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Abstract

This paper proposes a new stochastic volatility model with time-varying expected

return, which enables us to predict returns based on exponential moving averages of the

past returns frequently used in practice. Particularly, exploiting a particle filter in a

self-organizing state space framework, we demonstrate that a simple return prediction-

based strategy is superior to well-known strategies such as equally-weighted, minimum-

variance and risk parity portfolios, which do not depend on return prediction.

In addition, we develop three types of anomaly detectors that are easily imple-

mented in the algorithm of the particle filter and apply them to investment decision.

As a result, our model robustly outperforms the exponential moving average.

Our dataset is monthly total returns of global assets such as stocks, bonds and

REITs, and investment performances are evaluated with various statistics such as

compound returns, Sharpe ratios, Sortino ratios or drawdowns.

Keywords：return prediction, particle filtering, anomaly detection, exponential moving

averages, stochastic volatility, state space models
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1 Introduction

To predict asset returns is one of the most important issues in finance. For example, Lettau

& Ludvigson (2001) state “it is now widely accepted that excess returns are predictable

by variables such as dividend-price ratios, earnings-price ratios, dividend-earnings ratios,

and an assortment of other financial indicators.” In contrast, a comprehensive empirical

study by Welch & Goyal (2008) reports that predictor variables of the equity premium

suggested by the academic literature predict poorly both in-sample and out-of-sample.

On the other hand, in Bayesian time series analysis the prediction of volatility and

correlation is a major topic and in particular there are numerous studies on stochas-

tic volatility models (e.g., Taylor (1986)) which are estimated by Markov chain Monte

Carlo methods or sequential Monte Carlo methods known as particle filters because of

non-linearity of the models. In an application to practical investment problems, factor

stochastic volatility models (e.g., Aguilar, Prado, Huerta, & West (1998) and Pitt &

Shephard (1999)) are often used, which make us possible to estimate correlation between

high-dimensional asset returns by a small number of factors (e.g., Aguilar & West (2000)

and Zhou, Nakajima, & West (2014)).

In terms of investment in practice, it seems to be much more important to predict

returns than volatility in spite of its difficulty. According to Chopra & Ziemba (1993), in

a mean-variance portfolio, estimation errors in mean are at least 10 times as important

as those in variance. Johannes, Korteweg, & Polson (2014) discuss returns and volatility

prediction simultaneously. They provide a stochastic volatility model with a return pre-

dictor of payout yield, and consider one risky asset portfolio based on expected returns

and volatility estimated by a particle filter. As a result, they point out that it improves

portfolio performance to incorporate time-varying properties of both of expected returns

and volatility into a model.

While there are a lot of academic works about return predictions, moving averages

(MAs) of past returns are often used in practice for its simplicity of implementation. In

particular, exponential moving averages (EMAs) have a feature that they put higher weight

on more recent returns, which are similar to the estimates of expected returns based on a

filtering method because it sequentially modifies the distribution by the most recent data.

Then, in order to justify a filtering approach to return prediction from a practical point

of view, it seems necessary to outperform those practically used simple methods such as

EMAs.

For these reasons, we develop a new stochastic volatility model with time-varying ex-

pected return which represents the EMA dynamics by extending a famous AR(1) process.

Then, using a particle filtering method in a self-organizing state-space framework, we se-

quentially estimate states and parameters of our models and predict asset return, which

is applied to an investment problem.

In order to clarify the improvement effects by our approach, we test a simple return

prediction-based strategy. Roughly speaking, it is the strategy that if there is an asset
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which has the highest positive expected return, an investor bets all on it, and if all predicted

returns are negative, he/she does not bet on risky assets at all. We confirm this return

prediction-based strategy achieves higher performance than the well-known strategies such

as equally-weighted, minimum-variance, and risk parity portfolio.

In addition, we introduce three anomaly detection methods which can be easily im-

plemented in the algorithm of the particle filter. Anomaly detection seems useful though

there are few application examples in financial literature. In our investment case, realized

asset returns sometimes largely deviate from the models, whence it is inappropriate to

implement predictions. Therefore, we can use it effectively to exclude the assets for which

anomalies are detected. As a result, we discover the return prediction-based strategy with

the anomaly detectors robustly outperforms the same strategy based on the EMA.

When using the EMAs of past returns, one of the most practically important issues is

the way of deciding a smoothing factor which represents the degree of weighting decrease.

We provide two solutions to this problem. One is resorting to estimation by a particle

filter in a self-organizing state space framework. The other is aggregating models for

various fixed smoothing factors. With the second approach, we avoid using an statistical

optimal value because it does not necessarily indicate the optimality in terms of investment

performance. Rather, we prospect the so-called ensemble learning effect known in the field

of machine learning by combining various cases. The effectiveness of these new approaches

is also checked.

Our investment universe is designed by U.S. and Japanese REIT as well as international

bonds and equities with a riskless asset. Taking trading costs into account, investment

performance is evaluated by various statistics such as compound returns, standard devia-

tion, downside deviation, Sharpe ratios, Sortino ratios, maximum drawdowns, and average

drawdowns.

The remainder of the paper is organized as follows. Section 2 introduces the models

that represent the dynamics of asset returns. Section 3 provides the state space repre-

sentation of the models and the algorithm of our particle filter with anomaly detection.

Section 4 describes the basic setting in estimation and the results. After explaining our in-

vestment strategy and setup, Section 5 reports investment performances. Finally, Section

6 concludes.

2 Model

In this paper, we suppose that the dynamics of asset returns y = {yt ; t = 0, 1, · · · , T}
are specified as follows.

yt = µt + exp(xt/2)ϵt, ϵt ∼ i.i.d. N(0, 1), t ≥ 0,

xt = x̄+ ϕx(xt−1 − x̄) + σxξt, ξt ∼ i.i.d. N(0, 1), t ≥ 1,

x0 ∼ N(x̄, σ2
x/(1− ϕ2

x)),
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where x̄, ϕx, and σx are constant unknown parameters, |ϕx| < 1, Cov(ϵt, ηt) = 0, and

µ = {µt ; t = 0, · · · , T} and x = {xt ; t = 0, · · · , T} are stochastic processes which

represent the dynamics of expected returns and volatility. Clearly, this belongs to a class

of notable stochastic volatility models (e.g., Taylor (1986)) with expected returns {µt}t.
As for µt, one of the most popular modelings in time series analysis is AR(1) :

µt = µ̄+ ϕµ(µt−1 − µ̄) + σµηt, ηt ∼ i.i.d. N(0, 1), t ≥ 1,

µ0 ∼ N(µ̄, σ2
µ/(1− ϕ2

µ)),
(2.1)

where µ̄, ϕµ, and σµ are constant unknown parameters, |ϕµ| < 1, and Cov(ϵt, ηt) =

Cov(ξt, ηt) = 0.

On the other hand, when fund managers estimate expected returns in practice, moving

averages (MAs) of asset returns are often used, and in particular exponential moving

averages (EMAs) are considered to be an effective alternative. Here we define EMAs

µ̄ = {µ̄t ; t = 0, · · · , T} of asset returns y = {yt ; t = 0, · · · , T} as follows.

µ̄t = βyt−1 + (1− β)µ̄t−1, t ≥ 1,

µ̄0 = α ∈ R,
(2.2)

where β ∈ (0, 1) is called a constant smoothing factor which represents the degree of

weighting decrease and α is a constant, that will be specified later.

Now let us introduce the model of µ based on the EMA.

µt = yt−1 + ϕµ(µt−1 − yt−1) + σµηt, ηt ∼ i.i.d. N(0, 1), t ≥ 1,

µ0 ∼ N(α, σ2
µ/(1− ϕ2

µ)),

where we set E[µ0] = α so as to be consistent with the definition of µ̄0. Obviously this

process is obtained from setting µ̄ = yt−1 in AR(1) (2.1), and it coincides with the above-

defined EMA µ̄ if we exclude the noise term σµηt and put β = 1 − ϕµ. In other words,

we introduce the expected return µ model with the EMA dynamics by extending a well-

known AR(1) process. Making use of this model, we attempt to overcome the investment

strategies based on estimates by the simple EMA in the following.

Here we emphasize the significance of our new modeling. By expressing the practically

used EMA as a time-series model, we can get access to a variety of statistical tools, which

brings us great benefits. Anomaly detection is one of the most impressive examples. In

addition, we demonstrate later two novel statistical solutions to the problem that we are

not able to know in advance an optimal smoothing factor β.

Our investment universe includes not only stocks or REITs whose returns change

sharply over time but also bonds whose cumulative returns grow stably. Therefore we

also exploit a constant µ model in order to express their dynamics well, that is, a case of

µt ≡ µ̄.

As the closing part of this section, we summarize and name the models used below.
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• CMSV (Constant Mean and Stochastic Volatilily):

yt = µ̄+ exp(xt/2)ϵt, ϵt ∼ i.i.d. N(0, 1), t ≥ 0,

xt = x̄+ ϕx(xt−1 − x̄) + σxξt, ξt ∼ i.i.d. N(0, 1), t ≥ 1,

x0 ∼ N(x̄, σ2
x/(1− ϕ2

x)),

(2.3)

• SMSV (Stochastic Mean and Stochastic Volatility):

yt = µt + exp(xt/2)ϵt, ϵt ∼ i.i.d. N(0, 1), t ≥ 0,

xt = x̄+ ϕx(xt−1 − x̄) + σxξt, ξt ∼ i.i.d. N(0, 1), t ≥ 1,

µt = µ̄+ ϕµ(µt−1 − µ̄) + σµηt, ηt ∼ i.i.d. N(0, 1), t ≥ 1,

x0 ∼ N(x̄, σ2
x/(1− ϕ2

x)), µ0 ∼ N(µ̄, σ2
µ/(1− ϕ2

µ)),

(2.4)

• SMSV+EMA:

yt = µt + exp(xt/2)ϵt, ϵt ∼ i.i.d. N(0, 1), t ≥ 0,

xt = x̄+ ϕx(xt−1 − x̄) + σxξt, ξt ∼ i.i.d. N(0, 1), t ≥ 1,

µt = yt−1 + ϕµ(µt−1 − yt−1) + σµηt, ηt ∼ i.i.d. N(0, 1), t ≥ 1,

x0 ∼ N(x̄, σ2
x/(1− ϕ2

x)), µ0 ∼ N(α, σ2
µ/(1− ϕ2

µ)),

(2.5)

where x̄, µ̄，ϕx, ϕµ, σx and σµ are constant parameters, Cov(ϵt, ηt) = Cov(ξt, ηt) =

Cov(ϵt, ξt) = 0, |ϕµ| < 1, and |ϕµ| < 1.

3 Particle filtering with Anomaly Detection

3.1 Particle filtering

In general, we cannot directly observe expected returns and volatility. In order to estimate

these unobservable variables, we introduce a general state space model that consists of the

following system and observation model.

Yt = H(Zt, ut), [observation model]

Zt = F (Zt−1, vt), [system model]
(3.6)

where Zt denotes a n-dimensional unobservable state vector and Yt denotes am-dimensional

observation vector at time t. H : Rn × Rm → Rm and F : Rn × Rn → Rn are non-linear

functions in general. ut and vt denote the observational noise and the system noise re-

spectively.

In our models, (2.3)-(2.5), we can easily apply this general state space model by re-

garding the first equation as the observation model and the other equations as the system

model with Yt = yt and Zt = (µt, xt) (Zt = xt in CMSV (2.3)).

We utilize Monte Carlo filter (MCF) developed by Kitagawa (1996) for state estimation.

Given the above state space representation, the algorithm of MCF is described as follows.
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the algorithm of MCF� �
1. Generate the initial state vector {f (1)

0 , · · · , f (L)
0 } where L is the number of par-

ticles.

2. Apply the following steps (a)∼(d) to each time t = 1, · · · , T .

(a) Generate system noise v
(j)
t , j = 1, · · · , L.

(b) Compute for each j = 1, · · · , L p
(j)
t = F (f

(j)
t−1, v

(j)
t ).

(c) Evaluate the weights of particles {p(1)t , · · · , p(L)t } using likelihood function

as α
(j)
t ≡ p(Yt|p(j)t ), j = 1, · · · , L.

(d) Resample {f (1)
t , · · · , f (L)

t } from {p(1)t , · · · , p(L)t }. More precisely, resample

each f
(i)
t , i = 1, · · · , L from {p(1)t , · · · , p(L)t } with the probability given by

Prob.(f
(i)
t = p

(j)
t |Yt) =

α
(j)
t∑L

k=1 α
(k)
t

, j = 1, · · · , L.

� �
Here the likelihood at time t, p(Yt|Zt), is approximately calculated by

p(Yt|Zt) ≈
1

L

L∑
k=1

α
(k)
t (3.7)

and this approximation is used in anomaly detection discussed in the next subsection.

The unknown parameters vector θt is sequentially estimated by augmenting the state

vector as Zt = (µt, xt, θt) (Zt = (xt, θt) in CMSV (2.3)). If the transition of θt follows

θt = θt−1, (3.8)

this algorithm will degenerate in the sense that almost all of the particles quickly reach

zero weight. Besides, parameter estimation does not work when the true values are not

included in particles generated by initial distribution. Then, we add an artificial noise ζt

to the equation (3.8):

θt = θt−1 + ζt.

Kitagawa (1998) named this framework as a ”self-organizing state space model”. Here, it

is necessary to specify the distribution of the artificial noise ζt conditioned on θt−1.

In this paper, we use the Kernel Smoothing (KS) method developed byWest (1993a,1993b)

and Liu & West (2001). In the KS method, the distribution of ζt conditioned on θt−1 is

given by

p(ζt|θt−1) ∼ N((a− 1)(θt−1 − θ̄t−1), (1− a2)Vt−1),

i.e. the conditional distribution of θt is

p(θt|θt−1) ∼ N(aθt−1 + (1− a)θ̄t−1, (1− a2)Vt−1),

where a = (3δ−1)/2δ. θ̄t and Vt represent the mean and variance of the particles {θit}i=1···L

respectively. δ is a shrinkage factor which usually takes 0.95-0.99. Here, we set δ = 0.98.
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We adopt this algorithm based on the following reasons. It is well known that there

are mainly two types of algorithms in particle filters (PF): one which first implements one-

step-ahead prediction and then resampling at each time step, and the other which first

implements resampling. For example, Gordon, Salmond, & Smith (1993) and Kitagawa

(1996) developed the former algorithm and they are called Bootstrap filter (BF) and Monte

Carlo filter (MCF) respectively. On the other hand, Pitt & Shephard (1999) proposed the

latter algorithm to estimate more efficiently, that is called Auxiliary Particle filter (APF).

In the above-mentioned Liu &West (2001), APF was combined with the Kernel Smoothing

method, which is known as Liu and West filter (LWF). Taking into consideration these

facts, our algorithm can be regarded as the particle filter which combines MCF and KS.

This algorithm is easier to implement than APF or LWF because it is based on MCF.

Also, numerical experiments about Markov Switching SV model in Rios & Lopes (2013)

shows that the estimation error and computational complexity of our scheme is no less

than those of LWF. For these reasons, our algorithm seems to be valid.

3.2 Anomaly Detection

We test three types of anomaly detectors based on previous researches such as Chang

(2014), Cai, Hong, Wu, & Liu (2013), Patil, Das, & Pecht (2012) and Knorn & Leith

(2008). If an anomaly is detected for an asset return at time t, yt, we exclude the asset

from investment universe at time t, which makes us possible to enhance our investment

performances.

First, we utilize the log-likelihoods. Here we define the log-likelihood at time t by

l(yt) ≡ log p(yt|Zt) which is approximately calculated with taking log of the right hand

side of the equation (3.7). In our PF algorithm, we are able to obtain {l(yt)}t for each

asset. Then, if l(yt) takes a lower value than a predetermined threshold at time t, we regard

yt as an anomaly. Now this threshold is set to be about the 5 percentile of {l(yt)}t=6,··· ,47

which corresponds to the second lowest value in {l(yt)}t=6,··· ,47. We omit the first six

month of the log-likelihoods because this period seems to be strongly affected by initial

distributions.

Second, we employ the traditional Hotelling approach. In this approach, we define an

anomaly indicator a(yt) by the negative log-likelihood −l(yt). Since the distribution of yt

conditional on states µt and xt at time t is normal with our models, we rewrite a(yt) by

excluding the parts indifferent with yt as follows.

a(yt) = exp(−xt)(yt − µt)
2. (3.9)

Again, this can be approximately calculated in our estimation algorithm. Then the re-

maining task is to determine a threshold as in the first approach. Here, we make use of the

fact that this a(yt) asymptotically follows a chi-squared distribution with one degrees of

freedom χ2(1). Although the number of our data is not large enough to apply this asymp-

totic property, it seems to be an alternative method of deciding an effective threshold.

Therefore we put it as the 95 percentile of χ2(1).
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Last, we test a method by the one-step-ahead predictive distribution of asset returns,

p(yt+1|y1:t) where y1:t ≡ (y1, · · · , yt). As described in Section 4.2, in our PF algorithm

we can obtain the approximation of predictive distribution p(yt+1|y1:t) based on Monte

Carlo simulation. Then we are able to detect an anomaly by calculating the 2.5 and 97.5

percentiles of p(yt+1|y1:t) to exclude the realized return yt+1 outsides these percentiles.

In the following, we call those three anomaly detection methods AD1,AD2, and AD3

respectively. Note that all the methods are implemented in our PF algorithm quite easily.

4 Estimation

4.1 Data

We use monthly total returns of 8 indexes corresponding to stocks, bonds, and REITs as

listed in Table 1. Hereafter we employ the abbreviations of the index names in this table.

The time period of the return data is 156 months (i.e. T = 155), from April 2003 to March

2016. An asset return yt is given by yt = 100× (Pt/Pt−1 − 1) where Pt denotes the asset

price at time t. Our data are downloaded from Bloomberg in JPY-denominated form so

that we consider the global investment without currency hedging. Since there exist ETFs

which correspond to these indexes except US Bond, it can be said that they are tradable

assets. Table 2 shows the descriptive statistics of the asset returns.

Table 1: Data

Index name Ticker (Bloomberg) Abbreviated name

Tokyo Stock Price Index TPXDDVD.Index JP Equity

Tokyo Stock Exchange REIT Index TPXDREIT.Index JP REIT

S&P500 SPTR.Index US Equity

Morgan Stanley REIT Index RMS.G.Index US REIT

FTSE Developed ex North America Net Tax (US RIC) Index TGPVAN33.Index Developed Equity

FTSE Emerging Total Return Index FTS5ALEM.Index Emerging Equity

Barclays US Treasury 10 Year TERM Index BCEY4T.INDEX US Bond

JPMorgan Emerging Market Bond Index JPEIGLBL.INDEX Emerging Bond

Table 2: Descriptive statistics

Mean Variance Skew Kurtosis

JP Equity 0.629 27.807 -0.407 0.855

JP REIT 0.953 32.729 -0.206 3.531

US Equity 0.853 27.869 -0.724 1.764

Developed Equity 0.825 34.851 -0.933 2.384

US REIT 1.193 53.847 -0.941 6.002

Emerging Equity 1.216 51.668 -0.833 2.598

US Bond 0.430 6.613 -0.181 0.720

Emerging Bond 0.726 12.153 -1.528 8.993
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4.2 Estimation Setup

In Section 5, we implement an investment strategy based on our estimates of expected

returns, and compare their performances with the benchmark EMA cases. Notice that

when we calculate an EMA of past returns, it is necessary to decide a smoothing fac-

tor β. Here we test the cases of β = 0.1, · · · , 0.9, and estimate states and parameters

of the SMSV+EMA models under fixed ϕµ values which correspond to 1 − β values.

Hereafter, SMSV+EMA for β = 0.1, · · · , 0.9 are called SMSV+EMA1,· · · ,SMSV+EMA9

respectively. Of course, we also consider the case that β (or ϕµ) itself is estimated by a

self-organizing state space framework and name it SMSV+EMASO.1

Our particle filter are executed individually for each asset. In other words, we do not

pay any attention to correlations in predicting returns. It makes us possible to reduce

estimation error and computational complexity though incorporating them is one of the

possible future researches.

The initial state variables are drawn from their initial distributions described in Section

2. As for a constant α in the EMA (2.2) and the SMSV+EMA model (2.5), we put it the

sample mean of the first two years of asset returns, {yt}t=0,··· ,23. The initial distributions

of parameters are as follows.

• CMSV : µ̄ ∼ U(−5, 5), x̄ ∼ U(−1, 5), ϕx+1
2 ∼ B(20, 1.5), σx ∼ U(0, 2),

• SMSV : µ̄ ∼ U(−5, 5), x̄ ∼ U(−1, 5), ϕµ ∼ U(0, 1), ϕx+1
2 ∼ B(20, 1.5), σx ∼ U(0, 2),

• SMSVSO+EMA : x̄ ∼ U(−1, 5), ϕµ ∼ U(0, 1), ϕx+1
2 ∼ B(20, 1.5), σx ∼ U(0, 2),

• SMSV+EMA1,· · · ,SMSV+EMA9 : x̄ ∼ U(−1, 5), ϕx+1
2 ∼ B(20, 1.5), σx ∼ U(0, 2),

where U(a, b) denotes the uniform distribution on the open interval (a, b), and B(a, b)

denotes the beta distribution with shape paremeters a and b. With regard to a parameter

σµ, in CMSV, SMSV and SMSV+EMASO, we use the uniform distribution between zero

and one standard deviation of asset returns over the first four years, {yt}t=0,··· ,47. In

SMSV+EMA1,· · · ,SMSV+EMA9, we use the same distribution between zero and one

standard deviation of EMAs at β = 0.1, · · · , 0.9 over the first four years respectively.

Since we use the monthly data, the number of observations is relatively small. There-

fore, we set the number of particles 1,000,000 to obtain robust estimation. Even if the

number of particles is such large, it takes a few minutes to execute our algorithm for each

asset. 2

We utilize the mean of the one-step-ahead predictive distribution p(yt|y1:t−1) as the

estimate of an expected return at time t − 1 which is necessary for implementing our

investment strategy introduced in Section 5. Remark that the mean of p(yt|y1:t−1) does

not necessarily equal to that of p(µt|y1:t−1) at time t− 1.

1 “SO” in EMASO is an abbreviation of “self-organizing”.
2 We use Intel(R) Xeon(R) CPU X5675 @ 3.07GHz.
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In this paper, we calculate p(yt|y1:t−1) as follows. First, notice that

p(yt|y1:t−1) ∝ p(yt|Zt−1)p(Zt−1|y1:t−1) = p(yt|Zt)p(Zt|Zt−1)p(Zt−1|y1:t−1). (4.10)

Since p(Zt−1|y1:t−1) is the filter distribution at time t−1, we can approximate p(yt|y1:t−1)

based on Monte Carlo simulation by adding the new operations (b’) and (b”) between (b)

and (c) in the previous section. Given the samples {f (j)
t−1}j=1,2,··· ,L from p(Zt−1|y1:t−1) at

time t− 1, the operations (b’) and (b”) are the following:

(b’) Generate observational noise {u(j)t }j=1,··· ,L,

(b”) Using the observation model, calculate y
(j)
t = H(p

(j)
t , u

(j)
t ) for each j = 1, · · · , L.

Here {u(j)t }j=1,··· ,L may be correlated to {v(j)t }j=1,··· ,L in general, and y
(j)
t can be regarded

as samples from distribution p(yt|Zt). The estimate of the expected return at time t−1 is

given by calculating the mean of the particles {y(j)t }j=1,··· ,L which are obtained from these

steps.

4.3 Estimation Result

Figure 1 displays the estimation results of JP Equity in the SMSV+EMASO model. For

parameter learning, although there exists a parameter whose learning speed is slow such

as ϕx, our sequential estimation is likely to perform properly as a whole. Here the solid

line and the dot lines denote posterior medians and 95% credible intervals in each panel of

parameters. From these results, we regard the first four years t = 0, · · · , 47 as the learning

period, and set the starting point of investment t = 47. Then as for other estimation

results—expected returns, a(yt) and l(yt)—we plot just over t = 48, · · · , 155 because it is

misleading to describe the values before this period in terms of reliability for estimation.

In the figure of expected returns, the cases of SMSV+EMA1 and SMSV+EMA9

are also illustrated for comparison. The path of SMSV+EMASO is similar to that of

SMSV+EMA1 rather than SMSV+EMA9, which is consistent with the result of β. That

is, a smoothing factor β which corresponds 1− ϕµ is estimated in low range, 0.1-0.3.

Last, we check anomaly indicator a(yt) and l(yt). In the both plots, dot lines represent

AD thresholds, and so it means anomaly for a(yt) or l(yt) to be outside these lines. Our

anomaly indicators seem to work as intended.
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Figure 1: Estimation results of JP Equity in the SMSV+EMASO model

expected returns x̄

ϕµ ϕx

σµ σx

a(yt) l(yt)
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5 Investment

5.1 Multi-Bang-Bang strategy

As stated in the preceding section, we start investment at t = 47. Then in the following,

we reset a time index t which starts from the 48th data with T = 108 (= 155− 47) for the

simplicity of notation.

Suppose that there exists a risk-free asset in the financial market and the risk-free

rate is zero. In order to clarify the effects of using the particle filtering method, let us

consider the following simple multi-Bang-Bang strategy only based on the estimates of

expected returns mt = (mt,1, · · · ,mt,N )′, where mt,i denotes the one for the i-th risky

asset. Roughly speaking, it is the strategy that an investor holds the asset which has the

highest expected return unless it is negative. We also put no-short-sale constraint.

Multi-Bang-Bang strategy� �
Apply the following steps to each time t = 0, 1, · · · , T − 1.

1. Find an index imax ∈ {1, · · · , N} such that mt,imax = max{mt,1, · · · ,mt,N}.

2. Risky asset weights {ωt,i}i=1,··· ,N are decided based on the following rule :

i) if mt,imax > 0,

ωt,i =

{
1 , i = imax,

0 , i ̸= imax.

ii) otherwise,

ωt,i = 0 , i ∈ {1, · · · , N}.

3. Put a risk-free asset weight ωt,N+1 = 1−
∑N

i=1 ωt,i.� �
As stated before, if we apply anomaly detection, the assets for which anomalies are

detected are excluded from the above index set {1, · · · , N}.

5.2 Investment Setup

Since we cannot neglect transaction costs which arise from portfolio weight update in

practice, we define the portfolio value {Vt}t=0,··· ,T and the portfolio return {Rt}t=1,··· ,T

with transaction costs as follows.

Vt+1 = Vt(1 + ωt
′yt+1)−

N∑
i=1

ci|ωt,iVt − ωt−1,iVt−1(1 + yt,i)| , V0 = 1,

Rt+1 =
Vt+1

Vt
− 1,

(5.11)

where yt ≡ (yt,1, · · · , yt,N , 0), ωt ≡ (ωt,1, · · · , ωt,N , ωt,N+1), and ci denotes the transaction

spread. In the return vector yt, yt,i indicates the i-th risky asset return at time t, and

the last element 0 represents the risk-free rate. As there exist ETFs corresponding to the

12



indexes, ci can be interpreted as a bid-ask spread. Then transaction cost for an asset

i equals to ci times the additional amount of money which is necessary for taking new

portfolio position. Here, we assume that ci is 10 bp for all risky assets and there is no

transaction for the riskless asset.

The second term of equation (5.11) means the transaction cost at time t. We introduce

this penalty term based on the following ideas. ωt−1,iVt−1(1 + yt,i) and ωt,iVt indicate the

value of the i-th risky asset before and after the position change at time t respectively

as ωt,i means a portfolio weight of the i-th risky asset during [t, t+ 1). That is, |ωt,iVt −
ωt−1,iVt−1(1 + yt,i)| represents the necessary amount of money for the position change

of asset i at time t. Hence, the total transaction cost at time t equals to the sum of

ci|ωt,iVt − ωt−1,iVt−1(1 + yt,i)| for all i.
We evaluate the portfolio performances from various statistics: the cumulative re-

turn, the compound return, the standard deviation, the downside deviation, the Sharpe

ratio, Sortino ratio, the maximum drawdown, and the average drawdown. We calculate

these performance statistics on annual basis except the cumulative return, the maximum

drawdown and the average drawdown.

• Compound Return: This is the annualized geometric mean of the portfolio returns

{Rt}.

Compound Return ≡

{
T∏
t=1

(1 +Rt)

}12/T

− 1.

• Standard Deviation:

Standard Deviation ≡

{
12

T

T∑
t=1

(Rt − R̄)2

}1/2

,

R̄ ≡ 1

T

T∑
t=1

Rt.

• Downside Deviation:

Downside Deviation ≡

{
12

T

T∑
t=1

min(0, Rt)
2

}1/2

.

• Sharpe Ratio: This is usually defined as portfolio excess return divided by portfolio

standard deviation. Since a risk-free rate is zero in this paper, we use the following

value as the Sharpe ratio.

Sharpe Ratio ≡ Arithmetic Return/Standard Deviation,

Arithmetic Return ≡ 12R̄.

• Sortino Ratio: This ratio does not regard upside volatility as a risk and penalizes

only downside volatility while the Sharpe ratio penalizes both upside and downside

volatility equally, which is often pointed out as a weakness of the Sharpe Ratio.

Sortino Ratio ≡ Arithmetic Return/Downside Deviation.
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• Maximum Drawdown, Average Drawdown: The drawdown is the decline from the

past peak value to the present value. The maximum drawdown and the average

drawdown are defined as follows.

Maximum Drawdown ≡ max
1≤t≤T

Mt − Vt

Mt
,

Average Drawdown ≡ 1

T

T∑
t=1

Mt − Vt

Mt
,

where Mt ≡ max0≤s≤t Vs. In general, portfolio performance depends on the in-

vestment timing. The maximum drawdown contributes to the performance analysis

because it is independent of the investment timing given the horizon [0, T ].

5.3 Investment Performance

When making use of EMAs, one of the most practically important problems is how to

decide a smoothing factor β which largely affects the behavior of EMA dynamics. Here we

provide two approaches to this problem. One is of course to estimate β in a self-organizing

state space framework. The other is not to decide a particular β value but to combine

the various cases of β = 0.1, · · · , 0.9, which we call SMSV+EMA1-9 hereafter. Precisely,

in SMSV+EMA1-9, the expected return at time t of each asset is set to be the average of

expected returns at time t under SMSV+EMA1,· · · ,SMSV+EMA9.

In applying anomaly detection to this SMSV+EMA1-9 model for each asset, we take

an average by only the models for which anomalies are not detected. For example, when

anomalies are detected for the models except for SMSV+EMA1 and SMSV+EMA3, we

calculate the mean of SMSV+EMA1 and SMSV+EMA3 as the expected return at time t

of the asset. If all of the models, SMSV+EMA1,· · · ,SMSV+EMA9, tell us that the asset

is in anomaly, we stop to invest it at that time. That is, we intend to apply the predictor

for each asset only when it seems to work well.

Table 3: Investment Performance of traditional strategies

Compound Standard Downside Sharpe Sortino Maximum Average

return(%) deviation(%) deviation(%) ratios(%) ratios(%) drawdown(%) drawdown(%)

Buy and Hold

JP Equity -0.66 19.77 14.25 6.67 9.26 56.23 32.13

JP REIT 1.81 21.98 15.34 19.62 28.12 67.56 35.30

US Equity 5.96 20.58 14.56 38.77 54.80 59.79 23.70

US REIT 4.37 28.58 20.75 30.22 41.63 73.94 27.67

Developed Equity -0.05 23.07 17.19 11.80 15.83 63.04 30.13

Emerging Equity 1.37 27.17 19.67 19.29 26.65 67.67 28.53

US Bond 5.72 9.16 5.71 65.44 104.95 15.25 4.50

Emerging Bond 6.18 13.30 9.68 52.12 71.63 33.00 7.26

Other strategies

Equal Weight 3.91 17.26 12.61 31.25 42.76 53.63 20.02

(Stock & REIT : Bond) = 3:7 3 5.39 12.25 8.75 49.25 68.93 34.69 10.71

(Stock & REIT : Bond) = 7:3 4 4.10 16.63 12.13 32.85 45.02 51.59 18.99

Minimum Variance 6.21 9.00 5.41 71.56 119.05 14.09 4.31

Risk Parity 5 4.77 13.47 9.55 41.55 58.60 41.37 15.27
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While Table 3 reports the investment performances of several famous strategies, Table

4 and Table 5 do the ones of our multi-Bang-Bang strategy. Note that in Table 4 we use

CMSV (2.3) for the bonds, that is US Bond and Emerging Bond, as stated in Section

2. First of all, by comparing these tables, we confirm that our simple return prediction-

based strategy shows much higher performances in most cases than other basic portfolios

including equally-weighted, minimum-variance and risk parity, which do not depend on

any return predictions.

Next let us take a close look at Table 4 and Table 5. It is observed that the performances

in Table 4 are generally higher than those in Table 5, which implies the importance of

model choice. When we compare EMA and SMSV+EMA for each β value (for example,

EMA1 and SMSV+EMA1), we notice that although our SMSV+EMA improves the simple

EMA in general, some performances get worse such as in β = 0.1. By exploiting anomaly

detection, overall improvement is attained, and our models outperform EMAs in almost all

cases.6 From these results, it is safe to say that our anomaly detection based on particle

filter robustly works well. This is because our anomaly detectors make it possible to

refine the investment universe. Excluding the assets which deviate from the model, fund

managers are able to concentrate on the more desirable investment universe.

As stated above, since we cannot know the optimal β value in advance, we try two

approaches: SMSV+EMASO and SMSV+EMA1-9. In Table 5, the performances of our

methods do not work much better than those of the fixed β cases. On the other hand, in

Table 4 our methods interestingly show much higher performances than the most of the

fixed β cases. Remember that in Table 4 we use the CMSV model for the bonds. Again,

we have confirmed the importance of suitable model choice, which clearly enhances our

attempts. Remark that it is reasonable to assume constant mean models for bonds as

mentioned in Section 2 though we report both cases for comparison.

Comparing these two methods, SMSV+EMA1-9 works better than SMSV+EMASO.

This result seems a little bit strange. It is natural that SMSV+EMA attains higher

performance than SMSV+EMA1-9 because SMSV+EMASO optimizes β in terms of like-

lihood and SMSV+EMA1-9 just takes an average of estimates under various β models,

SMSV+EMA1,· · · , SMSV+EMA9. This can be interpreted as the effect of ensemble

learning in the field of machine learning. The ensemble learning theory emphasizes that

combining predictors enables us to reinforce predictive ability rather than using single com-

plex model. Now we combine nine β cases so that better performance is achieved. In that

sense, this result supports the effectiveness of ensemble learning even if it is implemented

in such a simple way.

Furthermore, we do not know in advance which anomaly detector performs the best.

Then, we also test mixtures of our three anomaly detectors in the case of SMSV+EMA1-

3 That is, ωt ≡ ( 0.3
6
, 0.3

6
, 0.3

6
, 0.3

6
, 0.3

6
, 0.3

6
, 0.7

2
, 0.7

2
, 0) for all t.

4 That is, ωt ≡ ( 0.7
6
, 0.7

6
, 0.7

6
, 0.7

6
, 0.7

6
, 0.7

6
, 0.3

2
, 0.3

2
, 0) for all t.

5 See, for example, Bruder and Roncalli (2012)
6 The only exception is the case of β = 0.1 in Table 5.
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9, namely, ADmix1, ADmix2, and ADmix3: ADmix1 tells us anomaly if at least one

detector warns it. ADmix2 does when at least two out of three detectors warn anomalies,

and ADmix3 says anomaly only when all three detectors do. As a result, in Table 5 the

most conservative method (i.e. ADmix1) provides the best performance, while in Table 4

we observe little difference in three methods.

Overall, our model, SMSV+EMA1-9 with ADmix1 that is, SMSV with no bias on a

smoothing factor and a conservative mixture of anomaly detections seems to create robust

performance in our numerical experiments.

6 Conclusion

In this paper, we have proposed a new stochastic volatility model, which enables to predict

returns based on the exponential moving averages of asset returns. Specifically, in the

framework of a self-organizing state space model, we have estimated states and parameters

of our models by the particle filtering method. In addition, we developed three anomaly

detectors which judge whether the models really express the dynamics of asset returns.

We apply these return prediction and anomaly detection methods to the investment

problem. In order to clarify their effects, we employed the simple investment strategy

and assessed performances by various statistics. As a result, our approach has turned out

to attain higher performances than the same strategy based on the exponential moving

averages.

Moreover, we have shown our investment scheme outperforms other strategies such as

equally-weighted, minimum-variance and risk parity portfolios which do not depend on

the estimates of expected returns. Further, in order to overcome a practically well-known

issue how to determine a smoothing factor in the exponential moving average, this paper

has presented two solutions which properly work.

Although we have focused on the simple investment strategy only based on expected

returns to clarify the effectiveness of our scheme for predicting returns, it seems valuable

to apply it to other strategies requiring estimates of higher order moments (e.g. mean-

variance portfolios), which is one of our future research topics.
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Table 4: Investment Performances of multi-Bang-Bang strategy: the bond model is CMSV

Compound Standard Downside Sharpe Sortino Maximum Average

return(%) deviation(%) deviation(%) ratios(%) ratios(%) drawdown(%) drawdown(%)

SMSV 5.41 25.34 17.16 33.99 50.20 62.21 21.03

SMSV with AD1 4.00 25.84 18.18 28.90 41.07 64.50 26.22

SMSV with AD2 8.27 17.31 8.74 54.16 107.24 34.98 5.37

SMSV with AD3 5.65 25.82 17.72 34.98 50.96 64.50 23.51

EMA1 5.02 21.24 13.63 33.63 52.41 34.39 13.13

SMSV+EMA1 4.91 22.22 15.05 32.80 48.44 50.28 17.43

SMSV+EMA1 with AD1 5.48 21.28 13.75 35.65 55.20 44.44 15.38

SMSV+EMA1 with AD2 6.21 20.81 13.22 39.33 61.90 42.79 14.40

SMSV+EMA1 with AD3 8.11 21.53 13.56 47.00 74.64 42.25 12.49

EMA2 4.19 20.29 12.90 30.26 47.61 33.01 12.97

SMSV+EMA2 10.63 21.37 13.63 58.18 91.24 47.55 10.66

SMSV+EMA2 with AD1 10.24 19.70 11.87 59.39 98.53 43.19 12.27

SMSV+EMA2 with AD2 11.19 19.77 11.64 63.59 108.03 42.85 10.46

SMSV+EMA2 with AD3 14.36 20.52 11.88 75.81 130.98 39.08 8.79

EMA3 9.14 18.98 10.97 55.49 96.01 34.56 10.81

SMSV+EMA3 12.57 21.38 12.95 66.27 109.43 45.33 10.05

SMSV+EMA3 with AD1 14.96 19.75 11.02 80.65 144.48 36.33 9.09

SMSV+EMA3 with AD2 14.65 19.22 10.70 80.95 145.33 35.68 8.29

SMSV+EMA3 with AD3 17.47 20.47 11.00 89.15 165.87 34.83 7.92

EMA4 12.01 20.01 11.16 66.67 119.56 38.44 9.61

SMSV+EMA4 13.23 20.84 11.95 70.18 122.41 37.53 8.17

SMSV+EMA4 with AD1 15.66 19.14 9.79 85.72 167.50 26.94 6.97

SMSV+EMA4 with AD2 14.15 18.31 9.50 81.53 157.10 27.78 6.57

SMSV+EMA4 with AD3 17.89 19.89 9.79 92.87 188.57 26.94 6.70

EMA5 12.89 18.59 9.08 74.43 152.30 21.30 6.40

SMSV+EMA5 11.55 20.25 11.59 64.19 112.14 37.53 8.59

SMSV+EMA5 with AD1 15.75 18.92 9.34 86.86 175.90 26.94 6.52

SMSV+EMA5 with AD2 14.88 18.65 9.31 83.73 167.76 28.74 6.49

SMSV+EMA5 with AD3 17.97 19.68 9.34 94.00 198.00 26.94 6.11

EMA6 10.52 18.92 9.96 62.17 118.14 28.85 7.57

SMSV+EMA6 12.55 20.08 11.32 69.05 122.51 34.22 7.72

SMSV+EMA6 with AD1 17.08 18.73 9.01 93.72 194.84 23.07 5.72

SMSV+EMA6 with AD2 15.99 18.42 8.93 89.85 185.40 24.97 5.95

SMSV+EMA6 with AD3 17.04 19.10 9.02 92.02 194.88 23.07 5.66

EMA7 10.49 18.81 9.75 62.25 120.09 26.19 7.03

SMSV+EMA7 12.62 20.26 11.42 68.90 122.25 34.22 7.82

SMSV+EMA7 with AD1 15.57 19.00 9.18 85.71 177.40 25.41 6.51

SMSV+EMA7 with AD2 16.61 18.20 8.59 93.67 198.54 25.78 6.10

SMSV+EMA7 with AD3 16.97 19.32 9.17 90.86 191.40 23.07 5.87

EMA8 12.46 19.39 10.06 70.18 135.32 25.15 6.74

SMSV+EMA8 14.93 21.22 11.68 76.37 138.70 34.40 7.02

SMSV+EMA8 with AD1 18.64 20.02 9.51 95.57 201.24 23.96 5.75

SMSV+EMA8 with AD2 22.63 19.16 8.36 116.48 266.90 22.78 5.01

SMSV+EMA8 with AD3 18.32 20.06 9.51 94.04 198.27 23.96 5.86

EMA9 12.08 20.15 11.18 66.67 120.16 30.09 7.58

SMSV+EMA9 12.08 22.21 13.25 62.62 104.92 44.39 9.05

SMSV+EMA9 with AD1 18.00 20.00 9.52 92.91 195.22 23.03 6.18

SMSV+EMA9 with AD2 17.92 17.75 8.55 102.07 211.74 27.38 5.80

SMSV+EMA9 with AD3 18.12 20.02 9.52 93.31 196.31 23.03 6.18

SMSV+EMASO 13.73 20.86 12.89 72.45 117.26 47.55 10.43

SMSV+EMASO with AD1 15.42 19.61 11.11 83.18 146.80 40.36 10.60

SMSV+EMASO with AD2 13.92 18.75 10.66 79.07 139.02 40.41 9.75

SMSV+EMASO with AD3 17.68 20.05 11.12 91.56 165.16 39.08 8.13

EMA1-9 10.54 19.38 10.52 61.32 112.93 31.40 8.71

SMSV+EMA1-9 13.88 20.33 11.53 74.26 131.00 36.59 7.93

SMSV+EMA1-9 with AD1 17.70 19.40 9.39 93.86 194.03 24.09 5.82

SMSV+EMA1-9 with AD2 19.38 19.84 9.65 99.44 204.56 24.92 5.75

SMSV+EMA1-9 with AD3 18.55 19.44 9.39 97.47 201.76 25.84 5.73

SMSV+EMA1-9 with ADmix1 18.27 19.75 9.69 95.01 193.73 26.50 5.96

SMSV+EMA1-9 with ADmix2 17.48 19.44 9.41 92.74 191.64 25.84 6.17

SMSV+EMA1-9 with ADmix3 18.46 19.41 9.39 97.22 200.90 25.84 5.73
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Table 5: Investment Performances of multi-Bang-Bang strategy

Compound Standard Downside Sharpe Sortino Maximum Average

return(%) deviation(%) deviation(%) ratios(%) ratios(%) drawdown(%) drawdown(%)

SMSV 4.74 25.30 17.16 31.44 46.35 62.21 21.64

SMSV with AD1 3.26 25.79 18.18 26.14 37.09 64.71 27.19

SMSV with AD2 9.86 14.97 5.82 69.85 179.81 22.05 2.48

SMSV with AD3 4.90 25.77 17.72 32.22 46.86 64.71 24.30

EMA1 5.02 21.24 13.63 33.63 52.41 34.39 13.13

SMSV+EMA1 4.80 20.47 13.22 33.09 51.25 38.57 15.59

SMSV+EMA1 with AD1 2.82 20.53 13.42 23.73 36.31 47.76 21.92

SMSV+EMA1 with AD2 2.69 20.51 13.46 23.10 35.21 46.11 22.06

SMSV+EMA1 with AD3 5.75 20.76 13.20 37.27 58.64 42.57 18.08

EMA2 4.19 20.29 12.90 30.26 47.61 33.01 12.97

SMSV+EMA2 10.49 19.27 11.33 61.41 104.43 33.01 9.18

SMSV+EMA2 with AD1 7.63 18.74 11.33 48.56 80.35 41.57 14.89

SMSV+EMA2 with AD2 10.95 18.52 10.39 65.36 116.48 36.60 10.60

SMSV+EMA2 with AD3 11.18 19.59 11.33 63.93 110.53 35.96 9.68

EMA3 9.14 18.98 10.97 55.49 96.01 34.56 10.81

SMSV+EMA3 10.66 19.08 10.97 62.64 108.98 34.56 10.58

SMSV+EMA3 with AD1 13.74 19.04 10.50 77.24 140.11 31.89 9.55

SMSV+EMA3 with AD2 14.40 18.34 9.79 82.67 154.94 32.57 8.88

SMSV+EMA3 with AD3 13.66 19.37 10.82 75.92 135.83 33.68 9.79

EMA4 12.01 20.01 11.16 66.67 119.56 38.44 9.61

SMSV+EMA4 14.90 19.11 9.38 82.27 167.57 21.30 6.82

SMSV+EMA4 with AD1 15.25 18.55 9.20 85.88 173.24 21.30 6.68

SMSV+EMA4 with AD2 15.49 17.52 8.41 91.09 189.69 22.97 6.02

SMSV+EMA4 with AD3 17.79 19.32 9.19 94.56 198.68 21.30 6.24

EMA5 12.89 18.59 9.08 74.43 152.30 21.30 6.40

SMSV+EMA5 12.95 18.51 8.97 74.94 154.70 21.30 6.20

SMSV+EMA5 with AD1 15.41 18.36 8.76 87.32 183.07 21.30 6.12

SMSV+EMA5 with AD2 15.79 17.55 8.20 92.41 197.92 25.27 6.49

SMSV+EMA5 with AD3 17.61 19.14 8.76 94.43 206.38 21.30 5.59

EMA6 10.52 18.92 9.96 62.17 118.14 28.85 7.57

SMSV+EMA6 10.97 18.74 9.65 64.77 125.80 26.19 6.99

SMSV+EMA6 with AD1 13.70 18.62 9.46 78.28 154.07 26.12 6.46

SMSV+EMA6 with AD2 14.56 17.75 8.77 85.55 173.15 29.78 6.82

SMSV+EMA6 with AD3 13.64 18.99 9.47 76.77 153.94 26.05 6.34

EMA7 10.49 18.81 9.75 62.25 120.09 26.19 7.03

SMSV+EMA7 10.01 19.13 10.09 59.27 112.42 32.85 8.67

SMSV+EMA7 with AD1 11.98 19.09 9.93 68.73 132.09 35.47 8.72

SMSV+EMA7 with AD2 12.77 17.99 9.20 75.80 148.22 36.33 8.91

SMSV+EMA7 with AD3 12.52 19.41 9.94 70.38 137.51 32.71 8.16

EMA8 12.46 19.39 10.06 70.18 135.32 25.15 6.74

SMSV+EMA8 12.39 19.37 10.05 69.90 134.67 25.15 6.70

SMSV+EMA8 with AD1 14.42 19.32 9.90 79.42 154.99 25.66 6.03

SMSV+EMA8 with AD2 21.06 18.98 8.39 110.55 250.10 26.55 4.81

SMSV+EMA8 with AD3 13.92 19.36 9.92 76.97 150.28 25.66 6.33

EMA9 12.08 20.15 11.18 66.67 120.16 30.09 7.58

SMSV+EMA9 12.08 20.15 11.18 66.67 120.16 30.09 7.58

SMSV+EMA9 with AD1 16.93 19.00 9.08 91.92 192.37 21.85 6.10

SMSV+EMA9 with AD2 17.32 17.80 8.97 99.00 196.32 31.15 6.69

SMSV+EMA9 with AD3 15.58 19.11 9.26 85.36 176.23 21.85 6.29

SMSV+EMASO 10.59 19.30 11.36 61.82 105.00 42.09 16.94

SMSV+EMASO with AD1 12.48 19.53 11.26 70.05 121.49 46.40 18.65

SMSV+EMASO with AD2 11.52 17.89 10.27 69.99 121.86 42.74 12.97

SMSV+EMASO with AD3 13.11 19.60 11.27 72.74 126.53 42.67 16.36

EMA1-9 10.54 19.38 10.52 61.32 112.93 31.40 8.71

SMSV+EMA1-9 11.14 19.51 10.54 63.79 118.08 32.98 9.05

SMSV+EMA1-9 with AD1 13.13 19.99 10.70 71.70 133.89 34.19 8.99

SMSV+EMA1-9 with AD2 17.05 20.40 10.73 87.55 166.37 34.19 8.24

SMSV+EMA1-9 with AD3 12.65 20.09 10.83 69.29 128.54 38.44 10.02

SMSV+EMA1-9 with ADmix1 15.81 20.30 10.76 82.55 155.73 36.35 8.73

SMSV+EMA1-9 with ADmix2 12.92 20.02 10.72 70.68 131.96 35.70 9.41

SMSV+EMA1-9 with ADmix3 12.56 20.06 10.83 69.00 127.78 38.44 10.02
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