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Abstract

In this paper, we study a class of Anticipated Backward Stochastic Differential Equa-
tions (ABSDE) with jumps. The solution of the ABSDE is a triple (Y, Z,1) where Y
is a semimartingale, and (Z,v) are the diffusion and jump coefficients. We allow the
driver of the ABSDE to have linear growth on the uniform norm of Y’s future paths, as
well as quadratic and exponential growth on the spot values of (Z,1)), respectively. The
existence of the unique solution is proved for Markovian and non-Markovian settings with
different structural assumptions on the driver. In the former case, some regularities on
(Z,) with respect to the forward process are also obtained.

Keywords : predictive mean-field type, time-advanced, quadratic growth, future path de-
pendent driver, ABSDE

1 Introduction

As a powerful probabilistic tool to analyze general control problems, non-linear partial dif-
ferential equations as well as many newly appeared financial problems, backward stochastic
differential equations (BSDEs) have attracted strong research interests since the pioneering
works of Bismut (1973) [5] and Pardoux & Peng (1990) [24].

Recently, Peng & Yang (2009) [26] introduced a new class, so-called anticipated (or time-
advanced) BSDEs, where the drivers are dependent on the conditional expectations of the
future paths of the solutions. They originally appeared as adjoint processes when dealing
with optimal control problems on delayed systems. Since then various generalizations have
been studied by many authors: Oksendal et al. (2011) [22] dealt with a control problem on
delayed systems with jumps, Pamen (2015) [23] a stochastic differential game with delay, Xu
(2011) [31], Yang & Elliott (2013) [30] studied some generalizations and conditions for the
comparison principle to hold. Jeanblac et al. (2016) [14] studied anticipated BSDEs under
a setting of progressive enlargement of filtration. The importance of anticipated BSDEs for
financial applications is likely to grow in the coming years because of the set of new regulations
(in particular, the margin rule on the independent amount). They require the financial firms
to adjust the collateral (or capital) amount based on the expected future maximum loss,
exposure or the variability of the mark-to-market, which naturally makes the drivers of the
pricing BSDEs dependent on the expected future paths of the portfolio values.
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In this paper, we are interested in anticipated BSDEs with jumps and quadratic-exponential
growth drivers. Although the properties of Lipschitz ABSDEs have been well established,
the ABSDEs with quadratic growth generators have not yet appeared in the literature. We
are interested in anticipated BSDEs with jumps of the following form:

Vet [ B (0 i Yir = [ 2w [ [ otana

where the driver f(t,) is allowed to have linear growth in sup,c, 77 |Ys|, quadratic in Z; and
exponential growth in the jump coefficients ;.

For the (non-anticipated) BSDEs with quadratic growth drivers, the first breakthrough
was made by Kobylanski (2000) [18] and then followed by many authors. In the presence of
jumps, in particular, they were studied by Becherer (2006) [4], Morlais (2010) [20], Ngoupeyou
(2010) [21], Cohen & Elliott (2015) [6], Kazi-Tani et al. (2015) [17], Antonelli & Mancini
(2016) [1], El Karoui et al. (2016) [8] and Fujii & Takahashi (2015) [12] with varying gen-
erality. An important common tool is the so called Ar-condition [2, 29] necessary to make
the comparison principle to hold in the presence of jumps, which is then used to create a
monotone sequence of regularized BSDEs.

Although Ap-condition is known to hold for the setting of exponential utility optimiza-
tion [20], it is rather restrictive, and in fact, stronger than the local Lipschitz continuity.
Furthermore, in the anticipated settings, the comparison principle does not hold generally
even when the Ap-condition is satisfied. Although the fixed point approach [6, 17] does not
rely on the comparison principle at least for small terminal values, it requires the second-order
differentiability of the driver which is difficult to establish in the presence of the general path
dependence.

In this paper, we firstly extend the quadratic-exponential structure condition of [3, 8] to
allow the dependence on Y’s future paths, and then derive the universal bounds on (Y, Z, )
under a general bounded terminal condition. This bounds are then used to prove a stability
result under a general non-Markovian setting. Under the Markovian setting, this stability re-
sult leads to the compactness result for the deterministic map defined by u(t, z) = Ytt’x, which
then allows us to prove the existence of the solution in the absence of the Apr-condition. It also
provides some regularities on (Z, ) with respect to the forward process. As a by product, it
makes the Ar-condition unnecessary for the existence, uniqueness and Malliavin’s differentia-
bility of quadratic-exponential growth (non-anticipated) BSDEs under the Markovian setting
studied in Section 6 of [12]. For a non-Markovian setting, we reintroduce the Ar-condition
and make use of our previous result in [12] to prove the existence of the unique solution. We
also give a sufficient condition for the comparison principle to hold.

2 Preliminaries

2.1 General Setting

Let us first state the general setting to be used throughout the paper. T' > 0 is some bounded
time horizon. The space (Qw,Fw,Pw) is the usual canonical space for a d-dimensional
Brownian motion equipped with the Wiener measure Py,. We also denote (€, F,,P,) as a
product of canonical spaces 2, := Qi X oee X QZ, Fu = .7-"; X oee X .7-"5 and IP’}L X oee X Pﬁ
with some constant & € N, on which each p* is a Poisson measure with a compensator
v'(de)dt. Here, v'(de) is a o-finite measure on Ry = R\ {0} satisfying Jro le|?vi(de) < oc.
For notational simplicity, we write (E,&) := (RE, B(Rg)*). Throughout the paper, we work
on the filtered probability space (2, F,F = (Ft)icp0,1],P), where the space (Q, F,P) is the



product of the canonical spaces (Q x ,, Fiy x F,,,Pw x P,), and that the filtration F =
(ft)te[o,T] is the canonical filtration completed for P and satisfying the usual conditions. In
this construction, (W, u!,--- , u¥) are independent. We use a vector notation u(w,dt,de) :=
(p'(w,dt,del),--- | ¥ (w,dt,de”)) and denote the compensated Poisson measure as fi := p—v.
F-predictable o-field on © x [0, 7] is denoted by P. It is well-known that the weak property
of predictable representation holds in this setup (see for example [13] chapter XIII).

2.2 Notation

We denote a generic constant by C which may change line by line. We write C' = C(a, b, ¢, - --)
when the constant depends only on the parameters (a,b,c,---). T& denotes the set of F-
stopping times 7 : Q@ — [s,t]. We denote the conditional expectation with respect to F;
by Ex,[-] or E[-|F]. Under a probability measure Q different from P, we explicitly denote
it, for example, by IE(% []. Sometimes we use the abbreviations ||z := sup,c[s 4 |Zv| and
Oy = (YL; Zy, 1/’11)
For (p > 2), we introduce the following spaces.
e SP[s, 1] is the set of real (or vector) valued cadlag [F-adapted processes (X, ),e[s such that

3=

1 X]lsp(s, = E[ sup |X,["]
vE|s,t]

< 00.

e §°[s, t] is the set of real (or vector) valued cadlag F-adapted processes (Xy),c[s Which are
essentially bounded, i.e.
1 X lsoofs, = || sup | Xol|| < o0.
vE[s,t]

Here, [[2]|0 := inf{c € R ; P({Jz| < c}) =1},
e HP[s, ] is the set of progressively measurable real (or vector) valued processes (Zv)ye[&t}
such that

12l = B[( [ 1200) ] <o

e L2(E,v) (or simply L?(v)) is the set of k-dimensional vector-valued functions ¥ = (¥%)1<;<y
for which the each component ¥’ : Ry — R is B(R")-measurable and

k 1
HT/JH]L?(E,V) = (Z/ |1,[Ji(€)|2l/i(d6))2 < 00.
i=1 7 Ro

o L®°(E,v) (or simply L>(v)) is the set of functions ¢ = (¢")1<;<x for which the each
component ¥° : Ry — R is B(R?)-measurable and bounded v(de)-a.e. with the standard
essential supremum norm.

e JP[s,t] is the set of functions ¥ = (¢')1<;<x with ¢° : Q X [s,#] x Ry — R being P @ B(Ro)-
measurable (or we simply say ¢ is P ® E-measurable) and satisfy

follo = E[( [ [ Wiopvem)F]? <oo
i—17s JRo

e J*[s,1] is the set of P ® E-measurable functions ¥ = (¥*);<;<x such that

19]]5oe (s, = || 5D |90l lLoo ()] | o < 005
vE[s,t]



i.e. essentially bounded.
For notational simplicity, hereafter we write

//wr fi(de, dr) := Z//W "(dr, de)

and use similar abbreviations for the integrations with respect to (u,v) = (u!, v")1<i<k-
e We denote KP[s,t| = SP[s, t| x HP[s, t] x JP[s, t] with the norm

||(Y7 Z, w)HICP[s,t] = HYHSP[s,ﬂ + HZ”HP[s,ﬂ + ||w||u]]p[s,t]'

e H%,,ols, 1] is the set of real (or vector) valued progressively measurable processes (Zv)vels
such that

12112,

molsit

t
| 1= sup HE;T {/ |Zr|2dr] H < 0.
TETE T o0

e J%[s,t] is the set of P ® E-measurable functions such that

H@b’ﬁ%[s,t} = TSS%HIEJ_-T [/Tt/E\Qﬁr(e)’zy(de)dr} HOO < 0.

e J%,10l5,1] is the set of P ® £-measurable functions such that

L [ [ [ wearpviacar) + @ay?]| <o

where AM; := [ - (e)u({r}, de). Note that we have
012 g VA0 ) < AR o < 1012 g I

e D[s, t] is the set of real valued cadlag functions (g, )yels,g-
We frequently omit [s, ¢] if it is obvious from the context.

3 A priori estimates

3.1 Universal bounds

In this section, we consider various a priori estimates regarding anticipated quadratic-exponential
growth BSDEs with jumps in a general non-Markovian setup. We are interested in the fol-
lowing ABSDE for ¢ € [0,77:

Yt:u/tTEﬂf( (v, >ve[rT],Yr,Zr,wr)dr—/t ZydW, - //w fi(dr,de), (3.1)

where f: Qx [0,7] x D[0,T] x R x R™? x L2(E,v) — R, and ¢ is an Fr-measurable random
variable.

Assumption 3.1. (i) The driver f is a map such that for every (y, z,v) € RxR>IxL2(E,v)
and any cadlag F-adapted process (Yy)uelo,r), the process (E]:tf(t, (Yo)velt, 1), ¥, 2:9),t €
[O,T]) is F-progressively measurable, and the map (y, z,v) — f(-,y, z,) is continuous.

(ii) For every (q,y,z,v) € D0, T] x R x RY*¥ x L2(E, v), there exist constants 3,6 > 0,y > 0



and a positive progressively measurable process (1,,v € [0,T)) such that

_lt - 6( sup ’(ZUD - B|y’ - %|Z’2 - /;j’y(_d](e))y(de) < f(t7 (qv)ve[t,T]ayaz71/))

velt,T]

<t 8( sup [al) + Blyl+ 1P + [ (wle)wide)
E

velt,T|

dP ® dt-a.e. (w,t) € Qx [0,T], where j(u) = %(e'yu 11— ).
(i) ||€]] oo, [[1] s < 00

Lemma 3.1. Under Assumption 3.1, if there exists a bounded solution (Y, Z,1) € S® x H? x
J? to the ABSDE (5.1), then Z € H%,,5 and ¢ € J%,,0 (hence 1 € J®°) and they satisfy

, oAV lgo0
1211, < g (1+ 2T [Wlls= + (5 + 5|V lls=]),

BMO

, AIY [lge ,
WA < g (2 + 4T [l 4+ (8 + )Y fls=]) + 41 |~

Proof. 1t follows from Lemma 3.1 [12] by a simple replacement ||I||se with ||I||sec 4 ||Y||geo.
One also needs the fact that \|¢|]§2 < \|1/)|]§2 + |[¥] 3 and |[¢]|5ee < 2[|Y|[goe. O
BMO B

Lemma 3.2. Under Assumption 3.1, if there exists a bounded solution (Y, Z,1) € S® x H? x
J? to the ABSDE (3.1), then' Y has the following estimate

1¥]ls== < exp(T (8 + ") ) (lllloe + Tllls=) -
Proof. Applying Mayer-Ito formula, one obtains
d(eV,]) = % (BIVi]ds + sign(V,)dY, + dLy).

Here, (Ls) sefo,7) 1s a non-decreasing process including a local time L¢ as

dL, = dL° + /E (15~ + ws(e)] = [Yer | = sign(Ya- )(e) ) u(ds,de)

Note that |y + ¢| — |y| — sign(y)y = |y + ¢| — sign(y)(y + ) > 0. Let us introduce the
following non-decreasing processes (Bs)sejo,r) and (Cs)sejo,r) by

dBs = —SigH(Y;)Efsf(S, (YU)’UG[S,T]7 @S)ds
—I—(ls + 5IE}-S( sup |YU\) + B|Ys| + %|Zs‘2 _|_/ jv(sign(}/'s)ws(e))u(de»ds ,
ve[s,T] E

dCs = eP(dB,+dLs) + %(62/38 — ¢P%)|Z,|2ds
+ / (5 (™ sign (Vo) (€)) — ™ (sign (Y ) () ) v(de)ds
E

Notice that for k > 1, j,(ku) — kj,(u) = %(el‘”“ — ke’ —1+4k) > 0, and thus the last line is



non-decreasing. One then sees

d(e’Bs|Ys\ +/ e’ (I, + 6Ex, ( sup |Yv]))dr> = eﬁssign(Ys_)<stWs +/ ws(e)ﬁ(ds,de))
0 ve(r,T) E

- / iy (Psign(Va)ibs(e)) v(de)ds — g|eﬂssign(YS)ZS\2ds+dCs .
E
We now investigate the process P, t € [0, 7] defined by

t
P, = exp(7e”!|Yi| + / " (I + 0Bz, ( sup [V,]))dr). te[0.T],
0 ve[r,T]

where P € S is clearly seen. Applying Ito formula, one obtains

t 2
dP; = Pt_fyd(eﬁt\Yﬂ + / efr (I + 6Ex, sup \Yv|)dr) + Pt%|eﬁtsign(Yt)Zt|2dt
0 ve[r,T|

+P / (evem(m*J“W(e)'_'Y‘*') -1- veﬁtsign(ﬁ_)wt(e))u(dt, de)
E
— P (yeﬁtsign(Yt)thWt + / <exp(7€ﬁtsign(n,)¢t(e)) - 1)ﬁ(dt, de) + dc;) ,
E
where (CY) se[o,7] s another non-decreasing process defined by

dC{ = ~dC, + / ) )

E

Since (P,Y, Z,v) € S® xS® xH%,,, XJ% 170, one sees the process P is a true submartingale.
Therefore, it follows that, for any ¢ € [0, 77,

exp (76‘”%!) < Eg

T
exp (e lel +7 [ € (1 + 6B, sup [, ])r)
t ve[r,T]

IN

T
exp (167 (11¢lloo + Tlils) + 73e"T / Y| [soofrz) dr) as.

T
Thus, |Y;| < e®T(||¢]|se + T|1]|s~) + 56’8T/ Y ||gee(r,7) dr a.s. Since the right-hand side is

t
non-increasing in ¢, the same inequality holds with the left-hand side replaced by sup¢p; 77 Vs|-
Hence equivalently,

T
1Y llsoepe,ry < €T (€] loo + Tllso) +5eﬁT/t 1Y [lgooprry dr -

Now the backward Gronwall inequality (see, for example, Corollary 6.61 [25]), one obtains
the desired result. O
As a result of Lemmas 3.1 and 3.2, one sees the norms of ||Y||se, ||Z]|g2. ,|[¥][52
BMO BMO
are solely controlled by the set of parameters A := (||¢||c0, ||l||s>,0, 5,7, T). In the next

subsection, we introduce the local Lipschitz continuity.



3.2 Stability and Uniqueness

Assumption 3.2. For each M > 0, and for every (q,y,z,v), (¢,vy',2',¢'") € D[0,T] x R x

R L2(E, v) satisfying supyefo 1) 1ol supuepory labls [yl 191, (181l ), 10l < M,
there exists some positive constant Ky (depending on M) such that

’f<t7 (QU)UE[t,T]u Y, 2, ¢) - f(ta (q'/u)ve[t,T]7y,7 Z,u 1/),)‘

< K (sup lgo—ail + 1y — o/ + I = ¥'llz))
ve(t,T]

+Eu (14 [2] + 12+ 1912 + ¢ l2w) 2 = 7/ (3-2)
dP @ dt-a.e. (w,t) € Qx1[0,T].

Let us introduce the two ABSDEs for ¢ € [0, T, with ¢ = {1, 2},

vi=¢+ /tTEfrfi(MYJ)ve[r,ﬂ, Z0)dr — /t Zidw, - / [ vieritar.de). 33)

Let us put §Y =Y — Y2, 67 := 21 — 22,6¢) := ¢! — 92, and

(5f(7“) = (fl - fz)(ra (}/v )vG[TT Yl Zl ¢r) .
Then, we have the following stability result.

Proposition 3.1. Suppose that the data (€%, f')1<i<o satisfy Assumptions 3.1 and 3.2. If
the two ABSDEs (3.8) have bounded solutions (Y, Z',1%)1<i<2 € S® x H? x J?, then for any
D > 2q.

197 o < Co[jsep + ([ B lorelar)”] (3.4)

and for any p > 2,q = qx

=2

T 1
1(5Y,52.60)|| o017 < CoE |18 + ( /0 Exlf(r)lar)™ |7 (35)

where g, € (1,00) is a constant depending only on (K.,A), C1 = C(p,K.,A) and Cy =
(p, q, K., A) are two positive constants.

Proof. Note that one can apply (3.2) globally with fixed K3 by choosing M larger than the
bounds implied from Lemmas 3.1 and 3.2. Let fix such an M in the reminder. Define the
R-valued progressively measurable process (b, € [0,T]) by

Ex, [f2(ra (Y;Jl)ve[r,T] Yl Zl ¢ ) f2( ( U)’UE[T‘,T]?K‘]-?Z’E?w’})]

by 1=
|02, |2

152,007,

Since |b,| < Kn(1+ |2} + |22 + 2|]¢;\]i2(y)), there exists some constant C such that
HbHHz < C with C' = C(K., A). Thus one can define an equivalent probability measure Q

by fl(% = ET( Jo bl dW;.) where &(-) is Doléans-Dade exponential We have W =W — [ bdr
and the Poisson measure is unchanged, u@ Ji. We also have 4 @ ( fo deWQ). From
Remark A.1, there exists some constant r* € (1,00) such that the reverse Holder inequality
holds for both of the &.(f; b, dW;) and &.(— [, b, dW,2) with power 7 € (1,7*]. Define ¢, > 1

by g, :=7*/(r* —1). Note that (r*,g.) are solely controlled by (K., A).



Under the measure QQ, we have

T
= b6+ [ Br (80 + L0 oe V1 Z200) = P (e, V2 220 | ar

—/tTézrdW,@—/ /5% Udr, de), t € [0,T].

Stability for Y] Applying Ito formula to §Y2, one obtains
[ y pplying ,

T T
’(5Yt’2+/t \5ZT]2dr—|—/t /E\éwr(e)]zu(dr,de)

T
= |5§‘2 + / 26Y;”Efr |:($f(7‘) + f2 (T, (Y:vl)ve[r,T]a }/7“17 ng 1/}7%) - f2 (7’, (K?)vE[r,T]v Y;?a Z1%7 "‘PZ)] dr

t

T T
- / 20Y,0 Z,dW2 — / / 20Y,_ 69, (e) i (dr, de) .
t t E

The last two terms are true Q-martingales, which can be checked by reverse Holder and
energy inequalities. By taking conditional expectation IE(% [-], one obtains with any A > 0

T T T
6Y? + EZ / \Z, dr + EZ / 169,22, dr < CES / Ex, 6|12, 7] dr

B [5eP + ([ Brl5(r)lr)’ + AoY )2 L0 (1500l 2o d
51062+ () BIoflar) 4 X6V Ifa] + 5B, [ 160rl o

with some positive constant C = C(K.,A). Here we have used the fact that [§Y;| <
Ez, [/0Y |/jr77]- Therefore, in particular,

§Y;2 < EQ ||5¢)? 1 TIE 5 d ? NI 4IF C TE SY|2 mld
0Y:] < EF, |[6¢] +3 FoASS(r)ldr ) + All6Y [ 7 + t 7 U10Y |y dr

t

_ 1 2 1 T 2 2 T 2
= 2Ex, [sT(wa +( / Ez, |8/ (r)ldr)” + MaY |3 7y + C / Ez, [118Y [, z1]dr)

where & := Es(fd b dW,). Choosing § € [g«, 00), the reverse Holder inequality yields

(3.6)

_ _ 1 T 27 T
Yi[27 < CEy, [\5§|2q+_(/t Bz, |5 f(r)]dr) +(/t B, [18Y |7y ]dr) "+ ATllov |20,

£\

q

- 1
< B [l + ([ Enloroar) [ oy Ryar + M1
t

with some C = C(q, K., A), where in the 2nd line Jensen’s inequality was used. For any
p > 24, applying Doob’s maximal inequality, one obtains

E[|8Y 1}, 1] < CE @w + ;(/STEmaf(rndr)p} - C/STE 1817 | dr + CASE I8V |1, 1

with C = C(p,q, K., A). Choosing A > 0 small enough so that CA\5 < 1, the backward
Gronwall inequality implies

EL:E% \mﬂ < CE[|5§]P ¥ (/STE;T|5f(r)|dr)p}, Vs e [0,7] .



One sees the last inequality holds for any p > 2¢.. This proves (3.4). Since 1 < ¢, < @, it
also follows that

52 1

} ' (3.7)

1

E[t:,[%%]yamp} <EL:E3pT]|5mpq}§2 CE[](S§|pq2+(/OTIE]:J(Sf(r)]dr)pq

with C = C(p,q, K., A) for any p > 2.

[Stability for Z and | From (3.6), one has with C' = C(K., A),

T T
]6Yt|2+/t |5ZT|2dT+/t /E|5¢r(e)\zy(dr,de)

T 9 T
<16+ ([ Brlosmlar) +116Y 1 +C [ Er VI pldr
T T T
+C / |0 |[6¢r |2, dr — / 20Y,6 Z,dW 2 — / / 20Y,_ 8¢, (e) % (dr, de) .
t t t E

For any p > 2, applying Burkholder-Davis-Gundy inequality' and Lemma A.3, one can show
that there exists some constant C' = C(p, K., A) such that

E@[(/ 162, | dr) }JrE@ /OT/ \5¢T(e)]2u(dr,de))

T
< CE®|j¢l + ( / B, |5f(r)ldr)” + sup B 157y + 15 o] -
re

p
2

Taking ¢ > ¢, the reverse Holder and Doob’s maximal inequalities give

p

EQ [(/ ]5ZT|2dr)g};+E@[(/OT/ |5¢T(e)|2u(dr,de))2}'l’

T L
SCE[](SQP‘Z </o E;T,](Sf(r)]dr> + sup]Efr[HdYH[oT] —i—H(SYH[OT]pq

rel0,T
_ T Pq »
< CB[lsep+ ([ Erlorlar)” + 16V ]

The reverse Holder inequality implies || Z |z + |[¢][;r < C(||Z||mra(q) + |[¢]|gpa(q)). Thus the
estimate of (3.7) and Lemma A.3 give

52

_ T Pq %
16Y Il -+ 1152l + 15010 < CE[8 + ([ B l55lar)™ |
0
for any p > 2 and ¢ > ¢, with some positive constant C = C(p,q, K., A). O

We also have the following relation.

Lemma 3.3. Under the same conditions used in Proposition 3.1, one has

1022

BMO

T
1189l < OIS Nl +118€l1 + sup || [ 155)1ar]| )
el s o

with some positive constant C = C(K., A).
!See, for example, Theorem 48 in IV.4. of [27].




Proof. Tt follows from a simple modification of Lemma 3.3 (a) of [12]. O

Combining the results in this section, we obtain the uniqueness.

Corollary 3.1. Under Assumptions 3.1 and 3.2, if the ABSDE (3.1) has a bounded solution
(Y, Z,4) € S® x H? x J?, then it is unique with respect to the norm S x HQBMO X JzBMO'

Proof. Proposition 3.1 implies the uniqueness of Y in SP, Vp > 2, in particular. This also
implies the uniqueness with respect to S*. If not, there exists some ¢ > 0 such that ||dY||ge =
¢, which implies for any 0 < b < ¢, there exists a strictly positive constant ¢ > 0 such that
P(supyepo 11 [0Y:| > b) = a. This yields [[0Y|[g, > bPa > 0, which is a contradiction. Thus the
assertion follows from Proposition 3.1 and Lemma 3.3. O

4 Existence in a Markovian Setup

Let us now provide the existence result for a Markovian setting. We introduce the following
forward process, for s € [0, T,

sVt sVt sVt
Xte :x+/ b(r,Xﬁ’m)err/ o(r, Xf.’r)dWrJr/ /V(T, X0 e)pi(dr,de)  (4.1)
t t t E

where z € R" and b : [0,T] x R" - R", 0 : [0,T] x R" — R¥4 ~ 0, T] x R" x E — Rnxk
are non-random measurable functions. Note that Xﬁ’z =g for s < t.

Assumption 4.1. There exists a positive constant K such that
(i) [b(t,0)| + |o(t,0)| < K uniformly in t € [0,T7].

(ii) 8 |4i(t,0,e)| < K(1 A le]) uniformly in (t,e) € [0,T] x Rg.
(111) uniformly in t € [0, T],z,2' € R" e € Ry,

|b(t,(1}) - b(t,(]}l)’ + |0'(t,(1}) - U(ta .CC/)| < K|$ - l./’a
k

St x,e) — vt al o) < K(LA ez — o] .
=1

The following estimates are standard.

Lemma 4.1. Under Assumption 4.1, there exists a unique solution to (4.1) for each (t,x)
which satisfies for any (t,x),(t,2’) € [0,T] x R™ and p > 2,

() E[ sup |XL7) < C(1+ o)
-s€[0,T

() E[  sup x0T XL < C(1L+ Jal?)h
-s,u€[0,T],|s—ul<h

© E| suwp X0 = X7 < Ofla =P+ (14 [l VIl - ¢
~se|0,

with some constant C = C(p, K, T).

t,x

We are interested in the Markovian anticipated BSDE associated with (Xv™")yefo0,17:

T
Y;t7x - g(X%z) + / 17"ZtE.7'—rf<T7 Xﬁ,x’ (}/X’I)UE[T,T}ant7x7 Z1€7x7 w?w)dr

s

-/ " graw, - / ' [ vt etar.de). (42)

S
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where f: [0,7] x R" x D[0,T] x R x R4 x L2(E,v) — R and £ : R* — R are non-random
measurable functions. Note that (Y3*, Z&®, ¢5") = (Y}"",0,0) for s < t.

Assumption 4.2. (i) The driver f is a map such that for every (z,y, z,v) € R® x R x R*¥ x
L2(E,v) and any cadlag F-adapted process (Yy)wvelo,1), the process (Ex f(t,z, (Yo)velt, 1), Y» 2,9), T €
[0, T]) is F-progressively measurable.

(ii)For every (x,q,y, z,%) € R*xD[0, T] x R x R4 xIL2(E, v), there exist constants 3,5 > 0,

~v >0 and a positive non-random function 1 : [0,T] — R such that

_lt - 6( sup ‘qUD - /8|y’ - %|Z‘2 - /Ej’y(_w(e))y(de) < f(t,l‘, (‘Jv)ve[t,T]a%Zﬂ/J)

velt,T]

<t 3( sup [af) + Blyl + 31 + [ (wlew(de)
veElt,T| E

dt-a.e. t € [0,T], where j(u) = %(67“ —1—u).

(i) [|€()loos  sUPyefo)(le) < 00

Assumption 4.3. (i)For each M > 0, and for every (z,q,y,z,v), (', ¢y, 2/,¢") € R" x

D[0, T|xRxR™IXL2(E, v) satisfying ly|, |y'], 1¥||Loe vy, 111"l ), SUPueio 71 |90] SUPyefo 77 lay] <
M, there exist some positive constants Ky (depending on M) and K¢ > 0,p >0, a € (0,1]
such that

‘f(ta €T, (%)ve[t,T]aya = lb) - f(ta z, (q;)ve[t,T]a .7/7 Zlv 1/1I)‘

< K (sup lgo—ail+ 1y — o/ + I = ¥'llz )
ve(t,T]

+KM(1 + l2] + 12 + |W||1L2(u) + HWHLZ(V)HZ -2,
|f(ta xZ, (qv)vé[t,T]aya Z, TJZJ) - f(t; xla (QU)Ue[t7T],y, zZ, 1[))|
< Ky (14 [l2] v 12107 + 2 + 1912 |2 — 2|

and [§(x) — £(2)] < Kelw —a/|*.

Proposition 4.1. Under Assumptions 4.1, 4.2 and 4.8, suppose that there exists a bounded
solution (Y% Z6® t®) € §° x H2 x J? for each (t,x) € [0,T] x R*. Then the solution
is unique and (YH¥ ZH% pb%) € S§* x HQBMO X JQBMO with the norm solely controlled by
A= (|[€lloo, supteo,mle, 6, 8,7, T), which is, in particular, independent of (t,z) € [0,T] x R™.
Moreover, the deterministic map u : [0,T] x R™ — R defined by u(t,x) := Ytt’x satisfies for
any pair of (t,x),(t',2') € [0, T] x R",

ju(t,2) = u(t',2)] < (14 ol v 1)) (Jo = o)+ (1 [l v |2/ )%) ¢ — 2] )

with some constant C = C(a, p,p,q, K¢, K, K., A) for any p > 2 and q € [g«,00) such that
ap@® > 1, where ¢, > 1 is some constant determined by (K., A).

Proof. The first part follows from Lemmas 3.1, 3.2 and Corollary 3.1.
Let us assume ¢’ < ¢ without loss of any generality. Put §Y := Yt* — yt'e’,

(5f(7’) = 1r2tf<7', X7€7x7 <Y57x)ve[r,T]7 @i,x) - 1r2t’f<7'a Xﬁl’xlv (}/vt’x)ve[r,T]a @?CE)

= 17‘275 <f(7”, Xﬁ’xa (}/vt’m)vdhﬂ’ @i,:p) - f(rv Xil’mla (ﬁ’m)ve[ﬁﬂ’ ef"’x)>
_1t/§r§tf(7“, X1€,7$/a (Ytﬂ:)ve[r,T} ’ Y;t@) 0, O) )

v
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and 0§ = §(X§l$) — §(X;’w/). By Proposition 3.1, for any p > 2,4 € [gx, ),

1
lu(t,z) —u(t',2’)] < E[ sup ]Y;vx _ yst'w"p] P
s€[0,T]
a1

CE |66/ + (/OTIEfT|5f(r)]dr)pq |

IN

(4.3)

with C' = C(p,q, K., A). The universal bounds of Lemmas 3.1 and 3.2 imply that ||Y*%||s,
|| Z5% | g2 o |[ipt® , < C with some C' = C(A) uniformly in (¢,2). Thus one can apply

2
BM |‘HBJ\4

fixed K for the whole range provided M is chosen large enough. It follows that

E]:r|5f(r)’ < 1r2tKM <1 + UX?E’I’ V. ‘Xﬁl,x’”P + |Z£,x 2 + Hw:jng%‘Q(y)) ‘X}E’x B Xﬁlvxl‘o‘
b Locres(l+ SBR[V ) + AIYL)

and hence, using the boundedness of (Y%),

B[([ Enpproar)” ]

1
T 27 5.9
x ! x! 2ppg? x x 2pq” | 2va
< CB [L+ Xy 1 o] + ([ 1262+ 6 i)™ |

_1_
B[ = X0 ] et

From the energy inequality? for Z%* € H%,,,, ¥"* € J%,;0 and the standard continuity
result of Lemma 4.1, one can show the desired result straightforwardly. The contribution
from 0& can be computed similarly. O

Remark 4.1. Under the conditions of the above proposition, we have, for each s € [0,T],

t,x
yir = YSS’XS = u(s,Xﬁ’z) a.s. due to the uniqueness of solution Yb*. Furthermore, since
the function u s jointly continuous, u(s,Xﬁ’x)se[Qﬂ is cadlag F-adapted. Thus, Chapter 1,
Theorem 2 of [27] implies that Y& = u(s, X5") Vs € [0,T] a.s.

We now introduce a sequence of regularized anticipated BSDEs with m € N:
T
Ve — €O [ LB o X (V) Y, 20 40
S

T T
= [ zpemaw,— [ [ ureeptar.de) (4.4)
s s E
where f,, is defined by, ¥(r,z,q,y, z,1) € [0,T] x R x D[0,T] x R x R4 x L2(E, v),
fm (T) €z, (qS)UG[T,T} 'Y 2, @b) = f(rv &€, (SOM(qS))’UE[T,T}) @m(y)a gﬁm(Z), Som(q/) © Cm)) N (45)
Here, we have used a simple truncation function

—m  forz < —m
om(x) =1 = for |x| <m

m forx >m

2See, for example, (9.55) of Lemma 9.6.5 [7] and its proof.
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and a cutoff function 9 o (;m(€) := ¥(e)1|¢|>1/m, Which are applied component-wise for z, .

Lemma 4.2. Suppose that the driver f satisfies Assumptions 4.2 and 4.3. Then, (fm)men
also satisfy Assumptions 4.2 and 4.3 uniformly in m € N. Moreover, for each m € N, the
driver fn, is a.e. bounded and globally Lipschitz continuous with respect to (q,y,z,) in the
sense of Assumption B.1.

Proof. With |om(z)| < |z|, |em(z) — om(2’)| < |z — 2| and use the convexity of the function
Jv(+), the first claim is obvious. By denoting Cp, := maxi<p<1 f‘e‘>1/m v'(de) < oo, one sees
|fm| < supseioryle + (6 + B)m + Zdm? + kjy(m)Cp, a.e. by the structure condition. By

noticing the fact that

k
(W 0 Gl 22y < S m? /| vi(de) < km?Crn
=1

e|>1/m
the global Lipschitz continuity can be confirmed easily. O
We now provide our first main result.

Theorem 4.1. Under Assumptions 4.1, 4.2 and 4.3, there exists a unique solution (Y%, ZH% )t%) €
S*® x H%,,0 X 34,0 to the ABSDE (4.2) for each (t,x) € [0,T] x R™.

Proof. Since the uniqueness follows from Proposition 4.1, it suffices to prove the existence.
Due to the global Lipschitz continuity of f,,, Proposition B.1 implies that there exists a
unique solution (Y6 Zzmbx oymtey ¢ k2(0, T of (4.4). Since |£] and |f,,| are bounded, we
actually have Y% € S Therefore, Lemmas 4.2, 3.1 and 3.2 imply that there exists some
constant C' = C'(A) such that

m,t,x m,t,T m,t,x
V™, 2705 g [ty < C (46)
uniformly in (m,t,x) € N x [0, 7] x R™. Furthermore, Lemma 4.2 and Proposition 4.1 imply
that the deterministic map w,, : [0,7] x R” — R defined by u,(t,z) := Y;™"" satisfies the
local Hélder continuity uniformly in m with C' = C(«, p, p, ¢, K¢, K, K., A) such that

m(t,2) = um(t',2)] < € (14 [ v 1) (2 = 2|7+ (1 [ v )2 o — €177 )

From (4.6), it is also clear that sup,,>1 Sup( z)cjo,r1xrn [um(t, )| < C.

Let us now confirm the compactness result for (u,)men. By defining the compact set
K; with j € N by K; := [0,7] x B;j(R") C R""!| we have U2, K; = [0,7] x R™. Here,
Ej (R™) is a closed ball in R™ of radius j centered at the origin. Arzela-Ascoli theorem (see,
Section 10.1 [28]) tells that there exists a subsequence (m(!)) C (m) such that, JuV) € C(K;),
(u,,1)) converges uniformly to u® on K;. Since the sequence (u,,1)) is also bounded and
equicontinuous, there exists a further subsequence (m®) c (m(Y) such that, Ju® € C(Ky),
(u,,,(2) converges uniformly to u® on Ky. By construction, it is clear that u®|x, = u),
Continue the above procedures and construct a diagonal sequence as

(m(m)>m21 = {1 2@ ... 50

From Lemma 2 in Section 10.1 [28] implies that there exists a subsequence (m’) C (m(™)
and some function u : [0, 7] x R™ — R such that (u,,) converges to u pointwise on the whole
[0, T] x R™ space. Moreover, by the above construction of the sequence (m(m)), it follows that

13



the function is actually continuous u € C([0,T] x R™) to which (u,,/) converges uniformly to
any compact subset Kg.

In the reminder, we work on the sequence (m’) (and possibly its further subsequences).
Define the cadlag F-adapted process (V3 “)seo,r) by Y7 = u(s, X2, V(w,s) € Qx[0,T].
Using the uniform boundedness of (u,,/,u) and Chebyshev’s inequality, one obtains

1—Hx|)j

"t t, t, t,@y |P
HYm oY ngp = E[ Sup ‘um/(s’X‘s 37) N U(S’sz)‘ 1{supse[0,T] |X§’Z|SR}} + C( R

s€[0,7

for any p, R, j > 0 with some m-independent constant C'. Since (u,,/) converges uniformly to u
on any compact set, one concludes Y™ 1% — Y% in SP with Vp > 0. Therefore, by extracting
further subsequence (still denoted by (m’)), we have lim o SUpscpo 1] ybT vy =0
P-a.s. and hence, in particular, |[Y™5% — V5% ||ge — 0.

With mi,mg € (m'), Jy™mvmz .= ymute _ ymatz gzmime - zmite _ zm2bt and
Sypmumz = opmbT _gpm2be Tto formula yields for any T € Ty,

T T
Ey, / 6272 2y + B, / |2, dr
T T
< 2/|5Y™2 g B, / Zifm (XL (Y o @t dy

Since the conditional expectation of the 2nd line is bounded by C Y7, (1+ [[Y™5% 500 +
|Zmobe| 2, + ||¢mi’t’x\|§2 ) < C, with C = C(K., A), the right-hand side converges to
BMO BMO

zero as mi,mg — oo uniformly in 7 € T'. Therefore I(ZH%, ¢'?) € HE 10 X J%0 such
that 2™ 6% — Zb% in HE,, and 9™ b — b in J%, 0.

Proving that (Y4% Z6% 4b%) provides a solution of (4.2) can be done in the standard
manner. In particular, one can extract a subsequence (still denoted by (m’)) such that
supgefor) Y5 o —Ym\ — 0a.s., Zmbt 5 zte dP@ds-a e. wm’t’x Pb dP@v(de)ds-a.e.,

sub,epo.ri| [ (27"~ 2r) P ()= (e) dr, de)| —
0 a.s. Since f,, — f locally unlformly, it follows that

fm’(sa X};xv (Ym/’tw)ve[s,T]: @Z’n/’t’x) - f(37 Xé’x? (Yt?x)ve[s,T]v @i’x)

v v

dP ® ds-a.e. By the same arguments given in Lemma 2.5 in [18], one can choose (m') in such
a way that G := sup,,, | 2 and H := sup,, ||1j)m’7t’x|\i2 are in L*(Q x [0,T]). Since
|fo] < C(1+ G+ H) a.s.with some C = C(K., A), we have

¥)

T
/0 ’fm’ (Ta X1€7x7 (Y;)m ’tw)ve[nT]a @Tm ,t,x) - f(ﬂ Xﬁ,x’ (Y;;t’x)ve[r,T]a @?l‘)’dr — 0 a.s.

by the Lebesgue’s dominated convergence theorem. This finishes the proof. O

Remark 4.2. In the above proof of Theorem 4.1, the convergence actually occurs in the
entire sequence of (m) not only the subsequence (m'). If this is not the case, there must
be a subsequence (1) C (m) such that ||[Y™54% — Y% |see > ¢ with some ¢ > 0 for every
mj € (m). However, by repeating the same procedures done in the proof, we can extract
a_further subsequence (') C (1) such that, 3(17"/’:’3,21‘/’”3,1;’*”), (Ymaba | Zmi bt qpmjtey
(Y@ 762 ho) ip S x H% 0 X 34500 as (') 2 mj — oo. One can show that it also
provides the solution to (4.2). By the uniqueness of solution, yte = yte gp S, which
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contradicts the assumption.

5 Some regularity results

Due to the general path-dependence of (Y') in the driver, it is difficult to establish Malliavin’s
differentiability. Interestingly, we can apply the method similar to Lemma 15 in Fromm
& Imkeller (2013) [10] or Lemma 2.5.14 in Fromm (2014) [11] to derive some useful regu-
larity results on the control variables. The method only needs the fundamental Lebesgue’s
differentiation theorem.?

Lemma 5.1. Under Assumptions 4.1, 4.2 and 4.8 with o = 1, the control variables of the
solution to the ABSDE (/.2) satisfy the estimate for every (t,x)

26 < C1+ X

), ey < C(1+ 1XS21)
for dP ®@ ds-a.e. (w,s) € Q x [0,T] with some constant C = C(p, K¢, K, K., A).

Proof. For notational simplicity, let us fix the initial data (¢,z) and omit the associated
superscripts in the reminder of the proof. We start from the regularized ABSDE (4.4).
Choose any s’ € [0,T) and define 6W, := Wy, — Wy for s € [¢/,T]. An application of Ito
formula to (Y™SW ) yields

s S
YW, = / Zmdr — / L 0W, Bz, fin (7, Xo, (Y3 )oeprr), OF ) dr

- SW,r Zmaw, + / / SW,Tpm (e)i(dr, de) + / ymaw,n . (5.1)
/ s’ JE

s s/

Since (Y™, Z™ ™) € S X ]HI2BMO X J]QBMO, one can show easily that the last three terms
are true martingales. Notice that

T
E| /0 (L2t W, B, fon (7, X (V)i O far |
1 T 5

< CE[IWIlh ) "B[( [ (127 + 7 lis)ar) | < €

with C' = C(K., A). Thus Lebesgue’s differentiation theorem implies that,

. 1 s m m
lim —— / 1t WEF, fon (72 X, (V) oz, O dr

sls’ § — 8 Jo
= lslthS—I/—]E.Fslfm (S,, XS/, (Ym)ve[s’,T]7 @Z}) a.s.

v

for dt-a.e. s’ € [0,T). Similarly one obtains for dt-a.e. s € [0,T),

1 s
lim ,/ ZMdr =77} as.

sls’ 8§ =8 Jg

. 1 ° m m
Llfg} s— g y 17‘2tE.7:rfm (T, X, (Yu )UG[T,T]v@r )dT

= ]_SlztE]-'Sl fm (S/, XS/, (Ym)ve[s’,T]a @Z})dr a.s.

(2

Since Z™ € H?, we can also take s’ such that E[|Z"}|] < co a.e. in [0,T).

3See, for example, Section E.4, Theorem 6 [9].
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As in Lemma 2.5.14 of [11], we introduce the stopping time 7 : Q — (s, T| such that the
following inequalities hold for all s € (s', T:

TAS
,/ Z;andr’ <|ZZ|+1 as.
8/

5—s
1
5—s

TNS
; // ]—thE]-'T- fm (7'7 X, (va)ve[r,T]v @T)d?"

< 1yt Ex, fn (8 Xor, (V0 )oeps 1, O) | +1  as.

1
s— s

TAS
/ 1r2tWTTE}} fm (Ta er (Y;;m)ve[r,T]v @;n) d’l”)

+1 a.s.

<1y W;E]:S/fm(Sles’a (" )ve[s’ T]v@ )

Then one can show from (5.1) and the fact that 7(w) A s = s for sufficiently small s € (¢, T1,

Zm _hmﬂ«:;,[ L ym (Wins —Ws,)T}
S —

s / TAS
dP @ dt-a.e. (w,s’) € Q x [0,T) by the dominated convergence theorem. One sees
‘E}-’ [ /YTnxs(WTAS - WS/)T] ’

)

< B, [V Wono = W) ]| + [B, [ 25 (00 = YR OWrns = W)

where the second term yields

[ 0 = Y W = W)T]|

S
[ B [V = VIR (Wens W)

TAS

1 s
<Egr, [ / Exns | frn(r, X, (va)vé[r,T]a 7)ldr(Weps — WS’)T

5§ —8" Jins

1
< CnEg, UWT/\S — Ws'ﬂ < Ops—8 =0 sls.

Here, we have used the fact that |f,,| is essentially bounded for each m (see Lemma 4.2).
The first term gives the estimate

1 1
‘E]:S/ [mum(saXs)(W’r/\s - Ws’)—r} ‘ - ’E]:S/ [m (um(s,Xs) - um(saXs/))(WT/\s - Ws’)T} ‘
1

1

3 C
< ——Er, ||um(s, Xs) — um(s, X )2 * <
< ==k, [\U( ) ( )|} S 7=

C 1
S mE}-s’ |:(1 + ’XS/‘QP + ‘Xs - Xs’|2p)|Xs _ XS/’2:| 2
<C(+ ’Xs'\Hp) a.s.

(ST

B, [(1+ X V X)X, = X

where Proposition 4.1 and Lemma 4.1 were used. Thus we have dP ® dt-a.e.

271 < C(L+ [ Xy ™)
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with C = C(p, K¢, K, K., A). It is known from the proof of Theorem 4.1 that Z™ — Z
dP ® dt-a.e. under an appropriate subsequence, and hence the first claim follows.
The joint continuity of u implies Y,_ = lim,45 u(r, X;) = u(s, Xs—) and hence

/W%@Www>= /Wm&x;+ﬂﬁxs&»—m&xswww>
E E
C Xo_|? , Xoo, )| , X, e)|*v(d
< € [ (141X P+ s X ) (s X €)Plde)
< cu+¢&4“””{/me@>sca+¢&4ﬂHmy
E

which proves the second claim. O

6 A non-Markovian setting

6.1 Existence

In order to obtain the existence result in a non-Markovian setting, we need an additional
so-called Ar-condition on the driver, which is rather restrictive but plays a crucial role in
almost every existing work on quadratic growth BSDEs with jumps.

Assumption 6.1. For each M > 0, for every g € D[0,T], y € R, z € R4, 4,4/ € L2(E,v)
with sup,cpo,r) 19ols [Y], [1¥|Le ), 19 [y < M there exists a P ® E-measurable process
L2929%" gych that, dP ® dt-a.e.,

F (@t (@)vepr) ¥, 2,0) = F(t (q0)vep ) ¥, 2,9) < / TIP=Y % (o) (1(e) — ' (e) ) v(de)

E

with CL (1A le|) < Fg’y’z’d)’d/(e) < C2,(1 A le|) with two M dependent constants satisfying
C}W > —1 and CJQW > 0.

We introduce a regularized ABSDE with some positive constant m > 0:
T
thm = &+ / Efrfm (Tv (va)ve[nT]v Y;mv Z;na ¢1tn)d?”
t
T T
- [ zraw, - [ [ e, e jo.7 (6.1)
t t JE

with the deﬁnition fm (tv (QU)ve[t,T]a Y, %, w) = f(t7 (@m(Qv))ve[t,T] Y Ys %, ¢) fOI’ every (w> ta q,Y,z, w) €
Q x [0,T] x D[0,T] x R x R4 x L2(E,v). ¢, is the truncation function used previously.

Lemma 6.1. If the driver [ satisfies Assumptions 3.1, 3.2 and 6.1, then the driver (fm)
defined above also satisfies the same conditions uniformly in m. Moreover, if there exists a
bounded solution (Y™, Z™ ™) € S® x H? x J? to the ABSDE (6.1), then it is unique and
00 2 2 ; m m m :
belongs to S*° x Hp 0 X J5a0 with the norms ||Y™||se, ||Z HHQBMO, || HJQBMO < C with

some constant C' depending only on A = (||€||co, ||!||se, 0, 8,7, T).

Proof. The first claim is obvious. The second claim follows from Lemmas 3.1, 3.2 and Corol-
lary 3.1. O

Theorem 6.1. Under Assumptions 3.1, 3.2 and 6.1, there exists a unique solution (Y, Z,1) €
S*® x H%,,0 X 35,0 to the ABSDE (3.1).
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Proof. Uniqueness follows from Corollary 3.1. Notice that it suffices to prove the existence
of solution (Y™, Z™,¢™) € S*®° x H%,,6 X J%1,0 of (6.1) for each m. In fact, by choosing
m bigger than the bound given in Lemma 3.2, one sees (Y, Z™,¢"™) actually provides the
solution for (3.1). Let fix such an m in the reminder.

Let us put Y™ = 0 and define a sequence of BSDEs with n € N such that

T
Y=gt / B (2 (YY) oy, Y0, 207 77
t
T T
- / Zmn W, — / / () fi(dr, de), t € [0,T] . (6.2)
t t E

The driver for the BSDE (6.2) can be seen as f (r,y, 2, 1) := Ex, f(r, (K,m’”_l)ve[nﬂ, Y, 2,1).

By replacing I, by I, + dm, one sees the data (&, fm) satisfy Assumptions 3.1, 3.2 and
4.1 in [12] for non-anticipated quadratic-exponential growth BSDEs. Therefore, Theorem
4.1 [12] implies that there exists a (unique) solution (Y, Zmn ¢™n) € §%° x H%,,, ¥
JQBMO for each n > 1. Furthermore, as a special case of the universal bounds, one sees
Y™ g |27z ] < C with C = C(|Iel ooy Ulls + m, 8,7, T).

Let denote §Y™" := Y™n — Y™n=l  Replacing I, by I, + ém, then putting § = 0,
and considering the drivers f!(r,y,z,%) = fm(r, Y2 o) v, 2,0),  f2(r,y,2,) =
Jm(r, (Y},m’"fl)ve[nﬂ,y,z,d)), one sees that (f%)2_; satisfy Assumptions 3.1 and 3.2. Thus
one can apply the stability results in Proposition 3.1 to the BSDE (6.2). In particular, by
(3.4), one has for any p > 2¢, and 0 < h < T,

T
B gup 19970 ) < CB[(([ Bl (V0" e, 05

te[T—h,T)

= (1 mm’nfl)ve[r,T]v9?’"“)\6“”)1 SChPE[ sup |<5th7”!p}
te[T—h,T)

with some constant C' = C(p, K., |[{]|oc, ||!||se + dm, 5,7,T). By choosing h small enough
so that Ch? < 1, it becomes a strict contraction and thus (Y;"",v € [T'— h,T])p>1 forms a
Cauchy sequence in SP[T' — h, T.

By extracting an appropriate subsequence (n/) C (n), one has |[6Y™" [|g r—h1] — 0
as n’ — oo. Applying Ito formula to (§Y™")? and repeating the same procedures used in
last part of the proof in Theorem 4.1, one can show that 3(Y™, Z™, ™) € (S*® x H%,,, X
J2BMO)[T—h,T]7 (ymn' | gman’ qyman’y s (Y™ zm §m) in the corresponding norm, and that
(Y, Z b pepr—n, 1) solves the ABSDE (6.1) for the period [T — h, T].*

Now, let us replace (Y™, Z"" o)™ ™) oy by (Y™, Z™ ™) for (w,s) € Qx [T — h,T] in
(6.2). Then for t < T — h, we have

T—h
Y = Y, + / Ex fon (o (V) iz, Y0, 207 7 dr
t

T—h T—h
- / Zmnqw, — / / P (e)ii(dr, de).
t t E

“Thanks to the uniqueness of the solution of (6.1), the same arguments used in Remark 4.2 guarantee that
the above convergence actually occurs in the entire sequence (n).
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An application of Proposition 3.1 with the data (Y72, f1), (Y2, f?) yields,

g tE[T,S;l,ET,h] ’(Wm’nﬂ‘p] < CE[(/T:: Eﬂ@f(?“)\dr)ﬂ

< C’hpE[ sup léiﬁm’n\p]:ChpE[ sup oY, P
te[T—2h,T) te[T—2h,T—h|

where the fact Y;"" =Y/, s € [T — h,T] is used in the 2nd line. Thus one can extend the
solution to the period [T'—2h, T — h] by the same procedures used in the previous step. Since
coefficient C' can be taken independently of the specific period, the whole period [0,7] can
be covered by a finite number of partitions. Notice here that, as one can see from the proof
of Proposition 3.1, the coefficient C' depends on the essential supremum of the terminal value
||€]|co only through the local Lipschitz constant Kj; and the universal bounds controlling M
as well as the coefficients of the reverse Holder inequality. Hence the appearance of the new
terminal value Y , does not change the size of the coefficient C'. This finishes the proof for
the existence of a bounded solution to (6.1) for each m. O

6.2 Comparison principle

For completeness, we give a sufficient condition for the comparison principle to hold for our
ABSDE in the rest of this section. In non-anticipated settings, i.e. when there is no future
path-dependence of (Yy,),¢[o,7] in the driver f, it is known that the comparison principle holds
for quadratic-exponential growth BSDEs in the presence of Ap-condition (See, Lemma C.1.).
For the current anticipated setting, we need an additional assumption same as the one used
in Theorem 5.1 of [26]. Consider the two ABSDEs with ¢ € {1,2},

Y?z&ﬁ/tTEﬁfz( (Y)vepr.11: Y5 2y uﬂ)dr—/t ZLW, — / /W p(dr, de)

for t € [0, 7.

Theorem 6.2. Suppose the data (&, fi)i1<i<2 satisfy Assumptions 3.1, 3.2 and 6.1. Moreover,
J2 is increasing in (Qv)ve[oj]; i.e. fa(r, (qv)ve[r,T]ayaza¢) < fa(r, (qg)ve[r,T}v%sz) for every
(r,y,2,9) € [0,T] x R x R4 x L2(E,v) and q,¢' € D[0,T], if ¢ < ¢, Yv € [r,T]. If
& < & as. and fi(r, (@)epm)s ¥ 2,0) < fo(r, (@)veprm)s ¥, 2,0) dP @ dr-a.e. for every
(q,y,2,7) €D[0,T] x R x R x L2(E,v), then Y,! <Y2 Vt € [0,T] a.s.

Proof. Firstly, let us regularize the driver fa by f4 defined as, for every (r,q,vy, z,v),

fé(ﬁ (Qv)re[t,T]a Y, =, w) = fa (Tv (@m(qv))UE[T,T}7y7 Zs ¢) (63)

with some truncation level m satisfying m > (||Y!||s= V ||Y?||s=). Consider a sequence of
non-anticipated BSDEs with n € N by

T
Y;‘,Zn = €2+/ Ef'rfé( (Y2n_ )vG[wT]vY n’Z'r?’nv 72'7n)dr

_/t Z2 AW, — / /yﬂ” f(dr,de), te0,T] (6.4)

under the condition Y29 = Y''. By the proof of Theorem 6.1, there exists h > 0 such that
(Y2n Z2n g2m) — (Y2, Z2,4?) in S® x H%,,0 X %0 as n — oo for the period [T — h,T].
Note that the constraint ¢,,(-) becomes passive at least for large enough n.
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Firstly, let us focus on the period [T—h, T]. Set f1(r,y, z,%) = Ex, fi(r, Y )wep1 ¥, 2,0)

and ﬁ(ra Y, 2, w) = E]:'rfé (T’ (Y;)l)ve[nT]’ya 2, dj) = E]:ng(r, (Y'Ul)UE[T,T]’ Y, %, ¢) Applylng
Lemma C.1, one obtains Y;! = Yt2’0 < Yf’l Vt € [T — h,T] a.s. Then using the new def-
inition

ﬁ(rv Y, %, ¢) = Efrfé(r7 (}/”L)2’O)U€[T,T}’ Y, %, ¢)’
f2(T7 Y, %, ¢) = Efrfé(r7 (K}Q’I)UG[T,T}’ Y, %, ’¢)a

and the hypothesis that the driver is increasing in ¢ € D[0,7], Lemma C.1 yields Yf’l <
Y22Vt € [T —h,T] a.s. By repeating the same arguments, one sees Y;! < Yf’n_l < Yf’” vVt €
[T — h,T] a.s. for every n € N. Since Y2" converges to Y2 in S®[T — h, T], one concludes
Y <Y2Vte[T-hT)as.

Let us now replace ;" by Y2 for all t € [T — h,T] in (6.4), and consider a sequence of
non-anticipated BSDEs n € N

T—h
Ytzn = Yigh"i_/ E]:rfé(r7 (K}Q’n_l)UE[T,T]aY?’nvZ%n?w%n)dr
t
T—h T—h
[ zraw— [ [ rn@tarae)
t t E

Y}, t€[0,T—h)
Y2, te[T—h,T)
2h, T — h]. By the result of the previous step, one has Y;! < YtQ’O Vt € [T'—2h,T] a.s. Now, let
usset f1(r,y, 2,9) = Ex fu(r, (Y uepa1, ¥ 2 8), Fa(r,y,2,0) = Bx f5(r, (Y vy v, 20 ¥),
where the latter is equal to E £, fo(r, (Yf’o)ve[nﬂ .Y, 2,1). By applying Lemma C.1 to the data
(Y%fh,fl), (Yﬁih,fg), one obtains ;! < Y>!' Vt € [T — 2h,T — h] a.s. Since Y>' = Y2
for t € [T — h,T], one concludes Y} < V?° < v»' Vit € [T — 2h,T] as. Similarly,
applying Lemma C.1 with fi(r,y,2,9) = Ex, f3(r, (V5" Vo) v, 2 0), fa2(ry, z,0) =
Ex, f4(r, (Yf’"il)ve[rﬁT], Y, z,1) yields Yf’nil < Yf’" Vt € [T —2h,T] a.s. for every n > 2. As
in the previous step, the proof of Theorem 6.1 implies Y2™ — Y2 in S*®°[T' —2h, T — h]. Since
Y2™ = Y2 for t € [T — h,T] by construction, one actually has Y2" — Y2 in S®[T — 2h, T.
It follows that Y,! < Y2 Vt € [T — 2h,T] a.s. Repeating the same procedures finite number
of times, one obtains the desired result. O

with the initial condition YtQ’0 = { for the next short period t € [T —

A Some preliminary results

Let us remind some important properties of BMO-martingales. For our purpose, it is enough

to focus on continuous ones. When Z € ]HIQBMO, M. = fo Z.dW, is a continuous BMO-
martingale with ||M||gymo = HZHH2BJ\/IO.

Lemma A.1 (reverse Holder inequality). Let M be a continuous BMO-martingale. Then,
Doléans-Dade exponential (5t(M),t € [O,T]) is a uniformly integrable martingale, and for
every stopping time T € T, there exists some v > 1 such that E[Ep(M)"|F,] < C&(M)"
with some positive constant C' = C(r,||M||pmo)-

Proof. See Kazamaki (1979) [15], and also Remark 3.1 of Kazamaki (1994) [16]. O
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Lemma A.2. Let M be a square integrable continuous martingale and M = (M) — M.
Then, M € BMO(P) if and only if M € BMO(Q) with dQ/dP = Ep(M). Furthermore,
[|M||grro(q) is determined by some function of ||M||garom) and vice versa.

Proof. See Theorem 3.3 and Theorem 2.4 in [16]. O

Remark A.1. For continuous martingales, Theorem 3.1 [16] also tells that there exists some
decreasing function ®(r) with ®(1+) = oo and ®(00) = 0 such that if ||[M||grrom) satisfies
[|[M||grow) < ®(r) then E(M) satisfies the reverse Hélder inequality with power r. This
implies together with Lemma A.2, one can take a common positive constant 7 satisfying
1 < 7 < r* such that both of the E(M) and E(M) satisfy the reverse Hoélder inequality with
power T under the respective probability measure P and Q. Furthermore, the upper bound r*
is determined only by ||M||gyow) (or equivalently by || M||garo))-

Let us also remind the following result.

Lemma A.3. (Chapter 1, Section 9, Lemma 6 [19]) For any ¥ € JP with p > 2, there exists
some constant C' = C(p) such that

/ /|x1/ v(de dr)g] gCE[(/OT/Eyqfr(e)m(dr,de)ﬂ .

B Existence and uniqueness results for Lipschitz case

Anticipated BSDEs under the global Lipschitz condition have been studied by many authors.
Our setup is a bit different from the standard one, in particular at the terminal condition
and also at the point where the continuity of the driver is defined with respect to the uniform
norm of the path rather than IL2[0, T]-norm. For readers’ convenience, we provide a proof
under our particular setup. It is restricted to the simplest form relevant for our purpose.
One can readily generalize it to multi-dimensional setups with the future (Z,)-dependence
(See [22] among others.).
Let us consider the ABSDE for ¢ € [0, 7]

T
Yt=g+/t Ex f(r, (Y, >Ue[rT],Yr,Zr,wr)dr—/t Z,dW, — //w idr,de) (B.1)

where f: Q x [0,T] xD[0,7] x R x R'*4 x L2(E,v) — R and £ is an Fp-measurable random
variable.

Assumption B.1. (i) The driver f is a map such that for every (y,z1) € R x R*? x
L2(E,v) and any cadlag F-adapted process (Yy)vejo,r), the process (E;tf(t, (Yo)velt,1), > 2,%),t €
[0, T]) is progressively measurable.

(ii) For every (q,v,2,v),(¢,y',2,¢") € D[0,T] x R x R4 x L2(E,v), there erists some
positive constant K such that

’f( qv vet,T]s Y5 %5 1/)) f( (q{L))UG[t,T]vy/aZ/awlﬂ

< K( sup lay— )l +ly =/l + |z =2+ 116 —¥lliz))
veElt,T]

dP @ dt-a.e. (w,t) € Qx1[0,T].
2
(iii) E[|§!2+ (fOT|f(r,O,O,O,O)\dr> } < o0.
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Proposition B.1. Under Assumption B.1, there exists a unique solution (Y,Z,1) € S? x
H? x J? to the ABSDE (B.1).

Proof. We prove the claim by constructing a strictly contracting map ® : £2[0,T] 3 (Y*, ZF ¢F) —
O(YF, ZF pF) = (YFHL Zk+1 k+1) € K£2]0,T] defined by

T
YAt =t / Exz. f(r, (V) oy, Y, 2508 dr — / 28w, / / S (o) dr, de)
t t

with k € Ng and (Y, 2% 4°) = (0,0,0). It is easy to see that the map is well-defined. Let
) R G R A AN e e R e i LT ARG
We consider the norm || - || K3 equivalent to || - ||z defined with some 3 > 0
T T
IV 20l =B sup Y P] +E [ 12 P+ B [ 11l aydr
r€l0,7) 0 0

Applying Ito formula to 62’3t|5Y;k+1|2, one obtains for any ¢ € [0, 7]

T T
oY IP 4 [z Pt [ [ 0 ) Putar, de)
t t E

T
= /t 62,31” (26}/1”k+1E.7:r [f(ra (Yvk)UE[T,T]a ef) - f(r7 (Y;)k_l>v€[r,T} y @ﬁ—l)] - 25’5Yrk+1‘2) dr

T T
- / eProsy sz law, — / / 2P a5y L5yt () fi(dr, de) . (B.2)
t t E

For any € > 0, one has

26Yk+1E]'—7[ ( ( v vE[rT]a@k) - f(T’ (Y'vk_l>v€[rT] @k_l)] - 25’5Yrk+1‘2

< 2K18Y (2B, [18Y Nl ] + 19281+ 190F e ) — 2816712
6K F1 2 k k|2
< (= = 28)YE 4 (B, [0V MR ] + 102512 + 10012 )
Thus, choosing 3 = B(e) = 3K2/e and taking expectation with ¢t = 0 yields
e 824 B+ 15012 < (Tl Y M| + 11670625 B + e 00H|%) . (B3)

Next, let us apply the BDG inequality (Theorem 48 in IV 4. of [27]) to (B.2). Then there
exists some constant C' such that

E|lle? 8V |} 7] < e(Tlle? oY |12 + 1?0 2* | [Fe + [l 0v* %)

T 1 T .,
+CE[(/ ’657”5}/Tk+1’2|65T5Z7]f+1|2d7‘) 2:| + CE[(/ / |€6T5Y;k_+1|2‘eﬁr(5¢f+1(€)’2ﬂ(d7‘, de)) 2:|
0 0 E
~ ‘ | 1 r
< (TP 5V 13 + 11257 + 1% 0H115) + SB[l 5411y ]

C(Ile” 824 e + e 001 3:) -
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Thus, with some constant C' (which is independent of €, 3),
e 6Y* 12, < 2¢(Tle® 07 *|[Bar+le™ 2625 | [Fa+le” 50 B ) +C lle” 524+ Bt e 0y %) -
Combining with (B.3), one obtains

@Y 028 5yt [ < eC+ 3TV )[|(0Y, 62", 59N [y

and hence by choosing € so that e(C' 4+ 3)(T'V 1) < 1 (and ((e) accordingly) makes the map
® strict contraction with respect to the norm /C%(E). This proves the existence as well as the
uniqueness. U

C Comparison principle for non-anticipated settings

Consider the two BSDEs with i = {1,2},

=£i+/tTfl r,)f;,zw)dr—/t Zidw, — / /W ii(dr, de) (1)

for t € [0,T7.

Lemma C.1. Suppose (&, ﬁ)1<1<2 satisfy Assumptions 3.1, 8.2 and 4.1 of [12], which cor-
respond to Assumptions 5.1, 3.2 and 6.1 of the current paper without the Y'’s future path
dependence, respectively. If & < & a.s. and fl(r Y, 2,0) < fg(r Y, z,%) dP ® dr-a.e. for
every (y,z,7) € R x R4 x L2(E,v), then Y,! <Y2 Vt € [0,T] a.s.

Proof. One can prove it in the same way as Theorem 2.5 of [29]. By Theorem 4.1 [12],
there exists a unique solution (Yi A wi)1<z<2 € S x HQBMO X JQBMO to the BSDEs (C.1)
satisfying the universal bounds Let us put 0Y := Y — Y2 67 := Z! — Z2, 62p := ¢! —
2, 5f ( ) = ( f1 fg)(r Y1 Z l). We also introduce the two progressively measurable

processes (ar)rejo,7], (br )TE[O,T] giVen by

R YL ZE Y — B, Y2, ZE ) (Y2, ZE 8 — fa(r, Y2, 22,401
= 5Y. 15Y¢7£Oa bT‘ i |5Z ‘2 15Zr7£06Z

Note that a € S* and b € HQB vo due to the universal bounds and the local Lipschitz
continuity. By Assumption 4.1 of [12], which is the Ap-condition, there exists a P ® &-
measurable process I' such that

T o~
Y, < 8¢ —I—/ (5f(7“) + a,.0Y, + b2, + / FT(e)éwT(e)u(de))dr
E

/ 5 ZpdW,. — / / Sty (€)fi(dr, de) (C.2)

satisfying C1(1A]e|) < |T'(e)| < Co(1A]e|) with some constant Cp > —1 and Cy > 0. Here the
fact that Y € S,¢" € J* was used. Since M := [ b AW, + Iy J Tr(e)fi(dr, de) is a BMO-

martingale with jump size strictly bigger than —1, one can define an equlvalent measure Q
by dQ/dP = Ep(M). Thus one obtains from (C.2)

T ~
5Y; <EY [eRnT(sg + / eFurg f(r)dr}
t
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with Ry, := [;” a,dr. This proves the claim. O]
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