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Abstract 
 

We investigate general mechanism design problems in which agents can take hidden 
actions that influence state distribution. Their action choices exert significant 
externality effects on their valuation functions through this influence. We characterize 
all mechanisms that resolve the hidden action problem (i.e., that induce a targeted action 
profile). A variety of action choices shrinks the set of mechanisms that induce the 
targeted action profile, leading to the equivalence properties in the ex-post term with 
respect to payoffs, payments, and revenues. When the agents can take unilateral 
deviations to change the state distribution in various directions (i.e., when the action 
profile satisfies richness), pure-VCG mechanisms—the simplest form of canonical 
VCG mechanism, which is implemented via open-bid descending procedures that 
determine the losers’ compensation—are the only mechanisms that induce an efficient 
action profile. Contrariwise, the popular pivot mechanism, implemented by ascending 
auctions that determine the winner’s payment, generally fails to induce any efficient 
action profile. 
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1. Introduction 
 

This study investigates a general class of mechanism design problems that include 

hidden action and hidden information issues with the assumptions of quasi-linearity 

and risk-neutrality, such as principal–agent relationships, partnerships, and general 

resource allocation (including auctions and public good provision). Multiple agents 

make action choices independently in early stages before the realization of the state. 

Their action choices influence the state distribution. According to a prespecified 

mechanism, the central planner determines an allocation in a state-contingent manner, 

which affects the payoffs of all agents and that of the central planner. The central 

planner cannot observe the agents’ action choices; thus, we face a hidden action 

problem. The central planner therefore designs a state-contingent mechanism 

consisting of an allocation rule and a payment rule in advance to incentivize the agents 

to select the action profile the central planner desires. 

This study assumes that their action choices exert significant externality effects on 

their valuation functions through the action-contingent stochastic state determination. 

This study seeks to clarify whether and how the central planner can construct a 

mechanism that resolves the hidden action problem and investigates whether a 

mechanism resolves both the hidden action problem and the hidden information 

problem simultaneously. 

We first propose a benchmark model that addresses only the hidden action problem. 

We then incorporate hidden information by assuming that the central planner can 

observe neither the state nor the agents’ action choices and therefore requires agents to 

report their private information regarding the state (i.e., their type).  

This study differs substantially from previous research on mechanism design and 

contract theory in that it assumes that each agent can have various activity aspects such 

as information acquisition, R&D investment, patent control, standardization, M&A, 

rent-seeking, positive/negative campaigns, environmental concern, product 

differentiation, entry/exit decisions, preparation of infrastructure, and headhunting. The 

central planner lacks information about the breadth of these potential aspects due to, 

for example, the separation between ownership and control. Accordingly, the central 

planner may be unable to grasp which aspects of agents’ activities are actually relevant 



3 
 

to the current problem. A conservative central planner must account for all of these 

aspects in mechanism design. 

The hidden action problem is particularly severe when each agent’s action has 

significant externality effects on the other agents’ valuation functions (i.e., when each 

agent can change the distribution of the state that shapes the other agents’ valuation 

functions). This externality effect severely restricts the range of mechanisms that can 

incentivize agents to make the desired action choices (i.e., that can induce the desired 

action profile). 

 The pivot mechanism, which aligns each agent’s payoff with the agent’s marginal 

contribution, has generally been considered the most desirable mechanism in private-

value environments because it implements an efficient allocation rule in hidden 

information and collects a moderate amount of revenue. Importantly, without 

externality effects, the pivot mechanism can induce an efficient action profile (e.g., 

Bergemann and Välimäki, 2002; Hatfield, Kojima, and Kominers, 2015). However, the 

pivot mechanism generally fails to induce an efficient action profile once externality 

effects are taken into account. 

 

Example 1 (R&D Investment): The government allocates a resource to one of two 

firms, and the firms can make ex-ante R&D investments to increase the profitability of 

this resource. Assume that the R&D investment has a positive externality (i.e., an 

increase in the level of one firm’s R&D investment strengthens not only that firm but 

also its rival). In such a case, a firm’s expected payoff in the pivot mechanism (i.e., the 

second-price auction or the ascending auction) is decreasing in the strength of the rival 

firm because a stronger rival makes a higher price-bid. Hence, the pivot mechanism 

discourages a firm from making such an R&D investment, even if a higher level of 

R&D investment is more socially desirable because of its positive externality. 

 

Example 2 (Preemptive Behavior): An incumbent and a potential entrant (rival firm) 

participate in a procurement auction. The incumbent can choose the level of its  

preemptive action, which disturbs the entry of the rival firm. In such a case, the pivot 

mechanism strongly encourages the incumbent to take the preemptive action because 
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the incumbent seeks to avoid price competition. However, paying such a positive cost 

to reduce the rival’s profitability is socially wasteful. 

 

 In brief, when agents can change the other agents’ type distributions in the pivot 

mechanism, they have an incentive to weaken the other agents’ types to exaggerate their 

contributions. The abovementioned examples illustrate that we need to look at  

mechanisms other than the pivot mechanism to achieve full efficiency (i.e., to induce 

an efficient action profile and implement an efficient allocation rule simultaneously). 

The main contribution of this study is that it characterizes all mechanisms that 

induce the desired action profile. In particular, by assuming that each agent can 

unilaterally change the state distribution for all directions by taking a mixed action, (i.e., 

when the targeted action profile satisfies richness), we demonstrate strong equivalence 

properties in the ex-post term; the ex-post payments, the ex-post revenue, and the ex-

post payments are unique up to constants. 

We further consider the possibility that the central planner achieves both an 

efficient action profile and efficient allocations. We introduce pure-VCG mechanisms 

as the simplest form of canonical VCG (Vickrey–Clarke–Groves) mechanisms,4 in 

which the central planner gives each agent the welfare of the other agents and then 

imposes on the agents a fixed monetary fee. A pure-VCG mechanism is implemented 

via an open-bid descending procedure that determines the compensation for losers. This 

is in contrast to the pivot mechanism, which is implemented through an open-bid 

ascending auction that determines the winner’s payment. We show that pure-VCG 

mechanisms are the only efficient mechanisms that resolve the hidden action problem 

when the targeted action profile is rich. Hence, a mechanism induces an efficient action 

profile if and only if it is pure-VCG. 

This theoretical finding has important implications not only in hidden action but 

also in hidden information. Suppose the central planner cannot observe the state and 

therefore requires agents to report their private information regarding the state (i.e., 

their respective types). Under the assumption of private values, once the central planner 

designs a mechanism that induces the efficient action profile (i.e., resolves the hidden 

                                                 
4 See Vickrey (1961), Clarke (1971), and Groves (1973). 
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action problem), this mechanism, which is equivalent to a pure-VCG mechanism, 

automatically resolves the hidden information problem due to its internalization feature 

(whereas, without private values, pure-VCG mechanisms generally fail to resolve the 

hidden information problem). 

With the assumption of private values, the generally accepted view in mechanism 

design is that VCG mechanisms are (with some regularity conditions) the only efficient 

mechanisms that resolve the hidden information problem. However, this study shows 

that pure-VCG mechanisms are the only efficient mechanisms that resolve the hidden 

action problem, and, since pure-VCG mechanisms are special cases of VCG 

mechanisms, pure-VCG mechanisms also resolve the hidden information problem. 

Since the class of pure-VCG mechanisms is a proper subclass of VCG mechanisms, 

it is more difficult for the central planner to earn non-negative revenues with hidden 

action than it is to earn them without hidden action. In fact, the pivot mechanism 

generally guarantees non-negative revenues, but it is not pure-VCG and thus generally 

fails to induce an efficient action profile. We show an impossibility result in which, 

under the assumption of richness, no pure-VCG mechanism (i.e., no well-behaved 

mechanism in hidden action) satisfies non-negative revenues and ex-post individual 

rationality simultaneously, while the pivot mechanism satisfies both. 

 The results of this study crucially depend on the presence of externality effects. 

Previous works such as Bergemann and Välimäki (2002) and Hatfield, Kojima, and 

Kominers (2015) showed that, when such externality effects are absent, the pivot 

mechanism can resolve the hidden action problem. However, whenever the externality 

effects are non-negligible, the pivot mechanism generally fails to resolve the hidden 

action problem. 

 Without externality effects, well-behaved mechanisms are not very limited, even 

if we permit a sufficiently high availability of unilateral deviations. We introduce a class 

of mechanisms, expectation-VCG mechanisms, which are more general than VCG and 

require each agent to pay the same amount as VCG in expectation. The AGV 

mechanism (Arrow, 1979; d’Aspremont and Gerard-Varet; 1979), which satisfies both 

budget-balance and Bayesian incentive compatibility, is also expectation-VCG. We 
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show that a mechanism resolves the hidden action problem if and only if it is 

expectation-VCG.5 

The remainder of this paper is organized as follows. Section 2 reviews the relevant 

literature. Section 3 presents the benchmark model, where we account for only hidden 

actions. Section 4 incorporates hidden information into the model. Section 5 focuses on 

fully efficient mechanisms. Section 6 discusses the implementation of the pure-VCG 

mechanism through an open-bid procedure. Section 7 examines the central planner’s 

revenues. Section 8 considers the case without externality, and Section 9 concludes the 

paper. 

 

2. Literature Review 

 

 When an agent has a wide variety of action choices, a complicated contract design 

might motivate the agent to deviate from desired behavior. In this case, a simply 

designed contract could function better than a complex one. For example, Holmström 

and Milgrom (1987) study principal–agent relationships in a dynamic context, where 

randomly determined outputs are accumulated through time, and the agent flexibly 

adjusts the effort level depending on output histories. They show that the optimal 

incentive contract that maximizes the principal’s revenue must be linear with respect to 

the output accumulated at the ending time. Carroll (2014) investigates optimal contract 

design in a static principal–agent relationship in which the principal experiences 

ambiguity about the range of activities the agent can undertake. Carroll shows that the 

optimal contract must be linear with respect to the resultant output, given that the 

principal follows the maximin expected utility hypothesis. 

 This study examines the hidden action problem by introducing multiple agents, 

general state spaces, general allocation rules, and various criteria such as efficiency 

                                                 
5

 Matthews (1984), Hausch and Li (1991), and Tan (1992) show that the first- and second-price 
auctions provide each agent with the same incentive in hidden action in symmetric environments, 
in which the first-price auction is an indirect implementation of an expectation-VCG mechanism 
and the second-price auction is equivalent to the pivot mechanism. Tan (1992), Stegeman (1996), 
and Arozamena and Cantillon (2004) also show that, with private values, the second-price auction 
(the pivot mechanism) induces an efficient hidden action. This study provides a comprehensive 
understanding of all such previous works. 



7 
 

instead of revenue optimization. We account deliberately for a wide range of externality 

effects of each agent’s action choice on other agents’ valuation functions. We then 

demonstrate a characterization result for well-behaved incentive mechanisms, which 

imply that only a simple form of mechanism design (i.e., pure-VCG) functions, and we 

further show the general equivalence properties in the ex-post term. 

 Any well-behaved efficient mechanism must be pure-VCG. Athey and Segal 

(2013) show that, under the assumption of private values, pure-VCG mechanisms 

induce efficient action profiles. We extend their study to show that, under the 

assumption of richness, pure-VCG mechanisms are the only mechanisms that can 

induce efficiency in hidden action. 

 The literature regarding the hidden action problem has shown that, without 

richness (i.e., when the scope of action spaces is sufficiently limited), we can design 

efficient incentive mechanisms by tailoring the payment rule to detailed specifications. 

We can even achieve either full surplus extraction or budget balance (e.g., Matsushima, 

1989; Legros and Matsushima, 1991; Williams and Radner, 1995; Obara, 2008). With 

richness, however, a mechanism’s dependence on the detail even encourages each agent 

to deviate. 

 This study also makes important contributions to the literature on the hidden 

information problem. Green and Laffont (1977, 1979) and Holmström (1979) show that, 

in hidden information environments with differentiable valuation functions, 

differentiable path-connectedness, and private values, VCG mechanisms are the only 

efficient mechanisms that satisfy incentive compatibility in dominant strategies. This 

study reconsiders VCG mechanisms from the viewpoint of hidden action and shows 

that only pure-VCG mechanisms, which are special cases of VCG, resolve the hidden 

action problem. While the resolution of the hidden action problem automatically 

resolves the hidden information problem under the assumption of private values, the 

reverse is not true.6 

                                                 
6 Hausch and Li (1993) and Persico (2000) are relevant to this point. They demonstrate that first- 
and second-price auctions provide different incentives for information acquisition that make the 
other agents’ valuation more accurate. Taking the mechanism design approach rather than 
comparing between special auction formats, we explain that the difference in the induced action 
profile originates from the difference in ex-post payoffs between these auction formats. 
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 It is worth noting that our equivalence theorems do not rely on the assumptions of 

the continuum state spaces and the differentiability of valuation functions. In this sense, 

we can interpret our characterization theorem as a new version of VCG-necessity 

theorems, whereby this study articulates the desirability of pure-VCG mechanisms and 

expectation-VCG mechanisms even if the assumption of Green–Laffont–Holmström 

fails to hold (e.g., even if type spaces are finite). 

 

3. Hidden Action 

 

Consider a setting with one central planner and n  agents indexed by 

{1, 2,..., }i N n  . This section investigates an allocation problem consisting of the 

four stages below and focuses on the incentive issue in hidden action. 

 

Stage 1: The central planner commits to a mechanism defined as ( , )g x , where   

denotes the set of states, A  denotes the set of allocations, :g A , and 

) :( N
n

i ix x R  . We assume that   and A  are finite. We call g  and x  the 

allocation rule and payment rule, respectively.7 

 

 For each i N , we call a pair of an allocation rule and a payment rule for agent 

i  (i.e., ( , )ig x ) a mechanism for agent i . We denote {1, 2,..., }    and regard ix  

as the  -dimensional vector (i.e., ( (1),..., ( ))i i ix x x R   ). We also denote 

1
{1,..., }

( ,..., ) ( ( )) n
n i i Nx x x x R


 


 

   . 

 

                                                 
7 This study assumes that the central planner commits to the mechanism before agents take action. 
Without the assumption of commitment, the desired outcomes, such as efficiency, may be 
unachievable due to time inconsistency. Consider a central planner who commits to a mechanism 
after the agents’ action choices. In this case, the central planner prefers the pivot mechanism because 
it yields greater revenue than does the mechanism this study discusses. The pivot mechanism 
typically fails to induce any efficient action profile, however (see Proposition 3). Anticipating that 
the central planner will use a pivot mechanism, agents are willing to select inefficient actions. 
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Stage 2: Each agent i N  selects a hidden action i ib B , where iB  denotes the set 

of all actions for agent i . The cost function of agent 'i s  action choice is given by 

:i ic B R . We assume that there is a no-effort option 0
i ib B  such that 0( ) 0i ic b  . 

Let i
i N

B B


   and 1( ,..., )nb b b B  . 

 

Stage 3: The state   is randomly drawn from a conditional probability function 

( | ) ( )f b   , where b B  is the action profile selected at stage 2, ( )   denotes 

the set of all distributions (i.e., lotteries) over states, and ( | )f b  denotes the 

probability that state   occurs provided that the agents selected action profile b . 

 

Stage 4: The central planner determines the allocation ( )g A   and the side 

payment vector paid to the central planner ( ) ( ( )) n
i i Nx x R    , where   is the 

state that occurred at stage 3. The resultant payoff of each agent i N  is given by 

(1)   ( ( ), ) ( ) ( )i i i iv g x c b    , 

where we assume that each agent's payoff function is quasi-linear and risk-neutral, and 

the cost of the agent’s action choice is additively separable. 

 

 Figure 1 describes the timeline of the benchmark model. This section concentrates 

on the incentives in hidden action at stage 2, assuming that the realization of state   

is publicly observable. 

 

 

 

 
Figure 1: Timeline with Hidden Action 
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Definition 1 (Inducibility): A mechanism for agent i , ( , )ig x , is said to induce an 

action profile b B  for agent i  if ib  is a best response to ib , i.e., 

(2)   [ ( ( ), ) ( ) | ] ( )i i i iE v g x b c b     

[ ( ( ), ) ( ) | , ] ( )i i i i i iE v g x b b c b        for all i ib B , 

where [ | ]E b  denotes the expectation operator conditional on b , that is, for every 

function : R  : 

   [ ( ) | ] ( ) ( | )E b f b


    


  . 

 

A mechanism ( , )g x  is said to induce an action profile b  if ( , )ig x  induces b  for 

every i N , i.e., b  is a Nash equilibrium in the game implied by the mechanism 

( , )g x . We denote the set of all payment rules for agent i  that induces targeted action 

profile b , together with allocation rule g , by 

    | |( , ) : ( , ) induces  for i i ix R x bX b g g i   . 

We assume that ( , )iX b g  is non-empty. Note that ( , )iX b g  is non-empty if and only 

if there exists a function :iu R  such that 

arg ma [ (x | ]) ,
i ibi B i i ib E u bb   for all i N . 

Hence, the payment rule for agent i  specified as ( ( () ), ) )(i i ix gv u      induces 

the targeted action profile b , together with an allocation rule g (i.e., ( , )i ix X b g ). 

This implies that, if the planner has an objective function to maximize and b  is a 

solution of the maximization problem, ( , )iX b g  is non-empty. 

 We define the dimensionality of a subset hL R  as the maximal number of 

linearly independent h -dimensional vectors that span L , denoted by dim L . Since 

[ ( , )] [ ( , )]i i i i ix X b g x z X b g      for all iz R  

and ( , )iX b g  is non-empty, 

dim ( , ) 1iX b g  . 
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We regard the dimensionality of ( , )iX b g , dim ( , )iX b g , as a measure expressing the 

degree of the availability of payment rules x  such that the associated mechanisms 

( , )g x  induce the targeted action profile b . 

 We introduce a concept concerning the availability of unilateral deviations, termed 

“differentiable path,” as follows. 

 

Definition 2 (Differentiable Path): A mapping 1,1:[ ]i iB    is said to be a 

differentiable path of ( , )i b N B   if 

   (0)i ib  , 

   ( ( ][ [) ) ]i i         , 

   ( )( )i ic    is differentiable in   at 0  , 

and there exists a tangent of i  at b , which is denoted by | |( )it R  , where 

(3)   
0

( | ( ), ) ( | )
( ) lim i i

i

f b f b
t



 





  
 . 

 

Figure 2a illustrates a case of differentiable path i , where we assume | | 3  , 

and the triangle represents the probability simplex ( )  . The blue point represents 

|( )f b . Each point on the orange curve corresponds to a probability distribution that 

can be generated by agent i ’s unilateral deviation along the differentiable path i . 

The tangent of i  at b , ( )it  , is depicted as the green-dotted arrow. Note that the 

local change of ( ( )| ),i if b    around (0)i ib   is approximated by the tangent of 

the differentiable path i , ( )it  . 
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 Fix an arbitrary payment rule for agent i , ( , )i ix X b g . We define 

    | |( , , ) : ( , )i i i i i iZ b g x x z X b gz R    . 

Clearly, 

   dim ( , ) dim ( , , )i i iX b g Z b g x . 

 

Proposition 1: Suppose that ( , )ig x  induces b  for agent i  and there exists a 

differentiable path i  of ( , )i b N B  . Then, 

(4)   [ ( , , )] ([ ) 0]i i i i iz b g x zZ t   . 

 

Proof: Consider an arbitrary ( , , )i i iz b g xZ . Since ( , )ig x  induces b  for agent i , 

the following first-order necessary condition must hold to prevent agent i  from 

locally deviating along i : 

(5)     
0

( ( ( ( (), ) ) | ), 0))(i i i i i iE v x b cg


      
 




  


. 

Similarly, ( , )i ig x z  must satisfy the following first-order condition: 

(6)     
0

), ) ) ) | ),( ( ))( ( ( ( ( 0i i i i i i iE v x z b cg


       
 




 


 . 

Subtracting (6) from (5), we obtain 

 
 
Figure 2: Differentiable path. If iz  is not perpendicular to ( )it  , agent i  has an 

incentive to make a unilateral deviation (i.e., increase   slightly). 
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    
0

( () | ) 0,i i ibzE


  
 






 , 

or equivalently, ( ) 0i itz   . 

Q.E.D. 

 

 Proposition 1 implies that a payment rule ix  for agent i  is never included in 

( , )iX b g  if the difference i i iz x x   is not perpendicular to the tangent of the 

differentiable path i  (i.e., ( ) 0i itz   ). Since ( , )ig x  induces b , agent i  is 

(approximately) indifferent for local deviations along the differentiable path i  in 

( , )ig x . If ( , )i ig x z  induces b , agent i  is also indifferent for local deviations 

along i  in ( , )i ig x z . This implies that the expected value of iz  is 

(approximately) unchanged even if agent i  locally deviates. More formally, the 

expected payoff of iz  when agent i  takes )(i   is 

   ( | ) )( ) (i i iz f b z t o       . 

Whenever ( ) 0i itz    ( ( ) 0i itz   ), then agent i  can increase this expected 

payoff by slightly increasing (decreasing)   from zero. Hence, in order for 

( ), i ixg z  to induce b  for agent i , iz  must be perpendicular to the tangent of the 

differentiable path at b , i.e., ( ) 0i itz   . 

Figure 2b shows a case of ( ) 0i itz   , where agent i  has an incentive to take 

  slightly larger than zero, implying the failure of ( ), i ixg z  to induce b . 

 In general, there may exist multiple differentiable paths whose tangents are 

linearly independent. We define the dimensionality of the availability of unilateral 

deviations as the maximal number of differentiable paths whose tangents are linearly 

independent, which is denoted by a positive integer, K . The following theorem shows 

that the dimensionality of mechanisms, (d m , )i iX b g , is less than or equal to K  : 
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Theorem 1: Suppose there exist K  differentiable paths of ( , )i b , denoted by 1
i , …, 

and K
i , such that the respective tangents 1( )it  , …, and ( )K

it   are linearly 

independent. Then, 

   ( ,m )di i b gX K   . 

 

Proof: Proposition 1 implies 

    | | (  for 1( , , ) : , 2,) ,0k
i i i i iz R t kZ b Kg x z      . 

Hence, 

    | |dim dim (  for 1,2,( , , ) ) ,: 0k
i i i i iZ b g x zz R t k K      . 

Since 1( )it  , …, and ( )K
it   are linearly independent, 

    | |dim (  for 1,2: , ,) 0k
i i iz t KzR k K       . 

Therefore, 

   (d m , , )i i iZ b g x K   . 

This, along with ( , , )dim dim ( , )i i iXZ b g x b g , implies ( ,m )di i b gX K   . 

Q.E.D. 

 

 Hence, the dimensionality of payment rules (i.e., (d m , )i iX b g ) is limited below 

K  , which is decreasing in the dimensionality of unilateral deviations (i.e., in K ). 

Let 

   | |( : () { ) 0}T t R t






    . 

Note that dim ( ) 1T     . For every [ 1,1] \{0}    and every differentiable path 

i , 

   
( ( )| ),

(
)

)
( |i if fb

T
b


   

  . 

Since ( )T   is a closed set, its limit at 0   also belongs to )(T   (i.e., 

)( ()it T   ). Hence, there are at most 1   differentiable paths whose tangents are 
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linearly independent. We call the targeted action profile “b  rich” for agent i  if there 

indeed exist 1   differentiable paths whose tangents are linearly independent. 

 

Definition 3: An action profile b B  is said to be rich for agent i  if there exist 

1   differentiable paths of ( , )i b  such that these tangents are linearly independent. 

An action profile b B  is said to be rich if b  is rich for all i N . 

 

 Figure 3 illustrates a case of rich action profile, where we assume 3  . If we 

can take two (i.e., 1  ) different differentiable paths whose tangents are linearly 

independent, then b  is rich for i  by definition. Since the tangents span ( )  , by 

taking mixtures of unilateral deviations along the first differentiable path 1
i  and the 

second differentiable path 2
i , agent i  can locally change the state distribution for 

all directions.8 

 

 

 

 When b  is rich for i , it follows from Theorem 1 and )im 1( ,d i b gX   that 

)im 1( ,d i b gX  . 

                                                 
8 This indicates that |( )f b  locates in the interior of the set of state distributions. 

 
 
Figure 3: Richness. The case of 3  . b  is said to be rich for i  if there are two 

( || 1   ) different differentiable paths. 
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This implies that, whenever ix  and ix  induce b  for agent i , then ix  and ix  are 

the same up to constants. Hence, we have proved the following equivalence theorem: 

 

Theorem 2: Suppose that b  is rich for agent i  and ( , )ig x  induces b  for agent 

i . Then, 

   [ ( , )i ix X b g  and ( , )i ix X b g ] [ i i ix x z   for some iz R ]. 

 

 Theorem 2 implies general equivalence properties in the ex-post term as follows. 

Consider an arbitrary combination of an action profile and an allocation rule ( , )b g . 

Consider two arbitrary payment rules x  and x  such that both ( , )g x  and ( , )g x  

induce b . Let iU R  and iU R  denote the respective ex-ante expected payoff for 

each agent i N : 

[ ( ( ), ) ( ) | ] ( )i i i i iU E v g x b c b     , 

and 

[ ( ( ), ) ( ) | ] ( )i i i i iU E v g x b c b      . 

Theorem 2 exhibits that 

(i)  the ex-post payment for each agent i  is unique up to constants in that 

( ) ( )i i i ix x U U      for all  , 

(ii)  the ex-post revenue for the central planner is unique up to constants in that 

( ) ( ) ( )i i i i
i N i N i N

x x U U 
  

       for all  , 

(iii) the ex-post payoff for each agent i  is unique up to constants in that 

( ( ), ) ( ) ( ) { ( ( ), ) ( ) ( )}i i i i i i i i i iv g x c b v g x c b U U               

for all  . 

 

4. Hidden Information 

 

 We specify the hidden information structure as follows. The state   is 

decomposed as 
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    0 1( , ,..., )n    . 

We call 0  a “public signal” and i  a “type” for each agent i N . Let 0  denote 

the set of all public signals and i  denote the set of all types for each agent i N . 

Let 
{0}

i
i N

   


. 

 We assume that the public signal 0 0   becomes observable to all agents as 

well as the central planner just before the central planner determines an allocation and 

side payments; it is therefore contractible. However, the central planner cannot observe 

the profiles of all agents’ types, which is denoted by 0 0( )i i N ii N
    

     . 

Agents i N  can observe their own type i i   but cannot observe the profiles of 

the other agents’ types, which is denoted by {0}\{ }
{0}\{ }

( )i j j N i i j
j N i

    
     

. 

 Because of the abovementioned hidden information structure, we replace stages 3 

and 4 in Section 3 with the following stages 3’ and 4’, respectively. Each agent observes 

her own type at stage 3’. The central planner requires each agent to reveal her  type at 

stage 4’. Without loss of generality, we can focus on revelation mechanisms in which 

each agent reports only her type, because the central planner attempts to induce a pure 

action profile (see Proposition 1 in Obara [2008] for the revelation principle with ex-

ante actions9). 

 

Stage 3’: The state 0 1( , , , )n      is randomly drawn from the conditional 

probability function ( | ) ( )f b   , where b B  is the action profile selected at 

stage 2. Each agent i N  observes her type ii   but cannot observe i i   

at this stage. 

 

                                                 
9 Obara (2008) also argued that, if the central planner attempts to induce a mixed action profile, we 
need to consider mechanisms in which each agent reports not only her type but also her selection of 
pure action. In a model with finite action spaces, by carefully mixing agents’ actions, Obara (2008) 
generated a correlation between ( , )i ib   and ( , )i ib    and then applies the technique of Crémer 

and McLean (1985, 1988) to the incentives in revelations. However, the argument by Obara needs 
to make extremely large side payments and utilize very detailed knowledge about specifications. 
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 To include contract design issues, we permit the presence of publicly observable 

signal at stage 4’ as follows: 

 

Stage 4’: Each agent i N  announces i i   about her type. Afterward, all agents, 

as well as the central planner, observe the public signal 0 0  . According to the 

profile of the agents’ announcements 0 0( )i i N       and the observed public 

signal 0 0  , the central planner determines the allocation 0 0( , )g A    and the 

side payment vector 0 0( , ) nx R   . The resultant payoff of each agent i  is given 

by 

0 0 0 0( ( ), ) ( (, , ))i i i iv g x c b       . 

 

 

 

 Figure 4 describes the timeline of the model with hidden action and hidden 

information. We introduce notions of incentive compatibility as follows. 

 

Definition 4 (Ex-post Incentive Compatibility): A mechanism ( , )g x  is said to be 

ex-post incentive compatible (EPIC) if truth-telling is an ex-post equilibrium; for every 

i N  and  , 

   ( ( ), ) ( ) ( ( , ), ) ( , )i i i i i i i iv g x v g x             for all i i  . 

 

 
 

Figure 4: Timeline with Hidden Action and Hidden Information 
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 EPIC is independent of the action profile due to additive separability. We further 

introduce a notion weaker than EPIC or inducibility: Bayesian Inducibility and 

Incentive Compatibility. 

 

Definition 5 (Bayesian Inducibility and Incentive Compatibility): A combination of 

an action profile and a mechanism ( ,( , ))b g x  is said to be Bayesian inducible and 

incentive compatible (BIIC) if the selection of the action profile b  at stage 2 and the 

truthful revelation at stage 4’ result in a perfect Bayesian equilibrium; for every i N , 

i ib B , and :i i i   , 

   [ ( ( ), ) ( ) | ] ( )i i i iE v g x b c b     

   [ ( ( ( , ), ) ( ( , ) | , ] ( )) )i i i i i i i i i i i i iE v g x b b c b             . 

 

 BIIC requires ( ,( , ))b g x  to exclude the possibility that each agent i  benefits by 

deviating from both the action choice ib  at stage 2 and the truthful revelation at stage 

4’. 

 The following theorem states that, if there is a mechanism that induces an action 

profile b  but fails to be incentive compatible, it is generally impossible to discover a 

mechanism that satisfies both inducibility and incentive compatibility: 

 

Theorem 3: Consider an arbitrary combination of an allocation rule and an action 

profile ( , )b g  such that b  is rich. 

(i) Suppose that there exists a payment rule x  such that ( , )g x  induces b  and 

satisfies EPIC. Then, for every payment rule x , whenever ( , )g x  induces b , 

it satisfies EPIC.  

(ii) Suppose that there exists a payment rule x  such that ( ,( , ))b g x  satisfies 

BIIC. Then, for every payment rule x , whenever ( , )g x  induces b ,

( ,( , ))b g x  satisfies BIIC. 
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Proof: Suppose that both ( , )g x  and ( , )g x  induce b . By Theorem 2, there exists 

nz R  such that 

( ) ( )x x z    for all  , 

which implies that ( , )g x  satisfies EPIC if and only if ( , )g x  satisfies EPIC. We can 

similarly prove that ( ,( , ))b g x  satisfies BIIC if and only if ( ,( , ))b g x  satisfies BIIC. 

Q.E.D. 

 

 Suppose that there exists at least one mechanism that satisfies both inducibility 

and incentive compatibility. From Theorem 3, it then follows that every mechanism that 

satisfies inducibility automatically satisfies incentive compatibility (i.e., every 

mechanism that resolves the hidden action problem automatically resolves the hidden 

information problem). 

 

5. Efficiency 

 

 We denote by 0 :v A R  the valuation function of the central planner. This 

section and the next intensively study allocation rules and action profiles that are 

efficient (i.e., that maximize the total welfare of all agents and the central planner). An 

allocation rule g  is said to be allocatively efficient if 

   
{0} {0}

( ( ), ) ( , )i i
i N i N

v g v a  
 

 
 

 for all a A  and  . 

A combination of an action profile and an allocation rule ( , )b g  is said to be fully 

efficient if g  is allocatively efficient and the selection of b  maximizes the total 

welfare in expectation—i.e., it satisfies 

   
{0} {0}

[ ( ( ), ) | ] ( )i i i
i N i N

E v g b c b 
 

 
 

 

   
{0} {0}

[ ( ( ), ) | ] ( )i i i
i N i N

E v g b c b 
 

  
 

   for all b B . 

A mechanism ( , )g x  is said to be fully efficient with inducibility if there exists an 

action profile b B  such that ( , )g x  induces b  and ( , )b g  is fully efficient. 
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A payment rule x  is said to be VCG if there exists :i iy R   for each i N  

such that 

   
{0}\{ }

( ) ( ( ), ) ( )i j i
j N i

ix v g y   


  


 for all i N  and  . 

According to a VCG payment rule, the central planner gives each agent i N  the 

monetary amount equivalent to the other agents’ welfare plus the central planner’s 

welfare (i.e., 
{0}\{ }

( ( ), )j
j N i

v g  




) and retrieves the monetary payment ( )i iy   that 

is independent of i . 

 We now introduce a subclass of VCG mechanisms, the “pure-VCG mechanism,” 

as follows. A payment rule x  is said to be pure-VCG if it is VCG and ( )iy   is 

constant for each i N ; there exists a vector ( ) n
i i Ny y R   such that 

   
{0}\{ }

( ) ( ( ), )i j i
j N i

x v g y  


  


 for all i N  and  . 

Pure-VCG payment rules are special cases of VCG payment rules, where the central 

planner imposes on each agent i  a fixed amount iy  as a non-incentive term. We call 

a combination of efficient allocation rule and a VCG payment rule (pure-VCG payment 

rule) a “VCG mechanism” (or “pure-VCG mechanism”).10 

 The following theorem states that pure-VCG mechanisms are fully efficient with 

inducibility and that, under the assumption of richness, only pure-VCG mechanisms 

can achieve full efficiency with inducibility: 

 

Theorem 4:  

(i) Pure-VCG mechanisms are fully efficient with inducibility. 

(ii) Suppose that, for every fully efficient ( , )b g , b  is rich. Then, a mechanism is 

fully efficient with inducibility if and only if it is pure-VCG. 

 

Proof: If ( , )b g  is fully efficient and x  is pure-VCG, then, for every i N  and 

i ib B , 

                                                 
10 This study slightly extends the canonical definition of a VCG mechanism because we account 
for the valuations of the central planner. 
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[ ( ( ), ) ( ) | ] [ ( ( ), ) ( )) | , ] ( )(i i i i i i i i i ib bE v g x b c E v g x b b c            

{0} {0}

[ ( ( ), ) | (] [ ( ( ), ) | , ( )])j i i j i i i i
j N j N

E v g b c E v g b bb bc    
 

     
 

0 , 

which implies that ( , )g x  induces b . Furthermore, if b  is rich, it is clear from 

Theorem 2 and the definition of the pure-VCG payment rule that only pure-VCG 

mechanisms induce b . 

Q.E.D. 

 

 We can construct any pure-VCG mechanism without utilizing any detailed 

knowledge about ( , , )f B c . Even if such detailed knowledge is available, the pure-

VCG mechanism is the best choice for the central planner who is attempting to 

maximize total welfare. 

 Theorem 4 provides us a necessary and sufficient condition for the existence of a 

mechanism that satisfies both full efficiency with inducibility and incentive 

compatibility (i.e., satisfies either EPIC or BIIC), provided the action profile is rich. 

Such a mechanism exists only when pure-VCG mechanisms are incentive compatible. 

However, when each agent’s payoff function has interdependent values, VCG 

mechanisms rarely satisfy either EPIC or BIIC, indicating that there is no fully efficient 

mechanism with inducibility in the interdependent value case.11 

Based on this observation, the remainder of this study will focus on the case of 

private values, where we assume that, for every i N , the valuation ( , )iv a   is 

independent of the other agents’ type profile  \{ }0 0 \{ }( )j j N i j ii i N j        , 

                                                 
11 Maskin (1992), Dasgupta and Maskin (2000), Jehiel and Moldovanu (2001), and Bergemann and 
Välimäki (2002) propose the generalized VCG mechanism and show that it satisfies EPIC for some 
environments, even with interdependent values. The generalized VCG mechanism fails to induce 
an efficient action profile, however, because it is not pure-VCG. On the other hand, Mezzetti (2004) 
shows that, if the realized valuation ) )( ,(iv g    is observable as an ex-post public signal and is 

contractible, even with interdependent values, we can implement ex-post efficient mechanism 
providing any VCG expected payoffs to each agent (see Noda [2016] for more general ex-post 
signals). If we can use these schemes, we may achieve full efficiency with interdependent values. 
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and 0( , )v a   is independent of 0 . We write 0( , , )i iv a    instead of ( , )iv a   for 

each i N , and 0 0( , )v a   instead of 0 ( , )v a  .12 

With the assumption of private values, EPIC is equivalent to incentive 

compatibility in dominant strategies (DIC); for every i N ,  , and i i  , 

   0 0( ( ), , ) ( ) ( ( , ), , ) ( , )i i i i i i i i i iv g x v g x              . 

With the assumption of private values, any VCG mechanism satisfies DIC; thus, we 

have proved the following proposition: 

 

Proposition 2: With the assumption of private values, pure-VCG mechanisms are fully 

efficient with inducibility and satisfy DIC. 

 

 Although VCG mechanisms generally satisfy DIC and allocative efficiency in the 

private value case, they are generally not fully efficient with inducibility. For example, 

consider the pivot mechanism ( , )g x , which is a VCG mechanism specified by 

   0
\{ }

0
{0} {0}

( ) ( ( ), , ) min ( ( , ), , )
i i

i i j i i i j
j N i j N

x v g v g


      
 

   
 

 

   for all i N  and  . 

Clearly, the pivot mechanism is generally not pure-VCG because the non-incentive 

term is not constant; thus, it is not always fully efficient with inducibility. The following 

proposition demonstrates a sufficient condition under which the pivot mechanism fails 

to be fully efficient with inducibility: 

 

Proposition 3: Let g  be an allocatively efficient allocation rule. Define :iz R  

by 

(7)   0
{0}

( ) min ( ( , ), , )
i i

i i i j
j

i
N

z v g


  


 


 for all i N .  

                                                 
12 We permit the valuations to depend on the public signal 0 . We write 0 0 0( , , )v a    instead of 

0 0( , )v a  . 
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Then, a pivot mechanism ( , )g x  is not fully efficient with inducibility if, for every 

b B  such that ( , )b g  is fully efficient, there exists i N  and a differentiable path 

i  of ( , )i b  such that 

(8)   ( ) 0i itz   . 

 

Proof: Note that iz , defined by (7), is the difference between a pure-VCG payment 

rule and the pivot payment rule. Since pure-VCG mechanisms induce b , it follows 

from Proposition 1 that the pivot mechanism induces b  for i  only if )( 0i itz   . 

Q.E.D. 

 

 From Proposition 3, it is clear that, if the targeted efficient action profile is rich, 

then the pivot mechanism is not fully efficient with inducibility. Importantly, 

Proposition 3 indicates that the pivot mechanism fails to be fully efficient with 

inducibility under a much weaker condition than richness. Indeed, even if there exists 

at least one differentiable path around the efficient action profile, the pivot mechanism 

generically fails to be fully efficient with inducibility. We have no reasons to expect 

that every tangent of differentiable paths is perpendicular to iz , defined by (7). 

Accordingly, we cannot expect the pivot mechanism to induce an efficient action profile. 

For example, we have observed in Examples 1 and 2 that the pivot mechanism 

encourages agents to select inefficient actions. 

 

6. Open-Bid Descending Procedure 

 

 So far, we have considered static revelation mechanisms at stage 4’ and have 

shown that only pure VCG mechanisms induce efficient action profiles. In a single-unit 

auction with private values, we can implement a pure-VCG mechanism with an open-

bid procedure, just as we can implement a pivot mechanism with an ascending auction. 

The allocation {1,2, , }a A n    specifies the agent who is the winner (i.e., obtains 

the object). Each agent’s type i i R    specifies the payoff of the agent when she 

obtains the object, i.e., 
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if  

otherwi
)

0 s
,

e
( i

i i

a i
v a





 


. 

 Fix an arbitrary real number iy R  for each agent i N . A pure-VCG 

mechanism ( , )g x  is specified in the manner that the allocation rule g  is allocatively 

efficient; thus, 

) arg max( i
i N

g  


  for all  , 

and the payment rule is given by 

( )

if  )

otherwi

(
)

se
( i

g
i

i

g
x

y i

y




 





 


. 

We consider the following open-bid descending procedure: 

 

1. Each agent pays a fixed participation fee iy  to the central planner at the 

beginning. 

2. The central planner initially sets the price sufficiently high and then gradually 

descends the price. 

3. When an agent declares to take the object, this descending procedure 

immediately terminates. The agent who declares to take the object becomes the 

winner and obtains this object.  

4. The central planner does not require the winner to pay any additional fee. 

Instead, the central planner gives any other agent (i.e., any loser) the price at the 

ending time as a compensation. 

 

Given this procedure, it is a weakly dominant strategy13 for each agent to “declare 

to take the object” exactly when the current price is equal to the agents’ value. If all the 

agents take this dominant strategy, then (i) the agent with the highest value wins, (ii) 

the winner’s payment is iy , and (iii) the loser’s payment is ( )g iy  . Accordingly, 

                                                 
13

 It is worth noting that this open-bid descending procedure satisfies obvious strategy-proofness as 
defined in Li (2016), as in ascending auctions. 
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this open-bid descending procedure generates the same outcome as a pure-VCG 

mechanism. 

The pivot mechanism (the second-price auction) is implemented by the popular 

ascending auction that determines the winner’s payment. By contrast, our procedure 

descends the price and determines the compensation for losers, implementing a pure-

VCG mechanism. 

 
7. Revenues and Deficits 

 

 Assuming private values, this section studies whether the central planner can 

achieve efficiency without deficits. We define the central planner’s ex-post revenue by 

(9)   00( ( ), ) ( )i
i N

v g x  


 ,14 

and the expected revenue in the ex-ante term by 

   0 0[ ( ( ), ) ( ) | ]i
i N

E v g x b  


 . 

We introduce three notions of individual rationality below. The timings of the exit 

opportunities are depicted in Figure 2. 

 

Definition 6 (Ex-ante Individual Rationality): A combination of an action profile and 

a mechanism ( ,( , ))b g x  is said to satisfy ex-ante individual rationality (hereafter 

EAIR) if 

   0[ ( ( ), , ) ( ) | ] ( ) 0i i i i iE v g x b c b       for all i N . 

 

Definition 7 (Interim Individual Rationality): A combination of an action profile and 

a mechanism ( ,( , ))b g x  is said to satisfy interim individual rationality (IIR) if 

   0[ ( ( ), ,, ) ( ) ,|, ] 0
i i i i i i ii iE v g x b       

      

for all i N  and i i  , 

where  

                                                 
14 Note that the central planner’s revenue includes not only payments from agents but also the 
valuation of the central planner. In the single agent case, where the allocation space is degenerate, 
the value of (10) corresponds to the principal’s payoff in a standard principal–agent model with a 
risk-neutral principal and agent. 
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   ,[ ( | , ]) , ) ( | )( ,
i

i i

i i i i i i i ifE b b


        


 

   


    

denotes the expectation of a function ( ) :,i i R      conditional on ( , )ib  . 

 

Definition 8 (Ex-post Individual Rationality): A mechanism ( , )g x  is said to satisfy 

ex-post individual rationality (EPIR) if 

   0( ( ), , ) ( ) 0i i iv g x      for all i N  and  . 

 

EPIR implies IIR; however, IIR does not necessarily imply EAIR because the cost 

for the action choice at stage 2 is sunk. The following proposition shows that EPIR 

implies EAIR: 

 

Proposition 4: Suppose that ( , )g x  induces b . Whenever ( , )g x  satisfies EPIR, 

( ,( , ))b g x  satisfies EAIR. 

 

Proof: Because 0( ) 0i ic b  , it follows from EPIR and inducibility that 

   0[ ( ( ), , ) ( ) | ] ( )i i i i iE v g x b c b      

0 0
0[ ( ( ), , ) ( ) | , ] ( )i i i i i i iE v g x b b c b       0 , 

which implies EAIR. 

Q.E.D. 

 

 EPIR is the strongest requirement for voluntary participation among the above 

three concepts. This section shows that EPIR is not compatible with the non-negativity 

of revenue in expectation. 

 The following proposition calculates the maximal expected revenues (i.e., the least 

upper bounds of the central planner’s expected revenues): 

 

Proposition 5: Suppose that ( , )b g  is fully efficient, b  is rich, and the private value 

assumption is satisfied. Then, the maximal expected revenue from ( ,( , ))b g x  in terms 

of ( , )ii N
x X b g


   that satisfies EPIR, IIR, EAIR, and IIR and EAIR are given by 
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(10)  0
{0}

,min ( ( ), )EPIR
j j

j N

R n v g


  




 


0
{0}

( 1) ( ( ), , )j j
j N

n E v g b  


 
   

  



, 

(11)  0
{0}

min ( ( ), ,, , )
i

i i

IIR
j i i j i

i N j N

R E v g b
    

 
 

 
  

  
 


 

   0
{0}

( 1) ( ( ), , )j j
j N

n E v g b  


 
   

  



, 

(12)  0
{0}

( ( ), , ) ( )j j
EAIR

j N j N
j jR E v g b c b  

 

 
  

  
 


, and 

(13)  ,EAIR IIRR 0 0 0( ( ), ) min ( ( ), , ) ,( )ii i i
i N

E v g b v g b cE b    


          

  0
{0}

( ( ), , ) ,min ,
i

i i
j i i j i

j N

v g bE
    

 


 
 
  



0
{0}\{ }

( ( ), , )j j
j N i

E v g b  


   
  



, 

respectively. 

 

Proof: See the Appendix. 

 

 Clearly, EAIRR  is equal to the maximized expected social welfare. From the 

relative strength of the incentive compatibility constraints, it is also clear that 

   ,EPIR IIR EAIR IIRR R R   and ,IIR EAIR EAIRR R . 

However, which is greater between IIRR  and EAIRR  depends on the specifications. 

 The following proposition indicates that, with the constraints of EPIR, it is 

generally difficult for the central planner to achieve full efficiency without deficits: 

 

Proposition 6: Suppose that ( , )b g  is fully efficient, b  is rich, and the private value 

assumption is satisfied. Suppose also that ( ) 0ii iN
c b


  and there exists a null state 

0( ,..., )n     in the sense that 

   0 0( , ) 0v a    for all a A , 

and for every i N , 

   0( , , ) 0i iv a     for all a A  and 0 0  . 
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With EPIR, the central planner has a deficit in expectation: 0EPIRR  . 

 

Proof: See the Appendix. 

 

 If 0EAIRR  , the conclusion is immediate from EPIR EAIRR R . Suppose 

0EAIRR  . It follows from ( ) 0ii iN
c b


  that the second term of EPIRR  in (10) is 

negative. Due to the presence of the null state, the first term of EPIRR  in (10) is non-

positive. Accordingly, EPIRR  is negative. 

 By replacing EPIR with weaker participation constraints, such as IIR and EAIR, 

and adding some restrictions, it becomes much easier for the central planner to achieve 

full efficiency without deficits. The following proposition states that the central planner 

can earn the same expected revenue as in the case of observable actions: 

 

Proposition 7: Suppose that ( , )b g  is fully efficient, b  is rich, and the private value 

assumption is satisfied. Suppose also that we have: 

Conditionally Independent Types: For every b B  and  , 

   
{0}

( | ) ( | )i i
i N

f b f b 


 


  , 

where ( | )i if b   denotes the probability of i  occurring when the agents select the 

action profile b . Then, the expected revenue achieved by any VCG mechanism that 

satisfies IIR and EAIR is less than or equal to ,IIR EAIRR . Furthermore, there exists a 

pure-VCG mechanism that satisfies IIR and EAIR and achieves ,IIR EAIRR . 

 

Proof: See the Appendix. 

 

One may expect that the central planner can receive greater expected revenue than 

,IIR EAIRR  once we remove the requirement of inducibility. However, Proposition 7 

indicates that, with conditionally independent types, no VCG mechanism is able to 



30 
 

make the expected revenue greater than ,IIR EAIRR . This implies that ,IIR EAIRR  is the 

upper bound of expected revenue regardless of whether we require inducibility.15 

 Proposition 7 is related to the observation from a classical principal–agent model. 

When both the principal and agent are risk-neutral, one of the revenue-maximizing 

contracts (which achieves the first-best of the principal) is to sell the company to the 

agent—that is, to give the entire outcome (externalities to the principal) in exchange 

for a fixed constant fee. By regarding pure-VCG mechanisms as an extension of such 

selling-out contracts, Proposition 7 indicates that selling the company is the unique 

revenue-maximizing contract when the efficient action is rich and the agent has 

unlimited liability (which corresponds to EAIR and IIR).16 

 It is widely accepted that efficiency is achievable through a VCG mechanism 

without running expected deficits if we do not require inducibility. With conditionally 

independent types and some moderate restrictions, we can guarantee the non-negativity 

of ,IIR EAIRR  as follows: 

 

Proposition 8: Assume the suppositions in Proposition 5, conditionally independent 

types, and the following conditions: 

Non-Negative Valuation: For every {0}i N   and  , 

   0( ( ), , ) 0iiv g     . 

Non-Negative Expected Payoff: For every i N , 

(14)   0[ ( ( ), , ) | ] ( ) 0i j i iE v g b c b     . 

With IIR and EAIR, the central planner has non-negative expected revenue: 

, 0IIR EAIRR  . 

 

                                                 
15

 In the main body of this paper, we assume finite state spaces. Accordingly, some non-VCG 
mechanisms may be allocatively efficient and satisfy DIC. However, if we take a fine grid of the 
states to make the state space closer to the continuum (with which the regularity condition of the 
Green–Laffont–Holmström theorem is satisfied), only the mechanisms that are close to VCG can 

satisfy DIC. In such a case, the maximum possible revenue is also close to ,IIR EAIRR . 
16 Harris and Raviv (1979) showed that the principal can extract full surplus if the agent is risk-
neutral and has unlimited liability. Holmström and Milgrom (1987) established that, if the agent has 
a CRRA utility function and can take various deviations, there exists a unique contract that induces 
an efficient action. We generalize their insights to multi-agent mechanism design problems to derive 
the impossibility results. 
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Proof: See the Appendix. 

 

 Non-negative valuation excludes the case of bilateral bargaining addressed by 

Myerson and Satterthwaite (1983), where it is impossible for the central planner to 

achieve allocative efficiency without deficits. Non-negative expected payoff excludes 

the case of opportunism in the hold-up problem, where the sunk cost ( )i ic b  is so large 

that it violates inequality (14). By eliminating these cases and replacing EPIR with IIR 

and EAIR, we can derive the possibility result in liability implied by Proposition 8. 

 

 

8. Absence of Externality 

 

 So far, we have permitted each agent’s action choice to influence the other agents’ 

valuation functions through the action-dependence of the state distribution (i.e., we 

have assumed the presence of externality). We have seen that, even if the dimensionality 

of unilateral deviations is low, the pivot mechanism generally fails to satisfy the full 

efficiency with inducibility (Proposition 3). If the dimensionality of unilateral 

deviations is sufficient (i.e., if efficient action profiles are rich), only a very special 

VCG mechanism, a pure-VCG mechanism, satisfies full efficiency with inducibility 

(Theorem 4). Consequently, it is difficult for the central planner to earn a moderate 

amount of revenue in a manner compatible with EPIR and full efficiency with 

inducibility (Proposition 6). 

 In this section, we articulate that the externality effects of actions are crucial for 

the abovementioned results. To demonstrate the importance of the externalities, this 

section assumes that each agent’s action does not have externality effects but that each 

agent has a very large set of actions. We then show a characterization of all mechanisms 

that satisfy full efficiency with inducibility. This characterization implies that it is 

generally possible for the central planner to earn a positive revenue and even make the 

payment rule budget-balancing. 

As in Bergemann and Välimäki (2002) and Hatfield, Kojima, and Kominers 

(2015), this section assumes independent types of the information structure, which 
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expresses the absence of externality. Independent types requires that, in addition to 

conditionally independent types, each agent i ’s action choice i ib B  influences only 

the marginal distribution of the agent’s type i ; for every   and b B , 

   0 0( ( ) ( | )| ) i i i
i N

f fb f b  


  . 

Here, ( | )i if b  denotes the marginal distribution of each agent i ’s type i  that is 

assumed to depend only on ib , and 0( )f   denotes the distribution of the public signal 

0  that is assumed to be independent of the action profile b B . When we have 

independent types, agent i ’s action space is equivalent to the set of available marginal 

distributions on agent i ’s type. Accordingly, this restriction expresses no externality. 

With independent types, for every : R   and :i i R   , we can simply write 

[ ( , ) | ]
i i i iE b  

    and [ ( ) | ]i i iE b   instead of ,[ ( ) | , ]
i ii iE b   

   and 

[ ( ) | ]i iE b  , respectively. 

 Since the choice of ib  affects only agent i ’s marginal type distribution, we can 

define the differentiable path of ( , )i b  independent of the other agents’ action profile 

ib . With independent types, if :[ 1,1]i i    is a differentiable path of 

( , )i b N B  , then, for every i ib B  , i  is also a differentiable path of ( , , )i ii b b . 

Slightly abusing the notation, we write “ i  is a differentiable path of ( , )ii b ” instead 

of  “ i  is a differentiable path of ( , , )i ii b b .” 

With independent types, the choice of ib  is isomorphic to the choice of 

( )i if   , where dim ( ) 1i i     . Accordingly, there are at most | | 1i   

differentiable paths of ( , )ii b  whose tangents are linearly independent. We say that a 

targeted action ib  is privately rich if such differentiable paths actually exist. If the 

targeted action is privately rich, an agent has an extremely large action set, while the 

assumption of independent types excludes externality effects. 
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Definition 9 (Private Richness): An action i ib B  is said to be privately rich for 

agent i N  if there exist 1i   differentiable paths of ( , )ii b  whose tangents are 

linearly independent. An action profile b B  is said to be privately rich if ib  is 

privately rich for all i N . 

 A payment rule x  is said to be expectation-VCG if, for each i N , there exist 

:ir R  such that for every i N , 

   
{0}\{ }

( () )( ( ), )i j i
j N i

x v g r   


  


 for all  , 

and [ ( , ) | ]
i i iiiE r b 

    is independent of i i  . We call the combination of an 

efficient allocation rule and expectation-VCG payment rule an “expectation-VCG 

mechanism.” 

Recall that the distribution of i  is determined solely by the choice of ib , 

which agent i  cannot manipulate. Accordingly, agent i ’s unilateral deviation does 

not change the value of [ ( , ) | ]
i i iiiE r b 

    whenever it is independent of i . Now, 

we obtain the following characterization result: 

 

Proposition 9: Under the assumption of independent types: 

(i) Any expectation-VCG mechanism is fully efficient with inducibility. 

(ii) Suppose that, for every fully efficient ( , )b g , b  is privately rich. Then, a 

mechanism is fully efficient with inducibility if and only if it is expectation-VCG. 

 

Proof: See the Appendix. 

 

 Eliminating externality by assuming independent types, we can obtain a very 

permissive result in that a large class of mechanisms, expectation-VCG, satisfies full 

efficiency with inducibility regardless of the dimensionality of unilateral deviations. 

The class of expectation-VCG includes all VCG mechanisms, which guarantees the 

compatibility of full efficiency with inducibility with EPIR and positive revenues. 

Bergemann and Välimäki (2002) studied information acquisition for each agent’s own 

hidden state with independent types and private values and showed that VCG 
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mechanisms are fully efficient with inducibility. We extend their result to more general 

action spaces and mechanisms and derive the full characterization. 

Hatfield, Kojima, and Kominers (2015) studied detail-free mechanisms and 

showed that a fully efficient and detail-free mechanism must be VCG. Proposition 10 

clarifies that there are very important mechanisms that are fully efficient with 

inducibility but not detail-free, as follows. Arrow (1979) and D’Aspremont and Gérard-

Varet (1979) specified an efficient mechanism ( , )g x , the “AGV mechanism,” in the 

manner that 

   
{0}\{ } {0}\{ }

) ), ) [( ( ( ( ( , ), ) | ]
ii j j j i i j i

j N i j N i

Er bv g v g     
  

 

  
 

   

   
\{ } {0}\{ }

( (
1

[ ), ) | ]
1

,
j j h j

j N i h N j
h jE bv g

n    
  

 


  



  . 

By definition, the AGV mechanism satisfies budget balance: 

   ( ) 0i
i N

x 


  for all  . 

It is important to note that the AGV mechanism is expectation-VCG. Accordingly, with 

independent types, the central planner can achieve full efficiency with inducibility in a 

manner consistent with BIIC and budget balance. 

  

9. Conclusion 

 

 We studied a general mechanism design problem in which agents take hidden 

actions that determine the state distribution; their action choices produce significant 

externality effects on their valuations. We have shown that the class of mechanisms that 

successfully induce a desired action profile is substantially restrictive. Indeed, the 

popular pivot mechanism generally fails to induce an efficient action profile. Hence, it 

is difficult for a mechanism to satisfy no-deficits and incentive compatibility. 

 If the availability of unilateral deviations is sufficient (i.e., if the targeted action 

profile is rich), we obtained quite strong equivalence properties; ex-post payoffs, ex-

post payments, and ex-post revenues are all unique up to constants. This implies that 

the class of mechanisms that satisfy inducibility is severely restricted. In particular, 

focusing on the achievement of full efficiency, any mechanism that satisfies inducibility 
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must be pure-VCG (i.e., the simplest form of VCG that excludes the pivot mechanism). 

Accordingly, it is difficult to satisfy both inducibility and incentive compatibility in the 

interdependent value case, while it is generally possible in the private value case. 

However, we have severe difficulty achieving non-deficits on the constraints of 

inducibility. 

 We also discussed the implementation of the pure-VCG mechanism via an open-

bid procedure. We emphasized the importance of descending formats and a 

determination of the losers’ compensation instead of the winner’s payment, to 

overcome the hidden action problem. However, this study considered only the single-

object allocation problem with private values. Future research should investigate open-

bid mechanisms in hidden action in more general environments. 
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Appendix 

 

Proof of Proposition 5: By Theorem 4, we can focus on pure-VCG payment rules, 

where the constraint for EPIR is equivalent to 

(A1)   0
{0}

min ( ( ), , )j j i
j N

v g z


  







 for all i N . 

We can maximize the expected revenue by letting iz  satisfy (A1) with equality for 

each i N . Accordingly, the central planner can receive from each agent i  the 

expected value given by 

   0 0
{0} {0}\{ }

min ( ( ), ) ( ( ), ), ,j j j j
j N j N i

v g E v g b


     


 

 
  

  
 
 

, 

which implies (10), where we add 0 0[ ( ( ), ) | ]E v g b  . 
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 Similarly, the constraint for IIR is equivalent to 

(A2)  0
{0}

min ,( ( ), , ) ,
i

i i
j i i j i i

j N

v g b zE
    

 


 
 

  



 for all i N  and i i  . 

We can maximize the expected revenue by letting iz  satisfy (A2) with equality for 

each i N . Accordingly, the central planner can receive from each agent i  the 

expected value given by 

  0
{0}

min ( ( ), , ), ,
i

i i
j i i j i

j N

E v g b
    

 


 
 
  



0
{0}\{ }

( ( ), , )j j
j N i

E v g b  


 
  

  



, 

which implies (11), where we add 0 0[ ( ( ), ) | ]E v g b  . 

 The constraint for EAIR is equivalent to 

(A3)   0
{0}

( ( ), , ) ( )j j i i i
j N

E v g b c b z  


 
  

  



 for all i N . 

We can maximize the expected revenue by letting iz  satisfy (A3) with equality for 

each i N . Accordingly, the central planner can receive from each agent i  the 

expected value given by 

   0
{0}

( ( ), , ) ( )j j i i
j N

v g b c bE   


 
 

  



0
{0}\{ }

( ( ), , )j j
j N i

E v g b  


 
  

  



 

   0( ( ), , ) ( )ii i iv g bE c b      , 

which implies (12), where we add 0 0[ ( ( ), ) | ]E v g b  . 

 The constraint for IIR and EAIR is equivalent to 

(A4)   0
{0}

min ( ( ), , ) ( ),j j i i
j N

E v g b c b  


    
   



 

   0
{0}

( ( ), , ) ,min ,
i

i i
j i i j i i

j N

v g b zE
    

 


   
  



. 

 

We can maximize the expected revenue by letting iz  satisfy (A4) with equality for 

each i N . Accordingly, the central planner can receive from each agent i  the 

expected value given by 
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   0min ( ( ), , ) ( ),i i iiv g b cE b       

  0
{0}

( ( ), , ) ,min ,
i

i i
j i i j i

j N

v g bE
    

 


 
 
  



0
{0}\{ }

( ( ), , )j j
j N i

E v g b  


   
  



,  

which implies (13), where we add 0 0[ ( ( ), ) | ]E v g b  . 

Q.E.D. 

 

Proof of Proposition 6: If 0EAIRR  , the conclusion would be immediate from the fact 

that EPIR EAIRR R . Suppose 0EAIRR  . Because for 0 1( , , ), n   , 

0{0}
( , , ) 0iii N

v a  


 
 holds for all a A , we have 

   0
{0}

min ( ( ), , ) 0
i

i i
N

v g


  







. 

It follows from 0EAIRR   and ( ) 0i ii N
c b


  that we have 

   0
{0}

( ( ), , ) ( ) 0i i i i
i N i N

E v g b c b  
 

 
  

  
 


. 

From these observations, 

  0
{0} {0}

min ( ( ), ) ( 1) ( ( ), , ) 0EPIR
j

j N
j j j

j N

R n v g n E v g b


    


 

 
   

 



 
 

. 

Q.E.D. 

 

Proof of Proposition 7: We have already shown that there is a pure-VCG mechanism 

that achieves ,IIR EAIRR . Assuming conditionally independent types and private values, 

we consider an arbitrary VCG mechanism ( , )g x  such that for each i N , there 

exists :i iy R   such that 

   0
{0}\{ }

( ( ( , )) ), ( )i j j i i
j N i

vx g y    


  


 for all  . 

EAIR implies 

   0
{0}

( ( ( , ) ), () )i j i
Nj

i j iE y b E v g b c b   


 
    




 



, 

while IIR requires 
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   0
{0}

) )( , ( ( , , ), ,
ii i j i i j

N
i i

j

E y b E v g b     
 



 
    

 






  

for all i i  , 

or, equivalently, 

   0
{0}

) min ),( ( ( , , ) ,
i

i i
i i j i i j

N
i

j

E y b E v g b
    

 


 
    

 






. 

Here, we used the fact that )( ( ,)i i i i iE y b E y b           because of conditional 

independence. Accordingly, we have 

   0
{0}

( ( ( , )) ( ),min ),i i j
j

j i i
N

E y b E v g b c b   


 


   
  







 

   0
{0}

min ),( ( , , ) ,
i

i i
j i

Nj
i ijE v g b

    
 



 
 
  



, 

which implies 

   ,
0 0[ ( ( ), ) ( ) | ] IIR EAIR

i
i N

E v g x b R  


  . 

Q.E.D. 

 

Proof of Proposition 8: From conditionally independent types, non-negative 

valuations, and null state, it follows that, for every i N  and i i  , 

  0 0
{0} {0}

,( ( ), ) max ( , ), ,
i ij i i j j j

a N
j N j N

E v g b E v a b      
  

 

   
   

      
 
 

 

  0
{0}\{ }

max ( ),,
i j j

a N
j N i

E v a b  
 



 
  

  



 

  0 0
{0}\{ }

( ( , ), , ) ( ( , ), ),
i i i i i j i i j

j N i

E v v gg b        
  



 
  

 






, 

which implies 

  0 0
{0} {0}\{ }

min ( ( ), ) max, ,( , ),
i i

i i
j i i j j j

a A
j N j N i

E v g b E v a b 
     

  
 

   
   

      
 
 

, 

that is, 
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  0 0
{0} {0}\{ }

( ( ), ) [ ( ( ), )min , , , | ] 0
i

i i
j i i j j j

j N j N i

v g b E v g bE
      

 
 

 
  

  
 
 

.  

From the assumption of non-negative expected payoffs, we have 

   0( ( ), ), ( ) 0i ii iE v g b c b      . 

From these observations, for every i N  

    0min ( ),( ) (), , ii iiE v g b c b       

0 0
{0} {0}\{ }

min ,( ( ), , ) [ ( ( ), ) | ],
i

i i
j i i j j j

j N j N i

v g b E g bE v
      

 
 

    
    
 
 

 0 , 

which, along with non-negative valuations, implies , 0IIR EAIRR  . 

Q.E.D. 

 

Proof of Proposition 9: Sufficiency is straightforward from the fact that 

[ ( , ) | ]
i i i iiE r b 

    is independent of i  and ib . 

For necessity, first, we prove the following lemma. 

 

Lemma 1: With the assumption of independent types, if i  is a differentiable path of 

ib  and | |( )it R   is its tangent, then there exists | |( ) i
i it R   such that 

   
0

( | ( )) ( | )
lim ( )i i i i

i i

f f b
t



  


  
 . 

Furthermore, for all differentiable paths 1, , K
i i  , their respective tangents 1( )it  , 

…, ( )K
it   are linearly independent if and only if 1( )i it  , …, ( )K

i it   are linearly 

independent. 

 

Proof of Lemma 1: By independent types, 

   ( ( )| ( , )), |i i i if f bb b      

    ( | ) ( ( ) ( )| ) |j j j i i i i i
ij

i bf b f f    


  . 

Accordingly, 
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   )( , it    

   
0

( | ( )
(

) (
l| )

| )
im i i i i i i

j j
j

j
i

f f
f b

b


   







   

(A5)   ( | ) ( , )j j j i i i
ij

f tb  


 . 

This indicates that whenever ( )it   exists, ( )i it   actually exists; thus, ( )i it   is 

well-defined. 

 Suppose that 1( )it  , …, ( )K
it   are not linearly independent; thus, there exists 

0( )k k
K   such that 0k   for some {1, , }Kk   , and 

   
1

, ) 0( k
K

k i
k

t  


   for all  . 

Fix some i i   arbitrarily. It follows from (A5) that 

   
1 1

1
) ) 0

( |
( , ( ,

)

K K

k k
j

k k
k i i i k i

j j j
i

f
t t

b
     

 


   
 for all i i  . 

Hence, 1( )i it  , …, ( )K
i it   are not linearly independent either. If 1( )i it  , …, ( )K

i it   

are not linearly independent, we can show that 1( )it  , …, ( )K
it   are not independent 

in a similar manner. 

Q.E.D. 

 

 Using Lemma 1, we show the following equivalence result. 

 

Lemma 2: Suppose that b  is privately rich and ( , )g x  induces b . Then, for every 

payment rule x , the associated mechanism ( ),g x  induces b  if and only if 

[ ( ) ( ) | ], ,
i i i i i i i iE x x b    

      is independent of i , i.e., there exists nz R  such 

that 

(A6)   ,[ ( ,) ( ) | ]
i i i i i i i i iE x x b z    

      for all i N  and i i  . 

  

Proof of Lemma 2: The proof of the sufficiency part is straightforward. Let us show 

the proof of the necessity part as follows. Suppose that both ( , )g x  and ( ),g x  
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induces b . Then, for all i N , the following first-order condition of necessary 

condition must be satisfied: 

    
0

( ( (), ) ) | ) ( 0)( , )(k k
i i i i i iE v x bg c



      
 



     


  

   for , 11, ik   , 

    
0

( ( (), ) ) | ( ( ( 0), ))k k
i i i i i iE v x b cg



      
 



    
   

   for , 11, ik   . 

Comparing these equations, we obtain  

(A7)   
0

( ( () ) , 0| )k
i i i iE x x b



   
 



   
  for , 11, ik   . 

Using the assumption of independent types, (A7) can be rewritten as 

(A8)   
0

[ ) ) |( (] | ), ( , 0
i i

k
i i i i i i i iE E x x b 



     
    



   
   

   for , 11, ik   . 

Define 

   ( ) ( , ( ,[ ) ) | ]
ii i i i i i i i iE x xw b    

      . 

Then, (A8) is equivalent to 

(A9)   ( ) 0k
i i iw t    for , 11, ik   , 

where 1( )i it  , …, | | 1( )i
i it     are obtained by Lemma 1. Since  

1

1
( )

ik
i i k

t 





 are 

linearly independent, 

    | | : ( )dim  for0  1, , | 1| 1i k
i i i i iw kw tR       . 

This and (A9) implies that there exists iz R  such that 

 [ )( ) | ]) ( , ( ,
ii i i i i i i i i iw E x x b z    

       for all i i   

as desired. Hence, we have proved Lemma 2. 

Q.E.D. 
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Proof of Proposition 9, continued: Recall that, whenever ( , )b g  is fully efficient and 

x  is pure-VCG, then ( , )g x  induces b . Furthermore, by the definition of 

expectation-VCG payment rules, if x  is a pure-VCG payment rule and x  satisfies 

(A6), x  is an expectation-VCG payment rule. Accordingly, by Lemma 2, ( , )g x  

induces b  if and only if x  is an expectation-VCG payment rule. 

Q.E.D. 
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