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Hedging and Pricing Illiquid Options

with Market Impacts ∗†

Taiga Saito ‡

Abstract

In this paper, we consider hedging and pricing of illiquid options on an untradable un-
derlying asset, where an alternative asset is used as a hedging instrument. Particularly, we
consider the situation where the trade price of the hedging instrument is subject to mar-
ket impacts caused by the hedger and the liquidity costs paid as a spread from the mid
price. Pricing illiquid options, which often appears in trading of structured products, is a
critical issue in practice because of its difficulties in hedging mainly due to untradablity of
the underlying asset as well as the liquidity costs and market impacts of the hedging in-
strument. Firstly, by setting the problem under a discrete time model, where the optimal
hedging strategy is defined by the local risk-minimization, we present algorithms to obtain
the option price along with the hedging strategy by an asymptotic expansion. Moreover,
we provide numerical examples. This model enables the estimation of the effect of both the
market impacts and the liquidity costs on option prices, which is important in practice.

Keywords: Incomplete market, Derivatives pricing, Market impact

1 Introduction

Pricing illiquid options, such as options on illiquid commodities, foreign exchange rates, and
unlisted stocks, is an important but difficult problem in practice. These options usually appear
as a part of structured derivative products, where an alternative asset with similar price move-
ments is used as a hedging instrument instead of the untradable underlying asset. For example,
options on Indonesian oil are hedged with WTI future which is subject to market impacts and
liquidity costs. Moreover, options on BRLJPY (Brazilian real against JPY) are hedged by BR-
LUSD (Brazilian real against U.S. dollar) which also accompanies market impacts and liquidity
costs. However, in most cases, the liquidity costs paid as a spread from the mid price and the
market impacts caused by the hedging activities of the hedger are not negligible in trading, and
estimation of these effects is vital in the risk management of banks.

Taking these into account, we consider a hedging and pricing problem of illiquid options,
where the underlying asset is untradable and the trade price of the alternative asset is subject
to the liquidity costs and the market impacts caused by the hedger. There are only a few
literatures that deal with derivatives pricing with market impacts and liquidity costs because
of its difficulties in solving the associated non-linear PDE. (For instance, Li and Almgren [13]

∗Forthcoming in ”International Journal of Financial Engineering”.
†All the contents expressed in this research are solely those of the author and do not represent any views or

opinions of any institutions. The author is not responsible or liable in any manner for any losses and/or damages
caused by the use of any contents in this research. This research is supported by Center for Advanced Research
in Finance (CARF).

‡Graduate School of Economics, University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Email:
staiga@e.u-tokyo.ac.jp

1



studies an intraday hedging problem of an option, where it considers minimization of the variance
of the portfolio value at the end of the day together with the liquidity costs. Saito and Takahashi
[19] extends Li and Almgren [13] to the pricing problem of derivatives of the entire period, which
is from the trade date to maturity. Guéant and Pu [11] considers maximization of an expected
utility at maturity. All the works reduce the problems to solving a HJB equation.) They deal
with options on the underlying asset with some liquidity, that is, the underlying asset is still
tradable. Unlike these works, our study deals with illiquid options whose underlying asset is
untradable and hedged with a correlated underlying asset, which is a more difficult issue in
practice. Moreover, we consider the case where the market impact parameter, a proportionality
factor determining the size of the market impact, deterministically changes over time, while the
related literatures assume the parameter to be a constant. This enables us to estimate the effect
of the market impact on the derivatives prices depending on the economic scenarios, which is
particularly meaningful after the financial crisis.

Firstly, we set the problem under a discrete time model, where the optimal hedging strategy
is defined by the local risk-minimization. Then, we provide algorithms to obtain the hedging
strategy as well as the option price, showing that the strategy is uniquely determined by back-
ward induction when the market impact parameter is a constant and the first order asymptotic
expansion of the strategy is obtained when the parameter is time-dependent.

Following the fundamental works on modeling of limit order books and its application to
the optimal execution problems, (see Alfonsi et al. [2],[3],[4], Bertsimas and Lo [9], Predoiu et
al. [15], Almgren and Chriss [5],[6], Bank and Baum [7], Chen et al. [10], Obizhaeva and Wang
[14], Roch and Soner [17], for example), we assume a block shape for the limit order book of the
hedging instrument, where the spread from the mid price is proportional to the trade volume.
We also assume that the hedger is a sole large trader whose hedging activity causes market
impacts on the price of the hedging instrument.

Moreover, we apply the local risk-minimization to the derivatives pricing with market impacts
and liquidity costs because of its mathematical tractability to work on intricate optimality
problems. (For other applications of the local risk-minimization to different topics in finance,
see Schweizer [20], Lamberton et al. [12] for option pricing with transaction costs and Barbarin
[8] for an application to an insurance problem.) This optimality criterion aims to find a locally
optimal strategy that minimizes a quadratic error in the hedging at each time point.

The paper is organized as follows: after the next section introduces the local risk-minimization
in discrete time, Section 3 shows a recursive procedure to obtain the local risk-minimizing strat-
egy in the case of a constant market impact parameter. Section 4 presents backward induction
to derive the hedging strategy in the case of a time-dependent market impact parameter. In
particular, the exact strategy and the first order expansion are obtained for cash settlement and
physical settlement, respectively. Section 5 provides numerical examples in the case of a time-
dependent market impact parameter for both cash and physical settlements. Finally, Section 6
concludes. Appendices provide a supplement of Section 5.2 and proofs of a lemma, proposition,
and theorem, as well as calculation processes of Section 4.

2 The model

In this section, we introduce the local risk-minimization in discrete time, where liquidity costs
and market impacts in the hedging instrument are considered. Let (Ω,F ,P) be a probability
space and {Fk}k=0,1,...,T be a filtration. Let Lp(Ω) be the set of p-th integrable real-valued
random variables for p ≥ 1. We assume an economy that consists of a money market account
and a hedging instrument with time points k = 0, 1, . . . , T . Let ηk ∈ L2(Ω) and θk+1 ∈ L4(Ω)
(k = 0, 1, . . . , T ) be Fk-measurable random variables, which represent the position of the money
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market account and the hedging instrument at time k, respectively. Here, the positive and the
negative sign of η and θ indicate a long position and a short position, respectively. We call
the set of the pairs ϕ := {(ηk, θk+1)}k=0,1,...,T a trading strategy. We assume the interest rate
to be zero for simplicity, which means that the price of the money market account is always 1.
Hereafter, we denote Xk −Xk−1 by ∆Xk (k = 1, . . . , T ) for any process X, and set ∆θ1 = θ1.

2.1 Trade price and market impact

Firstly, we model the liquidity cost and the market impact in the hedging instrument. Let
S(k,∆θk+1) be the trade price of the hedging instrument when the hedger buys an amount
∆θk+1 at k (k = 0, . . . , T ). Let {S̃k}k=0,...,T ⊂ L2(Ω) be a Fk-adapted process, which we call
the unaffected price process. This price process is a hypothetical mid-price process in the case
where there is no market impact when the hedger does not trade any hedging instruments. We
assume that the hedger is the only large trader who causes market impacts on the hedging
instrument. Let M and λ0, λ1, . . . , λT−1 be positive constants, and we denote the sequence
{λ}k=0,...,T−1 by λ. We define S(k,∆θk+1) as follows.

S(k,∆θk+1) = S(k, 0) +M∆θk+1, k = 0, . . . , T, (1)

S(0, 0) = S̃0, (2)

S(k, 0) = S̃k +
k∑

j=1

2λj−1M∆θj , k = 1, . . . , T. (3)

Equation (1) explains that when the hedger buys ∆θk+1 of the hedging instrument at time
k, the average price S(k,∆θk+1) is the sum of the mid price S(k, 0) and M∆θk+1, which is
proportional to the the trade volume. We observe that this corresponds to the case of the limit
order book with uniform order density 1

2M . In fact, if the hedger buys ∆θk+1 of the hedging
instrument in the order book, the hedger takes the offer orders with the price from S(k, 0) to
S(k, 0) + 2M∆θk+1. In this case, the hedger results in buying θk+1 of the hedging instrument
with the average price S(k, 0) +M∆θk+1, since

1

∆θk+1

∫ S(k,0)+2M∆θk+1

S(k,0)
x

1

2M
dx = S(k, 0) +M∆θk+1. (4)

Equation (3) shows the market impacts by the hedger on the mid price of the hedging
instrument. By (3), we have

∆S(k, 0) = ∆S̃k + 2λk−1M∆θk, k = 1, . . . , T. (5)

This implies that the change in the mid price ∆S(k, 0) consists of the change in the unaffected
price ∆S̃k and the market impact 2λk−1M∆θk caused by the hedger, where 2M∆θk is the spread
between the mid price and the maximum offer price at k− 1. (For the general relation between
the shape of the limit order book and the trade price, see Saito [18], for instance.)

2.2 Local risk-minimization in discrete time

Secondly, we define the local risk-minimization in discrete time. We assume the following for
the option payoff of the untradable underlying asset. Let η̄T , θ̄T+1 be FT -measurable random
variables, which are independent of {θk+1}k=0,...,T−1. We call (η̄T , θ̄T+1) an option payoff at T .
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Let {Ak}k=0,...,T be a Fk-adapted process, which is the price process of the untradable underlying
asset. For example, we can consider a call option payoff in cash settlement (η̄T , θ̄T+1),

η̄T = max(AT −KA, 0),

θ̄T+1 = 0, (6)

where KA > 0. This option pays AT −KA in cash at T only when AT ≥ KA.
Another example is an option payoff in physical settlement (η̄T , θ̄T+1), where

η̄T = −KS1{AT≥KA},

θ̄T+1 = 1{AT≥KA}, (7)

and KA,KS > 0. This option delivers one unit of the hedging instrument at a price KS at T only
when AT ≥ KA. Here, the price of the untradable underlying asset is used as a reference price to
determine the option payoff. Hereafter, we consider trading strategies ϕ = {(ηk, θk+1)}k=0,1,...,T

that satisfy ηT = η̄T and θT+1 = θ̄T+1, which means that the hedger matches the portfolio
(ηT , θT+1) with the option payoff at maturity.

Next, we define the value process, cost process, and perturbation of a trading strategy.

Definition 1. The value process of a trading strategy ϕ = {(ηk, θk+1)}k=0,1,...,T is a Fk-adapted
process satisfying

Vk(ϕ) = ηk + θk+1S(k, 0), k = 0, . . . , T. (8)

Definition 2. The cost process of a trading strategy ϕ is a Fk-adapted process satisfying

Ck(ϕ) = Vk(ϕ)−
k∑

j=1

θj∆S̃j −
k∑

j=1

2λj−1Mθj∆θj +
k∑

j=1

M(∆θj+1)
2

= Vk(ϕ)−

 k∑
j=1

θj∆S(j, 0)−
k∑

j=1

M(∆θj+1)
2

 , k = 1, . . . , T, (9)

C0(ϕ) = V0(ϕ). (10)

Definition 3. A perturbation of a trading strategy ϕ = {(ηj , θj+1)}j=0,1,...,T at time k (k =
0, . . . , T ) is a trading strategy ϕ̃ = {(η̃j , θ̃j+1)}j=0,1,...,T satisfying

ηj = η̃j , j = 0, . . . , k − 1, k + 1, . . . , T, (11)

θj+1 = θ̃j+1 , j = 0, . . . , k − 1, k + 1, . . . , T. (12)

Equation (8) shows that Vk is a mid mark-to-market of the portfolio at k. We also interpret

k∑
j=1

θj∆S(j, 0)−
k∑

j=1

M(∆θj+1)
2 (13)

in (9) as the trading gain of the hedging instrument from time 0 to k together with the liquidity
cost paid. The perturbation of a trading strategy ϕ at k in (11) and (12) is a trading strategy
that has the same portfolio profile as the strategy ϕ except for at k.

Then, we define the risk process of a trading strategy and the local risk-minimizing strategy.
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Definition 4. The risk process of a trading strategy ϕ is a Fk-adapted process {Rk(ϕ)}k=0,1,...,T

satisfying

Rk(ϕ) = E
[
(CT (ϕ)− Ck(ϕ))

2
∣∣∣Fk

]
, k = 0, 1, . . . , T. (14)

Definition 5. A trading strategy ϕ is called the local risk-minimizing strategy if for all k =
0, . . . , T , for any perturbation ϕ̃ of ϕ at time k,

Rk(ϕ) ≤ Rk(ϕ̃), P− a.s. (15)

These definitions have the following interpretation. Suppose that the hedger trades by self-
financing starting from the position (ηk, θk+1) at k (k = 0, . . . , T ). At k + 1, the hedger buys
∆θk+2 of the hedging instrument spending cash of ∆θk+2S(k+1,∆θk+2). Continuing the trading
until k = T − 1 and buying ∆θT+1 = θ̄T+1 − θT of the hedging instrument at maturity T , the
hedger ends up with the portfolioηk −

T∑
j=k+1

∆θj+1S(j,∆θj+1), θ̄T+1

 . (16)

The difference between the portfolio and the option payoff is

η̄T −

ηk −
T∑

j=k+1

∆θj+1S(j,∆θj+1)

 (17)

in the money market account, which can be rewritten as

η̄T −

ηk −
T∑

j=k+1

∆θj+1S(j,∆θj+1)


= η̄T − ηk +

T∑
j=k+1

∆θj+1S(j, 0) +
T∑

j=k+1

M(∆θj+1)
2

=
(
η̄T + θ̄T+1S(T, 0)

)
− (ηk + θk+1S(k, 0))−

T∑
j=k+1

θj∆S(j, 0) +

T∑
j=k+1

M(∆θj+1)
2

=
(
η̄T + θ̄T+1S(T, 0)

)
− (ηk + θk+1S(k, 0))−

T∑
j=k+1

θj∆S̃j

−
T∑

j=k+1

2λj−1Mθj∆θj +
T∑

j=k+1

M(∆θj+1)
2

= CT (ϕ)− Ck(ϕ). (18)

Then, the risk process in (14) is equivalent to the conditional expectation of the quadratic
hedging error of the self-financing strategy. Moreover, the local risk-minimizing strategy defined
by (15) is a trading strategy that minimizes the hedging error of the corresponding self-financing
strategy among all the perturbations at any time point k.

Finally, we introduce the following Lemma that characterizes the property of the local risk-
minimizing strategy. As in the case without market impact in Lamberton et al. [12], the
martingale property of the cost process of the local risk-minimizing strategy holds. We provide
the proof in Appendix B.

Lemma 1. If ϕ is a local risk-minimizing strategy, then {Ck(ϕ)}k=0,1,...,T is a martingale.
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3 The case where λ is a constant

In this section, we explicitly solve for a local risk-minimizing strategy in the case where the
market impact parameter λ is a constant. Firstly, we introduce a proposition that presents an
equivalent definition of the local risk-minimizing strategy when λ is a constant. We give the
proof in Appendix C.

Proposition 1. Assume that λ0 = λ1 = · · · = λT−1 in (1). Then ϕ is a local risk-minimizing
strategy if and only if

(i) {Ck(ϕ)}k=0,1,...,T is a martingale,
(ii) for all k = 0, 1, . . . , T − 2,

Var
[
Ck+2(ϕ)− Ck(ϕ)

∣∣∣Fk

]
= min

ϕ̃∈Γk

Var
[
Ck+2(ϕ̃)− Ck(ϕ̃)

∣∣∣Fk

]
, (19)

Var
[
CT (ϕ)− CT−1(ϕ)

∣∣∣Fk

]
= min

ϕ̃∈ΓT−1

Var
[
CT (ϕ̃)− CT−1(ϕ̃)

∣∣∣FT−1

]
, (20)

where Γk is a set of perturbations of ϕ at time k.

This proposition shows that the local risk-minimizing strategy defined by (14) and (15) also
minimizes the conditional variance of the two-period difference of the cost process. From Propo-
sition 1, the local risk-minimizing strategy is determined uniquely by the following backward
induction. (See Appendix D for details.)

θT =Cov
[
η̄T + θ̄T+1S̃T +Mθ̄2T+1,∆S̃T + 2Mθ̄T+1 − 2λMθ̄T+1

∣∣∣FT−1

]
/
Var

[
∆S̃T + 2Mθ̄T+1 − 2λMθ̄T+1

∣∣∣FT−1

]
. (21)

For k = 0, . . . , T − 2,

θk+1

= Cov
[
ηk+2 + θk+3(S̃k+2 + 2λMθk+2)− θk+2∆S̃k+2 − 2λMθ2k+2 +M(∆θk+3)

2 +Mθ2k+2,

∆S̃k+1 − 2λMθk+2 + 2Mθk+2

∣∣∣Fk

]
/Var

[
∆S̃k+1 − 2λMθk+2 + 2Mθk+2

∣∣∣Fk

]
. (22)

ηk = E
[
ηk+1 + θk+2(S̃k+1 + 2λMθk+1)− θk+1∆S̃k+1 − 2λMθk+1∆θk+1 +M(∆θk+2)

2
∣∣∣Fk

]
− θk+1S(k, 0). (23)

1. Calculate θT by (21).

2. For given ηk+2, θk+2, θk+3 (k = 0, . . . , T − 2), calculate θk+1 by (22).

3. For given ηk+1, θk+2, θk+1, θk, calculate ηk (k = 0, . . . , T − 1) by (23).

The next theorem indicates that the strategy obtained by the backward induction is a unique
local risk-minimizing strategy. We also give the proof in Appendix D.
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Theorem 1. Let {θj}j=1,...,T be a sequence of random variables recursively defined by (21),(22)
satisfying

Var
[
∆S̃k+1 − 2λMθk+2 + 2Mθk+2

∣∣∣Fk

]
̸= 0, (24)

θk+1 ∈ L4(Ω), (k = 0, 1, . . . , T ), (25)

S̃kθj ∈ L2(Ω) for all k = 0, 1, . . . , T and j = 1, . . . , T + 1 (26)

at each step. Then {(ηk, θk+1)}k=0,...,T is a unique local risk-minimizing strategy.

4 The case where λ is time-dependent

Finally, we solve for a local risk-minimization in the case where the market impact parameter
λ is time-dependent, which corresponds to a situation where the degree of the market impact
varies over time due to economic environment changes.

We first show the equations that {θk+1}k=0,...,T−1, the position of the hedging instrument
in the local risk-minimizing strategy, satisfies. Then, we shall observe that a unique local risk-
minimizing strategy is obtained in the case of cash settlement. In physical settlement, although
the strategy is not determined uniquely, considering the first order expansion with respect to
λ around λ = 0, which corresponds to the no market impact case, the approximate strategy is
obtained by backward induction.

From Proposition 1, the equations that {θk+1}k=0,...,T−1 satisfies are obtained as follows.
(See Appendices E & F for details.)

θT =Cov
[
η̄T + θ̄T+1(S̃T − 2

T−1∑
j=1

∆λjMθj) +Mθ̄2T+1,∆S̃T + 2Mθ̄T+1 − 2λT−1Mθ̄T+1

∣∣∣FT−1

]
/
Var

[
∆S̃T + 2Mθ̄T+1 − 2λT−1Mθ̄T+1

∣∣∣FT−1

]
. (27)

For k = 0, . . . , T − 2,

θk+1 = Cov
[
η̄T + θ̄T+1(S̃T + 2λT−1MθT − 2

T−1∑
j=1,j ̸=k+1

∆λjMθj)−
T∑

j=k+2

θj∆S̃j

−
T∑

j=k+3

2λj−1Mθj∆θj − 2λk+1Mθ2k+2 +
T∑

j=k+2

M(∆θj+1)
2 +Mθ2k+2,

∆S̃k+1 + 2∆λk+1Mθ̄T+1 − 2λk+1Mθk+2 + 2Mθk+2

∣∣∣Fk

]
/
Var

[
∆S̃k+1 + 2∆λk+1Mθ̄T+1 − 2λk+1Mθk+2 + 2Mθk+2

∣∣∣Fk

]
. (28)

Notice that in (28), since θk+1 includes θ1, . . . , θk in its expression, {θk+1}k=0,...,T−1 cannot
be obtained by backward induction. This dependence on the historical positions comes from to
the expression of the accumulated market impact

∑k
j=1 2λj−1M∆θj of S(k, 0) in (3). In the

case where λ is a constant, the accumulated market impact becomes 2λMθk by cancellation and
θ1, . . . , θk do not appear in the expression of θk+1 as in (22).
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4.1 Cash settlement

In cash settlement, since the position of the hedging instrument is cleared at maturity, θ̄T+1 =
θT+1 = 0. Substituting θT+1 = 0, ηT = η̄T in (27) and (28), we have

θT =
Cov

[
η̄T ,∆S̃T

∣∣∣FT−1

]
Var

[
∆S̃T

∣∣∣FT−1

] , (29)

θk+1 = Cov
[
η̄T −

T∑
j=k+2

θj∆S̃j −
T∑

j=k+3

2λj−1Mθj∆θj − 2λk+1Mθ2k+2 +

T∑
j=k+2

M(∆θj+1)
2 +Mθ2k+2,

∆S̃k+1 − 2λk+1Mθk+2 + 2Mθk+2

∣∣∣Fk

]
/
Var

[
∆S̃k+1 − 2λk+1Mθk+2 + 2Mθk+2

∣∣∣Fk

]
, (k = 0, . . . , T − 2). (30)

Since θk+1 does not depend on θ1, . . . , θk, {θk+1}k=0,...,T−1 is obtained in the following manner.

1. Calculate θT by (29).

2. For given {θj}j=k+2,...,T+1, calculate θk+1 by (30). (k = 0, . . . , T − 2)

3. Calculate {ηk}k=0,1,...,T−1 by

ηk = E
[
η̄T −

T∑
j=k+1

θj∆S̃j −
T∑

j=k+1

2λj−1Mθj∆θj +
T∑

j=k+1

M(∆θj+1)
2
∣∣∣Fk

]
− θk+1S(k, 0),

(31)

which follows from the martingale property of {Ck(ϕ)}k=0,1,...,T in Lemma 1 and (9).

4.2 Physical settlement

In physical settlement, since θ̄T+1 = θT+1 ̸= 0, the simultaneous equations (27), (28) cannot
be reduced to a solvable form. However, we can obtain the first order expansion of the lo-
cal risk-minimizing strategy in a recursive manner if we expand the strategy with respect to
{λi}i=0,1,...,T−1 around λ0 = · · · = λT−1 = 0. We assume differentiability of θj (j = 1, . . . , T )
with respect to λi (i = 0, . . . , T − 1).

Expanding θj with respect to {λi}i=0,1,...,T−1 around λ0 = · · · = λT−1 = 0, we have

θj =

∞∑
m0,...,mT−1=0

cjm0,...,mT−1
λm0
0 . . . λ

mT−1

T−1 , (32)

where

cjm0,...,mT−1
=

1

m0! . . .mT−1!

∂m0+···+mT−1θj

∂λm0
0 . . . ∂λ

mT−1

T−1

∣∣∣
λ0=0,...,λT−1=0

. (33)

Let {θ̃k+1}k=0,...,T−1 be the first order expansion of {θk+1}k=0,...,T−1 in (32) defined by

θ̃k+1 = θ
(0)
k+1 +

T−1∑
i=1

∂λi
θ
(0)
k+1λi, (34)
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where

θ
(0)
j = cj0,...,0 = θj

∣∣
λ0=0,...,λT−1=0

(j = 1, . . . , T ), (35)

∂λi
θ
(0)
j :=

∂θj
∂λi

∣∣
λ0=0,...,λT−1=0

, i = 0, . . . , T − 1, j = 1, . . . , T. (36)

Then {θ̃k+1}k=0,...,T−1 is calculated as follows. (See Appendices G & H for details.)

θ̃T =
Cov

[
η̄T + θ̄T+1S̃T +Mθ̄2T+1,∆S̃T + 2Mθ̄T+1

∣∣∣FT−1

]
Var

[
∆S̃T + 2Mθ̄T+1

∣∣∣FT−1

]
+
{
Cov[θ̄T+1(−2

T−1∑
j=1

∆λjMθ
(0)
j ),∆S̃T + 2Mθ̄T+1

∣∣∣FT−1

]
+Cov

[
η̄T + θ̄T+1S̃T +Mθ̄2T+1,−2λT−1Mθ̄T+1

∣∣∣FT−1

]}
/
Var[∆S̃T + 2Mθ̄T+1

∣∣∣FT−1

]
− 2Cov

[
−2λT−1Mθ̄T+1,∆S̃T + 2Mθ̄T+1

∣∣∣FT−1

]
× Cov

[
η̄T + θ̄T+1S̃T +Mθ̄2T+1,∆S̃T + 2Mθ̄T+1

∣∣∣FT−1

]
/
Var

[
∆S̃T + 2Mθ̄T+1

∣∣∣FT−1

]2
. (37)
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For k = 0, . . . , T − 2,

θ̃k+1

=
Cov

[
η̄T + θ̄T+1S̃T −

∑T
j=k+2 θ

(0)
j ∆S̃j +

∑T
j=k+2M(∆θ

(0)
j+1)

2 +Mθ
(0)2
k+2,∆S̃k+1 + 2Mθ

(0)
k+2

∣∣∣Fk

]
Var

[
∆S̃k+1 + 2Mθ

(0)
k+2

∣∣∣Fk

]
+
{
Cov

[
θ̄T+1(2λT−1Mθ

(0)
T − 2

T−1∑
j=1,j ̸=k+1

∆λjMθ
(0)
j )−

T∑
j=k+2

(

T−1∑
i=0

∂λi
θ
(0)
j λi)∆S̃j −

T∑
j=k+3

2λj−1Mθ
(0)
j ∆θ

(0)
j

− 2λk+1Mθ
(0)2
k+2 + 2

T∑
j=k+2

M∆θ
(0)
j+1(

T−1∑
i=0

(∂λi
θ
(0)
j+1 − ∂λi

θ
(0)
j )λi) + 2Mθ

(0)
k+2(

T−1∑
i=0

∂λi
θ
(0)
k+2λi),

∆S̃k+1 + 2Mθ
(0)
k+2

∣∣∣Fk

]
+Cov

[
η̄T + θ̄T+1S̃T −

T∑
j=k+2

θ
(0)
j ∆S̃j +

T∑
j=k+2

M(∆θ
(0)
j+1)

2 +Mθ
(0)2
k+2,

2∆λk+1Mθ̄T+1 − 2λk+1Mθ
(0)
k+2 + 2M(

T−1∑
i=0

∂λi
θ
(0)
k+2λi)

∣∣∣Fk

]}
/
Var

[
∆S̃k+1 + 2Mθ

(0)
k+2

∣∣∣Fk

]
− 2Cov

[
∆S̃k+1 + 2Mθ

(0)
k+2, 2∆λk+1Mθ̄T+1 − 2λk+1Mθ

(0)
k+2 + 2M(

T−1∑
i=0

∂λi
θ
(0)
k+2λi)

∣∣∣Fk

]
× Cov

[
η̄T + θ̄T+1S̃T −

T∑
j=k+2

θ
(0)
j ∆S̃j +

T∑
j=k+2

M(∆θ
(0)
j+1)

2 +Mθ
(0)2
k+2,∆S̃k+1 + 2Mθ

(0)
k+2

∣∣∣Fk

]
/
Var

[
∆S̃k+1 + 2Mθ

(0)
k+2

∣∣∣Fk

]2
. (38)

We define the first order expansion of the money market account position in the local risk-
minimizing strategy {η̃k}k=0,...,T by

η̃k = E
[
η̄T + θ̄T+1S(T, 0)−

T∑
j=k+1

θ̃j∆S̃j −
T∑

j=k+1

2λj−1Mθ̃j∆θ̃j +
T∑

j=k+1

M(∆θ̃j+1)
2
∣∣∣Fk

]
− θ̃k+1S(k, 0).

(39)

We also give the expression of θ̃k+1 (k = 0, . . . , T − 1) in the form of (34) in Appendix I.

Equation (37) indicates that θ̃T is obtained explicitly when {θ(0)j }j=1,...,T , the zeroth order
expansion of {θj}j=1,...,T , is given. As in Section 3, this zeroth order expansion, the constant
market impact parameter case where λ = 0, is determined recursively.

In addition, since θ̃k+1 includes {θ(0)j }j=1,...,k,k+2,...,T and {∂λi
θ
(0)
j }j=k+2,...,T, i=0,...,T−1 as in

(38), {θ̃k+1}k=0,...,T−1 is obtained in the following procedure.

1. Calculate {θ(0)j }j=1,...,T by (21),(22) and (23) as the constant market impact case where
λ = 0.

2. For given {θ(0)j }j=1,...,T , calculate θ̃T along with ∂λi
θ
(0)
T (i = 0, . . . , T − 1) by (37).

3. For given {θ(0)j }j=1,...,T and {∂λi
θ
(0)
j }i=0,...,T−1,j=k+2,...,T , calculate θ̃k+1 along with ∂λi

θ
(0)
k+1 (i =

0, . . . , T − 1) by (38).
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5 Numerical examples

In this section, we provide numerical examples of the local risk-minimizing strategies and the
option prices in a two-period case because of its clarity and in order to compare the result of
the asymptotic expansion with the exact values obtained in Appendix A.

Let Ω = {ω1, ω2, . . . , ω16}, P({ωi}) = 1
16 for i = 1, 2, . . . , 16, F = F2 = 2Ω, F1 =

σ({ω1, ω2, ω3, ω4}, . . . , {ω13, ω14, ω15, ω16}), F0 = {∅,Ω}. We assume the following two-dimensional
binomial distribution for {Ak}k=0,1,2, the price process of the untradable underlying asset, and
{S̃k}k=0,1,2, the unaffected price of the hedging instrument, in Section 2.

For k = 0, 1,

S̃k+1 = S̃k exp(−
1

2
σS̃∆t+ σS̃

√
∆tξ1,k+1), (40)

Ak+1 = Ak exp(−
1

2
σA∆t+ σA

√
∆t(ρξ1,k+1 +

√
1− ρ2ξ2,k+1)), (41)

where the random variables ξ1,k and ξ2,k take the following values at each ωi (i = 1, . . . , 16),

ξ1,1(ωi) =

{
+1, i = 1, 2, 3, 4, 5, 6, 7, 8

−1, i = 9, 10, 11, 12, 13, 14, 15, 16,
(42)

ξ2,1(ωi) =

{
+1, i = 1, 2, 3, 4, 9, 10, 11, 12

−1, i = 5, 6, 7, 8, 13, 14, 15, 16,
(43)

ξ1,2(ωi) =

{
+1, i = 1, 2, 5, 6, 9, 10, 13, 14

−1, i = 3, 4, 7, 8, 11, 12, 15, 16,
(44)

ξ2,2(ωi) =

{
+1, i = 1, 3, 5, 7, 9, 11, 13, 15

−1, i = 2, 4, 6, 8, 10, 12, 14, 16.
(45)

For instance, ξ1,1 = +1, ξ2,1 = +1 for ω = ω1, ω2, ω3, ω4, and ξ1,1 = +1, ξ2,1 = −1 for
ω = ω5, ω6, ω7, ω8.

The trade price of the hedging instrument S(k,∆θk+1) when buying ∆θk+1 at k is as in
(1)-(3) in Section 4.1, namely,

S(k,∆θk+1) = S(k, 0) +M∆θk+1, k = 0, . . . , T, (46)

S(0, 0) = S̃0, (47)

S(k, 0) = S̃k +
k∑

j=1

2λj−1M∆θj , k = 1, . . . , T. (48)

In the following examples, we consider the case where the hedger holds a short position of a
call option on the underlying asset and replicates the payoff in order to deliver it to the buyer
at the maturity.

5.1 Cash settlement

Firstly, we show numerical examples of the hedging strategy and the option price for cash
settlement. By (29) and (30) in Section 4.1, we calculate them for different market impact
parameters λ, correlations ρ, and thinness of the limit orders M . Let the option maturity
T = 2. We consider the the call option payoff at T in cash settlement in (6) in Section 4.2, that
is, (η̄2, θ̄3) where η̄2 = (A2 −KA)

+ and θ̄3 = 0. We assume the strike price and the parameters

in (40) and (41) to be KA = 100, S̃0 = 100, σS̃ = 10%, A0 = 100, σA = 10%, ∆t = 1.
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Table 1: ρ = 1: Local risk-minimizing strategy in cash settlement, λ0 = 0.1, λ1 = 0.9
M 5 4 3 2 1 0

θ2(ωi), i = 1, 2, 3, 4 0.9546 0.9546 0.9546 0.9546 0.9546 0.9546
θ2(ωi), i = 5, 6, 7, 8 0.9546 0.9546 0.9546 0.9546 0.9546 0.9546

θ2(ωi), i = 9, 10, 11, 12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
θ2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ1 0.5446 0.5408 0.5369 0.5330 0.5290 0.5249

R0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
P0 8.0967 7.4957 6.9085 6.3353 5.7764 5.2321

Table 2: ρ = 0.7: Local risk-minimizing strategy in cash settlement, λ0 = 0.1, λ1 = 0.9
M 5 4 3 2 1 0

θ2(ωi), i = 1, 2, 3, 4 0.7081 0.7081 0.7081 0.7081 0.7081 0.7081
θ2(ωi), i = 5, 6, 7, 8 0.3167 0.3167 0.3167 0.3167 0.3167 0.3167

θ2(ωi), i = 9, 10, 11, 12 0.3958 0.3958 0.3958 0.3958 0.3958 0.3958
θ2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ1 0.3833 0.3809 0.3784 0.3759 0.3734 0.3708

R0 46.7251 46.5793 46.4331 46.2865 46.1395 45.9921
P0 6.8481 6.5600 6.2784 6.0032 5.7344 5.4721

Table 3: ρ = 0.5: Local risk-minimizing strategy in cash settlement, λ0 = 0.1, λ1 = 0.9
M 5 4 3 2 1 0

θ2(ωi), i = 1, 2, 3, 4 0.4972 0.4972 0.4972 0.4972 0.4972 0.4972
θ2(ωi), i = 5, 6, 7, 8 0.2148 0.2148 0.2148 0.2148 0.2148 0.2148

θ2(ωi), i = 9, 10, 11, 12 0.3121 0.3121 0.3121 0.3121 0.3121 0.3121
θ2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ1 0.2748 0.2731 0.2713 0.2696 0.2678 0.2660

R0 59.9914 59.9136 59.8354 59.7567 59.6777 59.5982
P0 6.3902 6.2423 6.0976 5.9563 5.8181 5.6832

Table 4: ρ = 1: Local risk-minimizing strategy in cash settlement, λ0 = 0.2, λ1 = 0.4
M 5 4 3 2 1 0

θ2(ωi), i = 1, 2, 3, 4 0.9546 0.9546 0.9546 0.9546 0.9546 0.9546
θ2(ωi), i = 5, 6, 7, 8 0.9546 0.9546 0.9546 0.9546 0.9546 0.9546

θ2(ωi), i = 9, 10, 11, 12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
θ2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ1 0.6208 0.6052 0.5881 0.5692 0.5483 0.5249

R0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
P0 9.2715 8.3769 7.5221 6.7104 5.9458 5.2321
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Table 5: ρ = 0.7: Local risk-minimizing strategy in cash settlement, λ0 = 0.2, λ1 = 0.4
M 5 4 3 2 1 0

θ2(ωi), i = 1, 2, 3, 4 0.7081 0.7081 0.7081 0.7081 0.7081 0.7081
θ2(ωi), i = 5, 6, 7, 8 0.3167 0.3167 0.3167 0.3167 0.3167 0.3167

θ2(ωi), i = 9, 10, 11, 12 0.3958 0.3958 0.3958 0.3958 0.3958 0.3958
θ2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ1 0.4400 0.4273 0.4141 0.4002 0.3858 0.3708

R0 50.2396 49.4184 48.5834 47.7342 46.8704 45.9921
P0 7.2212 6.8225 6.4482 6.0986 5.7734 5.4721

Table 6: ρ = 0.5: Local risk-minimizing strategy in cash settlement, λ0 = 0.2, λ1 = 0.4
M 5 4 3 2 1 0

θ2(ωi), i = 1, 2, 3, 4 0.4972 0.4972 0.4972 0.4972 0.4972 0.4972
θ2(ωi), i = 5, 6, 7, 8 0.2148 0.2148 0.2148 0.2148 0.2148 0.2148

θ2(ωi), i = 9, 10, 11, 12 0.3121 0.3121 0.3121 0.3121 0.3121 0.3121
θ2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ1 0.3154 0.3062 0.2966 0.2867 0.2765 0.2660

R0 61.8051 61.3920 60.9652 60.5243 60.0687 59.5982
P0 6.5808 6.3758 6.1838 6.0046 5.8378 5.6832

Tables 1-3 show the position of the hedging instrument θ1, θ2 in the local risk-minimizing
strategy and the option price P0 with the time-dependent market impact parameter λ0 =
0.1, λ1 = 0.9. We define the option price P0 as the cost to construct the initial portfolio,
namely,

P0 = η0 + θ1S(0, θ1). (49)

R0 is the risk process at the initial time in (14) in Section 2.2, which also measures the quadratic
hedging error from the payoff at the maturity. The correlation ρ is set to be 100%, 70%, 50% in
Tables 1-3, respectively, while M is set as 5, 4, 3, 2, 1, 0 for all the correlations. Similarly, Tables
4-6 illustrate those with λ0 = 0.2, λ1 = 0.4.

Then, as expected, in all the cases, we observe that the option price P0 increases as M
increases, which implies that when the order book is thin, the replication cost of the option
payoff for the seller is high. We also observe that R0 increases as ρ decreases or M increases.
This indicates that the replication error is large when the correlation between the untradable
asset and the hedging instrument is low or the limit order book is thin.

5.2 Physical settlement

Next, we present numerical examples of the local risk-minimizing strategy and the option price
in physical settlement. Similarly to the cash settlement case, we calculate the first order ex-
pansion of these by (37) and (38) in Section 4.2 for different λ, ρ, and M by comparing these
approximations with the exact values, which are obtained as in Appendix A. We assume the
following payoff (η̄2, θ̄3) in physical settlement at maturity T = 2 as in Section 2.2, namely,

θ̄3 = 1{A2>KA},

η̄2 = −KS1{A2>KA}, (50)
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where KA,KS > 0. In this settlement, one unit of the hedging instrument is delivered to the
buyer at the price KS at the maturity only when A2, the reference price of the untradable
underlying asset, satisfies A2 > KA. We assume the strike prices to be KA = KS = 100, and
set the same parameters as the previous subsection for S̃0, σS̃ , A0, σA, ∆t.

Table 7: ρ = 1: First order expansion of local risk-minimizing strategy in physical settlement,
λ0 = 0.1, λ1 = 0.9

M 5 4 3 2 1 0

θ̃2(ωi), i = 1, 2, 3, 4 0.9027 0.9154 0.9280 0.9398 0.9495 0.9546

θ̃2(ωi), i = 5, 6, 7, 8 0.9027 0.9154 0.9280 0.9398 0.9495 0.9546

θ̃2(ωi), i = 9, 10, 11, 12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ̃2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
θ2(ωi), i = 1, 2, 3, 4 0.9434 0.9461 0.9487 0.9510 0.9530 0.9546
θ2(ωi), i = 5, 6, 7, 8 0.9434 0.9461 0.9487 0.9510 0.9530 0.9546

θ2(ωi), i = 9, 10, 11, 12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
θ2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ̃1 0.5449 0.5419 0.5380 0.5332 0.5282 0.5249
θ1 0.5379 0.5358 0.5335 0.5309 0.5281 0.5249

R0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

P̃0 8.0003 7.4332 6.8689 6.3116 5.7655 5.2321
P0 7.9659 7.4080 6.8548 6.3070 5.7657 5.2321

Table 8: ρ = 0.7: First order expansion of local risk-minimizing strategy in physical settlement,
λ0 = 0.1, λ1 = 0.9

M 5 4 3 2 1 0

θ̃2(ωi), i = 1, 2, 3, 4 0.9796 0.9836 0.9851 0.9841 0.9812 0.9773

θ̃2(ωi), i = 5, 6, 7, 8 0.5739 0.5516 0.5295 0.5086 0.4907 0.4773

θ̃2(ωi), i = 9, 10, 11, 12 0.0270 0.0128 0.0005 -0.0098 -0.0186 -0.0277

θ̃2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
θ2(ωi), i = 1, 2, 3, 4 0.9812 0.9823 0.9827 0.9821 0.9804 0.9773
θ2(ωi), i = 5, 6, 7, 8 0.5146 0.5092 0.5030 0.4957 0.4872 0.4773

θ2(ωi), i = 9, 10, 11, 12 0.0055 0.0011 -0.0042 -0.0106 -0.0184 -0.0277
θ2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ̃1 0.4632 0.4541 0.4430 0.4295 0.4132 0.3937
θ1 0.4767 0.4635 0.4486 0.4320 0.4137 0.3937

R0 18.7942 18.5105 18.1795 17.7960 17.3556 16.8563

P̃0 6.0535 5.5643 5.0888 4.6321 4.2004 3.7997
P0 6.1271 5.6032 5.1050 4.6365 4.2008 3.7997
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Table 9: ρ = 0.5: First order expansion of local risk-minimizing strategy in physical settlement,
λ0 = 0.1, λ1 = 0.9

M 5 4 3 2 1 0

θ̃2(ωi), i = 1, 2, 3, 4 0.9645 0.9699 0.9738 0.9761 0.9770 0.9773

θ̃2(ωi), i = 5, 6, 7, 8 0.5588 0.5380 0.5182 0.5006 0.4865 0.4773

θ̃2(ωi), i = 9, 10, 11, 12 0.3848 0.4237 0.4566 0.4798 0.4930 0.5000

θ̃2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
θ2(ωi), i = 1, 2, 3, 4 0.9728 0.9740 0.9750 0.9759 0.9767 0.9773
θ2(ωi), i = 5, 6, 7, 8 0.5062 0.5009 0.4953 0.4895 0.4835 0.4773

θ2(ωi), i = 9, 10, 11, 12 0.4702 0.4760 0.4819 0.4878 0.4939 0.5000
θ2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ̃1 0.5249 0.5214 0.5173 0.5141 0.5126 0.5125
θ1 0.5217 0.5197 0.5178 0.5158 0.5141 0.5125

R0 31.3333 31.3059 31.2751 31.2411 31.2044 31.1653

P̃0 5.2295 4.6877 4.1544 3.6337 3.1230 2.6161
P0 5.2042 4.6772 4.1549 3.6374 3.1246 2.6161

Table 10: ρ = 1: First order expansion of local risk-minimizing strategy in physical settlement,
λ0 = 0.2, λ1 = 0.4

M 5 4 3 2 1 0

θ̃2(ωi), i = 1, 2, 3, 4 0.8794 0.8926 0.9069 0.9222 0.9382 0.9546

θ̃2(ωi), i = 5, 6, 7, 8 0.8794 0.8926 0.9069 0.9222 0.9382 0.9546

θ̃2(ωi), i = 9, 10, 11, 12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ̃2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
θ2(ωi), i = 1, 2, 3, 4 0.8876 0.8989 0.9112 0.9245 0.9390 0.9546
θ2(ωi), i = 5, 6, 7, 8 0.8876 0.8989 0.9112 0.9245 0.9390 0.9546

θ2(ωi), i = 9, 10, 11, 12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
θ2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ̃1 0.5546 0.5518 0.5478 0.5421 0.5346 0.5249
θ1 0.5723 0.5663 0.5590 0.5501 0.5389 0.5249

R0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

P̃0 8.2030 7.6190 7.0280 6.4315 5.8316 5.2321
P0 8.3241 7.6969 7.0720 6.4511 5.8366 5.2321
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Table 11: ρ = 0.7: First order expansion of local risk-minimizing strategy in physical settlement,
λ0 = 0.2, λ1 = 0.4

M 5 4 3 2 1 0

θ̃2(ωi), i = 1, 2, 3, 4 0.9277 0.9387 0.9492 0.9591 0.9684 0.9773

θ̃2(ωi), i = 5, 6, 7, 8 0.6144 0.5917 0.5664 0.5387 0.5089 0.4773

θ̃2(ωi), i = 9, 10, 11, 12 0.0949 0.0699 0.0447 0.0197 -0.0046 -0.0277

θ̃2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
θ2(ωi), i = 1, 2, 3, 4 0.9296 0.9394 0.9492 0.9589 0.9683 0.9773
θ2(ωi), i = 5, 6, 7, 8 0.6051 0.5846 0.5617 0.5363 0.5082 0.4773

θ2(ωi), i = 9, 10, 11, 12 0.0911 0.0677 0.0437 0.0195 -0.0045 -0.0277
θ2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ̃1 0.4524 0.4435 0.4334 0.4219 0.4087 0.3937
θ1 0.4578 0.4469 0.4351 0.4223 0.4085 0.3937

R0 19.4753 19.1222 18.6798 18.1484 17.5353 16.8563

P̃0 6.1669 5.6753 5.1909 4.7156 4.2512 3.7997
P0 6.1876 5.6844 5.1936 4.7157 4.2509 3.7997

Table 12: ρ = 0.5: First order expansion of local risk-minimizing strategy in physical settlement,
λ0 = 0.2, λ1 = 0.4

M 5 4 3 2 1 0

θ̃2(ωi), i = 1, 2, 3, 4 0.9239 0.9353 0.9464 0.9571 0.9674 0.9773

θ̃2(ωi), i = 5, 6, 7, 8 0.6106 0.5883 0.5636 0.5367 0.5078 0.4773

θ̃2(ωi), i = 9, 10, 11, 12 0.3365 0.3647 0.3960 0.4293 0.4639 0.5000

θ̃2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
θ2(ωi), i = 1, 2, 3, 4 0.9259 0.9361 0.9465 0.9570 0.9673 0.9773
θ2(ωi), i = 5, 6, 7, 8 0.6014 0.5813 0.5591 0.5344 0.5072 0.4773

θ2(ωi), i = 9, 10, 11, 12 0.3486 0.3718 0.3990 0.4298 0.4637 0.5000
θ2(ωi), i = 13, 14, 15, 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ̃1 0.5234 0.5217 0.5196 0.5172 0.5149 0.5125
θ1 0.5342 0.5309 0.5270 0.5225 0.5176 0.5125

R0 30.7850 31.0966 31.3037 31.3892 31.3431 31.1653

P̃0 5.3100 4.7505 4.2010 3.6632 3.1358 2.6161
P0 5.3525 4.7807 4.2202 3.6726 3.1383 2.6161

Tables 7-12 show the first order expansion of θ1, θ2, the position of the hedging instrument
in the local risk-minimizing strategy, in physical settlement, which we denote by θ̃1, θ̃2. The
time-dependent market impact parameter {λk}k=0,1 is set to be λ0 = 0.1, λ1 = 0.9 for Tables
7-9, and λ0 = 0.2, λ1 = 0.4 for Tables 10-12. These tables also provide the exact values of θ1, θ2,
which can be computed by solving the cubic equation (58) in Appendix A. The thinness of the
order book M is set to be 5, 4, 3, 2, 1, 0 for all the correlations ρ = 100%, 70%, 50%. P̃0 is the
mid value and the replication cost of the approximate initial portfolio defined by

P̃0 = η̃0 + θ̃1S(0, θ̃1). (51)

Then we observe that in all the cases, P̃0, the approximation of the option price P0, is close
to the exact value in those cases. For example, the largest relative error of P̃0 is 1.44% when
M = 5 in Table 10. Furthermore, for the option price and the quadratic hedging error, we
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notice the same features as the cash settlement case, that is, the option price increases as the
order book is thinner, and the quadratic hedging error increases as the correlation between the
hedging instrument and the untradable underlying asset lowers. The increase in the quadratic
hedging error by a thinner limit order book density holds for all the cases except for Tables 12
where the error is almost unchanged throughout different values in M .

6 Conclusion

In this paper, we have considered the pricing and hedging problem of illiquid options, where
the underlying asset is untradable and an alternative asset is used as a hedging instrument.
Particularly, we have considered the situation where the trade price of the hedging instrument
is subject to market impacts caused by the hedger and the liquidity costs paid as a spread
from the mid price. Pricing of illiquid options, which often appears in trading of structured
products, is an important issue in practice because of its difficulty in hedging mainly due to
untradablity of the underlying asset as well as market impacts and liquidity costs of the hedging
instrument. Firstly, we have set the problem under a discrete time model, where the optimal
hedging strategy is defined by the local risk-minimization. Then, after showing that the local
risk-minimizing strategy is uniquely determined by backward induction in the case of a constant
market impact parameter, we have provided the algorithm to obtain the strategy in the case
of a time-dependent market impact parameter, which is especially important when estimating
hedging cost and effect of market impact in the scenario of economic environment changes. In
particular, the exact strategy is obtained by backward induction in cash settlement, and the first
order expansion of the strategy expanded with respect to the parameter is obtained recursively
in physical settlement. Finally, we have provided the numerical examples of both physical and
cash settlements in the case of a time-dependent market impact parameter. This model is useful
in estimation of the effect of the market impacts as well as the liquidity costs on derivatives
prices.

A Physical settlement in two-period case with time-dependent
λ

In this appendix, we show that the exact local risk-minimizing strategy satisfying (27) and (28)
in Section 4 is obtained in two-period cases. By (27) and (28), in the two-period case,

θ2 =
Cov[η2 + θ3(S̃2 − 2(λ1 − λ0)Mθ1) +Mθ23,−2λ1Mθ3 +∆S̃2 + 2Mθ3|F1]

Var[−2λ1Mθ3 +∆S̃2 + 2Mθ3|F1]
, (52)

θ1 =Cov[η2 + θ3(S̃2 + 2λ1Mθ2)− θ2∆S̃2 +M(∆θ3)
2 +Mθ22 − 2λ1Mθ22,

∆S̃1 + 2Mθ2 − 2λ1Mθ2 + 2(λ1 − λ0)Mθ3)]

/Var[∆S̃1 + 2Mθ2 − 2λ1Mθ2 + 2(λ1 − λ0)Mθ3]. (53)

Rewriting θ2 as

θ2 = −2(λ1 − λ0)M
Cov[θ3,−2λ1Mθ3 +∆S̃2 + 2Mθ3|F1]

Var[−2λ1Mθ3 +∆S̃2 + 2Mθ3|F1]
θ1

+
Cov[η2 + θ3S̃2 +Mθ23,−2λ1Mθ3 +∆S̃2 + 2Mθ3|F1]

Var[−2λ1Mθ3 +∆S̃2 + 2Mθ3|F1]

:= α1θ1 + β1, (54)
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and substituting this into the equation (53), we have

θ1Var[∆S̃1 + 2(1− λ1)M(α1θ1 + β1) + 2(λ1 − λ0)Mθ3]

= Cov[η2 + θ3(S̃2 + 2λ1M(α1θ1 + β1))− (α1θ1 + β1)∆S̃2

+M(θ3 − (α1θ1 + β1))
2 + (1− 2λ1)M(α1θ1 + β1)

2,

∆S̃1 + 2Mθ2 − 2λ1Mθ2 + 2(λ1 − λ0)Mθ3)]. (55)

Both sides of (55) are calculated as follows.

LHS = θ31(Var[2(1− λ1)Mα1])

+ θ21(2Cov[2(1− λ1)Mα1θ1,∆S̃1 + 2(1− λ1)Mβ1 + 2(λ1 − λ0)Mθ3])

+ θ1Var[∆S̃1 + 2(1− λ1)Mβ1 + 2(λ1 − λ0)Mθ3], (56)

RHS = θ31Cov[2(1− λ1)α
2
1M, 2(1− λ1)Mα1]

+ θ21(Cov[2(1− λ1)α
2
1M,∆S̃1 + 2(1− λ1)Mβ1 + 2(λ1 − λ0)Mθ3)]

+ Cov[2λ1Mα1θ3 − α1∆S̃2 − 2α1M(θ3 − β1) + 2M(1− 2λ1)α1β1, 2(1− λ1)Mα1])

+ θ1(Cov[2λ1Mα1θ3 − α1∆S̃2 − 2α1M(θ3 − β1) + 2M(1− 2λ1)α1β1,

∆S̃1 + 2(1− λ1)Mβ1 + 2(λ1 − λ0)Mθ3)]

+ Cov[η2 + θ3(S̃2 + 2λ1Mβ1)− β1∆S̃2 +M(θ3 − β1)
2 +M(1− 2λ1)β

2
1 , 2(1− λ1)Mα1])

+ Cov[η2 + θ3(S̃2 + 2λ1Mβ1)− β1∆S̃2 +M(θ3 − β1)
2 +M(1− 2λ1)β

2
1 ,

∆S̃1 + 2(1− λ1)Mβ1 + 2(λ1 − λ0)Mθ3]. (57)

Rearranging the equation (55) with respect to θ1 as

f(θ1) := a3θ
3
1 + a2θ

2
1 + a1θ

1
1 + a0 = 0, (58)

we reduce the original problem to solving this cubic equation on θ1. After solving (58) for θ1,
by substituting θ1 into (54), we obtain θ2.

Remark 1. Note that the conditions for the equation (58) to have three solutions are

a3 ̸= 0, (59)

a22 − 3a3a1 > 0, (60)

and

f(
−a2 +

√
a22 − 3a3a1
3a3

)f(
−a2 −

√
a22 − 3a3a1
3a3

) < 0. (61)

By these conditions, we observe that in Tables 8,9,11 and 12, there is a unique local risk-
minimizing strategy, and in Tables 7 & 10, there are three local risk-minimizing strategies. In
all the cases in Tables 7 & 10, the cubic equation has one solution in between 0 and 1. The
other two solutions take a significantly large value, which corresponds to an excessively high
initial replication cost. For example, Tables 13&14 show coefficients of the cubic equation and
its solutions when M = 5 in Table 7. In this case, (θ1, P0) = (0.5379, 7.97), (54.00, 26782),
(71.81, 47424). Similarly in Tables 15&16, we observe that, when M = 1 in Table 10, (θ1, P0) =
(0.5389, 5.84), (1007.98, 1635691), (1024.57, 1689988). In Tables 7&10, we assume the solution
θ1 ∈ [0, 1] to be the true value that θ̃1 approximates.
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Table 13: M = 5, λ0 = 0.1, λ1 = 0.9: Coefficients of Cubic Equation
M 5

λ0 0.1
λ1 0.9

a3 -0.04
a2 5.19
a1 -162.11
a0 85.70

Table 14: M = 5, λ0 = 0.1, λ1 = 0.9: Solutions of Cubic Equation
θ1 0.5379 54.00 71.81

θ2(ωi), i = 1, 2, 3, 4 0.9434 -17.72 -23.93
θ2(ωi), i = 5, 6, 7, 8 0.9434 -17.72 -23.93

θ2(ωi), i = 9, 10, 11, 12 0.00 0.00 0.00
θ2(ωi), i = 13, 14, 15, 16 0.00 0.00 0.00

η1(ωi), i = 1, 2, 3, 4 -92.90 -7,155 -13,671
η1(ωi), i = 5, 6, 7, 8 -92.90 -7,155 -13,671

η1(ωi), i = 9, 10, 11, 12 0.00 0.00 0.00
η1(ωi), i = 13, 14, 15, 16 0.00 0.00 0.00

P0 7.97 26,782 47,424
R0 0.00 0 89,316

Table 15: M = 1, λ0 = 0.2, λ1 = 0.4: Coefficients of Cubic Equation
M 1

λ0 0.2
λ1 0.4

a3 -0.00011
a2 0.22
a1 -113.33
a0 61.01

Table 16: M = 1, λ0 = 0.2, λ1 = 0.4: Solutions of Cubic Equation
θ1 0.5389 1,007.98 1,024.57

θ2(ωi), i = 1, 2, 3, 4 0.9390 -16.49 -16.78
θ2(ωi), i = 5, 6, 7, 8 0.9390 -16.49 -16.78

θ2(ωi), i = 9, 10, 11, 12 0.00 0.00 0.00
θ2(ωi), i = 13, 14, 15, 16 0.00 0.00 0.00

η1(ωi), i = 1, 2, 3, 4 -92.59 -4,962 -5,159
η1(ωi), i = 5, 6, 7, 8 -92.59 -4,962 -5,159

η1(ωi), i = 9, 10, 11, 12 0.00 0.00 0.00
η1(ωi), i = 13, 14, 15, 16 0.00 0.00 0.00

P0 5.84 1,635,691 1,689,988
R0 0.00 0 32,186
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B Proof of Lemma 1

In this appendix, we give the proof of Lemma 1 in Section 2.2. It is enough to show that
E[(CT (ϕ)− Ck(ϕ))|Fk] = 0, for k = 0, 1, . . . , T. Consider ϕ̃, a perturbation of ϕ, such that

η̃k = ηk +E[(CT (ϕ)− Ck(ϕ))|Fk], (62)

η̃j = ηj (j ̸= k), (63)

θ̃j+1 = θj+1 (j = 0, 1, . . . , T ). (64)

Then, by the definitions of ϕ̃ and the cost process,

Rk(ϕ̃) = E[(CT (ϕ̃)− Ck(ϕ̃))
2|Fk]

= E[(CT (ϕ)− Ck(ϕ) + Ck(ϕ)− Ck(ϕ̃))
2|Fk]

= E[((CT (ϕ)− Ck(ϕ))−E[(CT (ϕ)− Ck(ϕ))|Fk]))
2|Fk]

= E[(CT (ϕ)− Ck(ϕ))
2|Fk]−E[(CT (ϕ)− Ck(ϕ)|Fk]

2

≤ E[(CT (ϕ)− Ck(ϕ))
2|Fk] = Rk(ϕ). (65)

As Rk(ϕ̃) ≥ Rk(ϕ), E[(CT (ϕ)− Ck(ϕ)|Fk] = 0, P− a.s.

C Proof of Proposition 1

Let us first show the if part. As {Ck(ϕ)}k=0,1,...,T is a martingale, for any ϕ̃ ∈ ΓT−1,

RT−1(ϕ) = E[(CT (ϕ)− CT−1(ϕ))
2|FT−1]

= Var[CT (ϕ)− CT−1(ϕ)|FT−1]

≤ Var[CT (ϕ̃)− CT−1(ϕ̃)|FT−1]

≤ E[(CT (ϕ̃)− CT−1(ϕ̃))
2|FT−1]

= RT−1(ϕ̃). (66)

For k = 0, 1, . . . , T − 2, note that by the definition of Ck(ϕ), CT (ϕ) − Ck+2(ϕ) = CT (ϕ̃) −
Ck+2(ϕ̃) , for any ϕ̃ ∈ Γk.

In fact,

CT (ϕ)− Ck+2(ϕ)

= VT (ϕ)− Vk+2(ϕ)−
T∑

j=k+3

θj∆S̃j −
T∑

j=k+3

2λMθj∆θj +

T∑
j=k+3

M(∆θj+1)
2

= (η̄T + θ̄T+1(S̃T + 2λMθT ))− (ηk+2 + θk+3(S̃k+2 + 2λMθk+2))

−
T∑

j=k+3

θj∆S̃j −
T∑

j=k+3

2λMθj∆θj +
T∑

j=k+3

M(∆θj+1)
2

= CT (ϕ̃)− Ck+2(ϕ̃). (67)
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Therefore,

Rk(ϕ) = E[(CT (ϕ)− Ck(ϕ))
2|Fk]

= E[(CT (ϕ)− Ck+2(ϕ))
2|Fk] +E[(Ck+2(ϕ)− Ck(ϕ))

2|Fk]

= E[(CT (ϕ̃)− Ck+2(ϕ̃))
2|Fk] + Var[Ck+2(ϕ)− Ck(ϕ)|Fk]

≤ E[(CT (ϕ̃)− Ck+2(ϕ̃))
2|Fk] + Var[Ck+2(ϕ̃)− Ck(ϕ̃)|Fk]

≤ E[(CT (ϕ̃)− Ck+2(ϕ̃))
2|Fk] +E[(Ck+2(ϕ̃)− Ck(ϕ̃))

2|Fk]

= E[(CT (ϕ̃)− Ck(ϕ̃))
2|Fk]

= Rk(ϕ̃). (68)

In the second line from the last, we used the fact that

E[(CT (ϕ̃)− Ck+2(ϕ̃))(Ck+2(ϕ̃)− Ck(ϕ̃))|Fk] = 0, (69)

which follows from the tower property and CT (ϕ)− Ck+2(ϕ) = CT (ϕ̃)− Ck+2(ϕ̃).
Next, we show the only if part. (i) is shown in Lemma 1.
For (ii), for k = 0, 1, . . . , T ,

E[(CT (ϕ)− Ck(ϕ))
2|Fk]

= Var[CT (ϕ)− Ck+2(ϕ)|Fk] + Var[Ck+2(ϕ)− Ck(ϕ)|Fk]. (70)

For any ϕ̃, a perturbation of ϕ at time k,

E[(CT (ϕ̃)− Ck(ϕ̃))
2|Fk] = E[(CT (ϕ)− Ck+2(ϕ) + Ck+2(ϕ̃)− Ck(ϕ̃))

2|Fk]

= E[(CT (ϕ)− Ck+2(ϕ))
2|Fk] +E[(Ck+2(ϕ̃)− Ck(ϕ̃))

2|Fk]

≥ Var[CT (ϕ)− Ck+2(ϕ)|Fk] + Var[Ck+2(ϕ̃)− Ck(ϕ̃)|Fk]

= Var[CT (ϕ)− Ck+2(ϕ)|Fk] + Var[Ck+2(ϕ)− Ck(ϕ)|Fk]

= E[(CT (ϕ)− Ck(ϕ))
2|Fk]. (71)

D Proof of Theorem 1

The existence follows from backward induction. First, we solve the equivalent minimizing prob-
lem with respect to θj for j = 1, . . . , T − 1 in (19),(20) in Proposition 1.

Var[Ck+2(ϕ)− Ck(ϕ)|Fk]

= Var[Vk+2 − Vk −
k+2∑

j=k+1

θj∆S̃j −
k+2∑

j=k+1

2λMθj∆θj +
k+2∑

j=k+1

M(∆θj+1)
2|Fk]

= Var[Vk+2 − Vk − θk+2∆S̃k+2 − θk+1∆S̃k+1 − 2λMθk+2∆θk+2 − 2λMθk+1∆θk+1

+M(∆θk+3)
2 +Mθ2k+2 − 2Mθk+2θk+1 +Mθ2k+1|Fk]

= Var[ηk+2 + θk+3(S̃k+2 + 2λMθk+2)− θk+2∆S̃k+2 − θk+1∆S̃k+1 − 2λMθk+2(θk+2 − θk+1)

+M(∆θk+3)
2 +Mθ2k+2 − 2Mθk+2θk+1|Fk]. (72)

As we observe in (72), since Var[Ck+2 − Ck|Fk] is a quadratic function of θk+1 by (24), there
exists a minimum value.
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Taking partial derivative of Rk(ϕ) with respect to θk+1, we have

∂

∂θk+1
Rk(ϕ) = lim

h→0

Var(θ + h)−Var(θ)

h

= −2Cov[ηk+2 + θk+3(S̃k+2 + 2λMθk+2)− θk+2∆S̃k+2 − 2λMθ2k+2

+M(∆θk+3)
2 +Mθ2k+2 − θk+1(∆S̃k+1 − 2λMθk+2 + 2Mθk+2),

∆S̃k+1 − 2λMθk+2 + 2Mθk+2|Fk]

= 0. (73)

Hence

θk+1

= Cov[ηk+2 + θk+3(S̃k+2 + 2λMθk+2)− θk+2∆S̃k+2 − 2λMθ2k+2 +M(∆θk+3)
2 +Mθ2k+2,

∆S̃k+1 − 2λMθk+2 + 2Mθk+2|Fk]

/Var[∆S̃k+1 − 2λMθk+2 + 2Mθk+2|Fk]. (74)

Similarly, RT−1(ϕ) takes a minimum value at

θT =Cov[η̄T + θ̄T+1S̃T +Mθ̄2T+1,∆S̃T + 2Mθ̄T+1 − 2λMθ̄T+1|FT−1]/
Var[∆S̃T + 2Mθ̄T+1 − 2λMθ̄T+1|FT−1]. (75)

By (74) and (75), {θk+1}k=0,1,...,T in the local risk-minimizing strategy is obtained recursively.
{ηk}k=0,1,...,T is obtained by the martingale property of {Ck}k=0,1,...,T . Since E[CT (ϕ)|Fk] =
Ck(ϕ),

ηk = E[η̄T + θ̄T+1S(T, 0)−
T∑

j=k+1

θj∆S̃j −
T∑

j=k+1

2λMθj∆θj +
T∑

j=k+1

M(∆θj+1)
2|Fk]− θk+1S(k, 0).

(76)

Next we show the uniqueness part. Let ϕ := {(θk, ηk)}k=0,1,...,T and ϕ̃ := {(θ̃k, η̃k)}k=0,1,...,T

be local risk-minimizing strategies. Then θ̃k = θk for k = 0, 1, . . . , T as both minimize Var[Ck+2(ϕ)−
Ck(ϕ)|Fk], which is a quadratic function with respect to θk. Then η̃k = ηk for k = 0, 1, . . . , T
also follows from the fact that {Ck(ϕ)}k=0,1,...,T is a martingale.

E Minimization of RT−1

In this appendix, we solve the minimization problem of RT−1 with respect to θT in (14) and
(15). By (9),

CT (ϕ)− CT−1(ϕ)

= VT (ϕ)− VT−1(ϕ)− θT∆S̃T +M(∆θT+1)
2 − 2λT−1MθT∆θT

= η̄T + θ̄T+1(S̃T +

T∑
j=1

2λj−1M∆θj)

− (ηT−1 + θT (S̃T−1 +
T−1∑
j=1

2λj−1M∆θj))− θT∆S̃T +M(∆θT+1)
2 − 2λT−1MθT∆θT . (77)
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Considering the FT−1-measurable terms in (77), we have

Var[CT (ϕ)− CT−1(ϕ)|FT−1]

= Var[η̄T + θ̄T+1(S̃T +

T∑
j=1

2λj−1M∆θj)− θT∆S̃T +Mθ̄2T+1 − 2Mθ̄T+1θT |FT−1]. (78)

Taking partial derivative with respect to θT , we have

∂

∂θT
Var[CT (ϕ)− CT−1(ϕ)]

= 2Cov[η̄T + θ̄T+1(S̃T +

T∑
j=1

2λj−1M∆θj)− θT∆S̃T +Mθ̄2T+1 − 2Mθ̄T+1θT ,

−∆S̃T − 2Mθ̄T+1 + 2λT−1Mθ̄T+1|FT−1]

= 0. (79)

Therefore,

θT =Cov[η̄T + θ̄T+1(S̃T − 2
T−1∑
j=1

∆λjMθj) +Mθ̄2T+1,∆S̃T + 2Mθ̄T+1 − 2λT−1Mθ̄T+1|FT−1]/
Var[∆S̃T + 2Mθ̄T+1 − 2λT−1Mθ̄T+1|FT−1]. (80)

F Minimization of Rk (k = 0, . . . , T − 2)

Next, we solve the minimization problem of Rk with respect to θk+1 (k = 0, . . . , T − 2) in (14)
and (15). By (9), we have

CT (ϕ)− Ck(ϕ)

= VT (ϕ)− Vk(ϕ)−
T∑

j=k+1

θj∆S̃j −
T∑

j=k+1

2λj−1Mθj∆θj +

T∑
j=k+1

M(∆θj+1)
2

= η̄T + θ̄T+1(S̃T +

T∑
j=1

2λj−1M∆θj)− (ηk + θk+1(S̃k +

k∑
j=1

2λj−1M∆θj))

−
T∑

j=k+1

θj∆Sj −
T∑

j=k+2

2λj−1Mθj∆θj − 2λkMθk+1∆θk+1

+
T∑

j=k+2

M(∆θj+1)
2 +Mθ2k+2 − 2Mθk+2θk+1 +Mθ2k+1. (81)

Considering the Fk-measurable random variables in (81), we have

Var[CT (ϕ)− Ck(ϕ)|Fk]

= Var[η̄T + θ̄T+1(S̃T +
T∑

j=1

2λj−1M∆θj)−
T∑

j=k+1

θj∆S̃j −
T∑

j=k+2

2λj−1Mθj∆θj+

T∑
j=k+2

M(∆θj+1)
2 +Mθ2k+2 − 2Mθk+2θk+1|Fk]. (82)
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Taking partial derivative with respect to θk+1, we have

∂

∂θk+1
Var[CT (ϕ)− Ck(ϕ)|Fk]

= 2Cov[η̄T + θ̄T+1(S̃T +
T∑

j=1

2λj−1M∆θj)−
T∑

j=k+1

θj∆S̃j −
T∑

j=k+2

2λj−1Mθj∆θj+

T∑
j=k+2

M(∆θj+1)
2 +Mθ2k+2 − 2Mθk+2θk+1,

−∆S̃k+1 − 2∆λk+1Mθ̄T+1 + 2λk+1Mθk+2 − 2Mθk+2|Fk]

= 0. (83)

Hence,

θk+1 = Cov[η̄T + θ̄T+1(S̃T + 2λT−1MθT − 2
T−1∑

j=1,j ̸=k+1

∆λjMθj)−
T∑

j=k+2

θj∆S̃j

−
T∑

j=k+3

2λj−1Mθj∆θj − 2λk+1Mθ2k+2 +

T∑
j=k+2

M(∆θj+1)
2 +Mθ2k+2,

∆S̃k+1 + 2∆λk+1Mθ̄T+1 − 2λk+1Mθk+2 + 2Mθk+2|Fk]/
Var[∆S̃k+1 + 2∆λk+1Mθ̄T+1 − 2λk+1Mθk+2 + 2Mθk+2|Fk]. (84)

G First order expansion of θT

In this appendix, we calculate θ̃T in (34).
The first order expansion of the numerator of θT in (27) is

Cov[η̄T + θ̄T+1S̃T +Mθ̄2T+1,∆S̃T + 2Mθ̄T+1|FT−1]

+ Cov[θ̄T+1(−2
T−1∑
j=1

∆λjMθ
(0)
j ),∆S̃T + 2Mθ̄T+1|FT−1]

+ Cov[η̄T + θ̄T+1S̃T +Mθ̄2T+1,−2λT−1Mθ̄T+1|FT−1]. (85)

　 Similarly, the first order expansion of the denominator of θT in (27) is

Var[∆S̃T + 2Mθ̄T+1|FT−1] + 2Cov[−2λT−1Mθ̄T+1,∆S̃T + 2Mθ̄T+1|FT−1]. (86)
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Thus we have

θ̃T =
Cov[η̄T + θ̄T+1S̃T +Mθ̄2T+1,∆S̃T + 2Mθ̄T+1|FT−1]

Var[∆S̃T + 2Mθ̄T+1|FT−1]

+
{
Cov[θ̄T+1(−2

T−1∑
j=1

∆λjMθ
(0)
j ),∆S̃T + 2Mθ̄T+1|FT−1]

+ Cov[η̄T + θ̄T+1S̃T +Mθ̄2T+1,−2λT−1Mθ̄T+1|FT−1]
}

/
Var[∆S̃T + 2Mθ̄T+1|FT−1]

− 2Cov[−2λT−1Mθ̄T+1,∆S̃T + 2Mθ̄T+1|FT−1]

× Cov[η̄T + θ̄T+1S̃T +Mθ̄2T+1,∆S̃T + 2Mθ̄T+1|FT−1]/
Var[∆S̃T + 2Mθ̄T+1|FT−1]

2. (87)

H First order expansion of θk+1

Next, we calculate θ̃k+1 (k = 0, . . . , T − 2) in (34). The zeroth order part and the first order
part of the numerator of θk+1 in (28) are as follows.

(i) The zeroth order part

Cov[η̄T + θ̄T+1S̃T −
T∑

j=k+2

θ
(0)
j ∆S̃j +

T∑
j=k+2

M(∆θ
(0)
j+1)

2 +Mθ
(0)2
k+2, ∆S̃k+1 + 2Mθ

(0)
k+2|Fk], (88)

(ii) The first order part

Cov[θ̄T+1(2λT−1Mθ
(0)
T − 2

T−1∑
j=1,j ̸=k+1

∆λjMθ
(0)
j )−

T∑
j=k+2

(
T−1∑
i=0

∂λi
θ
(0)
j λi)∆S̃j −

T∑
j=k+3

2λj−1Mθ
(0)
j ∆θ

(0)
j

− 2λk+1Mθ
(0)2
k+2 + 2

T∑
j=k+2

M∆θ
(0)
j+1(

T−1∑
i=0

(∂λi
θ
(0)
j+1 − ∂λi

θ
(0)
j )λi) + 2Mθ

(0)
k+2(

T−1∑
i=0

∂λi
θ
(0)
k+2λi),

∆S̃k+1 + 2Mθ
(0)
k+2|Fk]

+ Cov[η̄T + θ̄T+1S̃T −
T∑

j=k+2

θ
(0)
j ∆S̃j +

T∑
j=k+2

M(∆θ
(0)
j+1)

2 +Mθ
(0)2
k+2,

2∆λk+1Mθ̄T+1 − 2λk+1Mθ
(0)
k+2 + 2M(

T−1∑
i=0

∂λi
θ
(0)
k+2λi)|Fk]. (89)

The zeroth order part and the first order part of the denominator of θk+1 are as follows.
(i) The zeroth order part

Var[∆S̃k+1 + 2Mθ
(0)
k+2|Fk], (90)

(ii) The first order part

2Cov[∆S̃k+1 + 2Mθ
(0)
k+2, 2∆λk+1Mθ̄T+1 − 2λk+1Mθ

(0)
k+2 + 2M(

T−1∑
i=0

∂λi
θ
(0)
k+2λi)|Fk]. (91)
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Thus, we have

θ̃k+1

=
Cov[η̄T + θ̄T+1S̃T −

∑T
j=k+2 θ

(0)
j ∆S̃j +

∑T
j=k+2M(∆θ

(0)
j+1)

2 +Mθ
(0)2
k+2,∆S̃k+1 + 2Mθ

(0)
k+2|Fk]

Var[∆S̃k+1 + 2Mθk+2|Fk]

+
{
Cov[θ̄T+1(2λT−1Mθ

(0)
T − 2

T−1∑
j=1,j ̸=k+1

∆λjMθ
(0)
j )−

T∑
j=k+2

(
T−1∑
i=0

∂λi
θ
(0)
j λi)∆S̃j −

T∑
j=k+3

2λj−1Mθ
(0)
j ∆θ

(0)
j

− 2λk+1Mθ
(0)2
k+2 + 2

T∑
j=k+2

M∆θ
(0)
j+1(

T−1∑
i=0

(∂λi
θ
(0)
j+1 − ∂λi

θ
(0)
j )λi) + 2Mθ

(0)
k+2(

T−1∑
i=0

∂λi
θ
(0)
k+2λi),

∆S̃k+1 + 2Mθ
(0)
k+2|Fk]

+ Cov[η̄T + θ̄T+1S̃T −
T∑

j=k+2

θ
(0)
j ∆S̃j +

T∑
j=k+2

M(∆θ
(0)
j+1)

2 +Mθ
(0)2
k+2,

2∆λk+1Mθ̄T+1 − 2λk+1Mθ
(0)
k+2 + 2M(

T−1∑
i=0

∂λi
θ
(0)
k+2λi)|Fk]

}
/
Var[∆S̃k+1 + 2Mθ

(0)
k+2|Fk]

− 2Cov[∆S̃k+1 + 2Mθ
(0)
k+2, 2∆λk+1Mθ̄T+1 − 2λk+1Mθ

(0)
k+2 + 2M(

T−1∑
i=0

∂λi
θ
(0)
k+2λi)|Fk]

× Cov[η̄T + θ̄T+1S̃T −
T∑

j=k+2

θ
(0)
j ∆S̃j +

T∑
j=k+2

M(∆θ
(0)
j+1)

2 +Mθ
(0)2
k+2,∆S̃k+1 + 2Mθ

(0)
k+2|Fk]/

Var[∆S̃k+1 + 2Mθ
(0)
k+2|Fk]

2. (92)

I Expression of θ̃k+1 (k = 0, . . . , T ) in the expansion form (34)

Rewriting (87) and (92) in Appendices G & H, we have the following expression for θ̃k+1.

θ̃k+1 = θ
(0)
k+1 +

T−1∑
i=1

∂λi
θ
(0)
k+1λi

=
C(k+1)

A(k+1)
+

T−1∑
j=0

A(k+1)D
(k+1)
j −B

(k+1)
j C(k+1)

(A(k+1))2
λj . (93)

Here, A(k+1), B
(k+1)
j , C(k+1), D

(k+1)
j are as follows.

I.1 The case k = T − 1

　

AT = Var[∆S̃T + 2Mθ̄T+1|FT−1] (94)

For BT
j ,

1. when j = T − 1,

BT
j = 2Cov[−2λT−1Mθ̄T+1,∆S̃T + 2Mθ̄T+1|FT−1], (95)
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2. when j = 0, . . . , T − 2,

BT
j = 0. (96)

CT = Cov[η̄T + θ̄T+1S̃T +Mθ̄2T+1,∆S̃T + 2Mθ̄T+1|FT−1]. (97)

For DT
j ,

1. when j = T − 1,

DT
j = Cov[θ̄T+1(−2Mθ

(0)
j ), ∆S̃T + 2Mθ̄T+1|FT−1]

+ Cov[η̄T + θ̄T+1S̃T +Mθ̄2T+1, −2Mθ̄T+1|FT−1], (98)

2. when j = 0, . . . , T − 2,

DT
j = Cov[θ̄T+1(−2M∆θ

(0)
j+1), ∆S̃T + 2Mθ̄T+1|FT−1]. (99)

I.2 The case k = 0, . . . , T − 2

A(k+1) = Var
[
∆S̃k+1 + 2Mθk+2

∣∣∣Fk

]
. (100)

For B
(k+1)
j ,

1. when j ̸= k, k + 1,

B
(k+1)
j = 2Cov

[
∆S̃k+1 + 2Mθ

(0)
k+2, 2M∂λj

θ
(0)
k+2

∣∣∣Fk

]
, (101)

2. when j = k,

B
(k+1)
j = 2Cov

[
∆S̃k+1 + 2Mθ

(0)
k+2, 2Mθ̄

(0)
T+1 + 2M∂λj

θ
(0)
k+2

∣∣∣Fk

]
, (102)

3. when j = k + 1,

B
(k+1)
j = 2Cov

[
∆S̃k+1 + 2Mθ

(0)
k+2, 2Mθ̄

(0)
T+1 − 2Mθ

(0)
k+2 + 2M∂λj

θ
(0)
k+2

∣∣∣Fk

]
. (103)

C(k+1) = Cov
[
η̄T + θ̄T+1S̃T −

T∑
j=k+2

θ
(0)
j ∆S̃j +

T∑
j=k+2

M(∆θ
(0)
j+1)

2 +Mθ
(0)2
k+2, ∆S̃k+1 + 2Mθ

(0)
k+2

∣∣∣Fk

]
.

(104)

For D
(k+1)
j (k = 0, . . . , T − 2),
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1. when j = 0, . . . , k − 1,

D
(k+1)
j (105)

= Cov
[
2M∆θ

(0)
j+1 −

T∑
i=k+2

∂λj
θ
(0)
i ∆S̃i (106)

+ 2

T∑
i=k+2

M∆θ
(0)
i+1(∂jθ

(0)
i+1 − ∂jθ

(0)
i ) + 2Mθ

(0)
k+2∂jθ

(0)
k+2, ∆S̃k+1 + 2Mθ

(0)
k+2

∣∣∣Fk

]

+Cov
[
η̄T + θ̄T+1S̃T −

T∑
i=k+2

θ
(0)
i ∆S̃i +

T∑
i=k+2

M(∆θ
(0)
i+1)

2 +Mθ
(0)2
k+2, 2M∂jθ

(0)
k+2

∣∣∣Fk

]
,

(107)

2. when j = k,

D
(k+1)
j (108)

= Cov
[
−2Mθ

(0)
j −

T∑
i=k+2

∂λj
θ
(0)
i ∆S̃i (109)

+ 2
T∑

i=k+2

M∆θ
(0)
i+1(∂jθ

(0)
i+1 − ∂jθ

(0)
i ) + 2Mθ

(0)
k+2∂jθ

(0)
k+2, ∆S̃k+1 + 2Mθ

(0)
k+2

∣∣∣Fk

]

+Cov
[
η̄T + θ̄T+1S̃T −

T∑
i=k+2

θ
(0)
i ∆S̃i +

T∑
i=k+2

M(∆θ
(0)
i+1)

2 +Mθ
(0)2
k+2,

+ 2M∂jθ
(0)
k+2 − 2Mθ̄T+1

∣∣∣Fk

]
, (110)

3. when j = k + 1,

D
(k+1)
j (111)

= Cov
[
2Mθ

(0)
j+1 −

T∑
i=k+2

∂λj
θ
(0)
i ∆S̃i (112)

+ 2

T∑
i=k+2

M∆θ
(0)
i+1(∂jθ

(0)
i+1 − ∂jθ

(0)
i ) + 2Mθ

(0)
k+2∂jθ

(0)
k+2, ∆S̃k+1 + 2Mθ

(0)
k+2

∣∣∣Fk

]

+Cov
[
η̄T + θ̄T+1S̃T −

T∑
i=k+2

θ
(0)
i ∆S̃i +

T∑
i=k+2

M(∆θ
(0)
i+1)

2 +Mθ
(0)2
k+2,

+ 2M∂jθ
(0)
k+2 + 2Mθ̄T+1 − 2Mθ

(0)
k+2

∣∣∣Fk

]
, (113)
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4. when j = k + 2, . . . , T − 2,

D
(k+1)
j (114)

= Cov
[
2M∆θ

(0)
j+1 −

T∑
i=k+2

∂λj
θ
(0)
i ∆S̃i − 2Mθ

(0)
j+1∆θ

(0)
j+1 (115)

+ 2

T∑
i=k+2

M∆θ
(0)
i+1(∂jθ

(0)
i+1 − ∂jθ

(0)
i ) + 2Mθ

(0)
k+2∂jθ

(0)
k+2, ∆S̃k+1 + 2Mθ

(0)
k+2

∣∣∣Fk

]

+Cov
[
η̄T + θ̄T+1S̃T −

T∑
i=k+2

θ
(0)
i ∆S̃i +

T∑
i=k+2

M(∆θ
(0)
i+1)

2 +Mθ
(0)2
k+2, 2M∂jθ

(0)
k+2

∣∣∣Fk

]
.

(116)
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