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Abstract 

This paper proposes a pricing method of currency options with a market 

model of interest rates. Using a simple approximation and a Fourier transform 

method, we derive a formula of the option pricing under jump-diffusion 

stochastic volatility processes of spot exchange rates. As an application, we 

apply the formula to the calibration of volatility smiles in the JPY/USD 

currency option market. Moreover, using the approximate prices as a control 

variate, we achieve substantial variance reduction in Monte Carlo simulation. 
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1 Introduction 

In this paper we propose a new approximation formula for the valuation of currency 

options under jump-diffusion stochastic volatility processes of spot exchange rates in 

stochastic interest rates environment. In particular, we apply market models developed 

by Brace, Gatarek and Musiela[1998], Jamshidian[1997] and Miltersen, Sandmann and 

Sondermann[1997] to modeling term structures of interest rates. 

Recently, currency options with maturities up to ten years become common in G7 

currencies' markets and smiles (skews) for those maturities are usually observed. Even 

longer maturities options such as fifteen and twenty years become gradually liquid 

especially for at-the-money (ATM) options. Moreover, popular currency derivatives 

such as Power-Reverse-Dual-Currency (PRDC) swaps have long maturities. 

Thus, because it is well known that the effect of interest rates become more important 

in long-term maturities, we have to take term structure models into account for the 

currency options. Further, we need a stochastic volatility model of foreign exchange 

rates for calibration of smiles (skews); for shorter maturities, we sometimes need a jump 

component as well. As for term structure models, market models become popular in 

matured interest rates markets since calibrations of caps, floors and swap options are 

necessary and market models are regarded as most useful. 

Hence, our objective is to develop a model with stochastic volatilities of exchange 

rates and with a market model of interest rates. Moreover, a closed-form formula is 

desirable in practice especially for calibration because it is very time consuming by 

numerical methods such as Monte Carlo simulation. 

Because it is impossible to obtain an exact closed-form formula, we derive an explicit 

formula by Fourier transform method through a simple approximation of the 

characteristic function of a forward foreign exchange rate distribution under some 

independence assumption; we assume independence between currency components and 

interest rates components while allowing the correlation between a spot exchange rate 

and its volatility, and the correlation between domestic and foreign interest rates.  

Garman and Kohlhagen[1983] and Grabbe[1983] started research for currency 

options based on contingent claim analysis; they directly applied framework of Black 
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and Scholes[1973], Merton[1973] and Black[1976] to pricing currency options. 

Grabbe[1983]'s formula also included the case of stochastic interest rates following 

Gaussian processes though he did not specify the processes explicitly. Under 

deterministic interest rates, Melino and Turnbull[1991] examined the foreign exchange 

rate process underlying the observed option prices and Rumsey[1991] considered 

cross-currency options.  

Amin and Jarrow[1991] and Hilliard, Madura and Tucker[1991] derived formulas of 

currency options with Gaussian stochastic interest rates; in particular, Amin and 

Jarrow[1991] combined term structure models under the framework of Heath, Jarrow 

and Morton [1992](HJM[1992]) with currency options. 

Amin and Bodurtha[1995] and Takahashi and Tokioka[1999] gave numerical 

solutions to pricing currency American options with stochastic interest rates by lattice 

methods; Amin and Bodurtha[1995] used HJM[1992] models and Takahashi and 

Tokioka[1999] applied Hull and White[1990,1994] term structure models. Dempster 

and Hutton[1997] considered terminable (Bermudan) differential swaps with Gaussian 

interest rates models following partial differential equations(PDE) approach. 

Bates[1996] developed a jump-diffusion stochastic volatility model with constant 

interest rates for currency options based on Heston[1993]'s Fourier transform method. 

Bakshi, Cao and Chen [1997] combined stochastic interest rates of Cox Ingersoll and 

Ross[1985] with a jump-diffusion stochastic volatility model under independence 

assumption between the domestic interest rate and the other components though they 

did not consider currency options, but equity options. Carr and Wu[2005] proposed new 

models, stochastic skew models for pricing currency options based on time-changed 

Levy processes with deterministic interest rates, and investigated skew structures of 

options with short maturities such as one, three and twelve months in detail. 

Schlogl[2002] extended market models to a cross-currency framework. He did not 

take stochastic volatilities into account and focus on cross currency derivatives such as 

differential swaps and options on the swaps as applications; he did not consider 

currency options. Mikkelsen[2001] considered cross-currency options with market 

models of interest rates and deterministic volatilities of spot exchange rates by 

simulation. Piterbarg[2005] developed a model for cross-currency derivatives such as 
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PRDC swaps with calibration to currency options; he used neither market models nor 

stochastic volatility models. 

This paper develops a jump-diffusion stochastic volatility model with a market model 

of interest rates for pricing and calibration of currency options with long maturities 

more than one year. 

The organization of the paper is as follows: After the next section describes basic 

structure of our model, section 3 derives an approximation formula. Section 4 shows 

numerical examples and the final section states conclusion. 

 

2 Models 

We first define domestic and foreign forward interest rates as: 
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nnn TT −= +1δ . In this paper, we specify the forward interest rate processes as follows: 

  ),()(
)(
)(

1 tWdt
tf
tdf d

n
d
nd

n

d
n

+⋅= σ  (1) 

  ),()(
)(
)(

1 tWdt
tf
tdf f

n
f

nf
n

f
n

+⋅= σ  (2) 

where )(1 tW d
n+  and )(1 tW f

n+  are D dimensional Brownian motions under the forward 

martingale measures of numeraire )(1 tBd
n+  and )(1 tB f

n+  respectively, and )(td
nσ  and 

)(tf
nσ  denote some DR -valued deterministic functions. Here, “ yx ⋅ ” denotes the 

inner product of vectors x  and y . We also define spot interest rates to an initial fixing 

date as: 
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We assume that a variance process of a spot exchange rate denoted by )(tV  follows 

under the domestic risk neutral measure: 

  ),()())(()( * tWdtVdttVtdV ⋅+−= ϑθηξ   

where )(* tW  is a D dimensional Brownian motion under the domestic risk neutral 

measure, ξ , η  and θ  are positive scalar parameters and ϑ  is a D dimensional 

constant vector with 1=ϑ  to represent the correlations between the variance and 

other factors. The condition 22 θξη >  ensures that the variance process )(tV  remains 

positive starting from a positive initial variance )0(V . This stochastic volatility model 

is introduced by Heston [1993] and its closed-form formula of option price with 

deterministic interest rates or some spot rate models is well known. Therefore, we focus 

on its approximate solution with a market model of interest rates. 

Next, we unify numeraires of above models into the domestic discount bond )(1 tB d
N +  

with maturity 1+NT , the currency option maturity. We first note the following relations 

among Brownian motions under different martingale measures: 

 ,)(
)(1

)()()( 1 dtt
tf

tftWdtWd d
nd

nn

d
nnd

n
d

n σ
δ

δ
+

−= +  

 ,)(
)(1

)()()( 1 dtt
tf

tftWdtWd f
nf

nn

f
nnf

n
f

n σ
δ

δ
+

−= +  

 ,)()(
)(1

)()(
)(1

)()()(
)(

11
1

dttVt
tf

tft
tf

tftWdtWd
tMm

f
mf

mm

f
mmd

md
mm

d
mmd

n
f

n
N ⎭

⎬
⎫

⎩
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

−= ∑
+∈

++ ωσ
δ

δσ
δ

δ



 5

 

1

*
1

( )

( )( ) ( ) ( ) .
1 ( )

N

d
d dm m

N md
m M t m m

f tdW t dW t t dt
f t

δ σ
δ

+

+
∈

⎧ ⎫⎪ ⎪= − ⎨ ⎬+⎪ ⎪⎩ ⎭
∑  

Then, we can obtain forward interest rates and variance processes under the domestic 

forward measure of numeraire )(1 tBd
N + : 
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where },,1)(),(,1)({)(1 NtmtmtmtM N +−=+  and ω  is a D dimensional constant 

vector with 1=ω  to represent the correlations between a spot exchange rate and the 

other factors. 

Let )(1 tFN +  denote a forward exchange rate with maturity 1+NT at time t. The 

process of )(1 tFN +  under the domestic forward measure of numeraire )(1 tBd
N +  can be 

expressed as: 
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Here we use the notations: 
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Moreover, we can add a jump component to the equation (4). For example, in the case 

of Merton’s jump-diffusion [1976] it can be rewritten as follows: 
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where )(tJ  denotes a compound Poisson process with intensity λ  and a log-normal 

distribution of jump size, if Κ  is a random variable representing jump size then 

),)1(ln(~)1ln( 22
2
1 δδκ −+Κ+ N . Note that the third term on the right-hand side of the 

equation (7) is the compensator of )(tdJ . This model can also be viewed as the Bates 

model [1996] with a market model of interest rates. 

 

3 Pricing Options 

Let ),,( 1+NTKSC  be the value at time 0 of a currency call option written on a spot 

exchange rate S  with expiry date 1+NT  and strike rate K . In order to evaluate a 

currency option in our model, we apply the forward measure pricing approach. Then, its 

discounted value is expressed as: 
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where ][1 ⋅+
d
NE  denotes the expectation operator under the domestic forward measure 

of numeraire )(1 tBd
N + . 

We use a Fourier transform method for option pricing introduced by Carr and Madan 

[1998]. In order to apply the method to our models, we first set log-price 

FtFtX N /)(ln)( 1+=  and log-strike FKk /ln=  where )0(1+= NFF . Then, the call 

option value is given by: 
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where 1−=i  and )(uXΦ  is the characteristic function of log-price )( 1+NTX . 

Therefore, we concentrate on the characteristic function )(uXΦ  to use the pricing 

formula (8). 

Applying Ito’s formula to the equation (7), we can obtain the equation for 

log-price )(tX : 
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where )(* tJ  follows a compound Poisson process with intensity λ and a Gaussian 

distribution of jump size. Unfortunately, we cannot obtain the characteristic function 

)(uXΦ  explicitly, because )(tX  is complicated process under the equation (9). Thus, 

we assume independence of interest rates and the foreign exchange rate, and then we 

apply a simple approximation to the equation (9). 

First, assume that domestic and foreign forward interest rates are independent of the 

spot exchange rate and its variance. That is, we suppose that 
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for all Nj ,2,1= . Under the assumptions, we can decompose the equation (6) as 

follows: 
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Note that )(tY  and )(tZ  are independent. Moreover, because of the independence, 

the equation (3) can be simplified as: 
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Therefore, the characteristic function of )( 1+NTX  is given by: 
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On the other hand, it is impossible to derive the closed-form expression of )(uYΦ . 

Next, we consider a simple approximation of )(uYΦ . We replace processes 
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mm ff δδ +  respectively. This argument often appears in some literatures to 

derive approximate swaption formula in a lognormal forward LIBOR model. Then, we 

can obtain the approximation of the equation (6) as: 
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and the approximate process of )(tY  as: 
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Note that )(0 tY  is a Gaussian process, because )(0,
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functions. Hence, the characteristic function )(0 u
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Therefore, using the following approximation of the characteristic function of )(tX , 

we obtain an approximate formula of currency options with a market model of interest 

rates. 

 ,)()()()()( *00 ttJtZtYtXtX λκ−++≡≈  (14)

 },exp{)()()()()( 1*00 +−ΦΦΦ≡Φ≈Φ NJZYXX Tiuuuuuu λκ  (15)

The option pricing formula (8) consists of the intrinsic value part and the Fourier 

transform part in terms of the characteristic function of the log-price, which can be 

viewed as its time value. Computing the exact value, it is important to consider the 

convergence problem about the integrand on the Fourier transform at infinity. In many 

cases, the convergence can be dramatically improved by replacing the intrinsic value 

part with the Black-Scholes call price with a suitable volatility in the equation (8). Thus, 

the approximate formula of the option price is given by: 
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Here we use the notations: 
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where )(xN  stands for the standard normal cumulative distribution function. Since 

0σ  is a constant, we can interpret the first term on the right-hand side of the formula 

(8) as difference between the call price of our model and the Black-Scholes call price. 

 

4 Numerical Examples 

In this section we show three numerical examples using the option pricing formula. 

First, comparing our approximate option prices with exact prices, we verify whether we 

obtain sufficient accuracy of approximate solutions. Second, in order to improve the 

efficiency of Monte Carlo simulation, we apply the formula to control variates, which is 

one of variance reduction techniques. Third, we apply the formula to the calibration of 

volatility smiles in the JPY/USD currency option market. 

 

4.1 Testing Accuracy of Approximate Solutions 

Note that our approximation depends on replacing the processes of forward interest 

rates with initial forward interest rates. Because of that, we need to compare the 

approximate solutions with the exact option prices under different settings of interest 

rates. In subsection 4.1 and 4.2 we suppose that the exchange rate process follows a 

stochastic volatility model without a jump component. The parameters used for the 

model are 100=S , 015.0)0( =V , 5.0=ξ , 015.0=η , 1.0=θ  and 5.0−=ρ . We 

also assume that domestic and foreign forward interest rates are expressed as one-factor 
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market models with constant volatilities d
n

d
n t σσ ≡)(  and f

n
f

n t σσ ≡)(  respectively, and 

5.0=nδ  for all n. We examine the option prices in two cases where domestic and 

foreign interest rates are independent or their correlation is equal to 0.5. And we 

consider three cases for initial forward interest rates and their volatilities as follows: 

 

Table 1: Initial domestic and foreign forward interest rates and volatilities for all n 
 )0(d

nf  d
nσ  )0(f

nf  d
nσ  

Case 1 0.05 0.20 0.05 0.20 
Case 2 0.02 0.50 0.05 0.20 
Case 3 0.05 0.20 0.02 0.50 

 

Here we regard call prices calculated by Monte Carlo simulation with 1,000,000 sample 

paths as exact solutions. 

Tables 2~5 show the exact and approximate call prices with 3, 5 and 10-year 

maturities and their errors. Figures 1~3 plot the errors against the moneyness, which 

shows that the longer call maturity and the wider difference of domestic and foreign 

interest rates, the larger errors the approximate prices suffer. When the call maturity is 3 

or 5-year, the absolute errors between the exact and approximate prices are less than 

0.06. However, when domestic and foreign interest rates are different and the maturity 

is 10-year, the errors increase. On one hand we can obtain the sufficient accuracy in 

terms of medium-term currency option prices, on the other hand we might need to 

improve the approximation method to price long-term options. It seems that there is no 

impact of the correlation between domestic and foreign interest rates on our 

approximation.  

 



 12

Table 2: Call prices with 3-year maturity 

0.4 1 1.6 0.4 1 1.6
Case 1 exact 51.745 7.084 0.035 51.744 7.028 0.033

approximation 51.745 7.083 0.037 51.744 7.028 0.034
error 0.000 -0.001 0.001 0.000 0.000 0.001
error ratio 0.000% -0.010% 4.160% 0.000% -0.006% 4.261%

Case 2 exact 51.745 7.088 0.035 51.744 7.032 0.032
approximation 51.745 7.085 0.037 51.744 7.029 0.034
error 0.000 -0.003 0.002 0.000 -0.003 0.002
error ratio 0.000% -0.043% 5.416% 0.000% -0.045% 7.225%

Case 3 exact 56.530 7.746 0.037 56.530 7.684 0.035
approximation 56.530 7.740 0.040 56.530 7.679 0.037
error 0.000 -0.006 0.003 0.000 -0.005 0.002
error ratio 0.000% -0.072% 7.833% 0.000% -0.063% 7.028%

moneyness(K/F)
interest rates' correlation = 0.0 interest rates' correlation = 0.5

 
error = approximation − exact 

error ratio = error / exact 

 

Table 3: Call prices with 5-year maturity 

0.4 1 1.6 0.4 1 1.6
Case 1 exact 46.915 8.528 0.270 46.912 8.325 0.221

approximation 46.914 8.519 0.268 46.912 8.317 0.221
error 0.000 -0.010 -0.002 0.000 -0.008 0.000
error ratio 0.000% -0.112% -0.634% 0.000% -0.093% 0.026%

Case 2 exact 46.915 8.556 0.308 46.912 8.354 0.243
approximation 46.914 8.524 0.270 46.912 8.320 0.222
error 0.000 -0.032 -0.039 0.000 -0.034 -0.021
error ratio -0.001% -0.370% -12.629% -0.001% -0.405% -8.709%

Case 3 exact 54.370 9.932 0.308 54.366 9.690 0.258
approximation 54.366 9.879 0.312 54.364 9.642 0.257
error -0.003 -0.054 0.005 -0.002 -0.048 -0.001
error ratio -0.006% -0.539% 1.518% -0.004% -0.495% -0.202%

moneyness(K/F)
interest rates' correlation = 0.0 interest rates' correlation = 0.5
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Table 4: Call prices with 10-year maturity 

0.4 1 1.6 0.4 1 1.6
Case 1 exact 36.912 10.798 2.250 36.843 9.955 1.603

approximation 36.891 10.732 2.164 36.833 9.890 1.540
error -0.021 -0.066 -0.086 -0.010 -0.066 -0.063
error ratio -0.057% -0.612% -3.824% -0.026% -0.658% -3.902%

Case 2 exact 36.912 10.939 2.771 36.851 10.152 2.031
approximation 36.893 10.756 2.183 36.834 9.903 1.550
error -0.019 -0.183 -0.588 -0.017 -0.249 -0.481
error ratio -0.050% -1.672% -21.222% -0.047% -2.454% -23.687%

Case 3 exact 49.859 14.763 2.989 49.672 13.693 2.245
approximation 49.544 14.445 2.931 49.465 13.299 2.081
error -0.315 -0.318 -0.058 -0.207 -0.394 -0.164
error ratio -0.631% -2.154% -1.925% -0.416% -2.879% -7.311%

moneyness(K/F)
interest rates' correlation = 0.0 interest rates' correlation = 0.5

 

 

Figure 1: Error of call prices with 3-year maturity 
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Figure 2: Error of call prices with 5-year maturity 
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Figure 3: Error of call prices with 10-year maturity 
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4.2 A Control Variate Method 

The method of control variates is well-known technique for improving the efficiency 

of Monte Carlo simulation. If we have to obtain more accurate prices in Monte Carlo 

simulation, we can utilize our approximate price as a control variate estimator. Since the 

approximate process )(0 tX  is close to the exact process )(tX , we expect that using 

an approximate price for the estimator is effective. To investigate the effect, we compare 
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the convergence of our method with that of a crude Monte Carlo method; we also apply 

antithetic variable technique to both methods.  

In the following examples, we calculate forward ATM call prices (strike rate FK = ) 

with maturities T = 3, 5 and 10, and the interest rates’ correlation is 0.5 under Case2 in 

the previous subsection. And the parameters used for the stochastic volatility model of 

the spot exchange rate are 100=S , 04.0)0( =V , 5.0=ξ , 04.0=η , 18.0=θ  and 

5.0−=ρ . The procedure of the examples is as follows: (I) We generate 10,000 sample 

paths (trials), compute the price and take the average of prices for 10,000 trials. (II) We 

repeat algorithm (I) by 100 times (cases) and take the average of 100 cases. (III) We 

extract the result of simulation.  

Tables 5~7 expresses the performance of both methods, where we show the averages, 

the standard deviations, the maximum and minimum values of each case. The standard 

deviations in our method are much smaller than those in the crude Monte Carlo 

method. Moreover, the maximum and minimum values in our method are very closer 

to the averages than those in the crude Monte Carlo method. These results show that 

our control variate method seems useful in Monte Carlo simulation. Figures 4~6 show 

the convergence of the call prices. The convergence in our method is much faster than 

in the crude Monte Carlo method. In particular, for the call prices with 3 and 5-year 

maturities, our method is extremely effective and it improves the convergence 

dramatically. 

 

Table 5: Performance of control variate for ATM call price with 3-year maturity 

(A) Crude MC (B) Control Variate (A) / (B)

average 11.210 11.211

standard deviation 0.269 0.008 32.825
max 11.768 11.237
difference ratio 4.984% 0.238% 20.909
min 10.410 11.190
difference ratio -7.134% -0.182% 39.297  

difference ratio = (max or min − average) / average 
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Table 6: Performance of control variate for ATM call price with 5-year maturity 

(A) Crude MC (B) Control Variate (A) / (B)

average 13.137 13.101

standard deviation 0.289 0.026 11.301
max 13.788 13.164
difference ratio 4.951% 0.482% 10.262
min 12.348 13.034
difference ratio -6.008% -0.507% 11.852  

 

Table 7: Performance of control variate for ATM call price with 10-year maturity 

(A) Crude MC (B) Control Variate (A) / (B)

average 15.001 15.015

standard deviation 0.260 0.065 3.978
max 15.688 15.157
difference ratio 4.582% 0.941% 4.871
min 14.222 14.867
difference ratio -5.192% -0.986% 5.266  

 

Figure 4: Convergence of ATM call price with 3-year maturity 
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Figure 5: Convergence of ATM call price with 5-year maturity 
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Figure 6: Convergence of ATM call price with 10-year maturity 
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4.3 Calibration 

We calibrate our model to observed volatilities in the JPY/USD currency option 

market and draw volatility surfaces. Market makers in OTC currency option markets 

routinely provide quotes based on Black-Scholes implied volatilities and the moneyness 

of an option is expressed in terms of Black-Scholes delta, rather than its strike price 

(See Carr and Wu [2005] for the detail). Here we use 10c, 25c, 10p, 25p and ATM to 

denote 10-delta call, 25-delta call, 10-delta put, 25-delta put and at-the-money 

respectively. Therefore the observed data consist of implied volatilities against the delta 

of the options (10c, 25c, ATM, 25p and 10p) at five maturities (1, 2, 3, 4 and 5-year) as 

of April 28, 2006, May 25, 2006 and Jun 26, 2006. The data are provided by Forex 

Division of Mizuho Corporate Bank, Ltd. We also need information on domestic and 

foreign interest rates and their volatilities. We construct our forward interest rates and 

their volatilities using swap rates and cap volatilities data respectively downloaded from 

Bloomberg. 

Let us suppose that the spot exchange rate follows a jump-diffusion stochastic 

volatility process given by the equation (7), and that domestic and foreign interest rates 

follow one-factor market models with constant volatilities. Under the assumptions, we 

calibrate the model to volatility surfaces. 

Table 8 reports the estimated parameters under the restriction of 22 θξη > . Note that 

because observed volatility smiles are asymmetry so-called volatility skew, the 

parameters ρ  denoting the correlation between the spot exchange rate and its variance 

are strongly negative. Furthermore the correlations between interest rates are strongly 

positive, which offsets the impact of domestic and foreign interest rates’ volatilities. 

Figures 7~9 plot observed and model-based implied volatility surfaces and Table 9 

shows the difference between model-based and observed volatilities. Although the 

maximum difference is 1.20%, most of the differences are less than 0.50%.  

Consequently, we can conclude that the model-based volatility surfaces calibrate the 

observed surfaces very well.  
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Table 8: Estimated parameters 
 April 28, 2006 May 25, 2006 Jun 26, 2006 

Stochastic volatility )0(V  
ξ  
η  
θ  
ρ  

0.0074 
0.1660 
0.0039 
0.0358 
-0.6899 

0.0086 
0.3379 
0.0119 
0.0896 
-0.9990 

0.0071 
0.4044 
0.0098 
0.0888 
-0.9461 

Jump-diffusion λ  
κ  
δ  

0.0060 
-0.2932 
1.2382 

0.1218 
0.1096 
0.0586 

0.0718 
0.1176 
0.0531 

Interest rate correlation 0.9990 0.9990 0.9990 

 

Figure 7: Volatility surface as of April 28, 2006 
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Figure 8: Volatility surface as of May 25, 2006 
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Figure 9: Volatility surface as of Jun 26, 2006 
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Table 9: Differences between model-based and observed implied volatilities 
10c 25c ATM 25p 10p

1-year 28-Apr-06 -0.09% -0.12% -0.01% -0.21% 0.03%
25-May-06 -0.14% -0.23% 0.13% -0.25% -0.78%
26-Jun-06 -0.35% -0.29% 0.14% -0.02% -0.52%

2-year 28-Apr-06 -0.20% -0.07% 0.08% 0.07% 0.29%
25-May-06 -0.08% -0.39% 0.21% 0.10% -0.34%
26-Jun-06 -0.29% -0.31% 0.19% 0.08% -0.54%

3-year 28-Apr-06 -0.11% -0.07% 0.09% 0.06% 0.29%
25-May-06 0.02% -0.26% 0.27% 0.07% -0.31%
26-Jun-06 -0.21% -0.18% 0.25% 0.03% -0.47%

4-year 28-Apr-06 -0.07% -0.05% 0.08% -0.02% 0.13%
25-May-06 -0.16% -0.13% 0.27% -0.03% -0.43%
26-Jun-06 0.00% -0.02% 0.25% -0.17% -0.61%

5-year 28-Apr-06 0.27% 0.04% 0.02% -0.32% -0.21%
25-May-06 0.20% 0.20% 0.25% -0.47% -1.20%
26-Jun-06 0.22% 0.13% 0.26% -0.36% -0.78%  

difference = model-based volatility(%) − observed volatility(%) 

 

5 Conclusion 

In this paper, we propose an approximate solution to evaluate currency options with a 

market model of interest rates under jump-diffusion stochastic volatility processes of 

spot exchange rates. We find that our approximation could give accurate option prices 

except for a few cases. Moreover, using the approximate price as a control variate 

estimator, we improve the efficiency of Monte Carlo simulation. Finally, we calibrate 

the models to observed volatility surfaces in the JPY/USD currency option market. 
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