with some (i, n)-independent positive constants

15



C and Cp, that

||Y i,[0]||S∞[ti−1,ti] + ||Zi,[0]||H2
BMO[ti−1,ti]

≤ C

and
||Zi,[0]||Sp[ti−1,ti] ≤ Cp

for any p ≥ 2.

Proof. The boundedness ||Y i,[0]||S∞ ≤ C follows easily from Assumption 4.1 (i), which then

implies ||Zi,[0]||H2
BMO

≤ C. The second claim follows from the similar arguments used in
Proposition 4.1 .

Lemma 5.2. For every interval Ii, i ∈ {1, · · · , n}, there exists a unique solution (Y
i,[1]

, Z
i,[1]

)
to the BSDE (5.2) satisfying, with some (i, n)-independent positive constant Cp, that

||Y i,[1]||Sp[ti−1,ti] + ||Zi,[1]||Hp[ti−1,ti] ≤ Cp

for any p ≥ 2.

Proof. Since the BSDE is Lipschitz, the existence of a unique solution easily follows. The
standard estimate for the Lipschitz BSDEs (see, for example, Appendix B in [27]) and As-
sumption 3.2 (i) implies

∣∣∣∣∣∣(Y i,[1]
, Z

i,[1]
)
∣∣∣∣∣∣p
Kp[ti−1,ti]

≤ CpE

[(∫ ti

ti−1

|f(r,Xr, Y
i,[0]
r , Z

i,[0]
r )|dr

)p]

≤ CpE

[(∫ ti

ti−1

[
lr + β|Y i,[0]

r |+ γ

2
|Zi,[0]

r |2
]
dr
)p]

≤ Cp

(
||l||pT + ||Y i,[0]||pSp[ti−1,ti]

+ ||Zi,[0]||2pS2p[ti−1,ti]

)
.

Thus one obtains the desired result by Lemma 5.1.

We now define the process (Ỹ
i
, Z̃

i
) for each interval t ∈ Ii, i ∈ {1, · · · , n} by

Ỹ
i

t := Y
i,[0]
t + Y

i,[1]
t

Z̃
i

t := Z
i,[0]
t + Z

i,[1]
t .

The following property is the main conclusion of this section.

Proposition 5.1. There exists some (i, n)-independent positive constant Cp such that the
inequality

E

[∣∣∣∣Y i − Ỹ
i∣∣∣∣p

[ti−1,ti]
+
(∫ ti

ti−1

∣∣Zi
r − Z̃

i

r

∣∣2dr) p
2

]
≤ Cph

3p/2
i

holds for every interval Ii, i ∈ {1, · · · , n} with any p ≥ 2.
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Proof. For notational simplicity, let us put

δY
i,[0]
t := Y

i
t − Y

i,[0]
t , δZ

i,[0]
t := Z

i
t − Z

i,[0]
t

δY
i,[1]
t := Y

i
t − Ỹ

i

t, δZ
i,[1]
t := Z

i
t − Z̃

i

t

for each interval t ∈ Ii, i ∈ {1, · · · , n}. Then, they are given by the solutions to the following
BSDEs respectively:

δY
i,[0]
t =

∫ ti

t
f(r,Xr, Y

i
r, Z

i
r)dr −

∫ ti

t
δZi,[0]

r dWr ,

δY
i,[1]
t =

∫ ti

t

(
f(r,Xr, Y

i
r, Z

i
r)− f(r,Xr, Y

i,[0]
r , Z

i,[0]
r )

)
dr −

∫ ti

t
δZi,[1]

r dWr .

By the stability result for the Lipschitz BSDEs (see, for example, Lemma B.2 in [27]), As-
sumption 3.2 (i), (4.2) and Proposition 4.1, one obtains

∣∣∣∣∣∣(δY i,[0], δZi,[0])
∣∣∣∣∣∣p
Kp[ti−1,ti]

≤ CpE

[(∫ ti

ti−1

[
lr + β|Y i

r|+
γ

2
|Zi

r|2
]
dr
)p]

≤ Cph
p
i

(
||l||pT + ||Y i||pS∞[ti−1,ti]

+ ||Zi||2pS2p[ti−1,ti]

)
≤ Cph

p
i , (5.3)

with some (i, n)-independent positive constant Cp for ∀p ≥ 2. Similar analysis for (δY i,[1], δZi,[1])
using Assumption 3.2 (ii) yields

∣∣∣∣∣∣(δY i,[1], δZi,[1])
∣∣∣∣∣∣p
Kp[ti−1,ti]

≤ CpE

[(∫ ti

ti−1

[
|δY i,[0]

r |+ (1 + |Zi
r|+ |Zi,[0]

r |)|δZi,[0]
r |

]
dr

)p]

≤ Cp

 hpi ||δY
i,[0]||pSp[Ii]

+ E
[
1 + ||Zi||2pIi + ||Zi,[0]||2pIi

] 1
2E

[(
hi

∫ ti

ti−1

|δZi,[0]
r |2dr

)p] 1
2

 .

By applying Proposition 4.1, Lemma 5.1 and the previous estimate (5.3), one obtains the
desired result.

6 Short-term expansion: Step 2

In the second step of the short-term expansion, we obtain simple analytic approximation for
the BSDEs (5.1) and (5.2) while keeping the same order of accuracy given in Proposition 5.1.
We use the small-variance expansion method7 for BSDEs proposed in [27] which renders all
the problems into a set of simple ODEs. Furthermore, we shall see that these ODEs can be
approximated by a single-step Euler method for each interval Ii. This allows us to skip lengthy
Monte Carlo simulation for estimating the conditional expectations at each space-time node.

7Note that the small-variance asymptotic expansion has been widely applied for the pricing of European
contingent claims since the initial attempts by Takahashi (1999) [43] and Kunitomo & Takahashi (2003) [33].
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Standing Assumptions for Section 6

Similarly to the last section, we make Assumptions 3.1, 3.2 and Assumption 4.1 (i) (but not
(ii)) the standing assumptions for this section.

6.1 Approximation for (Y
i,[0]

, Z
i,[0]

)

For each interval, we introduce a new parameter ϵ satisfying ϵ ∈ (−c, c) with some constant
c > 1 to perturb (3.1) and (5.1):

Xϵ
t = Xti−1 +

∫ t

ti−1

b(r,Xϵ
r)dr +

∫ t

ti−1

ϵσ(r,Xϵ
r)dWr . (6.1)

Y
i,[0],ϵ
t = ûi+1(Xϵ

ti)−
∫ ti

t
Z

i,[0],ϵ
r dWr . (6.2)

for t ∈ Ii = [ti−1, ti], i ∈ {1, · · · , n}. Notice that the way ϵ is introduced to Xϵ, by which
we have a different process for each interval Ii.

8 In the following, in order to avoid confusion
between the index specifying the interval and the one for the component of x ∈ Rd, we use
the bold Gothic symbols such as {i, j, · · · } for the latter, each of which runs through 1 to d.

Lemma 6.1. The classical derivatives of (Xϵ, Y
i,[0],ϵ

, Z
i,[0],ϵ

) with respect to ϵ

∂k
ϵX

ϵ
t :=

∂k

∂ϵk
Xϵ

t , ∂k
ϵ Y

i,[0],ϵ
:=

∂k

∂ϵk
Y

i,[0],ϵ
t , ∂k

ϵ Z
i,[0],ϵ

:=
∂k

∂ϵk
Z

i,[0],ϵ
t

for k = {1, 2, 3} are given by the solutions to the following forward- and backward-SDEs:

∂ϵX
ϵ,i
t =

∫ t

ti−1

∂xjbi(r,Xϵ
r)∂ϵX

ϵ,j
r dr +

∫ t

ti−1

[
σi(r,Xϵ

r) + ϵ(∂ϵX
ϵ,j
r )∂xjσi(r,Xϵ

r)
]
dWr ,

∂2
ϵX

ϵ,i
t =

∫ t

ti−1

[
∂xjbi(r,Xϵ

r)∂
2
ϵX

ϵ,j
r + ∂2

xj,xkb
i(r,Xϵ

r)∂ϵX
ϵ,j
r ∂ϵX

ϵ,k
r

]
dr

+

∫ t

ti−1

[
2(∂ϵX

ϵ,j
r )∂xjσi(r,Xϵ

r) + ϵ(∂2
ϵX

ϵ,j
r )∂xjσi(r,Xϵ

r)

+ϵ(∂ϵX
ϵ,j
r )(∂ϵX

ϵ,k
r )∂2

xj,xkσ
i(r,Xϵ

r)
]
dWr ,

∂3
ϵX

ϵ,i
t =

∫ t

ti−1

[
∂xjbi(r,Xϵ

r)∂
3
ϵX

ϵ,j
r + 3∂2

xj,xkb
i(r,Xϵ

r)∂
2
ϵX

ϵ,j
r ∂ϵX

ϵ,k
r

+∂3
xj,xk,xmbi(r,Xϵ

r)∂ϵX
ϵ,j
r ∂ϵX

ϵ,k
r ∂ϵX

ϵ,m
r

]
dr +

∫ t

ti−1

[
3(∂2

ϵX
ϵ,j
r )∂xjσi(r,Xϵ

r)

+3(∂ϵX
ϵ,j
r )(∂ϵX

ϵ,k
r )∂2

xj,xkσ
i(r,Xϵ

r) + ϵ(∂3
ϵX

ϵ,j
r )∂xjσi(r,Xϵ

r)

+3ϵ(∂2
ϵX

ϵ,j
r )(∂ϵX

ϵ,k
r )∂2

xj,xkσ
i(r,Xϵ

r) + ϵ(∂ϵX
ϵ,j
r )(∂ϵX

ϵ,k
r )(∂ϵX

ϵ,m
r )∂3

xj,xk,xmσi(r,Xϵ
r)
]
dWr ,

8It would be more appropriate to write Xi,ϵ
t to emphasize the dependence on the interval t ∈ Ii, but we

have omitted “i” to lighten the notation.
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and

∂ϵY
i,[0],ϵ
t = ∂xj ûi+1(Xϵ

ti)∂ϵX
ϵ,j
ti

−
∫ ti

t
∂ϵZ

i,[0],ϵ
r dWr ,

∂2
ϵ Y

i,[0],ϵ
t = ∂xj ûi+1(Xϵ

ti)∂
2
ϵX

ϵ,j
ti

+ ∂2
xj,xk û

i+1(Xϵ
ti)∂ϵX

ϵ,j
ti
∂ϵX

ϵ,k
ti

−
∫ ti

t
∂2
ϵZ

i,[0],ϵ
r dWr ,

∂3
ϵ Y

i,[0],ϵ
t = ∂xj ûi+1(Xϵ

ti)∂
3
ϵX

ϵ,j
ti

+ 3∂2
xj,xk û

i+1(Xϵ
ti)(∂

2
ϵX

ϵ,j
ti
)(∂ϵX

ϵ,k
ti

)

+∂3
xj,xk,xm ûi+1(Xϵ

ti)(∂ϵX
ϵ,j
ti
)(∂ϵX

ϵ,k
ti

)(∂ϵX
ϵ,m
ti

)−
∫ ti

t
∂3
ϵZ

i,[0],ϵ
r dWr ,

for t ∈ Ii = [ti−1, ti]. Einstein convention is used with {i, j, · · · } running through 1 to d.

Proof. The classical differentiability can be shown by following the arguments of Theorem
3.1 in [36]. See Section 6 of [27] for more details.

Lemma 6.2. For k = {1, 2, 3}, there exists some (i, n)-independent positive constant Cp,k

such that the inequality

E
[∣∣∣∣∂k

ϵX
ϵ
∣∣∣∣p
[ti−1,ti]

]
≤ Cp,kh

kp/2
i

holds for every interval Ii, i ∈ {1, · · · , n} with any p ≥ 2.

Proof. This can be shown by applying the standard estimates for the Lipschitz SDEs given,
for example, in Appendix A of [27]. For k = 1,

E
[
||∂ϵXϵ||p[ti−1,ti]

]
≤ CpE

[(∫ ti

ti−1

|σ(r,Xϵ
r)|2dr

)p/2]
≤ Cph

p/2
i .

For k = 2, one obtains

E
[
||∂2

ϵX
ϵ||p[ti−1,ti]

]
≤ CpE

[(∫ ti

ti−1

|∂ϵXϵ
r |2dr

)p
+
(∫ ti

ti−1

[
|∂ϵXϵ

r |2 + |∂ϵXϵ
r |4
]
dr
) p

2

]

≤ Cp

(
hpiE

[
||∂ϵXϵ||2pIi

]
+ h

p/2
i E

[
||∂ϵXϵ||pIi + ||∂ϵXϵ||2pIi

])
≤ Cph

p
i ,

as desired. One can show the last case k = 3 in a similar manner.

Let introduce the following processes, with k ∈ {0, 1, 2},

X
[k]
t :=

∂k

∂ϵk
Xϵ

t

∣∣∣
ϵ=0

, Y
i,[0],[k]
t :=

∂k

∂ϵk
Y

i,[0],ϵ
t

∣∣∣
ϵ=0

, Z
i,[0],[k]
t :=

∂k

∂ϵk
Z

i,[0],ϵ
t

∣∣∣
ϵ=0

and also

Ỹ
i,[0]

t :=
2∑

k=0

1

k!
Y

i,[0],[k]
t , Z̃

i,[0]

t :=
2∑

k=0

1

k!
Z

i,[0],[k]
t (6.3)

for each interval t ∈ Ii, i ∈ {1, · · · , n}.
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Lemma 6.3. There exists some (i, n)-independent positive constant Cp such that the inequal-
ity

E

[∣∣∣∣Y i,[0] − Ỹ
i,[0]∣∣∣∣p

[ti−1,ti]
+
(∫ ti

ti−1

|Zi,[0]
r − Z̃

i,[0]

r |2dr
)p/2]

≤ Cph
3p/2
i

holds for every interval Ii, i ∈ {1, · · · , n} with any p ≥ 2.

Proof. We can use the residual formula of Taylor expansion thanks to the classical differen-

tiability of Θ
i,[0],ϵ

with respect to ϵ;

E

[∣∣∣∣Y i,[0] − Ỹ
i,[0]∣∣∣∣p

[ti−1,ti]
+
(∫ ti

ti−1

|Zi,[0]
r − Z̃

i,[0]

r |2dr
)p/2]

≤ CpE

sup
r∈Ii

∣∣∣1
2

∫ 1

0
(1− ϵ)2∂3

ϵ Y
i,[0],ϵ
r dϵ

∣∣∣p+(∫ ti

ti−1

∣∣∣1
2

∫ 1

0
(1− ϵ)2∂3

ϵZ
i,[0],ϵ
r dϵ

∣∣∣2dr)p/2


≤ Cp

∫ 1

0

E

∣∣∣∣∂3
ϵ Y

i,[0],ϵ∣∣∣∣p
[ti−1,ti]

+

(∫ ti

ti−1

∣∣∂3
ϵZ

i,[0],ϵ
r

∣∣2dr)p/2
 dϵ .

Applying the standard estimates of the Lipschitz BSDEs (see, for example, Appendix B of
[27]), the boundedness of ∂k

x û
i+1 as well as Lemma 6.2, one obtains

E

[∣∣∣∣Y i,[0] − Ỹ
i,[0]∣∣∣∣p

[ti−1,ti]
+
(∫ ti

ti−1

∣∣Zi,[0]
r − Z̃

i,[0]

r

∣∣2dr)p/2]

≤ Cp

∫ 1

0

(
E

[
||∂3

ϵX
ϵ||pIi + ||∂2

ϵX
ϵ||pIi ||∂ϵX

ϵ||pIi + ||∂ϵXϵ||3pIi

])
dϵ ≤ Cph

3p/2
i

as desired.

The last lemma implies that it suffices to obtain (Ỹ
i,[0]

, Z̃
i,[0]

) for our purpose, which is the

second order approximation of (Y
i,[0]

, Z
i,[0]

). Furthermore, as we shall see next, the solution
of these BSDEs can be obtained explicitly by simple ODEs thanks to the grading structure
introduced by the asymptotic expansion. The relevant system of FBSDEs is summarized
below:

X
[0]
t = Xti−1 +

∫ t

ti−1

b(r,X [0]
r )dr ,

X
[1],i
t =

∫ t

ti−1

∂xjbi(r,X [0]
r )X [1],j

r dr +

∫ t

ti−1

σi(r,X [0]
r )dWr ,

X
[2],i
t =

∫ t

ti−1

(
∂xjbi(r,X [0]

r )X [2],j
r + ∂2

xj,xkb
i(r,X [0]

r )X [1],j
r X [1],k

r

)
dr

+

∫ t

ti−1

2X [1],j
r ∂xjσi(r,X [0]

r )dWr ,
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and

Y
i,[0],[0]
t = ûi+1(X

[0]
ti
)−

∫ ti

t
Z

i,[0],[0]
r dWr , (6.4)

Y
i,[0],[1]
t = ∂xj ûi+1(X

[0]
ti
)X

[1],j
ti

−
∫ ti

t
Z

i,[0],[1]
r dWr (6.5)

Y
i,[0],[2]
t = ∂xj ûi+1(X

[0]
ti
)X

[2],j
ti

+ ∂2
xj,xk û

i+1(X
[0]
ti
)X

[1],j
ti

X
[1],k
ti

−
∫ ti

t
Z

i,[0],[2]
r dWr ,

(6.6)

for t ∈ Ii, i ∈ {1, · · · , n} with Einstein convention for {i, j, · · · }.

Definition 6.1. (Coefficient functions)
We define the set of functions χ : Ii × Rd → Rd, y : Ii × Rd → R, y[1] : Ii × Rd → Rd,

y[2] : Ii × Rd → Rd, G[2] : Ii × Rd → Rd×d, y
[2]
0 : Ii × Rd → R by

χ(t, x) := x+

∫ t

ti−1

b(r, χ(r, x))dr ,

y(t, x) := ûi+1(χ(ti, x)) ,

y
[1]
j (t, x) := ∂xj ûi+1(χ(ti, x)) +

∫ ti

t
∂xjbk(r, χ(r, x))y

[1]
k (r, x)dr ,

G
[2]
j,k(t, x) := ∂2

xj,xk û
i+1(χ(ti, x))

+

∫ ti

t

{([
∂xb(r, χ(r, x))

]
G[2](r, x)

)↔
j,k

+ ∂2
xj,xkb

m(r, χ(r, x))y
[2]
m (r, x)

}
dr ,

y
[2]
0 (t, x) :=

∫ ti

t
Tr
(
G[2](r, x)[σσ⊤](r, χ(r, x))

)
dr ,

and y[2] = y[1] for (t, x) ∈ Ii × Rd, i ∈ {1, · · · , n}. We have used Einstein convention and
the notation

(
[∂xb(r, x)]i,j = ∂xibj(r, x), i, j ∈ {1, · · · , d}

)
. We denote the symmetrization by

A↔ := A+A⊤ for a d× d-matrix A 9.

Note that the above coefficient functions are given by the ODEs for a given x ∈ Rd in
each period. The solution of the BSDEs are expressed by these functions in the following
way:

Lemma 6.4. For each period t ∈ Ii, i ∈ {1, · · · , n}, the solutions of the BSDEs (6.4), (6.5)
and (6.6) are given by

Y
i,[0],[0]
t = y(t,Xti−1), Z

i,[0],[0]
t ≡ 0

for the zero-th order,

Y
i,[0],[1]
t = y

[1]
j (t,Xti−1)X

[1],j
t ,

Z
i,[0],[1]
t = y

[1]
j (t,Xti−1)σ

j(t, χ(t,Xti−1)) ,

9Hence, G[2] is symmetric matrix valued.
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for the first order, and

Y
i,[0],[2]
t = y

[2]
j (t,Xti−1)X

[2],j
t +G

[2]
j,k(t,Xti−1)X

[1],j
t X

[1],k
t + y

[2]
0 (t,Xti−1) ,

Z
i,[0],[2]
t = 2

(
y
[2]
j (t,Xti−1)X

[1],k
t ∂xkσj(t, χ(t,Xti−1)) +G

[2]
j,k(t,Xti−1)X

[1],j
t σk(t, χ(t,Xti−1))

)
,

for the second order, where Einstein convention is used.

Proof. This is a special case of the results of Section 8 of [27]. The existence of the unique
solution to the BSDEs (6.4), (6.5) and (6.6) is obvious. The expression can be directly checked
by applying Itô formula to the suggested forms using the ODEs given in Definition 6.1, and
compare the results with the BSDEs.

Since each interval Ii has a very short span hi, we expect that we can approximate the
above ODEs by just a single-step of Euler method without affecting the order of error given
in Lemma 6.3.

Definition 6.2. (Approximated coefficient functions)
We define the set of functions; χ : Ii×Rd → Rd, y : Ii×Rd → R, y[1] : Ii×Rd → Rd, y[2] :

Ii × Rd → Rd, G
[2]

: Ii × Rd → Rd×d, y
[2]
0 : Ii × Rd → R by

χ(t, x) := x+∆(t)b(ti−1, x) ,

y(t, x) := ûi+1(χ(ti, x)) ,

y
[1]
j (t, x) := ∂xj ûi+1(χ(ti, x)) + δ(t)∂xjbk(ti, χ(ti, x))∂xk ûi+1(χ(ti, x)) ,

G
[2]
j,k(t, x) := ∂2

xj,xk û
i+1(χ(ti, x)) + δ(t)

{(
[∂xb(ti, χ(ti, x))]∂

2
x,xû

i+1(χ(ti, x))
)↔
j,k

+∂2
xj,xkb

m(ti, χ(ti, x))∂xm ûi+1(χ(ti, x))
}

,

y
[2]
0 (t, x) := δ(t)Tr

(
G

[2]
(ti, x)[σσ

⊤](ti, χ(ti, x))
)
,

and y[2] = y[1] for (t, x) ∈ Ii × Rd, i ∈ {1, · · · , n}. We have used Einstein convention and
the notations ∆(t) := t− ti−1, δ(t) := ti − t.

The above functions provide good approximations for the coefficient functions in Defini-
tion 6.1 in the following sense:

Lemma 6.5. There exists some (i, n)-independent positive constant Cp satisfying

E

[
sup
t∈Ii

∣∣∣χ(t,Xti−1)− χ(t,Xti−1)
∣∣∣p + sup

t∈Ii

∣∣∣y(t,Xti−1)− y(t,Xti−1)
∣∣∣p

+
2∑

k=1

sup
t∈Ii

∣∣∣y[k](t,Xti−1)− y[k](t,Xti−1)
∣∣∣p + sup

t∈Ii

∣∣∣G[2](t,Xti−1)−G
[2]
(t,Xti−1)

∣∣∣p
+ sup

t∈Ii

∣∣∣y[2]0 (t,Xti−1)− y
[2]
0 (t,Xti−1)

∣∣∣p] ≤ Cph
3p/2
i ,

for every interval Ii, i ∈ {1, · · · , n} with any p ≥ 2.
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Proof. See Appendix A.

We now introduce the processes (Ŷ
i,[0]
t , Ẑ

i,[0]
t ) for each period t ∈ Ii. They are defined by

(Ỹ
i,[0]

t , Z̃
i,[0]

t ) of (6.3) with the coefficient functions in Definition 6.1 replaced by the approxi-
mations in Definition 6.2, i.e.;

Ŷ
i,[0]
t := y(t,Xti−1) + (X

[1]
t )⊤y[1](t,Xti−1)

+
1

2

(
(X

[2]
t )⊤y[2](t,Xti−1) + (X

[1]
t )⊤G

[2]
(t,Xti−1)X

[1]
t + y

[2]
0 (t,Xti−1)

)
, (6.7)

Ẑ
i,[0]
t := y[1]⊤(t,Xti−1)σ(t, χ(t,Xti−i))

+
(
(X

[1]
t )⊤∂xσ(t, χ(t,Xti−1))y

[2](t,Xti−1) + (X
[1]
t )⊤G

[2]
(t,Xti−1)σ(t, χ(t,Xti−1))

)
,

(6.8)

where we have used Matrix notation for simplicity. The details of indexing can be checked
from those given in Lemma 6.4.

Lemma 6.6. There exits some (i, n)-independent positive constant Cp such that the inequality

E
[∣∣∣∣Ỹ i,[0]

− Ŷ i,[0]
∣∣∣∣p
[ti−1,ti]

]
+ E

[∣∣∣∣Z̃i,[0]
− Ẑi,[0]

∣∣∣∣p
[ti−1,ti]

]
≤ Cph

3p/2
i

holds for every interval Ii, i ∈ {1, · · · , n} for any p ≥ 2.

Proof. It can be shown easily from Lemmas 6.2 and 6.5.

Corollary 6.1. There exits some (i, n)-independent positive constant Cp such that

E

[
||Y i,[0] − Ŷ i,[0]||p[ti−1,ti]

+
(∫ ti

ti−1

|Zi,[0]
r − Ẑi,[0]

r |2dr
)p/2]

≤ Cph
3p/2
i

holds for every interval Ii, i ∈ {1, · · · , n} with any p ≥ 2.

Proof. It follows directly from Lemmas 6.3 and 6.6.

Since X
[1]
ti−1

= X
[2]
ti−1

= 0, we have a very simple expression at the starting time ti−1 of
each period Ii = [ti−1, ti]:

Ŷ
i,[0]
ti−1

= y(ti−1, Xti−1) +
1

2
y
[2]
0 (ti−1, Xti−1),

Ẑ
i,[0]
ti−1

= y[1]⊤(ti−1, Xti−1)σ(ti−1, Xti−1).

We have the following continuity property of the approximated solution (Ŷ i,[0], Ẑi,[0]):

Lemma 6.7. There exists some (i, n)-independent positive constant Cp such that the inequal-
ity

E
[
sup
t∈Ii

∣∣∣Ŷ i,[0]
t − Ŷ

i,[0]
ti−1

∣∣∣p]+ E
[
sup
t∈Ii

∣∣∣Ẑi,[0]
t − Ẑ

i,[0]
ti−1

∣∣∣p] ≤ Cph
p/2
i ,
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holds for every interval Ii, i ∈ {1, · · · , n} with any p ≥ 2.

Proof. Since y(t, x) = y(ti−1, x) for (t, x) ∈ Ii × Rd, we have

Ŷ
i,[0]
t − Ŷ

i,[0]
ti−1

= X
[1]⊤
t y[1](t,Xti−1) +

1

2

(
X

[2]⊤
t y[2](t,Xti−1) +X

[1]⊤
t G

[2]
(t,Xti−1)X

[1]
t

)
+

1

2

(
y
[2]
0 (t,Xti−1)− y

[2]
0 (ti−1, Xti−1)

)
.

The bounds in (A.3), (A.5) and (A.7) as well as the estimates in Lemma 6.2 imply

E
[
sup
t∈Ii

∣∣∣Ŷ i,[0]
t − Ŷ

i,[0]
ti−1

∣∣∣p] ≤ CpE

[
||X [1]||pIi + ||X [2]||pIi + ||X [1]||2pIi + hpi

(
1 + |Xti−1 |2p

)]
≤ Cph

p/2
i

as desired. Similarly we have

|Ẑi,[0]
t − Ẑ

i,[0]
ti−1

| ≤ |y[1](t,Xti−1)− y[1](ti−1, Xti−1)||σ(t, χ(t,Xti−1))|

+|y[1](ti−1, Xti−1)||σ(t, χ(t,Xti−1))− σ(ti−1, Xti−1)|

+|X [1]
t |
∣∣∣∂xσ(t, χ(t,Xti−1))y

[2](t,Xti−1) +G
[2]
(t,Xti−1)σ

(
t, χ(t,Xti−1)

)∣∣∣
≤ C∆(t)

(
1 + |Xti−1 |

)
+ C

(
∆(t)1/2 +∆(t)(1 + |Xti−1 |)

)
+ C|X [1]

t |
(
1 + |Xti−1 |

)
,

with some positive constant C. Thus, we obtain E
[
supt∈Ii

∣∣∣Ẑi,[0]
t − Ẑ

i,[0]
ti−1

∣∣∣p] ≤ Cph
p/2
i as

desired.

6.2 Approximation for (Y
i,[1]

, Z
i,[1]

)

We now want to approximate the remaining BSDE (5.2) appeared in the decomposition of

(Y
i
, Z

i
). We shall see below that this can be achieved in a very simple fashion. We define

the process (Ŷ i,[1], Ẑi,[1]) by

Ŷ
i,[1]
t := δ(t)f

(
ti−1, Xti−1 , Ŷ

i,[0]
ti−1

, Ẑ
i,[0]
ti−1

)
, (6.9)

Ẑ
i,[1]
t := 0 , (6.10)

for each period t ∈ Ii, i ∈ {1, · · · , n}. Here, δ(t) = ti − t as before.

Lemma 6.8. There exists some (i, n)-independent positive constant Cp such that the inequal-
ity

E

[∣∣∣∣Y i,[1] − Ŷ i,[1]
∣∣∣∣p
[ti−1,ti]

+
(∫ ti

ti−1

|Zi,[1]
r |2dr

)p/2]
≤ Cph

3p/2
i

holds for every interval Ii, i ∈ {1, · · · , n} with any p ≥ 2.

Proof. Let us put

δY
i,[1]
t := Y

i,[1]
t − Ŷ

i,[1]
t , δZ

i,[1]
t := Z

i,[1]
t
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for t ∈ Ii. Then, (δY
i,[1], δZi,[1]) is the solution of the following 0-Lipschitz BSDE:

δY
i,[1]
t =

∫ ti

t
δf(r)dr −

∫ ti

t
δZi,[1]

r dWr ,

where
δf(r) := f(r,Xr, Y

i,[0]
r , Z

i,[0]
r )− f(ti−1, Xti−1 , Ŷ

i,[0]
ti−1

, Ẑ
i,[0]
ti−1

) .

From Assumption 3.2 (ii), it satisfies with the positive constant K that

|δf(r)| ≤ |f(r,Xr, Y
i,[0]
r , Z

i,[0]
r )− f(ti−1, Xti−1 , Y

i,[0]
r , Z

i,[0]
r )|

+|f(ti−1, Xti−1 , Y
i,[0]
r , Z

i,[0]
r )− f(ti−1, Xti−1 , Ŷ

i,[0]
r , Ẑi,[0]

r )|

+|f(ti−1, Xti−1 , Ŷ
i,[0]
r , Ẑi,[0]

r )− f(ti−1, Xti−1 , Ŷ
i,[0]
ti−1

, Ẑ
i,[0]
ti−1

)|

≤ K
(
∆(r)1/2 + (1 + |Y i,[0]

r |+ |Zi,[0]
r |2)|Xr −Xti−1 |

)
+K|Y i,[0]

r − Ŷ i,[0]
r |+K(1 + |Zi,[0]

r |+ |Ẑi,[0]
r |)|Zi,[0]

r − Ẑi,[0]
r |

+K|Ŷ i,[0]
r − Ŷ

i,[0]
ti−1

|+K(1 + |Ẑi,[0]
r |+ |Ẑi,[0]

ti−1
|)|Ẑi,[0]

r − Ẑ
i,[0]
ti−1

| .

From Lemma 5.1, we know that
∣∣∣∣Y i,[0]∣∣∣∣

S∞[ti−1,ti]
+
∣∣∣∣Zi,[0]∣∣∣∣

Sp[ti−1,ti]
≤ Cp for any p ≥ 2.

From (6.7), (6.8), Lemma 6.2, and the boundedness properties of (y,y[i], G
[2]
) shown in

Appendix A , a similar inequality
∣∣∣∣Ŷ i,[0]

∣∣∣∣
Sp[ti−1,ti]

+
∣∣∣∣Ẑi,[0]

∣∣∣∣
Sp[ti−1,ti]

≤ Cp holds. The

following continuity property of the Lipschitz SDE is also well-known to hold for any p ≥ 2:

E
[
sup
t∈Ii

|Xt −Xti−1 |p
]
≤ Cph

p/2
i .

Using the above estimates, Corollary 6.1 and Lemma 6.7, one obtains

E

[
||δY i,[1]||pIi +

(∫ ti

ti−1

|δZi,[1]
r |2dr

)p/2]
≤ CpE

[(∫ ti

ti−1

|δf(r)|dr
)p]

≤ Cp

{
h
3p/2
i + hpiE

[
1 + ||Y i,[0]||2pIi + ||Zi,[0]||4pIi

] 1
2E
[
sup
t∈Ii

|Xt −Xti−1 |2p
] 1

2

+hpi

(
E
[
||Y i,[0] − Ŷ i,[0]||pIi

]
+ E

[
sup
t∈Ii

∣∣Ŷ i,[0]
t − Ŷ

i,[0]
ti−1

∣∣p])

+E
[
1 + ||Zi,[0]||2pIi + ||Ẑi,[0]||2pIi

] 1
2E

[(
hi

∫ ti

ti−1

|Zi,[0]
r − Ẑi,[0]

r |2dr
)p] 1

2

+ hpiE
[
1 + ||Ẑi,[0]||2pIi + |Ẑi,[0]

ti−1
|2p
] 1

2E
[
sup
t∈Ii

∣∣Ẑi,[0]
t − Ẑ

i,[0]
ti−1

∣∣2p] 1
2

}
≤ Cph

3p/2
i ,

as desired.

25



6.3 Summary of short-term expansions

Since there are many steps to follow, let us summarize the result of the short-term expan-
sions. In the last two sections, we have been trying to approximate a BSDE (4.1) i.e.,

Y
i
t = ûi+1(Xti) +

∫ ti
t f(r,Xr, Y

i
r, Z

i
r)dr −

∫ ti
t Z

i
rdWr. We have obtained the approximated

solution (Ŷ i, Ẑi) by

Ŷ i
t := Ŷ

i,[0]
t + Ŷ

i,[1]
t , (6.11)

Ẑi
t := Ẑ

i,[0]
t + Ẑ

i,[1]
t (= Ẑ

i,[0]
t ), (6.12)

for every interval t ∈ Ii, i ∈ {1, · · · , n}, for which the exact expressions can be read from
(6.7), (6.8), (6.9) and (6.10). We have the following error estimate:

Theorem 6.1. Under Assumptions 3.1, 3.2 and Assumption 4.1(i), the process (Ŷ i, Ẑi)

defined by (6.11) and (6.12) is the short-term approximation of the solution (Y
i
, Z

i
) of the

BSDE (4.1) and satisfies, with some (i, n)-independent positive constant Cp, that

E

[
||Y i − Ŷ i||p[ti−1,ti]

+
(∫ ti

ti−1

|Zi
r − Ẑi

r|2dr
)p/2]

≤ Cph
3p/2
i ,

for every period Ii, i ∈ {1, · · · , n} and ∀p ≥ 2.

Proof. It follows directly from Proposition 5.1, Corollary 6.1 and Lemma 6.8.

Remark 6.1. If σ is non-degenerate, one may first approximate the density of Xϵ
ti and then

Y
i,[0],ϵ
t by integrating the terminal ûi+1 with the estimated density, which is the standard

method for the pricing of European contingent claims proposed in [43, 33]. Although one may
significantly relax the smoothness assumptions, it introduces a numerical integration at each
space-time node as in the standard Monte Carlo scheme. Thus, we have pursued a much less
numerically costly scheme by assuming the higher regularities in this work.

7 Connecting the sequence of qg-BSDEs

7.1 Connecting procedure

In this section, we complete the approximation procedure by connecting the sequence of qg-
BSDEs perturbed in the terminals (4.1). Notice that under the condition Xti−1 = x, x ∈ Rd,
the approximated solution

Ŷ
i,ti−1,x
ti−1

:= Ŷ i
ti−1

∣∣
Xti−1=x

, Ẑ
i,ti−1,x
ti−1

:= Ẑi
ti−1

∣∣
Xti−1=x

is given by

Ŷ
i,ti−1,x
ti−1

= y(ti−1, x) +
1

2
y
[2]
0 (ti−1, x)

+ hif
(
ti−1, x, y(ti−1, x) +

1

2
y
[2]
0 (ti−1, x),y

[1]⊤(ti−1, x)σ(ti−1, x)
)
, (7.1)

Ẑ
i,ti−1,x
ti−1

= y[1]⊤(ti−1, x)σ(ti−1, x) , (7.2)
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where 

χ(ti, x) = x+ hib
(
ti−1, x

)
,

y(ti−1, x) = ûi+1
(
χ(ti, x)

)
,

y[1](ti−1, x) =

(
I+ hi

[
∂xb(ti, χ(ti, x))

])
∂xû

i+1(χ(ti, x)) ,

y
[2]
0 (ti−1, x) = hiTr

(
∂2
x,xû

i+1(χ(ti, x))
[
σσ⊤](ti, χ(ti, x))) ,

where I denotes d× d-identity matrix.
We connect the sequence of qg-BSDEs by the following scheme:

Definition 7.1. (Connecting Scheme)� �
(i) Setting ûn+1(x) = ξ(x), x ∈ Rd.
(ii) Repeating from i = n to i = 1 that

• Calculate the short-term approximation of the BSDE (4.1) by using (7.1)

and store the values
{
Ŷ

i,ti−1,x
′

ti−1

}
x′∈Bi

for a finite subset Bi of Rd.

• Define the terminal function ûi(x), x ∈ Rd for the next period Ii−1 by

ûi(x) := Interpolation
({

Ŷ
i,ti−1,x

′

ti−1

}
x′∈Bi

)
(x)

where “Interpolation” stands for some smooth interpolating function satisfying
the bounds in Assumption 4.1 (i) .� �

From the definition of δi in Assumption 4.1, we have

δi(x) = Y
i,ti−1,x
ti−1

− ûi(x)

:= δiSE(x) +Ri(x)

where

δiSE(x) :=
(
Y

i,ti−1,x
ti−1

− Ŷ
i,ti−1,x
ti−1

)
, (7.3)

Ri(x) :=
(
Ŷ

i,ti−1,x
ti−1

− ûi(x)
)
. (7.4)

Here, δiSE denotes the error of the short-term approximation, and Ri the interpolation error

as well as the regularization effects rendering the approximated function Ŷ
i,ti−1,x
ti−1

into the
bounds satisfying Assumption 4.1 (i).

Remark 7.1. As we have mentioned in Remark 3.1, repeating the above connecting procedure
effectively introduces higher order derivatives through the short-term expansions. This is why
we need the smoothness conditions given in Assumptions 3.1 and 3.2.

7.2 Total error estimate

Before going to give the main result, we need the following lemma:
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Lemma 7.1. Under Assumptions 3.1 and 3.2, the solution Yt, t ∈ [0, T ] of the BSDE (3.3)

satisfies the continuity property E
[
sup

s≤u≤t

∣∣Yu − Ys
∣∣p] ≤ Cp

∣∣t − s
∣∣p/2 for any 0 ≤ s ≤ t ≤ T

and p ≥ 2 with some positive constant Cp.

Proof. Using the Burkholder-Davis-Gundy inequality and Assumption 3.2 (i), one obtains

E
[
sup

s≤u≤t
|Yu − Ys|p

]
≤ CpE

[(∫ t

s
|f(r,Xr, Yr, Zr)|dr

)p
+
(∫ t

s
|Zr|2dr

)p/2]
≤ CpE

[(∫ t

s

[
lr + β|Yr|+

γ

2
|Zr|2

]
dr
)p

+
(∫ t

s
|Zr|2dr

)p/2]
.

The boundedness of l, |Y | and the fact that |Zt| ≤ C(1 + |Xt|) with some constant C prove
the claim.

Let us now provide the main result of the paper:

Theorem 7.1. Define the piecewise constant process (Y π
t , Zπ

t ), t ∈ [0, T ] by

Y π
t := ûi(Xti−1) , (7.5)

Zπ
t := y[1]⊤(ti−1, Xti−1)σ(ti−1, Xti−1) , (7.6)

for ti−1 ≤ t < ti, i ∈ {1, · · · , n} and Y π
tn = ξ(Xtn), Zπ

tn = 0, where the ûi and y[1] are
those determined by the connecting scheme in Definition 7.1. Then, under Assumptions 3.1,
3.2 and 4.1, there exist some n-independent positive constants q̄ > 1 and Cp,q̄ such that the
inequality (

max
1≤i≤n

E
[∣∣∣∣Y − Y π

∣∣∣∣2p
[ti−1,ti]

]1/p
+

n∑
i=1

∫ ti

ti−1

E
[∣∣Zt − Zπ

t

∣∣2]dt)1/2

≤ Cp,q̄

√
|π|+ Cp,q̄

√
nE

[( n∑
i=1

∣∣Ri(Xti−1)
∣∣2)pq̄] 1

2pq̄

holds for any p > 1.

Proof. One obtains, by simple manipulation, that

max
1≤i≤n

E
[∣∣∣∣Y − Y π

∣∣∣∣2p
[ti−1,ti]

]1/p
+

n∑
i=1

∫ ti

ti−1

E
∣∣Zt − Zπ

t

∣∣2dt
≤ Cp

(
max
1≤i≤n

E
[∣∣Yti−1 − Y

i
ti−1

∣∣2p]1/p + n∑
i=1

∫ ti

ti−1

E
∣∣Zt − Z

i
t

∣∣2dt)

+Cp

(
max
1≤i≤n

E
[∣∣Y i

ti−1
− ûi(Xti−1)

∣∣2p]1/p + n∑
i=1

∫ ti

ti−1

E
∣∣Zi

t − Ẑi
t

∣∣2dt)

+Cp

(
max
1≤i≤n

E
[
sup
t∈Ii

∣∣Yt − Yti−1

∣∣2p]1/p + n∑
i=1

∫ ti

ti−1

E
∣∣Ẑi

t − Ẑi
ti−1

∣∣2dt) .

28



It follows, by applying Corollary 4.1, Theorem 6.1, Lemmas 6.7 and 7.1, and expressions (7.3)
and (7.4), that

max
1≤i≤n

E
[∣∣∣∣Y − Y π

∣∣∣∣2p
[ti−1,ti]

]1/p
+

n∑
i=1

∫ ti

ti−1

E|Zt − Zπ
t |2dt

≤ Cp,q̄

|π|
E

[(n−1∑
i=1

|δi+1(Xti)|2
)pq̄] 1

pq̄

+Cp

(
max
1≤i≤n

E
[
|δi(Xti−1)|2p

]1/p
+

n∑
i=1

h3i

)
+ Cp|π|

≤ Cp|π|+
Cp,q̄

|π|
E

[( n∑
i=1

|δi(Xti−1)|2
)pq̄] 1

pq̄

≤ Cp|π|+
Cp,q̄

|π|

{
npq̄−1

n∑
i=1

E
[∣∣δiSE(Xti−1)

∣∣2pq̄]+ E

[( n∑
i=1

|Ri(Xti−1)|2
)pq̄]} 1

pq̄

≤ Cp,q̄|π|+ Cp,q̄nE

[( n∑
i=1

|Ri(Xti−1)|2
)pq̄] 1

pq̄

,

which proves the desired result.

Remark 7.2. One may want to replace the {Xti} in (7.5) and (7.6) by their Euler approxi-
mation:

Xπ
ti := Xπ

ti−1
+ b(ti−1, X

π
ti−1

)hi + σ(ti−1, X
π
ti−1

)(Wti −Wti−1), i ∈ {1, · · · , n}

with Xπ
t0 = Xt0 = x0. Using the well-known results (see, for example, [31])

E
[
max
0≤i≤n

|Xπ
ti |

p

]
≤ Cp , max

1≤i≤n
E
[
sup
t∈Ii

|Xt −Xπ
ti−1

|p
]
≤ Cp|π|p/2

for any p ≥ 2, one can show that the same estimate in Theorem 7.1 holds also in this case.

Remark 7.3. Comments on the Lipschitz BSDEs and the terminal function
The proposed scheme can be equally applicable to the standard Lipschitz BSDEs with the
smooth driver f and also with the smooth terminal function ξ(x) of linear growth. Except
Proposition 4.2, which is not necessary anymore (and so is Assumption 4.1 (ii)), all the
relevant results can be shown with slightly sharper estimates by following the arguments similar
to those of Theorem 3.1 in Bouchard & Touzi (2004) [11] with additional perturbation terms
in the terminals.

In financial applications, the terminal function may depend on the average of the security
price. This situation can be put in the current framework by adding another underlying
process defined by X ′

t =
1
t

∫ t
0 Xrdr, t > 0 and X ′

0 := X0. The situation with multiple payoffs
such as ξ =

∑m
j=1 ξl(XTj ), 0 < T1 < · · · < Tm ≤ T can easily be handled by making the time

partition π contain {Tj}1≤j≤m and modifying the connecting procedure given in Definition 7.1
at these points accordingly.
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8 An example of implementation

8.1 Initial preparation by truncation

In this section, using a specific scheme of implementation, we discuss the interpolation error
and the associated conditions for the convergence. In order to make the interpolation-step
easy to handle, it is useful to limit the relevant space for X to some compact subset of Rd.
This procedure is involved implicitly or explicitly in many of the existing numerical methods
at the stage regressing the conditional expectations by a given set of basis functions.

Let us introduce a smooth truncation function φM : R → R such that

φM (x) =

{
x for |x| ≤ M

sign(x)(M + 1) for |x| > M + 2
,

bounded |φM | ≤ M + 1 and has derivatives of all orders absolutely bounded by 1. We then
consider the truncated BSDE:

Y M
t = ξM (XT ) +

∫ T

t
fM (r,Xr, Y

M
r , ZM

r )dr −
∫ T

t
ZM
r dWr , t ∈ [0, T ] (8.1)

with the definitions

ξM (x) := ξ(φM (x)) ,

fM (r, x, y, z) := f(r, φM (x), y, z) ,

for all (r, x, y, z) ∈ [0, T ]×Rd ×R×R1×d. It clearly satisfies Assumption 3.2 and hence also
Lemma 3.1. With regard to the difference relative to the solution (Y, Z) of the original BSDE
(3.3), we have the following result:

Theorem 8.1. Under Assumptions 3.1 and 3.2, there exists some positive constant q̄ (> 1)
and Cp,q̄ such that the inequality

E
[
||Y − Y M ||pT +

(∫ T

0
|Zr − ZM

r |2dr
) p

2

]
≤ Cp,q̄(1 + |x0|p+l)/M l

holds for any p ≥ 2 and l > 0.

Proof. Let us put the processes

δY M
r := Yr − Y M

r , δZM
r := Zr − ZM

r

βM
r :=

f(r,Xr, Yr, Zr)− f(r,Xr, Y
M
r , Zr)

δY M
r

1δY M
r ̸=0 ,

γMr :=
f(r,Xr, Y

M
r , Zr)− f(r,Xr, Y

M
r , ZM

r )

|δZM
r |2

1δZM
r ̸=0(δZ

M
r )⊤ ,

δfM (r) := f(r,Xr, Y
M
r , ZM

r )− f(r, φM (Xr), Y
M
r , ZM

r ) ,

for r ∈ [0, T ] and δξM (x) := ξ(x) − ξ(φM (x)) for x ∈ Rd. Then, (δY M , δZM ) is a unique
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solution to the following BSDE:

δY M
t = δξM (XT ) +

∫ T

t

{
βM
r δY M

r + δZM
r γMr + δfM (r)

}
dr −

∫ T

t
δZM

r dWr .

Here, |βM | is bounded and γM ∈ H2
BMO whose norm is bounded independently from M .

Thus, with some constant q̄ > 1 depending only on ||γM ||H2
BMO

, one obtains from Lemma 2.1

and Theorem A.1 [26] that

E
[
||δY M ||pT +

(∫ T

0
|δZM

r |2dr
)p/2]

≤ Cp,q̄E
[
|δξM (XT )|pq̄

2
+
(∫ T

0
|δfM (r)|dr

)pq̄2]1/q̄2

≤ Cp,q̄E

[ (
1 +

(∫ T

0

[
1 + |Y M

r |+ |ZM
r |2

]
dr
)pq̄2)

||X − φM (X)||pq̄
2

T

]1/q̄2

≤ Cp,q̄E
[
||X1{|x|>M}||

2pq̄2

T

]1/2q̄2
≤ Cp,q̄E

[
||X||2pq̄

2

T

( ||X||T
M

)2lq̄2]1/2q̄2
≤ Cp,q̄(1 + |x|p+l)/M l ,

for any p ≥ 2 and l > 0 as desired.

From the last theorem, one can make the difference (Y − Y M , Z − ZM ) arbitrary small
easily by taking large enough M . Thus we may treat the x-truncated BSDE (8.1) as the
target of analysis. In this case, uM : [0, T ] × Rd → R defined by uM (t, x) := Y M,t,x

t must
satisfy

uM (t, x) = uM (t, φM (x)) (8.2)

for all (t, x) ∈ [0, T ] × Rd. Since the solution of (8.1) must be equal to the solution of (3.3)
with the forward process Xt, t ∈ [0, T ] replaced by φM (Xt), t ∈ [0, T ]. Therefore, in this case,
one can concentrate on the interpolation in the compact set |x| ≤ M and smoothly connect
to the constant function outside.

8.2 Interpolation and discussions on convergence

Since we cannot explicitly estimate the effects of the regularization step in Definition 7.1, let
us first assume that the bounds of Assumption 4.1 (i) are satisfied by Ŷ

j,tj−1,x
tj−1

for every j ∈
{i, · · · , n} and concentrate on the interpolation problem at the time ti−1 within a compact set
|x| ≤ M . There exists a very interesting result on high dimensional polynomial interpolation
on sparse grids. By Theorem 8 (as well as Remark 9) of Barthelmann et al. [3], it is known
that there exists an interpolating function satisfying the following uniform estimates on the
compact set:∣∣∣∣∣∣Ŷ i,ti−1,·

ti−1
−Aq,d

(
Ŷ

i,ti−1,·
ti−1

)∣∣∣∣∣∣
∞
≤ Cq,dN

−k
(q,d)(log(N(q,d)))

(k+1)(d−1) . (8.3)

Here, Aq,d(f) : Rd → R is an interpolating polynomial function of degree q (≥ d) for the
function f : Rd → R based on the Smolyak algorithm. The interpolating function is uniquely
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determined by the values of f(xi), xi ∈ H(q, d) where H(q, d) is the sparse grid whose number
of nodes is give by N(q,d). The power k on the right-hand side of (8.3) comes from the fact

that f(x) = Ŷ
i,ti−1,x
ti−1

has bounded derivatives up to the k-th order. Cq,d is some positive
constant depending only on (q, d) and ||∂m

x f ||∞ of m = {0, · · · , k}. The sparse grid H(q, d)
is the set of points on which the Chebyshev polynomials take the extrema. For details, see
[3, 41] and references therein. The sparse grid method looks very attractive since (8.3) has
only weak dependency on the dimension d.

Unfortunately, however, we do not know the error estimate similar to (8.3) regarding

on its derivatives, and hence we cannot be sure that if Aq,d(Ŷ
i,ti−1,·
ti−1

) satisfies the bounds
in Assumption 4.1 (i) when the derivatives are calculated analytically from it. Thus, let us

write ∂∆Aq,d(Ŷ
i,ti−1,·
ti−1

) and ∂2
∆Aq,d(Ŷ

i,ti−1,·
ti−1

) as approximated the first and the second order
derivatives using the finite difference method with central difference scheme of size ∆, which
is also numerically more efficient. Then, using (8.3), we have

∣∣∣∣∣∣∂xŶ i,ti−1,·
ti−1

− ∂∆Aq,d(Ŷ
i,ti−1,·
ti−1

)
∣∣∣∣∣∣
∞

≤ C

(
∆2 +

Cq,dN
−k
(q,d)(log(N(q,d)))

(k+1)(d−1)

∆

)
,

(8.4)∣∣∣∣∣∣∂2
xŶ

i,ti−1,·
ti−1

− ∂2
∆Aq,d(Ŷ

i,ti−1,·
ti−1

)
∣∣∣∣∣∣
∞

≤ C

(
∆2 +

Cq,dN
−k
(q,d)(log(N(q,d)))

(k+1)(d−1)

∆2

)
,

(8.5)

where C is some constant depending only on the bounds K ′ since Ŷ
i,ti−1,x
ti−1

is assumed to
satisfy the bounds in Assumption 4.1 (i).

From the shape of the relevant BSDEs (6.4), (6.5) and (6.6), and also from the standard
estimate for the Lipschitz BSDEs (see, Lemma B.2 of [27], for example), we can show that the
same error size of Corollary 6.1 (and hence also of Theorem 6.1) for the next period t ∈ Ii−1

is maintained as long as the following inequalities are satisfied:

N−k
(q,d)(log(N(q,d)))

(k+1)(d−1) ≤ Ch
3/2
i−1 ,(

∆2 +
N−k

(q,d)(log(N(q,d)))
(k+1)(d−1)

∆

)
h
1/2
i−1 ≤ Ch

3/2
i−1 ,(

∆2 +
N−k

(q,d)(log(N(q,d)))
(k+1)(d−1)

∆2

)
hi−1 ≤ Ch

3/2
i−1 ,

with some positive constant C. Note that the factors h
1/2
i−1 and hi−1 in the last two inequalities

come from the norms of X [1] and (X [1])2 in the BSDEs (6.5) and (6.6). The above conditions
can be achieved, for example, by choosing ∆ and the order of sparse grid H(q, d) such that

∆ = C|π|1/2

N(q,d) > Cn3/(2k) .

Once this is done, we can perform the short-term expansions based onAq,d(Ŷ
i,ti−1,·
ti−1

), ∂∆Aq,d(Ŷ
i,ti−1,·
ti−1

),
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and ∂2
∆Aq,d(Ŷ

i,ti−1,·
ti−1

). 10

In each period, thanks to the assumed regularities given by Assumptions 3.1 and 3.2,
we know that the approximated solution by the short-term expansion (7.1) is smooth and
bounded for each period in the set |x| ≤ M . 11 The difficult problem that still remains is
that if the uniform bounds of Assumption 4.1 (i) is maintained as the limit n → ∞. As long
as this non-divergence condition holds true, the above discussions using the sparse grid imply
that one obtains ||Ri||∞ ≤ C|π|3/2 and hence also ||δi||∞ ≤ C|π|3/2. Since Assumption 4.1
(ii) is now satisfied as the limit n → ∞, one can get the converging result of the order of
|π|1/2 by Theorem 7.1.

One can expect from the approximation scheme in Section 7, the issue of bounded deriva-
tives as n → ∞ is closely related to the stability of discrete solution technique of PDEs.
As long as the numerical experiments we tried, we have not encountered the divergence of
derivatives by choosing

∆ = C
√

|π| (8.6)

where C is the constant of the order of X’s volatility. When a derivative blowups, a slightly
bigger factor C makes it bounded in every example. However, getting the sufficient conditions
for the non-divergence in a general setup (and also with different ways of estimating the
derivatives) seems quite involved. We leave this problem for further research.

9 Numerical examples (qg-BSDEs)

In the remainder of the paper, we demonstrate our computation scheme and its empirical
convergence rate using illustrative models. For simplicity, we use a full grid (instead of a
sparse grid) at each time step so that we can approximate all the relevant derivatives by the
central difference scheme. In this case, since there is no interpolation involved, the numerical
solution is guaranteed to converge the true solution as long as there is no blowup of the
derivatives (Assumption 4.1 (i)).

9.1 A solvable qg-BSDE

Let us first consider the following model with d = 2 similar to those studied in [14]:

Xt = x0 +

∫ t

0

(
b1X

1
s

b2X
2
s

)
ds+

∫ t

0

(
σ1X

1
s 0

0 σ2X
2
s

)(
1 0

ρ
√

1− ρ2

)
dWs , (9.1)

Yt = ξ(XT ) +

∫ T

t

a

2
|Zs|2ds−

∫ T

t
ZsdWs , (9.2)

where bi, σi, i ∈ {1, 2}, ρ ∈ [−1, 1] and a are all constants. For this example, by using a
exponential transformation

(
eaYt , t ∈ [0, T ]

)
, we obtain a closed form solution:

Yt =
1

a
log
(
E
[
exp
(
aξ(XT )

)∣∣∣Ft

])
. (9.3)

10The interpolation function may not necessarily be smooth as discussed above, since we only need sufficient
accuracy to calculate the derivatives based on the finite difference method. Hence, one may adopt a simpler
sparse-grid interpolation using piecewise linear functions. See [46] and also [37] for interesting applications.

11By the linear growth property of σ, the approximated solution (7.1) has a quadratic growth in x from
hif(· · · ) term. Thus we need to scale, at least, |π|M2 = O(1).
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The expectation can be evaluated semi-analytically by integrating over the density of X. We
use

ξ(x) = 3

2∑
i=1

sin2(xi) (9.4)

as the terminal value function, and set x0 = (1, 1)⊤, T = 1, b1 = b2 = 0.05, ρ = 0.3. We have
tested the following five sets of parameters σi and a:

set1 =
{
σ1 = σ2 = 0.5, a = 1.0

}
, set2 =

{
σ1 = σ2 = 0.5, a = 2.0

}
set3 =

{
σ1 = σ2 = 0.5, a = 3.0

}
, set4 =

{
σ1 = σ2 = 1.0, a = 3.0

}
set5 =

{
σ1 = σ2 = 0.5, a = 4.0

}
(9.5)

by changing the number of partitions from n = 1 to n = 300. In Figure 1, we have plotted
log10(relative error) against the log10(n) for seti, i ∈ {1, · · · , 5}, where the relative error is
defined by

estimated Y0 by the proposed scheme− the value obtained from (9.3)

the value obtained from (9.3)
.

We scaled ∆ of the central difference scheme according to (8.6). One observes that the
convergence is more stable for smaller a. Interestingly, for all the results, the empirical con-
vergence rate is close to or slightly higher than 1. This faster than expected convergence may
be due to the following reasons; for the converging cases, the quantity in Assumption 4.1 (ii)
is not only bounded by some constant C but rather bounded by decreasing sequence Cn,
which is expected to make the constant in Theorem 4.2 also decreasing sequence with respect
to n.

Figure 1: Empirical convergence of the proposed scheme for (9.2) with seti, i ∈ {1, · · · , 5}.
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9.2 Stochastic quadratic coefficient

As a next example, let us make the coefficient of the quadratic term |Z|2 stochastic as

Yt = ξ(XT ) +

∫ T

t

a

2
sin
(
X1

s +X2
s

)
|Zs|2ds−

∫ T

t
ZsdWs , (9.6)

while keeping the same dynamics forX. We have chosen x0 = (1, 1)⊤, T = 1.0, b1 = b2 = 0.05,
ρ = 0.3, σ1 = σ2 = 0.5 as the common parameters and tested the two cases; set1 := {a = 1.0}
and set2 := {a = 3.0}. The terminal function ξ is the same as the one used in the last model.
In Figure 2, we have plotted the estimated Y0 by changing n = 1 to 300. As expected, we
observe that the setup with the bigger “a” needs a finer partition to converge.

Figure 2: Empirical convergence of the proposed scheme for (9.6).

9.3 A truncation of the driver

As we have emphasized, it is crucial to have bounded derivatives given in Assumption 4.1 (i)
for the proposed scheme to converge.12 For the qg-BSDE (9.2), if we increase the coefficient
“a” while keeping the factor C in (8.6) unchanged, we have observed that these derivatives
(and hence the estimate of Y ) diverge. In the remainder, instead of making C larger, let us
study the truncation of the driver f so that it has a global Lipschitz constant N following
the scaling rule ( see Section 2.1 of [14] )

N ∝ nα, 0 < α < 1 . (9.7)

The error estimates for the qg-BSDEs under this truncation have been studied by Imkeller
& Reis (2010) [29] (Theorem 6.2) and applied to the backward numerical scheme by Chas-
sagneux & Richou (2016) [14]. This truncation does not affect the theoretical bound on the
convergence rate of Theorem 7.1, which is also the case for the scheme studied in [14].

We have chosen the constant C of (8.6) so that it marginally works for the set3 in (9.5)
without any truncation and tested the following four cases;

a = 6, a = 8, a = 10, a = 12, (9.8)

12At the moment, we do not have an explicit estimate of errors arising from the regularization that becomes
necessary when the bounds of derivatives are breached.
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with the other parameters are set equal to x0 = (1, 1)⊤, T = 1, b1 = b2 = 0.05, ρ = 0.3,
σ1 = σ2 = 0.5 and the same terminal function (9.4). We have adopted the scaling factor
α = 1/4 for the truncation, which is the one used in the numerical examples given in [14]. In
Figure 3, we have plotted the log10(relative error) against the log10(n) changing the number
of partitions from n = 1 to n = 500.

Figure 3: Empirical convergence of the proposed scheme for (10.2) with a truncated driver
so that the Lipschitz constant scales as N ∝ n1/4.

Except for coarse partitions n . 30, the truncation of the driver yields quite stable
convergence even for these extremely large quadratic coefficients. If there is no truncation,
the calculation fails to converge in every example with the scaling factor C of (8.6) fixed as
explained. We find no significant change in the empirical convergence rate, and it is close
to one. All of these findings look consistent with the results implied by [14]. There seems a
deep relation among the non-divergence of derivatives (Assumption 4.1 (i)), the scaling rule
of central difference scheme (8.6), the scaling rule of the Lipschitz constant (N ∝ nα), and
the stability of the proposed scheme. This interesting problem requires further research.

10 Numerical examples (Lipschitz BSDEs)

10.1 Linear BSDE

As another consistency test, let us consider the following linear BSDE with d = 2:

Yt = ξ(XT ) +

∫ T

t

{
C(Xs)Ys + γ(Xs)Zs

}
ds−

∫ T

t
ZsdWs , (10.1)

where the process X follows the dynamics given in (9.1) and ξ(x) := |x|2 exp
(
−0.1|x|2

)
,

C(x) := cos(x1) + sin(x2), γ(x) :=

(
cos(x1)
sin(x2)

)
. Since γ is bounded, we can define the new

measure Q by

dQ
dP

= E
(∫ T

0
γ(Xs)

⊤dWs

)
.
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Under the new measure, we can show that the solution is given by

Yt = EQ
[
exp
(∫ T

t
C(Xs)ds

)
ξ(XT )

∣∣∣Ft

]
.

We have estimated Y0 based on the above formula by simulating X under the measure Q with
the parameters {x0 = (1, 1)⊤, T = 1, b1 = b2 = 0.05, ρ = 0.3, σ1 = σ2 = 0.5}. With 200, 000
paths (half of which are antipathetic) of the step size dt = 0.001, we have obtained Y0 ≃ 8.934
with the standard deviation 0.0057 from Monte Carlo simulation. We have estimated Y0 by
the proposed scheme with n = 1 to 300 and plotted log10(relative error) against log10(n) in
Figure 4. Here, the relative errors are calculated by treating Y0 = 8.934 as the true solution.
One observes a smooth convergence of the estimated Y0.

Figure 4: Empirical convergence of the proposed scheme for (10.1).

10.2 Option pricing with different interest rates

Finally, let us consider a very popular valuation problem of European options under two
different interest rates, r for investing and R (̸= r) for borrowing. This problem has been
often used for testing the numerical schemes for BSDEs.

Let us assume the dynamics of the security price as

Xt = x0 +

∫ t

0
µXsds+

∫ t

0
σXsdWs ,

where d = 1 and µ, σ are positive constants. For the option payoff Φ(XT ) at the expiry T ,
the option price Yt implied by the self-financing replication is given by

Yt = Φ(XT )−
∫ T

t

{
rYs +

µ− r

σ
Zs −

(
Ys −

Zs

σ

)−
(R− r)

}
ds−

∫ T

t
ZsdWs . (10.2)

Although the BSDE is not smooth anymore, explicit mollifications for the payoff function
and the driver may not be necessary as long as we use a finite difference scheme to approximate
the derivatives. 13 Firstly, we study cases where the payoff function is equal to that of a call

13We have tested every case with the mollified functions. We have found no meaningful difference in the
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option: Φ(x) = (x−K)+, where K > 0 is the strike price. As suggested by [28], this example
provides a very interesting test since the price must be exactly equal to that of Black-Scholes
model with interest rate R. This is because the replicating portfolio consists of the long-only
position and hence the investor must always borrow money to fund her position. We have
chosen the common parameters as {r = 0.01, R = 0.06, µ = 0.06, X0 = 100} and tested the
following five sets of (T, σ) 14 with n = 10 to n = 3000 in Figure 5:

set1 = {T = 1, K = 106, σ = 0.3} , set2 = {T = 1, K = 166, σ = 0.3}
set3 = {T = 1, K = 106, σ = 1.0} , set4 = {T = 1, K = 306, σ = 1.0}
set5 = {T = 1, K = 106, σ = 2.0}.

The Black-Scholes price for each set is given by BS = {11.9999, 1.1171, 38.3459, 11.6619, 68.2964}
respectively. Although the relative errors for OTM options are slightly higher, the conver-
gence rate to the exact BS prices is close to 1 for every case. It is a bit striking that we do
not see any deterioration in convergence rate in spite of the non-smooth functions and rather
high volatilities.

Figure 5: Empirical convergence of the proposed scheme for (10.2) for call options.

Next, let us consider a call-spread case: Φ(x) = (x−K1)
+ − 2(x−K2)

+. This is exactly
the same setup studied in [28] and hence we can test the consistency between our scheme and
the standard regression-based Monte Carlo simulation. Let us choose the same parameter
sets as in [28]:

{r = 0.01, R = 0.06, µ = 0.05, X0 = 100, T = 0.25, σ = 0.2, K1 = 95, K2 = 105} (10.3)

The result of [28] suggests that Y0 = 2.96 ± 0.01 or Y0 = 2.95 ± 0.01 with one standard
deviation dependent on the choice of basis functions for the regressions. In Figure 6, we have
compared the estimated Y0 from our scheme and the one in [28]. The dotted lines represent

empirical convergence.
14K = 106 is close to at the money forward for T = 1 with 6% interest rate. The bigger strikes correspond

to 2σ out of the money.
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Figure 6: Empirical convergence of the proposed scheme for (10.2) for a call spread.

Figure 7: Empirical convergence of the proposed scheme for (10.2) for a call spread with
T = 1.0 and higher volatilities.

2.96 ± 0.01 for ease of comparison. In our scheme, Y0 converges toward 2.959. In fact, the
improvement of the regression method of [28] using martingale basis functions proposed by
Bender & Steiner (2012) [5] suggests 2.96 which is perfectly consistent with our result. We
have also tested the convergence with a longer maturity and higher volatilities for the final
payoff Φ(x) = (x−K1)

+ − (x−K2)
+. We have used {r = 0.01, R = 0.06, µ = 0.05, X0 =

100, K1 = 95, K2 = 105} as before, but with longer maturity T = 1.0 and set1 := {σ = 0.3},
set2 := {σ = 0.5} and set3 := {σ = 1.0}. From Figure 7, one observes smooth convergence
for all the cases. The decrease in price for higher volatilities is natural from the fact that K2

is closer to the at-the-money-forward point and hence the short position has higher sensitivity
on the volatility.

An example with a large Lipschitz constant

Bender & Steiner [5] have tested an extreme scenario with a parameter set (10.3) replaced
by R = 3.01. In this case, the the non-linearity of the driver has a Lipschitz constant
(R−r)/σ = 15. Their experiments suggest that the standard method of [28] fails to converge
for this example. Their improved method with martingale basis functions (see Table 3 in [5])
gives Y0 ≃ 6.47 with n = 128 and Y0 ≃ 6.44 with the finest partition n = 181.
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Figure 8: Empirical convergence of the proposed scheme for (10.2) with R = 3.01.

In Figure 8, we have plotted estimated Y0 from our scheme with n = 10 to n = 3000. The
dotted line corresponds to the value 6.44 given in [5]. In our scheme, Y0 seems to converge
6.38. In particular, with the same discretization n = 181, our scheme yields Y0 ≃ 6.43
showing a nice consistency. Note that the method [5] requires to change the basis functions
based on the law of X. Every result of this subsection studying (10.2) is indicating that
one may relax the smoothness conditions in Assumption 3.2, which will be studied in future
research projects.

A Proof for Lemma 6.5

In this section, we give the proof for Lemma 6.5 skipped in the main text. We make Assump-
tions 3.1, 3.2 and Assumption 4.1 (i) the standing assumptions.

Proof. Firstly, let us consider (χ, χ). Using 1/2-Hölder continuity in t, the global Lipschitz
and linear growth properties of b in x, we have

|χ(t, x)− χ(t, x)| ≤
∫ t

ti−1

|b(r, χ(r, x))− b(ti−1, x)|dr

≤ K

∫ t

ti−1

[
∆(r)1/2 + |χ(r, x)− χ(r, x)|+∆(r)|b(ti−1, x)|

]
dr

≤ C(1 + |x|h1/2i )h
3/2
i +K

∫ t

ti−1

|χ(r, x)− χ(r, x)|dr

and hence by Gronwall inequality,

sup
t∈Ii

|χ(t, x)− χ(t, x)| ≤ eKhiC(1 + |x|
√

hi)h
3/2
i .

Thus

E
[
sup
t∈Ii

|χ(t,Xti−1)− χ(t,Xti−1)|p
]

≤ Cph
3p/2
i

(
1 + h

p/2
i E

[
|Xti−1 |p

])
≤ Cph

3p/2
i (A.1)

with some (i, n)-independent positive constant Cp.
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Since |∂xûi+1| ≤ K ′ by Assumption 4.1 (i),

|y(t, x)− y(t, x)| = |ûi+1(χ(ti, x))− ûi+1(χ(ti, x))|
≤ K ′|χ(ti, x)− χ(ti, x)| .

Thus from (A.1),

E
[
sup
t∈Ii

|y(t,Xti−1)− y(t,Xti−1)|p
]
≤ Cph

3p/2
i (A.2)

with some (i, n)-independent positive constant Cp.
Let us now consider

y[1](t, x) = ∂xû
i+1(χ(ti, x)) + δ(t)

[
∂xb(ti, χ(ti, x))

]
∂xû

i+1(χ(ti, x)) .

Since both |∂xûi+1| and |∂xb| are bounded, it is easy to see

sup
(t,x)∈Ii×Rd

|y[1](t, x)| ≤ C (A.3)

with some positive constant C. For t ∈ Ii with a given x ∈ Rd, we have

y[1](t, x)− y[1](t, x) = ∂xû
i+1(χ(ti, x))− ∂xû

i+1(χ(ti, x))

+

∫ ti

t

(
∂xb(r, χ(r, x))y

[1](r, x)− ∂xb(ti, χ(ti, x))y
[1](ti, x)

)
dr .

From (A.3), 1/2-Hölder continuity and global Lipschitz property of ∂xb, we obtain

|y[1](t, x)− y[1](t, x)|

≤ |∂xûi+1(χ(ti, x))− ∂xû
i+1(χ(ti, x))|+

∫ ti

t

{
|∂xb(r, χ(r, x))||y[1](r, x)− y[1](r, x)|

+ |∂xb(r, χ(r, x))||y[1](r, x)− y[1](ti, x)|+ |∂xb(r, χ(r, x))− ∂xb(ti, χ(ti, x))||y[1](ti, x)|

}
dr

≤ K ′|χ(ti, x)− χ(ti, x)|+K

∫ ti

t
|y[1](r, x)− y[1](r, x)|dr

+Ch2i + C

∫ ti

t

(
δ(r)1/2 + |χ(r, x)− χ(r, x)|+ |χ(r, x)− χ(ti, x)|

)
dr

≤ K

∫ ti

t
|y[1](r, x)− y[1](r, x)|dr + Ch

3/2
i

(
1 + |x|

√
hi) .

Thus the backward Gronwall inequality (see, for example, Corollary 6.62 in [40]) gives

sup
t∈Ii

|y[1](t, x)− y[1](t, x)| ≤ Ch
3/2
i (1 + |x|

√
hi)e

Khi ,
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and hence

E
[
sup
t∈Ii

|y[1](t,Xti−1)− y[1](t,Xti−1)|p
]
≤ Cph

3p/2
i , (A.4)

with some (i, n)-independent constant Cp as desired.

By the boundedness of |∂m
x ûi+1(x)| and |∂m

x b| with m ∈ {1, 2}, it is easy to see that |G[2]|
is also bounded

sup
(t,x)∈Ii×Rd

|G[2]
(t, x)| ≤ C (A.5)

with some positive constant C. Similar analysis done for y[1] using (A.5), 1/2-Hölder and
Lipschitz continuities for ∂xb, ∂

2
xb, the backward Gronwall inequality yields

sup
t∈Ii

|G[2](t, x)−G
[2]
(t, x)| ≤ Ch

3/2
i (1 + |x|

√
hi) ,

and hence

E
[
sup
t∈Ii

|G[2](t,Xti−1)−G
[2]
(t,Xti−1)|p

]
≤ Cph

3p/2
i (A.6)

with some (i, n)-independent positive constant Cp as desired.

Finally, we consider

y
[2]
0 (t, x) = δ(t)Tr

(
G

[2]
(ti, x)[σσ

⊤]
(
ti, χ(ti, x)

))
.

From (A.5) and the linear-growth property of σ,

|y[2]0 (t, x)| ≤ Cδ(t)
(
1 + |x|2

)
, (A.7)

is satisfied for every (t, x) ∈ Ii × Rd with some positive constant C. We have

y
[2]
0 (t, x)− y

[2]
0 (t, x) =

∫ ti

t
Tr
(
G[2](r, x)[σσ⊤](r, χ(r, x))−G

[2]
(ti, x)[σσ

⊤](ti, χ(ti, x))
)
dr

and thus

|y[2]0 (t, x)− y
[2]
0 (t, x)|

≤
∫ ti

t
Tr

{ (
|G[2](r, x)−G

[2]
(r, x)|+ |G[2]

(r, x)−G
[2]
(ti, x)|

)∣∣[σσ⊤](r, χ(r, x))
∣∣

+
∣∣G[2]

(ti, x)
∣∣∣∣∣[σσ⊤](r, χ(r, x))− [σσ⊤](ti, χ(ti, x))

∣∣∣} dr

≤ Ch
3/2
i (1 + |x|) + Ch2i |x|2(1 + hi|x|)
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with some (i, n)-independent constant C. Thus we obtain, for any p ≥ 2,

E
[
sup
t∈Ii

|y[2]0 (t,Xti−1)− y
[2]
0 (t,Xti−1)|p

]
≤ Cph

3p/2
i (A.8)

as desired. From (A.1), (A.2), (A.4), (A.6), (A.8) and y[2] = y[1] we obtain the claim of
Lemma 6.5.
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[19] Cvitanić, J. and Zhang, J., 2013, Contract theory in continuous-time methods, Springer, Berlin.

[20] Delong, L., 2013, Backward Stochastic Differential Equations with Jumps and Their Actuarial
and Financial Applications, Springer-Verlag, LN.

[21] El Karoui, N. and Mazliak, L. (eds.), 1997, Backward stochastic differential equations, Addison
Wesley Longman Limited, U.S..

[22] El Karoui, N., Peng, S. and Quenez, M.C., 1997, Backward stochastic differential equations in
Finance, Mathematical Finance, Vol. 7, No. 1, 1-71.

[23] Fujii, M. and Takahashi, A., 2012, Analytical approximation for non-linear FBSDEs with pertur-
bation scheme, International Journal of Theoretical and Applied Finance, 15, 5, 1250034 (24).

[24] Fujii, M., 2014, Momentum-space approach to asymptotic expansion for stochastic filtering, An-
nals of the Institute of Statistical Mathematics, Vol. 66, 93-120.

[25] Fujii, M. and Takahashi, A., 2015, Perturbative expansion technique for non-linear FBSDEs with
interacting particle method, Asia-Pacific Financial Markets, Vol. 22, 3, 283-304.

[26] Fujii, M. and Takahashi, A., 2015, Quadratic-exponential growth BSDEs with Jumps and their
Malliavin’s Differentiability, Working paper, CARF-F-376. Available in arXiv.

[27] Fujii, M. and Takahashi, A., 2015, Asymptotic Expansion for Forward-Backward SDEs with
Jumps, Working paper, CARF-F-372. Available in arXiv.

[28] Gobet, E., Lemor, J-P. and Warin, X., 2005, A regression-based Monte Carlo method to solve
backward stochastic differential equations, The Annals of Applied Probability, Vol. 15, No. 3,
2172-2202.

[29] Imkeller, P. and Dos Reis, G., 2010, Path regularity and explicit convergence rate for BSDEs with
truncated quadratic growth, Stochastic Processes and their Applications, 120, 348-379. Corrigen-
dum for Theorem 5.5, 2010, 120, 2286-2288.

[30] Kazamaki, N., 1994, Continuous exponential martingales and BMO, Lecture Notes in Mathe-
matics, vol. 1579, Springer-Verlag, Berlin.

[31] Kloeden, P. and Platen, E., 1992, Numerical solution of stochastic differential equations, Appli-
cations of Mathematics (New York) 23. Springer, Berlin.

[32] Kobylanski, M., 2000, Backward stochastic differential equations and partial differential equations
with quadratic growth, The annals of probability, Vol. 28, No. 2, 558-602.

44



[33] Kunitomo, N. and Takahashi, A., 2003, On Validity of the Asymptotic Expansion Approach in
Contingent Claim Analysis, Annals of Applied Probability, 13, No.3, 914-952.

[34] Ma, J., Protter, P. and Yong, J., 1994, Solving forward-backward stochastic differential equations
explicitly-a four step scheme, Probability Theory and Related Fields, 98, 339-359.

[35] Ma, J. and Yong, J., 2000, Forward-backward stochastic differential equations and their applica-
tions,Springer, Berlin.

[36] Ma, J. and Zhang, J., 2002, Representation theorems for backward stochastic differential equa-
tions, The annals of applied probability, 12, 4, 1390-1418.

[37] Ma, X. and Zabaras, N., 2009, An adaptive hierarchical sparse grid collocation algorithm for the
solution of stochastic differential equations, Journal of Computational Physics, 228, 3084-3113.

[38] Pagès, G. and Sagna, A., 2015, Improved error bounds for quantization based numerical schemes
for BSDE and nonlinear filtering, arXiv:1510:01048.

[39] Pardoux, E. and Peng, S., 1990, Adapted solution of a backward stochastic differential equations,
Systems Control Lett., 14, 55-61.

[40] Pardoux, E. and Rascanu, A., 2014, Stochastic Differential Equations, Backward SDEs, Partial
Differential Equations, Springer International Publishing, Switzerland.

[41] Sauer, T., 1995, Polynomial interpolation of minimal degree, Numerische Mathematik, 78, 59-85.

[42] Yong, J. and Zhou, X.Y., 1999, Stochastic Controls: Hamiltonian systems and HJB equations,
Springer, NY.

[43] Takahashi, A., 1999, An Asymptotic Expansion Approach to Pricing Contingent Claims, Asia-
Pacific Financial Markets, 6, 115-151.

[44] Takahashi, A. and Yamada, T., 2015, An asymptotic expansion of forward-backward SDEs with
a perturbed driver, Forthcoming in International Journal of Financial Engineering.

[45] Takahashi, A. and Yamada, T., 2016, A weak approximation with asymptotic expansion and
multidimensional Malliavin weights, Annals of Applied Probability, Vol. 26, No. 2, 818-856.

[46] Zhang, G., Gunzburger, M. and Zhao, W., 2013, A sparse-grid method for multi-dimensional
backward stochastic differential equations, Journal of Computational Mathematics, 31, pp. 221-
248.

[47] Zhang, J., 2004, A numerical scheme for BSDEs, The Annals of Applied Probability, Vol 14, No.
1, 459-488.

[48] Zhang, J., 2001, Some fine properties of backward stochastic differential equations, Ph.D Thesis,
Purdue University.

45


