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How Does Yield Curve Predict GDP Growth?
A Macro-Finance Approach Revisited

Junko Koeda 1 2

Faculty of Economics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo.

Abstract

This note analyzes the yield-curve predictability for GDP growth by modifying the
time-series property of the interest rate process in Ang, Piazzesi, and Wei (2006).
When interest rates have a unit root and term spreads are stationary, the short
rate’s forecasting role changes, and the combined information from the short rate
and term spread intuitively reveals the relationship between the shift of yield curves
and GDP growth.
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1 Introduction

Yield-curve variables, particularly those that capture the level and slope of
yield curves measured by short-term interest rates and term spreads, are
recognized as useful leading indicators of GDP growth (surveyed in Stock
and Watson (2003)). Which of these variables can best predict GDP growth?
While this question has typically been examined using unconstrained regres-
sions, it may be better answered using constrained regressions based on a
macro-�nance term-structure model where bond yields and macro variables
are jointly modeled with cross-sectional restrictions relating short- and long-
term interest rates.

1 Tel: +81-3-5841-5649. Email address: jkoeda@e.u-tokyo.ac.jp.
2 I am grateful to seminar participants at the Bank of Japan, Keio University, and
the University of Tokyo for their useful discussions and comments. I acknowledge
funding from the Nomura Foundation for Academic Promotion. All remaining errors
are my own.
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To this end, some researchers (Ang, Piazzesi, and Wei (2006), APW hence-
forth 3 ) propose adopting a macro-�nance, no-arbitrage term structure model,
where the cross-sectional restrictions arise from the absence of arbitrage in
bond markets. APW use an a�ne term structure framework in which the
yields are expressed as the a�ne function of yield factors. They include the
short rate and term spread as yield factors so that their estimated results are
comparable with those based on unconstrained linear regressions that include
the two factors in the regressors. Their model provides better out-of-sample
GDP forecasts, especially on the longer-horizon, than single-equation uncon-
strained regression models.

APW’s estimated results, however, include several other distinguishing fea-
tures: (i) short rates forecast GDP growth better than spreads and the spread
has little additional predictive power, although the existing work typically
supports the predictive power of the spread (e.g., Stock and Watson (2003),
Bordo and Haubrich (2008)), and (ii) an increase in the short rate is associated
with negative GDP growth, ceteris paribus, although policymakers often see
that a bear steepening of yield curves (an increase in both the short rate and
term spread) is associated with positive growth.

These artifacts may arise from the underlying assumption of the time-series
property of the short rate. APWassume that the level of the short rate is linear
stationary, even though the augmented Dickey-Fuller unit-root test cannot
reject the null that it has a unit root (for details of such evidence, see Appendix
A). If the true short-rate process is di�erence stationary, the long-term e�ects
of interest rate movements can di�er considerably.

To better understand the mechanisms of the APW model, this note modi-
�es the original APW model by considering Campbell and Shiller (1987, CS
henceforth) type state dynamics in which the short rate has a unit root while
the term spread is stationary (i.e., the short and long rates are cointegrated). 4
5 In contrast to the original APW �ndings, the estimated results of this note

3 For a variant of APW that addresses term-spread predictability, see for example,
Ichiue (2004). This author extends APW by adding in�ation to the state variable,
along with more lags. While the link between GDP growth and in�ation is impor-
tant, I exclude in�ation from the model, in the same spirit as in APW, to make
the results directly comparable to the literature, which uses only term structure
information.
4 A unit root process could induce disputable long-run implications. For example,
the I(1) speci�cation implies that forward rates fall without limit as maturity in-
creases (Campbell et al. (1997)). In this paper, I limit my analysis to bond yield
data up to a 5-year maturity.
5 An alternative approach to address the persistency of the short-term rate is to
consider a stationary, non-linear process (e.g., Kozicki and Tinsley (2001)). However,
such a process is often at odds with the a�ne framework.
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support the predictability of both the short rate and term spread on GDP
growth. Moreover, the short rate’s role in forecasting GDP growth changes.
In the original model, an increase in the short rate is associated with negative
growth. In the modi�ed model, on the other hand, bear steepening is asso-
ciated with positive growth, while bear �attening produces a mixed result,
albeit the short rate increases in either case. Lastly, an out-of-sample forecast-
ing exercise indicates that the modi�ed model has higher predictive accuracy
than the original model in the investigated period.

This note proceeds as follows. Section 2 describes the model. Section 3 explains
the estimation strategy. Section 4 presents the estimated and forecasting re-
sults. Finally, Section 5 concludes.

2 The Model

2.1 The state dynamics

The APW’s state dynamics is originally the VAR(1) of the level of the short
rate (r), 20-quarter yield spread (r20� r), and GDP growth rate (g), which is
given by

Xt+1 = �0 + �Xt +��t+1, where Xt =
h
rt, r

20
t � rt, gt

i0
, (1)

where �0 is a 3× 1 vector, � is a 3× 3 matrix, � is a 3× 3 lower triangular
matrix, and � is a 3× 1 random shock vector assumed to be standard normal
and independent of each other and over time.

In this note, I replace the above state dynamics with a CS-type VAR(1) of
the �rst di�erence in the short rate (�r), 20-quarter yield spread, and GDP
growth rate. I do this because the augmented Dickey-Fuller test cannot reject
the null of unit root in the short rate (for details see Appendix A). The state
dynamics is given by

X̃t+1 = �0 + �X̃t +��t+1, where X̃t =
h
�rt, r

20
t � rt, gt

i0
, (2)

(2) can be rewritten into the following “level” dynamics,
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Xt+1=�0 + �1Xt + �2Xt�1 +��t+1 (3)

where Xt=
h
rt, r

20
t � rt, gt

i0
,K =

�
������

1 0 0

0 0 0

0 0 0

�
������
,

�1=K + �, �2 = ��K. (4)

This is a restricted VAR(2) with restrictions imposed on �1 and �2 in (4).
Thus, our state dynamics is a two-order system, albeit with the restrictions
given by (4).

2.2 Pricing kernel and the price of risk

As in APW, suppose that the pricing kernel is given by

mt+1=exp(�rt � 1
2
�0t�t � �0t�t+1), (5)

�t=�0 + �1Xt + �2Xt�1, (6)

where the price of risk takes an a�ne form in state variables Xt and Xt�1, as
handled in many existing a�ne term structure models. �0 is a 3 × 1 vector
and �1 and �2 are 3× 3 matrices. Then the log price of a n-period bond takes
the following a�ne form

pnt =exp
³
Ān + B̄nXt + C̄nXt�1

´
,

where Ān+1= Ān + B̄n�0 � B̄n��0 + 1
2
B̄n��

0B̄0n, (7)

B̄n+1= B̄n (�1 ���1) + C̄n � e01, (8)
C̄n+1= B̄n (�2 ���2) . (9)

where ei is a 3× 1 vector of zeros with a 1 in the ith element. The derivation
of these recursive equations is given in Appendix B.

The n-period, zero-coupon bond yield is given by

rnt = An +BnXt +CnXt�1, (10)
where An = �Ān/n, Bn = �B̄n/n, Cn = �C̄n/n.

For the 20-quarter yield equation (n = 20), the following two implications
of the model need to be consistent with each other: (i) the model-implied 20-
quarter bond yield is given by Eq. (10) with n = 20, (ii) the 20-quarter yield is

4



the sum of the �rst two factors in Xt. To ensure this consistency, as in APW,
the yield coe�cients for the 20-quarter yield spread must be

A20 = 0,B20 = [1, 1, 0],C20 = [0, 0, 0]. (11)

2.3 Term spread stationarity

The unit-root assumption on the short rate implies that longer maturity yields
also have a unit root; however it is widely acknowledged that the two yields
are cointegrated. Against this background, I rewrite the yield equation (Eq.
(10)) as the following yield-spread equation,

rnt � rt=An + FnXt +CnXt�1, (12)
where Fn�Bn � e01. (13)

The following proposition provides a condition under which the term spread
in equation (Eq. (12)) is stationary.

Proposition 1 Yield spread is stationary, for any given �, if and only if
(�1 + �2)e

0
1 = 0.

See Appendix C for proof.

3 Estimation Strategy

Although the model dynamics is a second-order system, it is e�ectively a �rst-
order system if the state is taken to be X̃. Accordingly, I restrict �t to be an
a�ne function of X̃t, so that the �t is now given by

�t=�0 + �1Xt + �2Xt�1, (14)

=�0 +�X̃t,

where �1=�, �2 = ��K, and � is a 3× 3 matrix. (15)

This restriction is stronger than that of Proposition 1 6 and would save the
number of prices-of-risk parameters to be estimated. The yield-spread equation
(12) can now be simpli�ed as

rnt � rt = An + FnX̃t, (16)

6 I do not impose (15) in Section 2 to illustrate the condition needed only for
yield-spread stationarity.
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where FnXt +CnXt�1 can be rewritten as FnX̃t, by Eqs. (4), (9), (15), and
(C.3). The corresponding system of equations can be expressed with the dy-
namics of X̃ with the yield-spread equations appended to X̃. The system will
be stationary if yield spreads are stationary because the dynamics of X̃ is
stationary.

For illustration purposes, I use the same data sources and sample period as
APW. That is, I use quarterly data on interest rates and GDP growth rate
from 1964Q1 to 2001Q4. The 1-quarter zero coupon bond yields are used for
the short-term interest rate and zero-coupon bond yields of 4-, 8-, 12-, 16-,
and 20-quarter maturities are used for longer maturities; These bond yields are
from the CRSP US Treasury Database (the Fama-Bliss Discount Bond Files
for 4-, 8-, 12-, 16-, and 20-quarter data and from the Risk-Free Rate Files for
1-quarter data). All bond yields are continuously compounded and expressed
at a quarterly frequency in percent. Real GDP growth data are taken from
the FRED database and expressed in quarterly percent changes.

The system of equations to be estimated can be summarized as follows:

�
	
 X̃t+1

Rt � rt

�
�


| {z }
�Yt+1

=

�
	
�0
A

�
�


| {z }
�AY

+

�
	
 �
F

�
�


| {z }
�FY

X̃t +

�
	
� 0

0 �m

�
�

�
	
 �t+1
�mt+1

�
�
 , (17)

where Rt=
h
r4t , r

8
t , r

12
t , r

16
t

i0
, A = [A4, A8, A12, A16]

0 ,F = [F4,F8,F12,F16]
0 ,

where Rt is a 4 × 1 vector of bond yields with maturities indicated by the
superscript numbers (in quarters). The yield dynamics is an a�ne function
of the state variables with a 4 × 1 coe�cient vector A and a 4 × 3 matrix
F corresponding to the constant term and X̃ respectively. A and F are time
invariant with maturities indicated by the subscript numbers. Their elements
are derived from the recursive equations; in other words, the model implic-
itly imposes cross-equation restrictions reducing the number of parameters to
be estimated. Measurement errors �m are assumed to have constant variance
and �m is a diagonal matrix. We estimate this system using the constrained
maximum likelihood method in which the constraints are A20 = 0 and F20 =
[0, 1, 0] (for details see Appendix D). 7 8

7 That is, the sample here is (y1, ..., yT ) = (X1, R0� r0;X2, R1� r1; ...,XT , RT�1�
rT�1). It would be more natural to consider the sample (X1, R1 � r1;X2, R2 �
r2; ...,XT , RT � rT ), but the usual factorization argument can be more readily ap-
plied to the former. If the sample size T is large, the choice of the sample would not
matter for the point estimation.
8 For the standard errors under the constrained maximization, I calculated the
consistent estimates of the asymptotic variance discussed in equation (7.4.22) in
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4 Estimated and Forecasting Results

4.1 Estimation summary

The parameter estimates of the model are reported in Table 1. The positive
coe�cient in the last row of the �matrix corresponding to term spread (0.893)
is consistent with the common view that a rise in term spread predicts growth.
The diagonal elements in the �1 matrix are statistically signi�cant indicating
that the prices of risk are driven by movement of the corresponding factor.

4.2 The implied growth regression

As mentioned above, the predictability of yield-curve variables has been widely
examined via unconstrained growth regressions. This subsection, following the
approach discussed by APW, links the estimated parameters to those in the
typical growth regression model estimated in the literature.

The growth regression model is given by

gt�t+k = �k + �0kX̃t + �t+k,k, (18)

where gt�t+k is the average quarterly GDP growth rate from period t to t+k,
�k and �k are the k-period forecast coe�cients and �t+k,k is the corresponding
error term. The coe�cient �k equals that for X̃t in the least-square projection
of gt�t+k on constant and X̃t, thus 9

�k =
h
V (X̃t)

i�1
Cov(X̃t, gt�t+k). (19)

The coe�cient vector �k takes di�erent values depending on the underlying
models. First, �k based on the single-equation regression model of gt�t+k on
a constant and X̃ can be estimated via OLS. Second, �k based on the unre-
stricted VAR(1) of X̃ can be obtained by computing the right-hand side of
(19) using the unrestricted VAR parameters. Lastly, �k based on the modi-
�ed APW, i.e., the constrained VAR(1) of X̃ imposing no-arbitrage equations,
can be obtained by computing the right-hand side of (19) using the estimated
model parameters reported in Table 1.

Hayashi (2000).
9 V (X̃t) is the unconditional variance of X̃ with vec(V (X̃)) =
(I � �� �)�1 vec (��0), and Cov(X̃t, gt�t+k) is the covariance of X̃ and gt�t+k
given by V (X̃)�̃0k�

0e3 with �̃k = (I � �)�1(I � �k)/k.
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Table 2 reports the �k implied by the modi�ed model (left panel) and those re-
ported in the original model (right panel) for k = 1, 4, 8, 12. The corresponding
standard errors are calculated via the delta method. There are several mes-
sages in these results. First, the two models have contrasting results for term
spread predictability on growth: none of the term-spread coe�cients implied
by the original model are statistically signi�cant, whereas those implied by the
modi�ed model are signi�cant for all forecasting horizons. Moreover, the size of
the latter coe�cients is notably larger. This means that the term spread plays
a nontrivial role in predicting GDP growth under the modi�ed model. Sec-
ond, while the short rate contains important information about GDP growth
in either model, its economic role di�ers. In the original model, an increase in
the short rate is always associated with negative growth, ceteris paribus. On
the other hand, in the modi�ed model, the combined information from the
short-rate (in �rst di�erence) and the term-spread terms suggests that bear
steepening is associated with positive growth, and bull �attening (i.e., both
the short rate and term spread decrease) is associated with negative growth.
Bear �attening or bull steepening induces a mixed result depending on the de-
gree of �attening (steepening) of yield curves relative to changes in the short
rate. Lastly, the growth coe�cients are insigni�cant on the longer-horizons in
either model, suggesting that forward-looking �nancial variables play a more
important role in forecasting GDP growth than current growth rate.

4.3 Out-of-sample forecast

I perform out-of-sample forecasting over the period of 2002Q1-2006Q4 with
the forecasting ranging from 1- to 12-quarters. 10 This forecasting exercise is
rolling. The left panel of Table 3 reports the root mean square error (RMSE)
ratios of the models in comparison (i.e., original APW, the single-equation
regression model, and the unrestricted VAR(1) of X̃) to the modi�ed APW.
The forecast error is de�ned by taking the actual gt�t+k subtracting the corre-
sponding forecast. The RMSE ratios suggest that the modi�ed APW performs
better than the original APW on the longer-horizon (i.e., 4, 8, and 12 quarter
horizons). Further, they indicate that the model has higher predictive accu-
racy than the single-equation regression model on the medium-horizon (i.e., 4
and 8 quarter horizons), despite the fact that the model has many more para-
meters. Lastly, they show little di�erence in forecasting performance between
the modi�ed APW (i.e., a restricted VAR(1) of X̃) and the unrestricted VAR.

The predictive accuracy can also be checked using formal hypothesis testing.
The right panel of Table 3 reports the modi�ed Diebold-Mariano (MDM) test

10 Thus, to obtain the 12-quarter forecast error at 2006Q4, for example, I use the
data up to 2009Q4, including the recent global �nancial crisis.
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statistics proposed by Harvey et al. (1998) comparing the modi�ed APW with
the model in comparison. 11 The di�erential loss is based on the mean-square
errors, and the forecast error is de�ned by taking the actual k-period ahead
quarterly growth rate (gt+k) subtracting the corresponding forecast. A signif-
icantly negative statistic indicates that the modi�ed APW performs better
than the model in comparison. The MDM test con�rms the earlier results
that the modi�ed APW performs better than the original APW, particularly
on the medium-term horizons, and its predictive accuracy is similar to that of
the unrestricted VAR.

These forecasting results, however, may be subject to the choice of out-of-
sample period. For example, if the period covered begins in the late-80s, the
predictability of the yield-curve model could deteriorate due to a decline in
the volatility of macroeconomic variables, as is often argued in the literature.

5 Conclusion

This note analyzes the yield-curve predictability for GDP growth using a mod-
i�ed APWmodel. In line with the original APW�ndings, the estimated results
support that the macro-�nance, no-arbitrage, term-structure model improves
predictive accuracy for GDP growth especially on the medium horizon, com-
pared with the unconstrained single-equation model. In the modi�ed model,
however, the short rate plays a di�erent forecasting role, and together with the
term spread, it intuitively reveals the relationship between the shift of yield
curves and GDP growth. Further, the modi�ed model forecasts GDP growth
better than the original model in the investigated period.

The theoretical literature has yet to reach a consensus on how exactly yield
curves predict GDP growth. While the model suggests that bear steepening
signals economic recovery near the end of recession, other factors may in�uence
it, for example, the fear of rising �scal debt, as discussed recently in policy
circles. In future research, �scal risks should be incorporated in the model,
and their links with other macro variables, for example, expected in�ation,
should be addressed.

11 I do not use the Clark and West (2007) test because the modi�ed APW is not
nested in the original APW or the unrestricted VAR in the Clark and West’s sense.
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A Unit root and cointegration tests on bond yields

In this appendix, I carry out the augmented Dickey-Fuller test on bond yields
and term spreads with various maturities. Table A.1. shows that, for all matu-
rities, the null hypothesis that the levels of the yields have a unit root cannot
be rejected even at the 10-percent level, but the null that the �rst di�erences
of the yields have a unit root can be rejected; the null hypothesis that the
spreads over the short rate have a unit root can be rejected at the 1 percent
level. In short, the test indicates that all considered bond yields have a unit
root, however, the longer-rates are cointegrated with the short rate.
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B Derivation of the recursive equations

I can con�rm that the n-period bond pricing formula in

pn+1t = Et
³
mt+1p

n
t+1

´

= Et

�
�� exp(�rt � 1

2
�0t�t � �0t�t+1)

× exp(Ān + B̄nXt+1 + C̄nXt)

�
��

= exp(�rt + Ān � 1
2
�0t�t)

×Et
h
exp(��0t�t+1 + B̄nXt+1 + C̄nXt)

i
.

Plugging in the dynamics of (3) into above gives

pn+1t =exp(�rt + Ān � 1
2
�0t�t)

×Et
h
exp(��0t�t+1 + B̄nXt+1 + C̄nXt)

i

=exp(�rt + Ān � 1
2
�0t�t)

×Et
�
��exp

�
	
��0t�t+1 + B̄n

�
	
 �0 + �1Xt

+�2Xt�1 +��t+1

�
�
+ C̄nXt

�
�

�
��

=exp(�rt + Ān � 1
2
�0t�t + B̄n�0 +

³
B̄n�1 + C̄n

´
Xt + B̄n�2Xt�1)

×Et
h
exp(

³
��0t + B̄n�

´
�t+1)

i

=exp

�
	
 �rt + Ān + B̄n�0 + 1

2
B̄n��

0B̄0n

+
³
B̄n�1 + C̄n

´
Xt + B̄n�2Xt�1 � B̄n�(�0 + �1Xt + �2Xt�1)

�
�
 .

The last equality relies on �t being i.i.d. standard normal and the dynamics
of �t given by (14).

The bond price equation can �nally be rewritten as

pn+1t =Et
³
mt+1p

n
t+1

´

=exp

�
							


Ān + B̄n�0 � B̄n��0 + 1
2
B̄n��

0B̄0n| {z }
�Ān+1

+
³
B̄n (�1 � ��1) + C̄n � e01

´
| {z }

�B̄n+1

Xt + B̄n (�2 ���2)| {z }
�C̄n+1

Xt�1

�
�������

.
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C Proof of proposition 1

FnXt can be rewritten as

FnXt=Fn (KXt + (I �K)Xt)

=Fne1rt + Fn

�
������

0

r20t�1 � rt�1
gt�1

�
������
. (C.1)

Similarly, CnXt�1 can be rewritten as

CnXt�1 = Cne1rt�1 +Cn

�
������

0

r20t�1 � rt�1
gt�1

�
������
. (C.2)

The second RHS terms in (C.1) and (C.2) are stationary so that,

FnXt +CnXt�1 = [Fne1,Cne1]

�
�� rt

rt�1

�
��+ stationary components.

For stationarity of the �rst RHS term, the �rst elements of Fn and Cn must
add up to zero, i.e.,

(Fn +Cn)e1 = 0, for all n (C.3)

By (8), (9), and (13), (Fn+1 +Cn+1)e1 can be expressed as

(Fn+1 +Cn+1) e1=
n

1 + n

�
�� (Fn + e

0
1) (�1 ���1) e1 +Cne1 � e01e1...
...+ (Fn + e

0
1) (�2 � ��2) e1

�
�� ,

=
n

1 + n

�
�� (Fn + e

0
1) (�1 + �2) e1 +Cne1 � 1...

...� (Fn + e01)� (�1 + �2) e1

�
�� ,

=
n

1 + n

�
�� Fne1 + 1 +Cne1 � 1...
...� (Fn + e01)� (�1 + �2) e1

�
�� , (C.4)

The equality in (C.4) holds because
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(Fn + e
0
1) (�1 + �2) e1=(Fn + e

0
1) (K + �� �K) e1,

=(Fn + e
0
1) (K + �(I �K)) e1,

=(Fn + e
0
1)Ke1,

=(Fn + e
0
1) e1,

=Fne1 + 1.

Note that for any given �, the last term in (C.4) (i.e., (Fn + e01) � (�1 + �2) e1)
disappears if and only if,

(�1 + �2)e1 = [0, 0, 0]
0, (C.5)

so that

(Fn+1 +Cn+1) e1 =
n

1 + n
(Fn +Cn) e1.

Now, via mathematical induction, it can be shown that (C.3) holds with (C.5).
That is, for n = 1,

(F1 +C1)e1 = 0,

where F1 = [0, 0, 0] and C1 = [0, 0, 0]. For n = 2,

(F2 +C2)e1=
2

3
(F1 +C1)e1,

=0.

QED.

D The log likelihood function

We estimate the model dynamics by numerically maximizing the following
log-likelihood function:

L(�) = �1
2

TX
t=1

log(det(�))� 1
2

TX
t=1

ut�
�1ut,

subject to the constraints on the recursive equations (i.e., A20 = 0 and F20 =
[0, 1, 0]), where � is the vector of parameters to be estimated;
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�= [�0,�,�,�
m, �0,�] ,

�=

�
	
��

0 0

0 �m�m0

�
�
 ,

� is the covariance-variance matrix, and u is de�ned by

ut = Yt �AY � FY X̃t�1.
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Table 1. Estimated coefficients. This table reports estimated coefficients. Numbers in parentheses indicate standard errors. 
Prices of risk parameters with large standard errors (i.e., the second and third elements in the first column of the 1�  matrix) are 

set to zero. Measurement error is the standard deviation of error corresponding to each maturity. 



 

Table 2. Modified and original APW coefficients. This table reports predictive coefficients implied by the modified 
(left panel) and original (right panel) APW models. Numbers in parentheses indicate standard errors.  

 
  



 
Table 3. Out-of-sample forecasts. The left panel reports RMSE ratios relative the modified APW and the right panel reports the 
MDM test statistics. * and ** indicate the 10 and 5 percent significant levels respectively. The out-of-sample period is 
2002Q1-2006Q4.

 
  

horizon

qts Original APW Single-eq. VAR Original APW VAR

1 1.09 0.99 0.99 -1.01 1.32

4 1.20 1.07 0.99 -2.34** 1.39

8 1.52 1.18 0.99 -1.72* 1.65

12 1.28 0.99 1.01 0.61 0.87

MDM testRMSE ratios



 

 
Table A.1. Unit root test on bond yields. This table reports the t-statistics with the null hypothesis that the level of (the 
second column) or the first difference (the third column) of each bond yield has a unit root. The maturities of the bond 
are reported in the first column. Note that the critical values for 1- and 10-percent levels are -3.47 and -2.58 
respectively. Lag lengths are selected based on the Schwarz Information Criterion.  
 

horizon
qts level first difference spread over 1-qt yield
1 -2.03 -6.79 ---
4 -1.57 -16.43 -8.66
8 -1.89 -15.78 -6.27
12 -1.80 -15.51 -4.47
16 -1.76 -15.01 -4.10
20 -1.73 -14.95 -4.12

t  statistics
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