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Abstract

All the financial practitioners are working in incomplete markets full of unhedge-
able risk-factors. Making the situation worse, they are only equipped with the imper-
fect information on the relevant processes. In addition to the market risk, fund and
insurance managers have to be prepared for sudden and possibly contagious changes
in the investment flows from their clients so that they can avoid the over- as well as
under-hedging. In this work, the prices of securities, the occurrences of insured events
and (possibly a network of) the investment flows are used to infer their drifts and
intensities by a stochastic filtering technique. We utilize the inferred information to
provide the optimal hedging strategy based on the mean-variance (or quadratic) risk
criterion. A BSDE approach allows a systematic derivation of the optimal strategy,
which is shown to be implementable by a set of simple ODEs and the standard Monte
Carlo simulation. The presented framework may also be useful for manufactures and
energy firms to install an efficient overlay of dynamic hedging by financial derivatives
to minimize the costs.
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1 Introduction

In this paper, we discuss the optimal hedging strategy based on the mean-variance criterion

for the fund and insurance mangers in the presence of incompleteness as well as imperfect

information in the market. If an unhedgeable risk-factor exists, the fund and insurance

managers are forced to work in the physical measure and resort to a certain optimization

technique to decide their trading strategies. In the physical measure, however, they soon

encounter the problem of imperfect information which is usually hidden in the traditional

risk-neutral world.

One of the most important factors in the financial optimizations is the drift term in the

price process of a financial security. In fact, many of the financial decisions consist of taking

a careful balance between the expected return, i.e. drift, and the size of risk. However,

the observation of a drift term is always associated with a noise, and we need to adopt

some statistical inference method. In a large number of existing literatures on the mean-

variance hedging problem, which usually adopt the duality method, Pham (2001) [27], for

example, studied the problem in this partially observable drift context. In spite of a great

amount of works 1, results with explicit solutions which can be directly implementable

by practitioners have been quite rare thus far. When the explicit forms are available,

they usually require various simplifying assumptions on the dependence structure among

the underlying securities and their risk-premium processes, and also on the form of the

hedging target, which make the motivations somewhat obscure from a practical point of

view.

A new approach was proposed by Mania & Tevzadze (2003) [24], where the authors

studied a minimization problem for a convex cost function and showed that the optimal

value function follows a backward stochastic partial differential equation (BSPDE). They

were able to decompose it into three backward stochastic differential equations (BSDEs)

when the cost function has a quadratic form. Although the relevant equations are quite

complicated, their approach allows a systematic derivation for a generic setup in such a

way that it can be linked directly to the dynamic programming approach yielding HJB

equation. In Fujii & Takahashi (2013) [12], we have studied their BSDEs to solve the mean-

variance hedging problem with partially observable drifts. In the setup where Kalman-

Bucy filtering scheme is applicable, we have shown that a set of simple ordinary differential

equations (ODEs) and the standard Monte Carlo simulation are enough to implement

the optimal strategy. We have also derived its approximate analytical expression by an

asymptotic expansion method, with which we were able to simulate the distribution of the

hedging error.

The problem of imperfect information is not only about the drifts of securities. Fund

and insurance managers have to deal with stochastic investment flows from their clients. In

particular, the timings of buy/sell orders are unpredictable and their intensities can be only

statistically inferred. The same is true for loan portfolios and possibly their securitized

products. It is, in fact, a well-known story in the US market that the prepayments

of residential mortgages have a big impact on the residential mortgage-backed security

(RMBS) price, which in turn induces significant hedging demand on interest rate swaps

and swaptions. See [26], for example, as a recent practical review on the real estate finance.

1See Schweizer (2010) [32] as a brief survey of literatures.
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In this paper, we extend [12] to incorporate the stochastic investment flows with par-

tially observable intensities 2. In the first half of the paper, where we introduce two

counting processes to describe the in- and outflow of the investment units, we provide

the mathematical preparations necessary for the filtering procedures. Then, we explain

the solution technique for the relevant BSDEs in detail, which gives the optimal hedging

strategy by means of a set of simple ODEs and the standard Monte Carlo simulation. In

the latter half of the paper, we further extend the framework so that we can deal with a

portfolio of insurance products. We provide a method to differentiate the effects on the

demand for insurance after the insured events based on their loss severities. Furthermore,

we explain how to utilize Jackson’s network that is often adopted to describe a network of

computers in the Queueing analysis. We show that it is quite useful for the modeling of a

general network of investment flows, such as the one arising from a group of funds within

which investors can switch a fund to invest.

Although we are primarily interested in providing a flexible framework for the portfolio

management, the presented framework may be applicable to manufacturers and energy

firms operating multiple lines of production. For example, they can use it to install an

efficient overlay of dynamic hedging by financial derivatives, such as commodity and energy

futures, in order to minimize the stochastic production as well as storage costs.

2 The financial market

We consider the market setup quite similar to the one used in [12] except the introduction

of the stochastic investment/order flows with partially observable intensities. Let (Ω,F ,P)
be a complete probability space with a filtration F = {Ft, 0 ≤ t ≤ T} where T is a fixed

time horizon. We put F = FT for simplicity. We assume that F satisfies the usual

conditions and is big enough in a sense that it makes all the processes we introduce are

adapted to this filtration.

We consider the financial market with one risk-free asst, d tradable stocks or any kind

of securities, and m := (n− d) non-tradable indexes or otherwise state variables relevant

for stochastic volatilities, etc. For simplicity of presentation, we assume that the risk-free

interest rate r is zero. Using a vector notation, the dynamics of the securities’ prices

S = {Si}1≤i≤d and the non-tradable indexes Y = {Yj}d+1≤j≤n are assumed to be given

by the following diffusion processes:

dSt = σ(t, St, Yt)
(
dWt + θtdt

)
dYt = σ̄(t, St, Yt)

(
dWt + θtdt

)
+ ρ(t, St, Yt)

(
dBt + αtdt

)
. (2.1)

Here, W and B are the standard (P,F)-Brownian motions valued in Rd and Rm. The

known functions σ(t, s, y), σ̄(t, s, y) and ρ(t, s, y) are measurable and smooth mappings

from [0, T ] × Rd × Rm into Rd×d, Rm×d and Rm×m, respectively. The risk premium

2Note that the standard setup with the perfect observation can be treated as a special case of our
framework.
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zt :=

(
θt
αt

)
is assumed to follow a mean-reverting linear Gaussian process:

dzt = [µt − Ftzt]dt+ δtdVt (2.2)

where µ, F and δ are continuous and deterministic functions of time taking values in Rn,

Rn×n and Rn×p. V is a p-dimensional standard (P,F)-Brownian motion independent from

W as well as B.

Let us now discuss the dynamics of the investment flows. We introduce the two count-

ing processes A and D, i.e. right-continuous integer valued increasing processes with

jumps of at most 1. (A(t), D(t)) represent, respectively, the total inflow and outflow

of investors or investment-units3 for an interested fund in the time interval (0, t] with

A(0) = D(0) = 0. For simplicity, we assume that they do not jump simultaneously. The

total number of investment-units for the fund at time t is denoted by Q(t), which is given

by

Q(t) = Q(0) +A(t)−D(t) . (2.3)

In this way, we model the change of the investment-units by a simple Queueing system

with a single server. Later, we shall make use of a special type of Queueing network to

allow investors to switch within a group of funds, which typically bundles Money-Reserve,

Bond, Equity, Bull-Bear, or regional equity indexes. See [4] as a standard textbook on

Queueing systems.

We assume that the counting processes have (P,F)-compensators, i.e.

Ǎ(t) := A(t)−
∫ t

0
λA(s,Xs−)ds

Ď(t) := D(t)−
∫ t

0
λD(s,Xs−)1{Qs−>0}ds (2.4)

are (P,F)-martingales. Here, the intensity processes are modulated by a finite-state

Markov-chain processX which takes its value in one of theN unit-vectors, E = {e⃗1, · · · , e⃗N}.
The dynamics of X is assumed to be given by

Xt = X0 +

∫ t

0
RsXs−ds+ Ut . (2.5)

Here {Rt, 0 ≤ t ≤ T} is a deterministic RN×N -valued continuous function with [Rt]i,j
denoting the rate of transition from state j to state i. U is RN -valued (P,F)-martingale

independent of W , B, V , A and D.

We assume that the fund manager can continuously observe S, {Y }obs ⊂ {Yj}d+1≤j≤n,

and the flows of investments, i.e. A andD. Q(0), which is the initial number of investment-

units, is known for the manager at t = 0. We introduce G = {Gt, 0 ≤ t ≤ T} that is the P-
augmented filtration generated by the observable processes (S, {Y }obs, A, D). Q(0) (∈ R)
is assumed to be G0-measurable. As one can see from the definition of (A,D), the timing

3For practical use, one may need the appropriate rescaling to make Q have tractable size.
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of an each investment flow is totally inaccessible for the fund manager. For the fixed-term

contracts, the manager can know exactly the timing of expiries given the knowledge of

the initiation dates of the contracts. However, we think that it is rather unrealistic to

seek the optimal control based on the knowledge of a specific date of expiry of an each

investment-unit. In our setup, the manager partially knows (i.e. statistically infer) the

rate of the investment flow but cannot tell its timing at all.

{Y }obs are intended to be any index processes continuously observable in the market

but nontradable for the manager, which possibly include financial indexes but non-tradable

for the manager by regulatory or some other reasons. {Y }obs can also represent various

characteristics of investors which affect the dynamics of the investment flows. They can

be very important non-financial factors for the modeling of residential mortgages and

life/health insurance, for example. Various aggregations of individual data at a portfolio

level can be used to construct (approximately) real-time composite indexes, which then

can be used as non-tradable indexes included in {Y }obs. If the process turns out to be

rather stable, then, it can be simply added as a deterministic function.

Remark 1 : It is straightforward to introduce a stochastic interest rate if we assume that

the short-rate process r is perfectly observable. In particular, if r follows a (quadratic)

Gaussian process, we lose no analytical tractability for BSDEs relevant for the mean-

variance hedging. The contracts of Futures written on interest rates, commodities, energies

etc., which have the cycles of enlists and delists, can also be embedded into exactly the

same framework. Full details are available in the extended version of our previous work

[13]. �

Now, we make the following assumption.

Assumption(A1)

(i) The maps σ, σ̄ and ρ satisfy appropriate conditions to make the unique strong solutions

exist for S and Y .

(ii) The maps σ, σ̄ and ρ are such that the observation of S, {Y }obs and their quadratic

variations/covariations allows to fix every component of {Yj}d+1≤j≤n uniquely at any time

t ∈ [0, T ].

(iii) The matrices σ and ρ are always invertible.

Due to (ii), every process of Y becomes G-adapted. Thus, we can see that G is an

augmented filtration generated by (S, Y,A,D) and express this fact by G = FS,Y,A,D. If

necessary, we can extend the model of (S, Y ) in such a way that (σ, σ̄, ρ) can be generic

G-predictable processes, and hence can be dependent on the past history of (A,D), as long

as Assumption (A1) is satisfied. This represents a possible feedback to the volatilities of

financial securities and indexes from the investment flows. Although it can be important

for a certain market condition, the appropriate model specifications would be very hard

to obtain and require a large amount of data and analysis.

Assumption(A2)

(i) For every e⃗ ∈ E, {λA(s, e⃗), 0 ≤ s ≤ T} and {λD(s, e⃗), 0 ≤ s ≤ T} are strictly positive

G-predictable processes.
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(ii) E
[∫ T

0 λA(s,Xs−)ds
]
+ E

[∫ T
0 λD(s,Xs−)ds

]
< ∞.

The assumption (ii) simply guarantees Ǎ and Ď are true (P,F)-martingales. Note that

the assumption (i) allows (λA
t , λ

D
t ) to be dependent on (St, Yt, At−, Dt−) and possibly on

their past history. This flexibility is crucial for the practical use, where the first step to

describe the flow of investments is regressing it by various observable quantities. We are

going to model remaining unobservable effects by the hidden Markov-chain X. Note that

this setup can incorporate the self-exiting jump processes (Cohen & Elliott (2013) [6]),

which may be useful when there exist strong clusterings in the buy/sell orders from the

investors. See also [11] for various techniques and applications of hidden Markov models.

Let us put wt =

(
Wt

Bt

)
and introduce the following process:

ξ̃t := 1−
∫ t

0
ξ̃s−z

⊤
s−dws +

∫ t

0
ξ̃s−

(
1

λA(s,Xs−)
− 1

)
dǍs

+

∫ t

0
ξ̃s−

(
1

λD(s,Xs−)
− 1

)
dĎs (2.6)

which yields

ξ̃t = exp

(
−
∫ t

0
z⊤s dws −

1

2

∫ t

0
||zs||2ds

)
× exp

(∫ t

0
(λA(u,Xu−)− 1)du+

∫ t

0
(λD(u,Xu−)− 1)1{Qu−>0}du

)
×
∏

u∈(0,t]

[ 1

λA(u,Xu−)

]∆Au ∏
u∈(0,t]

[ 1

λD(u,Xu−)

]∆Du

. (2.7)

We also define

ξ̃1,t := 1−
∫ t

0
ξ̃1,sz

⊤
s dws

= exp

(
−
∫ t

0
z⊤s dws −

1

2

∫ t

0
||zs||2ds

)
(2.8)

ξ̃2,t := 1 +

∫ t

0
ξ̃2,s−

(
1

λA(s,Xs−)
− 1

)
dǍs +

∫ t

0
ξ̃2,s−

(
1

λD(s,Xs−)
− 1

)
dĎs

= exp

(∫ t

0
(λA(u,Xu−)− 1)du+

∫ t

0
(λD(u,Xu−)− 1)1{Qu−>0}du

)
×
∏

u∈(0,t]

[ 1

λA(u,Xu−)

]∆Au ∏
u∈(0,t]

[ 1

λD(u,Xu−)

]∆Du

. (2.9)

We can show that {ξ̃1,t, 0 ≤ t ≤ T} is a true (P,F)-martingale due to the linear Gaussian

nature of z and Lemma 3.9 in [1].
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Assumption (A3)

(i) {ξ̃t, 0 ≤ t ≤ T} is a true (P,F)-martingale.

(ii) {ξ̃2,t, 0 ≤ t ≤ T} is a true (P,F)-martingale.

Under Assumption (A3), we can define the three probability measures P̃, P̃1 and P̃2 equiv-

alent to P on (Ω,F):

dP̃
dP

∣∣∣
Ft

= ξ̃t, 0 ≤ t ≤ T (2.10)

dP̃1

dP

∣∣∣
Ft

= ξ̃1,t, 0 ≤ t ≤ T (2.11)

dP̃2

dP

∣∣∣
Ft

= ξ̃2,t, 0 ≤ t ≤ T . (2.12)

Then, by Girsanov-Maruyama theorem (see, for example, [29]), one can show that

W̃t := Wt +

∫ t

0
θudu (2.13)

B̃t = Bt +

∫ t

0
αudu (2.14)

are the standard (P̃,F) as well as (P̃1,F)-Brownian motions, and that

Ãt := At − t (2.15)

D̃t := Dt −
∫ t

0
1{Qs−>0}ds (2.16)

are (P̃,F) as well as (P̃2,F)-martingales. The following lemma tells us that the filtration

G can be generated by these simple martingales, too. This is crucial for the filtering

technique we shall use below.

Lemma 1 The filtration G = FS,Y,A,D is the augmented filtration generated by

(W̃ , B̃, Ã, D̃).

Proof: Since σ and ρ are assumed to be always invertible, we can write

W̃t =

∫ t

0
σ−1(u, Su, Yu)dSu (2.17)

B̃t =

∫ t

0
ρ−1(u, Su, Yu)

(
dYu − σ̄(u, Su, Yu)σ

−1(u, Su, Yu)dSu

)
. (2.18)

In addition,

Ãt = At − t (2.19)

D̃t = Dt −
∫ t

0
1{Q(0)+A(s−)−D(s−)>0}ds (2.20)
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and Q(0) ∈ G0. Hence it is clear that FW̃ ,B̃,Ã,D̃ ⊂ G. On the other hand, we have

St = S0 +

∫ t

0
σ(u, Su, Yu)dW̃u

Yt = Y0 +

∫ t

0
σ̄(u, Su, Yu)dW̃u +

∫ t

0
ρ(u, Su, Yu)dB̃u

At = Ãt + t

Dt = D̃t +

∫ t

0
1{Q(0)+A(u−)−D(u−)>0}du (2.21)

and hence G ⊂ FW̃ ,B̃,Ã,D̃. �

3 Filtering equations

In order to obtain tractable filtering equations for the unobservable processes (θ, α,X),

we want to use the method of the “reference” measure where every increment of the

stochastic factors becomes independent from the past filtration. The following lemmas

are modifications of Proposition 3.15 in [1] to our setup.

Lemma 2 Let Ψt be an integrable Ft-measurable (t ∈ [0, T ]) random variable. Then,

EP̃[Ψt|GT

]
= EP̃[Ψt|Gt

]
. (3.1)

Proof: Let us put

Gt,T = σ
(
W̃u − W̃t, B̃u − B̃t, Ãu − Ãt, D̃u − D̃t;u ∈ [t, T ]

)
, (3.2)

and then

GT = Gt ∨ Gt,T := σ(Gt ∪ Gt,T ). (3.3)

If Gt,T is independent of Ft, it is clear that (3.1) holds as explained in [1]. Unfortunately,

this is not the case in our setup due to the information carried by the jump intensity of D̃,

which is 1{Qu−>0}. However, in measure P̃, (A,D,Q) consists of a completely decoupled

Queueing system with a single server, where the entrance of new queue is given by the

Poisson process with unit intensity and the service (or exit) intensity is also 1 unless the

outstanding queue Q(t) is empty. Therefore, (A,D,Q) does not provide any information

outside the own Queueing system. The fact that Ψt can only depend on this Queueing

system up to time t, which is also Gt-measurable, (3.1) holds true. �

Let D (C) be the set of all E-valued càdlàg (Rn-valued continuous) functions with time

interval [0, T ], respectively.

Lemma 3 Let Ψ be a map Ψ : [0, T ]×Ω×D → R in such a way that {Ψt(x), 0 ≤ t ≤ T}
is an integrable G-predictable process for any given step function x ∈ D. Then, using the
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hidden Markov-chain X in (2.5), we have

EP̃2

[
Ψt({Xs, 0 ≤ s ≤ t})

∣∣∣GT

]
= EP̃2

[
Ψt({Xs, 0 ≤ s ≤ t})

∣∣∣Gt

]
. (3.4)

Proof: (A,D,Q) consists of a completely decoupled Queueing system with unit entrance

and service intensities also in measure P̃2. Although (W̃ , B̃) carries non trivial information

through its drift z =

(
θ

α

)
, the dynamics of these risk premiums is totally independent of

X by the model setup. �
Similarly, we also need the following lemma.

Lemma 4 Let Ψ be a map Ψ : [0, T ]×Ω×C → R in such a way that {Ψt(x), 0 ≤ t ≤ T}
is an integrable G-predictable process for any given continuous function x ∈ C. Then,

using the hidden process z in (2.2), we have

EP̃1

[
Ψt({zs, 0 ≤ s ≤ t})

∣∣∣GT

]
= EP̃1

[
Ψt({zs, 0 ≤ s ≤ t})

∣∣∣Gt

]
. (3.5)

Proof: In measure P̃1, (W̃ , B̃) becomes a n-dimensional standard Brownian motion and

hence the information generated by its increments is independent of Ft. On the other hand,

the observation of A and D provides non-trivial information through their intensities,

(λA(s,Xs−), λ
D(s,Xs−)). However, by Assumption (A2) (i), any available information on

diffusions can only appear in the form generated by (W̃ , B̃) and X is irrelevant for z. �

We would like to obtain the filtering equations for

θ̂t := E
[
θt|Gt

]
, α̂t := E

[
αt|Gt

]
(3.6)

and

X̂t := E
[
Xt|Gt

]
. (3.7)

Since Xt is valued in E = {e⃗1, · · · , e⃗N}, we have

λ̂A
t := E

[
λA(t,Xt−)|Gt

]
= E

[
λA(t,Xt−)|Gt−

]
=

(
λA(t, e⃗) · X̂t−

)
, (3.8)

and similarly for λ̂D
t . Here, we have used the inner product defined by

(
λA(t, e⃗) · X̂t−

)
:=

N∑
i=1

λA(t, e⃗i)X̂
i
t− (3.9)

where X̂i is the i-th element of X̂.
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For notational simplicity, let us put

ẑt := E[zt|Gt] =

(
E[θt|Gt]

E[αt|Gt]

)
. (3.10)

Using Kallianpur-Striebel formula, we have

ẑt =
EP̃1
[
ξ1,tzt|Gt

]
EP̃1
[
ξ1,t|Gt

] (3.11)

and

X̂t =
EP̃2
[
ξ2,tXt|Gt

]
EP̃2
[
ξ2,t|Gt

] (3.12)

where ξ1,t := 1/ξ̃1,t and ξ2,t := 1/ξ̃2,t. Note that {ξ1,t, 0 ≤ t ≤ T} and {ξ2,t, 0 ≤ t ≤ T}
are (P̃1,F) and (P̃2,F) martingales, respectively. This fact can be easily proved by Bayes

formula and Assumption (A3). They define the inverse measure-change by:

dP
dP̃1

∣∣∣
Ft

= ξ1,t,
dP
dP̃2

∣∣∣
Ft

= ξ2,t . (3.13)

Remark 2 : Of course, (ẑt, X̂t) can also be given by the Bayes formula with EP̃[·|Gt] and

a (P̃,F)-martingale ξt := 1/ξ̃t which defines

dP
dP̃

∣∣∣
Ft

= ξt , (3.14)

or any other equivalent probability measures with the corresponding densities. However,

other choices do not lead to a tractable filtering equation since z and X appear together

in a single equation, or the properties proved in Lemma 3 and 4 do not hold which then

mixes the filter and the smoother of the unobservables. �

Applying Itô formula, one can easily find

ξ1,t = 1 +

∫ t

0
ξ1,sz

⊤
s dw̃s

= exp

(∫ t

0
z⊤s dw̃s −

1

2

∫ t

0
||zs||2ds

)
(3.15)
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where we have used the shorthand notation, w̃t :=

(
W̃t

B̃t

)
. Similarly,

ξ2,t = 1 +

∫ t

0
ξ2,s−

(
λA(s,Xs−)− 1

)
dÃs +

∫ t

0
ξ2,s−

(
λD(s,Xs−)− 1

)
dD̃s

= exp

(
−
∫ t

0

(
λA(u,Xu−)− 1

)
du−

∫ t

0

(
λD(u,Xu−)− 1

)
1{Qu−>0}du

)
×
∏

u∈(0,t]

[
λA(u,Xu−)

]∆Au ∏
s∈(0,t]

[
λD(s,Xs−)

]∆Ds

, (3.16)

and, of course, ξt = ξ1,tξ2,t. Now, we need the following two lemmas.

Lemma 5 Let f and h be the maps f : [0, T ]× Ω× D → R and h : [0, T ]× Ω× D → RN

in such a way that {ft(x), 0 ≤ t ≤ T} and {ht(x), 0 ≤ t ≤ T} are G-predictable processes

for any given step function x ∈ D. For each t ∈ [0, T ], ft(x) and ht(x) depend on x only

in the corresponding interval [0, t). In addition, let suppose they satisfy

EP̃2

[∫ T

0
|fs(X)|ds

]
+ EP̃2

[∫ T

0
||hs(X)||ds

]
< ∞ . (3.17)

Then, the following relations hold:

EP̃2

[∫ t

0
fs(X)ds

∣∣∣Gt

]
=

∫ t

0
EP̃2
[
fs(X)|Gs−

]
ds (3.18)

EP̃2

[∫ t

0
fs(X)dÃs

∣∣∣Gt

]
=

∫ t

0
EP̃2
[
fs(X)|Gs−

]
dÃs (3.19)

EP̃2

[∫ t

0
fs(X)dD̃s

∣∣∣Gt

]
=

∫ t

0
EP̃2
[
fs(X)|Gs−

]
dD̃s (3.20)

EP̃2

[∫ t

0
hs(X)⊤dUs

∣∣∣Gt

]
= 0 . (3.21)

Proof: Let us prove the first relation. Suppose that f is simple, i.e.

fs(X) =
k∑

i=1

fi(X)1(ai,bi](s) (3.22)

where (ai, bi], i = 1, · · · , k are the disjoint intervals of [0, t] and fi(X) is Fai-measurable.
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We have

EP̃2

[∫ t

0
fs(X)ds

∣∣∣Gt

]
=

k∑
i=1

EP̃2
[
fi(X)(bi − ai)|Gt

]
=

k∑
i=1

EP̃2
[
fi(X)|Gai ∨ Gai,t

]
(bi − ai)

=

k∑
i=1

EP̃2
[
fi(X)|Gai

]
(bi − ai)

=

∫ t

0
EP̃2
[
fs(X)|Gs−

]
ds , (3.23)

where, in the third equality, we have used Lemma 3. For general f , we can use the

decomposition f = f+ − f− and the monotone convergence of increasing sequence of

simple functions.

Now, let us move to the second relation. We know that {Ãt, 0 ≤ t ≤ T} is a pure jump

(P̃2,F)-martingale with unit intensity. By (3.17), we see{∫ t

0
fs(X)dÃs, 0 ≤ t ≤ T

}
(3.24)

is a (P̃2,F)-martingale. Let us suppose {φs, 0 ≤ s ≤ T} is an arbitrary bounded G-

predictable process. Then,

EP̃2

[∫ t

0
φsfs(X)dAs

]
= EP̃2

[∫ t

0
φsfs(X)ds

]
= EP̃2

[∫ t

0
φsEP̃2

[
fs(X)|Gs−

]
ds

]
= EP̃2

[∫ t

0
φsEP̃2

[
fs(X)|Gs−

]
dAs

]
, (3.25)

where, in the second equality, we have used the result of the first part of the proof. Since

the relation holds true for an arbitrary φ, the second claim of Lemma needs to hold. The

third relation with D̃ can be proved exactly in the same way. The last relation is trivial

since U is a bounded and totally independent martingale. �

Lemma 6 Let f, g and h be the maps f : [0, T ] × Ω × C → R, g : [0, T ] × Ω × C → Rn

and h : [0, T ]×Ω×C → Rp in such a way that {ft(x), 0 ≤ t ≤ T}, {gt(x), 0 ≤ t ≤ T} and

{ht(x), 0 ≤ t ≤ T} are G-predictable processes for any given continuous function x ∈ C.
For each t ∈ [0, T ], ft(x), gt(x) and ht(x) depend on x only in the corresponding interval

[0, t]. In addition, let suppose they satisfy

EP̃1

[∫ T

0
|fs(z)|ds

]
+ EP̃1

[∫ T

0
||gs(z)||2ds

]
+ EP̃1

[∫ T

0
||hs(z)||2ds

]
< ∞ . (3.26)
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Then, the following relations hold:

EP̃1

[∫ t

0
fs(z)ds

∣∣∣Gt

]
=

∫ t

0
EP̃1
[
fs(z)|Gs

]
ds (3.27)

EP̃1

[∫ t

0
gs(z)

⊤dw̃s

∣∣∣Gt

]
=

∫ t

0
EP̃1
[
gs(z)|Gs

]⊤
dw̃s (3.28)

EP̃1

[∫ t

0
hs(z)

⊤dVs

∣∣∣Gt

]
= 0 . (3.29)

Proof: It can be proved similarly as Lemma 5 using the result of Lemma 4. See the proof

of Lemma 5.4 in [33] for detail. �

Using Lemma 6 and Kallianpur-Striebel formula, we can apply the well-known Kalman-

Bucy filter for z. Saying that, applying Lemma 6 is non-trivial due to the unbounded

nature of the Gaussian process z. Fortunately, however, the discussion in Chapter 3 in

[1] shows Lemma 6 can still be applied, and also guarantees that the famous Zakai and

Kushner-Stratonovich equations hold true.

Let us suppose that the prior distribution of z is a Gaussian distribution with a mean

z0 and a covariance Σ0. Then, the dynamics of the conditional expectation is known to

follow

dẑt =
[
µt − Ftẑt

]
dt+Σ(t)dnt, ẑ0 = z0 (3.30)

where nt is the shorthand notation of nt =

(
Nt

Mt

)
, and Σ(t) is the solution for the following

ODE:

dΣ(t)

dt
= δtδ

⊤
t − FtΣ(t)− Σ(t)F⊤

t − Σ(t)2, Σ(0) = Σ0 (3.31)

Here,

Nt := W̃t −
∫ t

0
θ̂sds

Mt := B̃t −
∫ t

0
α̂sds (3.32)

are called the innovation processes, which are independent (P,G)-Brownian motions. For

detail of the derivation, see Section 6 in [1].

Now, let us move to the filtering equation for X. We follow the arguments of derivation

given in [10, 6]. Firstly, we want to derive the unnormalized filter of X:

qt := EP̃2
[
ξ2,tXt|Gt

]
. (3.33)
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Applying Itô-formula, one obtains

ξ2,tXt = X0 +

∫ t

0
ξ2,s−RsXs−ds+

∫ t

0
ξ2,s−dUs

+

∫ t

0
ξ2,s−Xs−

[(
λA(s,Xs−)− 1

)
dÃs +

(
λD(s,Xs−)− 1

)
dD̃s

]
. (3.34)

Lemma 7 The dynamics of qt is given by the following equation:

qt = q0 +

∫ t

0
Rsqs−ds+

∫ t

0

(
ΛA
s − I

)
qs−dÃs +

∫ t

0

(
ΛD
s − I

)
qs−dD̃s , (3.35)

where

ΛA
s = diag

(
λA(s, e⃗1), · · · , λA(s, e⃗N )

)
, 0 ≤ s ≤ T (3.36)

ΛD
s = diag

(
λD(s, e⃗1), · · · , λD(s, e⃗N )

)
, 0 ≤ s ≤ T (3.37)

are G-predictable processes valued in (n× n) diagonal matrices.

Proof: Take the conditional expectation EP̃2 [·|Gt] in the both hands of (3.34). Due to the

bounded nature of X and Assumption (A2), we can apply Lemma 5. In particular, one

can see

EP̃2

[∫ t

0
ξ2,s−

∣∣∣λA(s,Xs−)− 1
∣∣∣ds] = EP

[∫ t

0

∣∣∣λA(s,Xs−)− 1
∣∣∣ds] < ∞. (3.38)

Using the fact that λa(s,Xs)Xs = Λa
sXs for a = A, D, one obtains the desired result. �

Since (1 ·Xt) ≡ 1, we obtain

X̂t =
qt

(1 · qt)
, (3.39)

where 1 = (1, · · · , 1)⊤ is a N -dimensional vector. Now, the filtered intensities (λ̂A, λ̂D)

can be obtained by (3.8). We can show by Assumption (A2) that

Ât = At −
∫ t

0
λ̂A
s ds

D̂t = Dt −
∫ t

0
λ̂D
s 1{Qs−>0}ds (3.40)

are (P,G)-martingales.

Remark 3 : Let us comment on how to simulate (A,D) in the physical measure (P,G).

14



qt can be expressed as

qt = q0 +

∫ t

0
Rsqs−ds−

∫ T

0

{(
ΛA
s − I) +

(
ΛD
s − I

)
1{Qs−>0}

}
qs−ds

+

∫ t

0

(
ΛA
s − I

)
qs−dAs +

∫ t

0

(
ΛD
s − I

)
qs−dDs . (3.41)

Thus, between any two jumps, q follows a G-predictable continuous process given by the

first line of (3.41). When there is a jump, we have

qt = ΛA
t qt−∆At + ΛD

t qt−∆Dt . (3.42)

In (P,G), A and D are counting processes whose intensities are λ̂A
t =

(
λA(t, e⃗) · X̂t−

)
and

λ̂D
t =

(
λD(t, e⃗) · X̂t−

)
1{Qt−>0} respectively, where X̂t is given by (3.39). Thus, based on

these formulas, we can carry out Poisson draw for A and D by running the q’s process

in parallel. At the jump, (λ̂A, λ̂D) also jumps due to the jump of q given by (3.42).

In fact, it is well-known that these jumps in intensities are crucial to reproduce strong

clusterings of events observed in defaults, rating migrations, and other herding behaviors

among investors. It may be also the case for natural disasters affected by the global climate

change. �

For later purpose, let us define

ξGt = EP̃[ξt|Gt

]
(3.43)

which is (P̃,G)-martingale specifying the measure change conditional on Gt:

dP
dP̃

∣∣∣
Gt

= ξGt . (3.44)

Remark 4: Although it is irrelevant for the remaining discussion, we can derive an explicit

expression of ξGt under the assumption that

E
[∫ T

0
ξs−||zs||2ds

]
< ∞ . (3.45)

Using Lemma 3.9 in [1], this condition is satisfied if (λA, λD) are bounded. We have

ξt = 1 +

∫ t

0
ξs−z

⊤
s−dw̃s +

∫ t

0
ξs−[λ

A(s,Xs−)− 1]dÃs +

∫ t

0
ξs−[λ

D(s,Xs−)− 1]dD̃s .

(3.46)
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Using Lemma 2 and the same arguments in Lemma 5 and 6, we have:

ξGt = 1 +

∫ t

0
EP̃[ξs−zs−|Gs−

]⊤
dw̃s +

∫ t

0
EP̃[ξs−(λA

s − 1)|Gs−
]
dÃs

+

∫ t

0
EP̃[ξs−(λD

s − 1)|Gs−
]
dD̃s. (3.47)

In particular, for the application of Lemma 5, we have used the fact that

EP̃
[∫ t

0
ξ2s−||zs||2ds

]
= E

[∫ t

0
ξs−||zs||2ds

]
< ∞. (3.48)

Applying Kallianpur-Striebel formula to each term, we obtain

ξGt = 1 +

∫ t

0
ξGs−ẑ

⊤
s−dw̃s +

∫ t

0
ξGs−(λ̂

A
s − 1)dÃs +

∫ t

0
ξGs−(λ̂

D
s − 1)dD̃s

= exp

(∫ t

0
ẑ⊤u dw̃u − 1

2

∫ t

0
||ẑu||2du

) ∏
u∈(0,t]

[
λ̂A
u

]∆Au ∏
s∈(0,t]

[
λ̂D
s

]∆Ds

× exp

(
−
∫ t

0
(λ̂A

u − 1)du−
∫ t

0
(λ̂D

u − 1)1{Qu−>0}du

)
. (3.49)

The (P,G)-martingale ξ̃G defining the inverse relation

dP̃
dP

∣∣∣
Gt

= ξ̃Gt (3.50)

is given by ξ̃Gt = 1/ξGt , which follows

ξ̃Gt = 1−
∫ t

0
ξ̃Gs−ẑ

⊤
s−dns +

∫ t

0
ξ̃Gs−

(
1

λ̂A
s

− 1

)
dÂs +

∫ t

0
ξ̃Gs−

(
1

λ̂D
s

− 1

)
dD̂s

= exp

(
−
∫ t

0
ẑ⊤u dnu − 1

2

∫ t

0
||ẑu||2du

) ∏
u∈(0,t]

[
λ̂A
u

]−∆Au ∏
s∈(0,t]

[
λ̂D
s

]−∆Ds

× exp

(∫ t

0
(λ̂A

u − 1)du+

∫ t

0
(λ̂D

u − 1)1{Qu−>0}du

)
. � (3.51)

4 Mean-Variance (Quadratic) Hedging

We suppose that the manager wants to minimize the square difference between the liability

and the value of the hedging portfolio. The terminal liability H = H(Su, Yu, Au, Du; 0 ≤
u ≤ T ), which is assumed to be GT -measurable random variable, would depend on the

performance of tradable and/or non-tradable indexes as well as the number of investment-

units. It can contain not only the payments to the investors but also the target profit for

the management company.

In addition to the terminal liability, we assume that there also exist cash flows as-
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sociated with the payments of dividends, principles for unwound units, and the receipts

of management fees, penalties for early terminations and the initial proceeds, etc. It is

convenient for us to include the stream of cash flows into the wealth dynamics as

Wπ
t (s, w) = w +

∫ t

s
π⊤
u dSu

+

∫ t

s
κuQ(u)du+

∫ t

s
eudAu −

∫ t

s
gudDu (4.1)

where
(
κt, et, gt, 0 ≤ t ≤ T

)
are G-predictable processes representing various cash flows

just explained. Here, {πt ∈ Rd, 0 ≤ t ≤ T} is a G-predictable trading strategy for the

tradable securities. We suppose that the goal of the fund manager is to solve

V (t, w) = ess inf
π∈Π

E
[(

H −Wπ
T (t, w)

)2∣∣∣Gt

]
. (4.2)

For the problem being well-posed, we assume H and (κu, eu, gu, 0 ≤ u ≤ T ) satisfy the

square integrability condition.

Assumption (A4)

E
[
|H|2 +

∫ T

0

(
|κu|2Q2

u + |eu|2λA
u + |gu|2λD

u

)
du

]
< ∞ . (4.3)

We denote Π is the set of G-predictable trading strategies π satisfying the condition that

E[(H −Wπ
T )

2] < ∞. It is then clear that V (t, w) is integrable.

Lemma 8 Let m be any (P,G)-local martingale with m0 = 0. Then, there exist G-

predictable processes (ϕt ∈ Rn, JA
t ∈ R, JD

t ∈ R, 0 ≤ t ≤ T ) such that

mt =

∫ t

0
ϕ⊤
s dns +

∫ t

0
JA
s dÂs +

∫ t

0
JD
s dD̂s, 0 ≤ t ≤ T . (4.4)

Proof: The proof is very similar to that of Lemma 4.1 in [28]. Suppose m is a (P,G)-local

martingale. Then, the Bayes formula tells us that the process

m̃t = mtξ
G
t , 0 ≤ t ≤ T (4.5)

is a (P̃,G)-local martingale. As we have seen, w̃ =

(
W̃

B̃

)
is a n-dimensional standard

Brownian motion, (Ã, D̃) are compensated counting processes with G-predictable inten-

sities (1,1{Q(0)+A·−−D·−>0}) and independent from the Brownian motions. Furthermore,

the filtration G is the augmented filtration generated by these martingales by Lemma 1.

Thus ‘weak’ property of predictable representation holds (See for example, Theorem 8 in
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[5], Theorem 4.12 in [3], and also Section 2.4 in [9].) and we have

m̃t =

∫ t

0
ϕ̃⊤
s dw̃s +

∫ t

0
J̃A
s dÃs +

∫ t

0
J̃D
s dD̃s (4.6)

with G-predictable coefficients with appropriate integrability conditions. Sine mt = m̃tξ̃
G
t ,

the application of Itô formula yields

dmt = ξ̃Gt−

{
[ϕ̃t − m̃t−ẑt]

⊤dnt +
1

λ̂A
t

[
J̃A
t − (λ̂A

t − 1)m̃t−
]
dÂt

+
1

λ̂D
t

[
J̃D
t − (λ̂D

t − 1)m̃t−
]
dD̂t

}
, (4.7)

which proves our claim with

ϕt = ξ̃Gt−[ϕ̃t − m̃t−ẑt]

JA
t = ξ̃Gt−

1

λ̂A
t

[
J̃A
t − (λ̂A

t − 1)m̃t−
]
, JD

t = ξ̃Gt−
1

λ̂D
t

[
J̃D
t − (λ̂D

t − 1)m̃t−
]
. � (4.8)

Let us now follow the methodology proposed by Mania&Tevzadze (2003) [24] and extend

it to derive the set of BSDEs for the optimal hedging strategy with jump processes.

Firstly, let us remind the optimality principle (see, Proposition A.1 in [24]):

(i) For all w ∈ R, π ∈ Π and s ∈ [0, T ], the process {V (t,Wπ
t (s, w)), s ≤ t ≤ T} is a

(P,G)-submartingale.

(ii) π∗ is optimal if and only if {V (t,Wπ∗
t (s, w)), s ≤ t ≤ T} is a (P,G)-martingale.

By Lemma 8, we can express

V (t, w) = V (0, w) +

∫ t

0
a(u,w)du+

∫ t

0
Z(u,w)⊤dNu +

∫ t

0
Γ(u,w)⊤dMu

+

∫ t

0
JA(u,w)dÂu +

∫ t

0
JD(u,w)dD̂u (4.9)

with appropriate G-predictable processes (a, Z,Γ, JA, JD) for a given w ∈ R. More pre-

cisely, predictable jump component can exist, for example if there exist discrete coupon

payments in the process W. The necessary extension can be done straightforwardly. As-

suming that V (t, w) is twice continuously differentiable with respect to w for all (ω, t), we

can apply Itô-Ventzell formula.

Details of the Itô-Ventzell formula are available in Theorem 3.3.1 of the book [22], and

in Theorem 3.1 [25] for its extension to a jump process. Note that the forward integral with

respect to the Poisson random measure used in [25] simply coincides with the standard Itô

integral when the integrands are predictable processes as in the current problem. Now,
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the dynamics of V (t,Wπ
t (s, w)) is given by

V (t,Wπ
t ) = V (s, w) +

∫ t

s
a(u,Wπ

u−)du+

∫ t

s
Z(u,Wπ

u−)
⊤dNu +

∫ t

s
Γ(u,Wπ

u−)
⊤dMu

+

∫ t

s
Vw(u,Wπ

u−)d(Wπ,c
u ) +

∫ t

s
d
⟨
V c
w(·,Wπ

· ),Wπ,c
·

⟩
u
+

1

2

∫ t

s
Vww(u,Wπ

u−)d
⟨
Wπ,c

⟩
u

+

∫ t

s
JA(u,Wπ

u−)d(Â
c
u) +

∫ t

s
JD(u,Wπ

u−)d(D̂
c
u)

+

∫ t

s

[
V (u,Wπ

u ) + JA(u,Wπ
u )− V (u,Wπ

u−)
]
dAu

+

∫ t

s

[
V (u,Wπ

u ) + JD(u,Wπ
u )− V (u,Wπ

u−)
]
dDu . (4.10)

Here the superscript c denotes the continuous part of the process.

Arranging the drift term and completing the square in terms of π so that it satisfies

the conditions for the optimality principle, one can find

a(t, w) + inf
π∈Π

{
1

2
Vww(t, w)

∣∣∣∣∣∣σ⊤
t πt +

[Zw(t, w) + Vw(t, w)θ̂t]

Vww(t, w)

∣∣∣∣∣∣2 − ||Zw(t, w) + Vw(t, w)θ̂t||2

2Vww(t, w)

}
+Vw(t, w)κtQ(t) +

[
JA(t, w + et)− JA(t, w) + V (t, w + et)− V (t, w)

]
λ̂A
t

+
[
JD(t, w − gt)− JD(t, w) + V (t, w − gt)− V (t, w)

]
λ̂D
t 1{Qt−>0} = 0 . (4.11)

Assuming that there exist π∗ ∈ Π making || · ||2 vanish, which is the first term inside

the { } of (4.11), the value function is given by the following backward stochastic PDE

(BSPDE):

V (t, w) = (H − w)2 −
∫ T

t

{
||Zw(s, w) + Vw(s, w)θ̂s||2

2Vww(s, w)
− Vw(s, w)κsQ(s)

}
ds

+

∫ T

t

[
JA(s, w + es)− JA(s, w) + V (s, w + es)− V (s, w)

]
λ̂A
s ds

+

∫ T

t

[
JD(s, w − gs)− JD(s, w) + V (s, w − gs)− V (s, w)

]
λ̂D
s 1{Qs−>0}ds

−
∫ T

t
Z(s, w)⊤dNs −

∫ T

t
Γ(s, w)⊤dMs −

∫ T

t
JA(s, w)dÂs −

∫ T

t
JD(s, w)dD̂s .

(4.12)

Although the above BSPDE looks much more complicated than that appears in [24]

with continuous underlyings, we can still exploit the quadratic nature of the problem. By
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inserting

V (t, w) = w2V2(t)− 2wV1(t) + V0(t)

Z(t, w) = w2Z2(t)− 2wZ1(t) + Z0(t), Γ(t, w) = w2Γ2(t)− 2wΓ1(t) + Γ0(t)

JA(t, w) = w2JA
2 (t)− 2wJA

1 (t) + JA
0 (t), JD(t, w) = w2JD

2 (t)− 2wJD
1 (t) + JD

0 (t)

(4.13)

into (4.12), we can decompose the BSPDE into the following three w-independent BSDEs:

V2(t) = 1−
∫ T

t

||Z2(s) + V2(s)θ̂s||2

V2(s)
ds−

∫ T

t
Z2(s)

⊤dNs −
∫ T

t
Γ2(s)

⊤dMs

(4.14)

V1(t) = H −
∫ T

t

[Z2(s) + V2(s)θ̂s]
⊤[Z1(s) + V1(s)θ̂s]

V2(s)
ds

−
∫ T

t

{ [
κsQ(s) + esλ̂

A
s − gsλ̂

D
s 1{Qs−>0}

]
V2(s)

}
ds

−
∫ T

t
Z1(s)

⊤dNs −
∫ T

t
Γ1(s)

⊤dMs −
∫ T

t
JA
1 (s)dÂs −

∫ T

t
JD
1 (s)dD̂s (4.15)

V0(t) = H2 −
∫ T

t

{
||Z1(s) + V1(s)θ̂s||2

V2(s)
+ 2κsQ(s)V1(s)

}
ds

+

∫ T

t

[
e2sV2(s)− 2es

(
JA
1 (s) + V1(s)

)]
λ̂A
s ds

+

∫ T

t

[
g2sV2(s) + 2gs

(
JD
1 (s) + V1(s)

)]
λ̂D
s 1{Qs−>0}ds

−
∫ T

t
Z0(s)

⊤dNs −
∫ T

t
Γ0(s)

⊤dMs −
∫ T

t
JA
0 (s)dÂs −

∫ T

t
JD
0 (s)dD̂s .

(4.16)

In the derivation, we have used the fact that both JA
2 and JD

2 are identically zero due to

the continuity of the risk-premium process ẑ.

It is difficult to give the general conditions which guarantee the existence and unique-

ness of the solutions for (4.14), (4.15) and (4.16). In particular, the unboundedness of

ẑ due to its Gaussian nature, makes the problem complicated. However, the following

lemma is a clear from the optimality principle.

Lemma 9 Suppose that the three BSDEs (4.14), (4.15) and (4.16) have well-defined so-

lutions and

π∗
t = (σ−1)⊤(t, St, Yt)

1

V2(t)

{[
Z1(t) + V1(t)θ̂t

]
−Wπ∗

t

[
Z2(t) + V2(t)θ̂t

]}
(4.17)
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is an admissible strategy i.e. π∗ ∈ Π. Then, π∗ is the optimal hedging strategy and the value

function is given by the solutions of these BSDEs by V (t, w) = w2V2(t)− 2wV1(t) + V0(t).

Furthermore, if there exists the optimal strategy π∗, we can show that it is unique due

to the strict convexity of the cost function. (See, Remark 2.2 of [24].) Note that the

form of the optimal hedging strategy π∗ in (4.17) can be easily found from (4.11) and the

decomposition (4.13).

Although the three BSDEs (4.14), (4.15) and (4.16) look very complicated at first sight,

they have the following nice properties which make the mean-variance (or quadratic) hedg-

ing particularly useful for a large scale portfolio management:

• Only V2 follows a non-linear BSDE.

• V2 (and hence Z2) is independent from the hedging target and the cash-flow streams.

• V1 depends on the hedging target and the cash-flow streams, but follows a linear BSDE.

• V1 (and hence Z1) depends only linearly on the hedging target and the cash-flow streams.

These properties are stemming from the fact that the optimal strategy is given by the pro-

jection of the hedging target in L2(P) on the space spanned by the tradable securities [31].

From (4.17), we can see that the optimal hedging strategy is linear in the hedging target

as well as the other cash-flow streams for a given horizon T . This means that, for a given

wealth Wt at time t, the optimal hedging positions can be evaluated for each portfolio

component separately. Therefore, sharing the information about the overall wealth Wt,

a large scale portfolio can be controlled systematically by arranging desks in such a way

that each desk is responsible for evaluating and hedging a certain sector of portfolio, such

as equity-related and commodity-related sub-portfolios, etc.

5 A solution technique for the optimal strategy

5.1 Solving V2 by ODEs

From the discussion in the last section, it becomes clear that solving the BSDE for V2

(4.14) is a key. Although the existence and the uniqueness of the solution for (4.14) are

proven for the case with a bounded risk-premium process by Kobylanski (2000) [20] and

Kohlmann & Tang (2002) [21], this is not the case in the current setup since (θ̂, α̂) arising

from the Kalman-Bucy filter are Gaussian and hence unbounded. Although the general

conditions are not known, we have a very useful method to directly solve it under certain

conditions, which are likely to hold in most of the plausible situations [12].

Firstly, let us define the following change of variables:

VL(t) := log V2(t)

ZL(t) := Z2(t)/V2(t)

ΓL(t) := Γ2(t)/V2(t) . (5.1)
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Then, (4.14) can equivalently be given by a quadratic-growth BSDE

VL(t) = −
∫ T

t

{
1

2

(
||ZL(s)||2 − ||ΓL(s)||2

)
+ 2θ̂⊤s ZL(s) + ||θ̂s||2

}
ds

−
∫ T

t
ZL(s)

⊤dNs −
∫ T

t
ΓL(s)

⊤dMs . (5.2)

We introduce a (n× n) matrix-valued deterministic function defined by

Ξ(t) :=
(
Σ⊤
d Σd

)
(t)−

(
Σ⊤
mΣm

)
(t) (5.3)

where Σd(t) (Σm(t)) are d×n (m×n) matrices obtained by restricting to the first d (last

m) rows of Σ(t). Furthermore, we use 1(d,0) to represent a (n× n) diagonal matrix whose

first d elements are 1 and the others zero.

Lemma 10 Consider the following matrix-valued ODEs for a[2](t) ∈ Rn×n, a[1](t) ∈ Rn

and a[0](t) ∈ R,

ȧ[2](t) = 21(d,0) + a[2](t)Ξ(t)a[2](t)

+F⊤
t a[2](t) + a[2](t)Ft + 2

(
1(d,0)Σ(t)a

[2](t) + a[2](t)Σ(t)1(d,0)

)
(5.4)

ȧ[1](t) = −a[2](t)µt +
(
F⊤
t + a[2](t)Ξ(t) + 21(d,0)Σ(t)

)
a[1](t) (5.5)

ȧ[0](t) = −µ⊤
t a

[1](t)− 1

2
tr
(
a[2](t)Σ2(t)

)
+

1

2
a[1](t)⊤Ξ(t)a[1](t) (5.6)

with terminal conditions

a[2](T ) = a[1](T ) = a[0](T ) = 0 . (5.7)

Suppose that the above ODEs have a bounded solution for a[2] (and hence also for a[1] and

a[0]) for a given time interval [0, T ]. Then, the solution of the BSDE (5.2) is given by

VL(t) =
1

2
ẑ⊤t a

[2](t)ẑt + a[1](t)⊤ẑt + a[0](t) (5.8)(
ZL(t)

ΓL(t)

)
= Σ(t)

(
a[1](t) + a[2](t)ẑt

)
(5.9)

for t ∈ [0, T ].

Proof: Consistency between (5.8) and (5.9) can be checked easily by Itô-formula. One can

match the dynamics of VL implied by (5.9) and (5.2), and the dynamics obtained from

Itô-formula applied to the hypothesized solution (5.8). See Section 5 of [12] for detailed

calculation.

The ODE for a[2] given in (5.4) is a Riccati matrix differential equation. Because of the

quadratic term, the existence of bounded solution is not guaranteed and it may possibly

blow up in finite time. The sufficient conditions for a bounded solution for an arbitrary
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time interval can be found, for example, in [17, 19]. In our setting, it requires Ξ(t) to be

always negative semidefinite for t ∈ [0, T ], which is not satisfied unfortunately. However,

it is clear that the solutions remain finite in a short enough interval [t, T ] because of the

continuity of the ODE. Furthermore, since Ξ(t) has the order of O(Σ(t)2), where Σ is the

covariance of the signal processes (θ, α), it is naturally expected to be quite small. As long

as
∫ T
t

∣∣∣Ξ(s)∣∣∣ds ≪ O(1), we can expect a bounded solution. Although we may not have

a bounded solution if the risk-premium processes have very large volatilities, but then,

a sensible fund manager is likely to avoid using those instruments for his/her hedging in

the first place. Since one can easily analyze the ODEs numerically in (a[2] → a[1] → a[0])

order, one can directly check if the condition is satisfied in any case.

Assumption (A5)

There exists a bounded solution of (a[2], a[1], a[0]) for the relevant time interval [0, T ].

For the case where S itself follows a jump process or more generally a semimartingale,

see a recent work by Jeanblanc et.al.(2012) [18] and the references therein. They have

shown that we can still characterize the optimal strategy in terms of the three BSDEs.

Unfortunately though, the BSDE for V2 becomes much more complicated and its solution

is not yet known except very simplistic examples.

5.2 Solving V1 and the optimal hedging strategy

In a differential form, the BSDE for V1 in (4.15) is given by

dV1(t) =
[
||θ̂t||2 + ZL(t)

⊤θ̂t
]
V1(t)dt

+eVL(t)
[
κtQ(t) + etλ̂

A
t − gtλ̂

D
t 1{Qt−>0}

]
dt

+Z1(t)
⊤
(
dNt +

[
ZL(t) + θ̂t

]
dt
)

+Γ1(t)
⊤dMt + JA

1 (t)dÂt + JD
1 (t)dD̂t (5.10)

with the terminal condition V1(T ) = H. Now, let us define

ξAt := 1−
∫ t

0
ξAs
[
ZL(s) + θ̂s

]⊤
dNs

= exp

(
−
∫ t

0

[
ZL(s) + θ̂s

]⊤
dNs −

1

2

∫ t

0
||ZL(s) + θ̂s||2ds

)
. (5.11)

By Lemma 3.9 in [1], {ξAt , 0 ≤ t ≤ T} is a true (P,G)-martingale. Thus, we can define a

probability measure PA equivalent to P on (Ω,G) by

dPA

dP

∣∣∣
Gt

= ξAt . (5.12)
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By Girsanov-Maruyama theorem,

NA
t := Nt +

∫ t

0

[
ZL(s) + θ̂s

]
ds (5.13)

and M form the standard (PA,G)-Brownian motions. Although

Ât = At −
∫ t

0
λ̂A
s ds

D̂t = Dt −
∫ t

0
λ̂D
s 1{Qs−>0}ds (5.14)

remain (PA,G)-martingales, their intensities are changed indirectly through the depen-

dence on (S, Y ).

Then, one can easily evaluate V1 as

Lemma 11 V1 is given by

V1(t) = EA

[
e−

∫ T
t ηsdsH

(
Su, Yu, Au, Du; 0 ≤ u ≤ T

)
−
∫ T

t
e−

∫ s
t ηudu

(
κsQ(s) + esλ̂

A
s − gsλ̂

D
s 1{Qs−>0}

)
V2(s)ds

∣∣∣Gt

]
(5.15)

where EA[ ] denotes the expectation under the measure PA, and ηs := ||θ̂s||2+ZL(s)
⊤θ̂s.

Thus, the evaluation of V1 is essentially equivalent to the pricing of an European contingent

claim H with an intermediate cash-flow stream. In the measure (PA,G), the dynamics of

the underlyings are

dSt = σ(t, St, Yt)
(
dNA

t − ZL(t)dt
)

(5.16)

dYt = σ̄(t, St, Yt)
(
dNA

t − ZL(t)dt
)
+ρ(t, St, Yt)

(
dMt + α̂tdt

)
(5.17)

dẑt =
(
µt − Ftẑt − Σd(t)

⊤[ZL(t) + θ̂t
])

dt+ d

(
NA

t

Mt

)
(5.18)

and (A,D) are counting processes with intensity (λ̂A, λ̂D), which are, in turn, determined

by q. The procedures to run q and these counting processes are give in Remark 3.

Assuming V1(t) depends smoothly on the underlyings, it is easy to see

[
Z1(t)

]
j

=

d∑
i=1

∂V1(t)

∂Si(t)

[
σ(t, St, Yt)

]
i,j

+

n∑
i=d+1

∂V1(t)

∂Yi(t)

[
σ̄(t, St, Yt)

]
i,j

+

n∑
i=1

∂V1(t)

∂ẑi(t)

[
Σ(t)

]
i,j

, 1 ≤ j ≤ d , (5.19)

which is the sum of the delta sensitivity with respect to each G-adapted diffusion process
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multiplied by its volatility function. Therefore, the pair of (V1, Z1) can be estimated by

using the standard Monte Carlo simulations. Combining the solution of (V2, Z2) obtained

by the ODEs and the current value of wealth, one can completely specify the optimal

hedging position π∗ from (4.17).

Several concrete examples of numerical calculation are available in [12]. Although an

intermediate cash-flow stream is absent, which does not change the main idea anyway.

The remaining task for the future research ( especially for practitioners ) is how to specify

the model appropriately, such as the choice of intensity functions, by using the real data

of investment flows.

6 Searching for the optimal service-charge policy

Although V0 is unnecessary for getting the optimal hedging strategy π∗, it can provide

very valuable information for the fund manager. The fund manager can typically control

the price of service provided to the investors such as, management fee, contingency fee

and early termination penalties, etc. For the manager working in a bank controlling a

loan portfolio, the lending rate and the limit on the credit score should be very import

factors 4. In our model, they can be described by the processes of (κt, et, gt) and H. We

can imagine naturally that the service-charge policy affects the investors’ demand for the

fund, i.e. the intensities of the investment flows, (λA, λD).

In our setup, the dynamics of risk-premium ẑ is unaffected by the service charges in

(κ, e, g) and H, and then so is (V2, Z2). On the other hand, one can see (V1, V0) and

their martingale coefficients are affected by the service-charge policy. Therefore, when

the manager chooses a different policy, the origin of V (t, w) moves while its curvature is

kept unchanged. For example, consider the situation given in Figure 1, where the value

functions for two choices of the service-charge policy are given as varying initial capital w.

The case B is definitely better than the case A since it achieves a smaller hedging error

with smaller initial capital. Even if the initial available capital is abundant, it is nonsense

to use it in full only to achieve the bigger hedging error. One can withdraw it to setup

another fund or to simply use it as compensation for employees, etc.

In general, the fund manager needs to decide the service-charge policy by weighting

the size of the hedging error and the required capital based on his/her own preference.

Although it is a very important problem, analyzing the dynamic optimal service-charge

policy, which is a special case of the optimal intensity control, is very hard to solve. In

practice, however, the service-charge policy should be very simple and transparent to the

investors, and hence it is usually given by a constant rate or some (function of) market

index plus fixed spread:

f(St, Yt) + spread . (6.1)

This renders the intensity control problem a simple optimization within a set of constant

parameters, which can be dealt with, at least, by a scenario analysis.

4For loan portfolios, we can add a counting process for “defaults” in addition to that of withdrawal. In
this case, the change of service policy affects the default intensity. An extension like this is fairly simple
in our framework.
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w (capital)

variance
w2V2(t)− 2wV1(t) + V0(t)

A

w2V2(t)− 2wV ′
1 (t) + V ′

0 (t)

B

Figure 1: An example of value functions in two choices of the service-charge policy.

Since the BSDE for V0 is linear, one easily gets

V0(t) = E

[
H2 −

∫ T

t

{ ||Z1(s) + V1(s)θ̂s||2

V2(s)
+ 2κsQ(s)V1(s)

}
ds

+

∫ T

t

{
e2sV2(s)− 2es

(
JA
1 (s) + V1(s)

)}
λ̂A
s ds

+

∫ T

t

{
g2sV2(s) + 2gs

(
JD
1 (s) + V1(s)

)}
λ̂D
s 1{Qs−>0}ds

∣∣∣Gt

]
. (6.2)

Here, JA
1 and JD

1 are obtained by taking the difference

JA
1 (t) = V1(t−;A(t−) + 1)− V1(t−)

JD
1 (t) =

[
V1(t−;D(t−) + 1)− V1(t−)

]
1{Q(t−)>0}

where the first term is calculated by shifting the initial value of A (D) by 1, respectively.

The difficulty for the evaluation of V0 is quite similar to that of CVA (credit risk

valuation adjustment), and we need to evaluate V1 (and its martingale coefficients) in

each path and at each point of time. Naive application of a nested Monte Carlo simulation

would be too time-consuming for the practical use. Probably, the most straightforward

way is to use the least square regression method (LSM). See [23] and Section 8.6 in [16], for

detail. If (κ, e, g, λ̂A, λ̂D) and H included in V1 given in (5.15) have Markovian properties

with respect to (S, Y,A,D, ẑ, q), then it can be written as

V1(t) = f(t, St, Yt, At, Dt, ẑt, qt) (6.3)

using an appropriate measurable function f . Here, it is important to include ẑ and q to
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recover the Markovian property.

If a certain variable, κ for example, depends on the past history, we can add κ itself

as an argument of f to recover the Markovian property. In this way, we can apply the

standard least-square method in most of the cases. In LSM, the function f is typically

approximated by a certain order of polynomial and the associated coefficients are regressed

so that the square difference from V1 is minimized. Once we obtain the estimated function

f , the evaluation of (V1, Z1, J
A
1 , JD

1 ) in each path is simple enough. It is also possible

to derive the dynamics of Malliavin derivatives for (S, Y,A,D, ẑ, q) and use the particle

method as proposed in [14] and used in [12, 15].

Capital withdrawals at intermediate points

Let us briefly comment on the capital withdrawals at intermediate points. Suppose that

the current time is t and that the manager has been optimally managing the fund since

t0 (< t) with the initial capital w. The capital amount at the current time t is given by

Wπ
t (t0, w) = w +

∫ t

t0

π⊤
u dSu

+

∫ t

t0

κuQ(u)du+

∫ t

t0

eudAu −
∫ t

t0

gudDu (6.4)

where {πu, t0 ≤ u ≤ t} is the hedging strategy taken in the past. Suppose that we have

calculated V2(t) and V1(t) based on the information Gt. What should we do if the relation

Wπ
t (t0, w) >

V1(t)

V2(t)
(:= w∗) (6.5)

holds? This means that we are in the strictly right side of the axis of V (t, w) and have a

higher (expected) hedging error simply because we have too much capital. This is indeed

possible to occur due to the incompleteness of the financial market.

In this situation, we can simply withdraw the capital by the amount (Wπ
t (t0, w)−w∗)

which lowers the expected hedging error and also provides positive cash flow to the man-

agement company 5. Although the withdrawal induces time-inconsistency, this is definitely

better than simply continuing the original program which would induce deliberate invest-

ments into bad-performing securities to reduce the value of the hedging portfolio. These

capital withdrawals can be done every quarter or possibly more frequently. Although

one may feel uneasy to have time-inconsistency, it is actually ubiquitous in the financial

market. Since there is absolutely no hope to have the perfectly correct model, periodic

recalibration of the model is unavoidable even without a capital withdrawal in practice.

Saying that, it is in fact a very interesting research topic to recover the time-consistency by

adopting game theoretic approach as suggested in Björk & Murgoci (2008) [2] 6. Until we

find a better and tractable framework in the future, the intermediate capital withdrawal

seems to be a good practical solution.

5Or, one can increase the hedging target H by topping up the profit margin for the fund manager.
6It looks to induce the recursive structure of control problems and seems very hard to obtain the same

order of tractability.
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7 The optimal hedging for an insurance portfolio

7.1 Setup

In this section, we consider an extension to the optimal hedging strategy for an insurance

portfolio written on a certain type of peril. For recent applications of the mean-variance

criterion for life and non-life insurance, see [7, 8] and references therein. As for more

general discussions about the control problems in insurance business, see a book [30] as a

review. The existing literatures typically assume a simple setup for the financial market

and the perfectly observable processes for the securities’ prices and the claim intensities.

We shall show that we can work in a more realistic framework based on the method

developed in the previous sections.

For the underlyings (S, Y,A,D) as well as (θ, α,X), we assume the same dynamics

and the observability given in Section 2 7. In addition to these processes, we introduce

a Poisson random measure N (dt × dx). The measure N (dt × dx), which describes the

occurrence of loss event and its size, is assumed to be observable to the fund manager.

The cumulative loss process to the fund is given by∫ t

0

∫
K
Q(s−)l(s, x)N (ds× dx), (7.1)

where K ⊂ (c,∞) is a compact support for the jump size distribution and c (> 0) is a

positive constant. l(s, x) is introduced to represent the payment amount to the insured

for a given loss x at time s. It can denote the minimum and/or maximum threshold, or

the necessary triggers to be satisfied for the payment to the insured to occur.

We assume, for simplicity, that there is no simultaneous jump among (A,D,N ). In

the current setup, the filtration G, i.e. the available information to the fund manager,

is generated by (S, Y,A,D,N ). We assume that {l(s, x), 0 ≤ s ≤ T} is a G-predictable

process for any x ∈ K. {Y obs} may represent, for example, various weather related

variables such as the strength of the wind, atmospheric pressure, the amount of rainfall for

the insurance-covered region for non-life insurance. For life insurance, {Y obs} can contain

various indexes of individual health information aggregated at a portfolio level. As one

can see from (7.1), the Poisson random measure N (dt × dx) is modeled to capture the

aggregation of the loss events normalized by the total outstanding insurance contracts, i.e.

it denotes the averaged loss process. If the insurance portfolio contains various protections

written on quite different perils, covered regions or diseases, it should be better to model

each of them separately to achieve a more accurate description. For this issue, we shall

discuss an extension in Section 8.

We assume that the compensated Poisson random measure in (P,F) is given by

Ň (dt× dx) = N (dt× dx)− νt(x)λ
N (t,Xt−)1{Qt−>0}dxdt . (7.2)

Here λN is the intensity of the event occurrence, νt(·) is the density function of the loss

given the occurrence of an insured event, and it is assumed to have the compact support

7As mentioned before, (σ, σ̄, ρ) can be dependent on the past history of (A,D,N ) as long as they satisfy
the listed Assumptions.
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K for every t ∈ [0, T ]. λN is assumed to satisfy the same conditions as (λA, λD) given in

Assumption (A2) and modulated by an unobservable Markov-chain process X.

Let us make the following assumption with regard to the density function ν:

{νt(x), 0 ≤ t ≤ T} is a strictly positive G-predictable process for every x ∈ K.

Because of this assumption, the observations regarding the size of loss cannot provide

any additional information on the unobservable processes, (θ, α) and X. Although it

seems very hard to treat a generic situation of imperfect information, we shall discuss an

extension in Section 7.4 to address the issue in a practical way.

For convenience, let us define the counting process for the insured event:

C(t) :=
∑

u∈(0,t]

1{
∫
K N (du×dx)̸=0} . (7.3)

We have E[C(T )] < ∞ due to the assumption on λN . The process

Č(t) = C(t)−
∫ t

0
λN (s,Xs−)1{Qs−>0}ds (7.4)

is a (P,F)-martingale. If the provided insurance contract is such that it terminates when

an insured event occurs (such as life insurance), we can model it easily by redefining the

number of contracts as Q(t) = Q(0) + A(t) − C(t) − D(t), which is a Queueing system

with two exits.

7.2 Filtering

Due to the assumption on λN and ν, one can see that the filtering for the risk-premium

process (θ, α) is unaffected by the observation of N . In particular, Lemma 4 holds also in

the current case. As a result, the filtered risk-premium process ẑ has the same dynamics

given in (3.30).

Let us now derive the filtering equation for X. This can be done by defining the

measure P̃2 by the new process

ξ̃2,t = 1 +

∫ t

0
ξ̃2,s−

(
1

λA(s,Xs−)
− 1

)
dǍs +

∫ t

0
ξ̃2,s−

(
1

λD(s,Xs−)
− 1

)
dĎs

+

∫ t

0
ξ̃2,s−

(
1

λN (s,Xs−)
− 1

)
dČs (7.5)

instead of (2.9). We assume that ξ̃2 is a true (P,F)-martingale so that we can justify the

measure change: dP̃2/dP
∣∣∣
Ft

= ξ̃2,t . Then, in addition to (Ã, D̃) given in (2.15) and (2.16),

we have

C̃t = Ct −
∫ t

0
1{Qs−>0}ds (7.6)

29



as a (P̃2,F)-martingale. The inverse process ξ2,t := 1/ξ̃2,t is given by

ξ2,t = 1 +

∫ t

0
ξ2,s−

(
λA(s,Xs−)− 1

)
dÃs +

∫ t

0
ξ2,s−

(
λD(s,Xs−)− 1

)
dD̃s

+

∫ t

0
ξ2,s−

(
λN (s,Xs−)− 1

)
dC̃s (7.7)

instead of (3.16).

One can confirm that Lemma 3 holds also in the current setup due to the assumption

that νt is G-predictable process and the fact that (A,D,C,Q) are completely decoupled

from the market in measure P̃2. Thus, the unnormalized filter qt := EP̃2 [ξ2,tXt|Gt] follows

qt = q0 +

∫ t

0
Rsqs−ds+

∫ t

0

(
ΛA
s − I

)
qs−dÃs +

∫ t

0

(
ΛD
s − I

)
qs−dD̃s

+

∫ t

0

(
ΛN
s − I

)
qs−dC̃s (7.8)

as in Lemma 7. ΛN
· = diag

(
λN (·, e⃗1), · · · , λN (·, e⃗N )

)
is a G-predictable process similarly

defined as ΛA and ΛD. The filtered processes, λ̂A, λ̂D and λ̂N can be simulated by using

q as explained in Remark 3. For later use, let us give the compensated Poisson random

measure N̂ in (P,G):

N̂ (dt× dx) = N (dt× dx)− νt(x)λ̂
N
t 1{Qt−>0}dxdt . (7.9)

7.3 The optimal hedging

Let us suppose that the fund manager of the insurance portfolio wants to minimize the

quadratic hedging error

V (t, w) = ess inf
π∈Π

E
[(

H −Wπ
T (t, w)

)2∣∣∣Gt

]
(7.10)

as before. However, the wealth process Wπ is now defined by

Wπ
t (s, w) = w +

∫ t

s
π⊤
u dSu +

∫ t

s
κuQ(u)du

+

∫ t

s
eudAu −

∫ t

s
gudDu −

∫ t

s

∫
K
Q(u−)l(u, x)N (du× dx) , (7.11)

with the payout to the insured described by the last term.

In addition to the square integrability

E
[
|H|2 +

∫ T

0

(
|κu|2Q2

u + |eu|2λA
u + |gu|2λD

u +Q2
u

[∫
K
l(u, x)2νu(x)dx

]
λN
u

)
du

]
< ∞ ,

(7.12)

we assume that ‘weak’ property of predictable representation holds also in this case as in

Lemma 8. This actually holds if 1{Q·−>0} is absent from the compensator of N and if
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there exists a certain equivalent measure P̃ in which N (dt× dx) becomes a Lévy measure.

It is known that the local martingales with respect to the filtration generated by a Levy

measure satisfy the predictable representation property. For detail, see Section 2.4 in [9]

and more general discussions in [5].

Then, as in Section 4, we hypothesize that the value function can be written as

V (t, w) = V (0, w) +

∫ t

0
a(u,w) +

∫ t

0
Z(u,w)⊤dNu +

∫ t

0
Γ(u,w)⊤dMu

+

∫ t

0
JA(u,w)dÂu +

∫ t

0
JD(u,w)dD̂u +

∫ t

0

∫
K
JN (u,w, x)N̂ (du× dx) (7.13)

with appropriate G-predictable coefficients, (a, Z,Γ, JA, JD, JN ). We apply Itô-Ventzell

formula given in [25], which allows the presence of Poisson random measures, to derive

the dynamics of V (t,Wπ
t ).

For the optimality principle, the condition for the drift term

a(t, w) + inf
π∈Π

{
1

2
Vww(t, w)

∣∣∣∣∣∣σ⊤
t πt +

[Zw(t, w) + Vw(t, w)θ̂t]

Vww(t, w)

∣∣∣∣∣∣2 − ||Zw(t, w) + Vw(t, w)θ̂t||2

2Vww(t, w)

}
+Vw(t, w)κtQ(t) +

[
JA(t, w + et)− JA(t, w) + V (t, w + et)− V (t, w)

]
λ̂A
t

+
[
JD(t, w − gt)− JD(t, w) + V (t, w − gt)− V (t, w)

]
λ̂D
t 1{Qt−>0}

+

∫
K

[
JN (t, w −Q(t−)l(t, x), x

)
− JN (t, w, x)

+V
(
t, w −Q(t−)l(t, x)

)
− V (t, w)

]
νt(x)λ̂

N
t 1{Qt−>0}dx = 0 (7.14)

needs to be satisfied. Considering a decomposition JN (t, w, x) = w2JN
2 (t, x)−2wJN

1 (t, x)+

JN
0 (t, x) in addition to those given in (4.13), one can show that the resultant BSPDE can

be decomposed into three w-independent BSDEs in this case, too. One can also confirm

that the form of π∗ is unchanged and given by (4.17) as in Lemma 9. After the straight-

forward calculation, one obtains the same BSDE for V2 as in (4.14), and hence (V2, Z2)

can be solved by the same ODEs given in Lemma 10.

The BSDE for V1 can be found as follows:

V1(t) = H −
∫ T

t

[Z2(s) + V2(s)θ̂s]
⊤[Z1(s) + V1(s)θ̂s]

V2(s)
ds

−
∫ T

t

{
κsQ(s) + esλ̂

A
s − gsλ̂

D
s 1{Qs−>0} −Q(s)L̄sλ̂

N
s

}
V2(s)ds

−
∫ T

t
Z1(s)

⊤dNs −
∫ T

t
Γ1(s)

⊤dMs −
∫ T

t
JA
1 (s)dÂs −

∫ T

t
JD
1 (s)dD̂s

−
∫ T

t
JN
1 (s, x)N̂ (ds× dx) , (7.15)
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where

L̄s :=

∫
K
l(s, x)νs(x)dx (7.16)

denotes the average size of insurance payments. Using the measure PA defined by (5.12),

one obtains

V1(t) = EA

[
e−

∫ T
t ηsdsH −

∫ T

t
e−

∫ s
t ηudu

{
κsQ(s) + esλ̂

A
s

−gsλ̂
D
s 1{Qs−>0} −Q(s)L̄sλ̂

N
s

}
V2(s)ds

∣∣∣Gt

]
. (7.17)

Therefore (V1, Z1), which is necessary to specify the optimal hedging strategy π∗, can be

evaluated by the standard Monte Carlo simulation as explained in Section 5.2.

Finally, for completeness, let us give the BSDE for V0

V0(t) = H2 −
∫ T

t

{
||Z1(s) + V1(s)θ̂s||2

V2(s)
+ 2κsQ(s)V1(s)

}
ds

+

∫ T

t

[
e2sV2(s)− 2es

(
JA
1 (s) + V1(s)

)]
λ̂A
s ds

+

∫ T

t

[
g2sV2(s) + 2gs

(
JD
1 (s) + V1(s)

)]
λ̂D
s 1{Qs−>0}ds

+

∫ T

t

∫
K

{(
Q(s)l(s, x)

)2
V2(s) + 2Q(s)l(s, x)

(
JN
1 (s, x) + V1(s)

)}
νs(x)λ̂

N
s dxds

−
∫ T

t
Z0(s)

⊤dNs −
∫ T

t
Γ0(s)

⊤dMs −
∫ T

t
JA
0 (s)dÂs −

∫ T

t
JD
0 (s)dD̂s

−
∫ T

t

∫
K
JN
0 (s, x)N (ds× dx) , (7.18)

which then yields

V0(t) = E

[
H2 −

∫ T

t

{ ||Z1(s) + V1(s)θ̂s||2

V2(s)
+ 2κsQ(s)V1(s)

}
ds

+

∫ T

t

{
e2sV2(s)− 2es

(
JA
1 (s) + V1(s)

)}
λ̂A
s ds

+

∫ T

t

{
g2sV2(s) + 2gs

(
JD
1 (s) + V1(s)

)}
λ̂D
s 1{Qs−>0}ds

+

∫ T

t

∫
K

{(
Q(s)l(s, x)

)2
V2(s) + 2Q(s)l(s, x)

(
JN
1 (s, x) + V1(s)

)}
νs(x)λ̂

N
s dxds

∣∣∣Gt

]
.

(7.19)

For the evaluation of V0, we can use the LSM method as discussed in Section 6.
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However, the required regression for V1 in terms of the underlying processes is now more

complicated due to the dependence on N . If V1 is mainly sensitive to the cumulative loss,

which is naturally expected, we can approximate V1(t) by an appropriate polynomial (6.3)

with additional argument Lcum
t =

∫ t
0

∫
K Q(s−)l(s, x)N (ds × dx). Once the regression is

done successfully, it is straightforward to obtain JN
1 (t, x) by the formula

JN
1 (t, x) =

V1(t−; jump x)− V1(t−)

x
1{Q(t−)>0} , (7.20)

where the first term represents the value of V1(t) given the initial condition modified by

the jump of size x. The manager can now consider the optimal service-charge policy,

probably mainly on the insurance premium.

7.4 Introducing multiple grades of the loss severity

For insurance contracts, the hidden processX may represent various uncertainties involved

in the loss-event modeling, which is updated based on each actual occurrence of the insured

event. If the hidden process X is shared among (λN , λA, λD) in a nontrivial fashion, an

actual occurrence (or non-occurrence) of peril is reflected by the change of X̂, which then

can induce a jump to the higher (or lower) demand for the insurance contract. These

“contagious” behaviors of insurance buyers are expected to be more profound after a

catastrophe which caused a significant loss to the human lives and property.

In the previous setup, we have treated every insured event equally and cannot take

into account the size effect explained above. This problem is arising from the assumption

that νt is Gt−-measurable, which makes the size of loss unable to carry the information on

X. Here, we explain a simple modeling scheme to address the issue in a practical manner:

(1)Introduce ng independent Poisson random measures with disjoint supports for the den-

sity functions of the jump size,
{
(Nj , λ

Nj , νj), j = {1, · · · , ng}
}
. (2)Interpret the jump in

Nj as the occurrence of an insured event “with grade j severity” and arrange the support

Kj of the density function νj with 1 ≤ j ≤ ng accordingly. Here, each νj(x) is assumed

to be a G-predictable process as before. (3)Introduce X with the total number of states

N = nf × (ng + 1), which is specified by a double-index (i, j). (4)Assume λNk(t,Xt−)

has sensitivity mainly on the states (i, j) with j ≃ k. The states {(i, 0)} are intended to

describe the most relaxed environment. (5)Make
(
λA(t,Xt−), λ

D(t,Xt−)
)
sensitive more

profoundly to the second index. (6)Arrange the transition matrix Rt so that it induces an

appropriate speed of mean reversion to the calmer states.

In this way, one can at least differentiate the grades of the loss. It is straightforward to

obtain the corresponding filtering equations and the BSDEs. The unnormalized filter q

now follows:

qt = q0 +

∫ t

0
Rsqs−ds+

∫ t

0

(
ΛA
s − I

)
qs−dÃs +

∫ t

0

(
ΛD
s − I

)
qs−dD̃s

+

ng∑
i=1

∫ t

0

(
ΛNi
s − I

)
qs−dC̃i,s (7.21)
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with obvious definitions. π∗ is still given by (4.17) and the solution for (V2, Z2) is also

unchanged. It is straightforward to see

V1(t) = EA

[
e−

∫ T
t ηsdsH −

∫ T

t
e−

∫ s
t ηudu

{
κsQ(s) + esλ̂

A
s

−gsλ̂
D
s 1{Qs−>0} −Q(s)

ng∑
i=1

L̄i,sλ̂
Ni
s

}
V2(s)ds

∣∣∣Gt

]
(7.22)

with L̄i,s :=
∫
Ki

l(s, x)νi(x)dx. The expression of V0 is also obtained similarly by intro-

ducing an appropriate summation in the last term of (7.19).

Remark 5 : For the fund management, the same idea can be used to extend the modeling

of the counting processes (A(t), D(t)) to integer-valued Poisson random measures. By

introducing (Ai(t), Di(t))1≤i≤ng , one can treat the case where the inflow and outflow can

jump by multiple units and differentiate the importance of information by the grades of

the jump size. By making use of the G-predictable jump distribution function for each

(Ai, Di), the filtering equations are reduced to those for the counting processes.

8 Application of Jackson’s network

8.1 Setup

Asset management firms and insurers provide a wide choice of funds and insurance prod-

ucts. It is also rather popular to provide a financial product that consists of a set of funds

among which investors can change (or switch) a fund to put their money on. Thus, the fund

manager can access a large amount of information about the investment flows within the

regulatory restrictions, and ultimately wants to implement the optimal hedging strategy

and service-charge policy at the broader level. In particular, there is a need for the fund

manager to be well prepared for the switching activities between the two extremes, such

as (Bull-Bear) or (Equity-Bond), which easily incur the over- and under-hedging. Also,

even if they are the inflows to the same fund, an investment from a new external client

and the one from an existing client as an extension may carry quite different information.

In order to handle these situations, we make use of the Jackson’s network typically

used in the analysis of a Queueing system. See Section V.2 in [4] for detail. In addition to

the same diffusion processes (S, Y, θ, α) and the hidden Markov-chain X, we introduce np

funds/insurance products and the associated investment flows given in Figure 2 (for the

case with two funds). The definition of each flow is given as follows:

At(i): The external inflow to the i-th fund.

Dt(i): The unwind from the i-th fund.

Ft(i, j): The switching from the i-th to the j-th fund.

Ft(i, i): The extension of investments in the i-th fund.

A∗
t (i): The total inflow to the i-th fund.

D∗
t (i): The total outflow from the i-th fund.
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At(i) A∗
t (i)

At(j) A∗
t (j)

Dt(i)D∗
t (i)

Dt(j)D∗
t (j)

Ft(i, j)

Ft(j, i)

Fund i

Fund j

Ft(i, i)

Ft(j, j)

Figure 2: Jackson’s network of investment flows: 2-fund’s case

The following relations should be obvious

A∗
t (i) = At(i) +

np∑
j=1

Ft(j, i) (8.1)

D∗
t (i) = Dt(i) +

np∑
j=1

Ft(i, j) . (8.2)

Thus, the outstanding number of investment-units in the i-the fund at time t is given by

Qt(i) = Q0(i) +A∗
t (i)−D∗

t (i)

= Q0(i) +At(i)−Dt(i) +

np∑
j=1

(
Ft(j, i)− Ft(i, j)

)
. (8.3)

Here, all of the (A,D,F ) are assumed to be the counting processes with no simultaneous

jump. The associated compensated processes in (P,F) are given by

Ǎt(i) = At(i)−
∫ t

0
λA(i)(s,Xs−)ds (8.4)

Ďt(i) = Dt(i)−
∫ t

0
λD(i)(s,Xs−)1{Qs−(i)>0}ds (8.5)
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and

F̌t(i, j) = Ft(i, j)−
∫ t

0
λF (i, j)(s,Xs−)1{Qs−(i)>0}ds . (8.6)

We also introduce np Poisson random measures {Ni(dt × dx), 1 ≤ i ≤ np} to de-

scribe the occurrences of the insured events or any other contingency payouts from the

corresponding fund 8. The compensated Poisson measure in (P,F) is given by

Ňi(dt× dx) = Ni(dt× dx)− νi,t(x)λ
N (i)(t,Xt−)dxdt , (8.7)

where νi,t() is the density function of jump size and assumed to have a compact support

Ki ⊂ (c,∞) with c (> 0). For convenience, we also introduce a counting process for each

Poisson random measure:

Ct(i) =
∑

u∈(0,t]

1{
∫
Ki

Ni(du×dx) ̸=0} , (8.8)

and also the associated (P,F)-compensated process

Čt(i) = Ct(i)−
∫ t

0
λN (i)(s,Xs−)1{Qs−(i)>0}ds . (8.9)

In the current setup, the filtration G, which denotes the available information to the

fund manager, is generated by (S, Y ) and
(
A(i), D(i),Ni, F (i, j), 1 ≤ i, j ≤ np

)
. As

in Section 7, the density functions are assumed to be G-predictable, i.e. for each i ∈
{1, · · · , np},

(
νi,t(x), 0 ≤ t ≤ T

)
is a G-predictable process for all x ∈ Ki. We further

assume that Q0(i) ∈ G0 for all i ∈ {1, · · · , np} and that Assumption (A2) hold for all the

relevant intensities, (λA(i), λD(i), λF (i, j), λN (i); 1 ≤ i, j ≤ np).

8.2 Filtering

It is clear that we have the same dynamics of the filtered risk-premium process ẑ as (3.30).

For the filtering of X, we define

ξ̃2,t = 1 +
∑
i

∫ t

0
ξ̃2,s−

(
1

λA
s (i)

− 1

)
dǍs(i) +

∑
i

∫ t

0
ξ̃2,s−

(
1

λD
s (i)

− 1

)
dĎs(i)

+
∑
i,j

∫ t

0
ξ̃2,s−

(
1

λF
s (i, j)

− 1

)
dF̌s(i, j) +

∑
i

∫ t

0
ξ̃2,s−

(
1

λN
s (i)

− 1

)
dČs(i) (8.10)

and assume {ξ̃2,t, 0 ≤ t ≤ T} is a true (P,F)-martingale. We can then define an equivalent

probability measure P̃2 on (Ω,F) as (2.12). Under the measure P̃2, one can see that the

8If necessary, one can introduce multiple grades of severity for each fund as explained in Section 7.4.
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whole Jackson’s network is completely decoupled from the external world because

Ãt(i) = At(i)− t (8.11)

D̃t(i) = Dt(i)−
∫ t

0
1{Qs−(i)>0}ds (8.12)

F̃t(i, j) = Ft(i, j)−
∫ t

0
1{Qs−(i)>0}ds (8.13)

C̃t(i) = Ct(i)−
∫ t

0
1{Qs−(i)>0}ds (8.14)

become (P̃2,F)-martingales. This make Lemma 3 hold also in the current setup.

Using the (P̃2,F)-martingale ξ2,t := 1/ξ̃2,t, Lemma 5 and similar procedures used in

Lemma 7, one obtains the dynamics of the unnormalized filter qt := EP̃2 [ξ2,tXt|Gt]:

qt = q0 +

∫ t

0
Rsqs−ds+

∑
i

∫ t

0

(
ΛA
s (i)− I

)
qs−dÃs(i) +

∑
i

∫ t

0

(
ΛD
s (i)− I

)
qs−dD̃s(i)

+
∑
i,j

∫ t

0

(
ΛF
s (i, j)− I

)
qs−dF̃s(i, j) +

∑
i

∫ t

0

(
ΛN
s (i)− I

)
qs−dC̃s(i) (8.15)

where Λ’s are similarly defined as in Lemma 7.

8.3 The optimal hedging

Let us suppose that the wealth process of the fund manager follows

Wπ
t (s, w) = w +

∫ t

s
π⊤
u dSu +

∑
i

∫ t

s
κu(i)Qu(i)du+

∑
i

∫ t

s
eu(i)dAu(i)

−
∑
i

∫ t

s
gu(i)dDu(i)−

∑
i,j

∫ t

s
fu(i, j)dFu(i, j)

−
∑
i

∫ t

s

∫
Ki

Qu−(i)li(u, x)Ni(du× dx) (8.16)

where f(i, j) denotes the cost associated with the switching from the i-th to the j-th fund,

and li(t, x) is defined as in Section 7.1 for the fund i. All the processes of coefficients

(κ(i), e(i), g(i), f(i, j), li(·, x)) are assumed to be G-predictable and satisfy the necessary

square integrability.

The fund manager’s problem is to minimize the expected quadratic hedging error:

V (t, w) = ess inf
π∈Π

E
[(

H −Wπ
T (t, w)

)2∣∣∣Gt

]
. (8.17)

The procedures required to obtain the optimal hedging strategy π∗ are the same. Once
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we assume the necessary predictable representation property, i.e. we have

V (t, w) = V (0, w) +

∫ t

0
a(u,w)du+

∫ t

0
Z(u,w)⊤dNu +

∫ t

0
Γ(u,w)⊤dMu

+
∑
i

∫ t

0
JA
i (u,w)dÂu(i) +

∑
i

∫ t

0
JD
i (u,w)dD̂u(i) +

∑
i,j

∫ t

0
JF
i,j(u,w)dF̂u(i, j)

+
∑
i

∫ t

0

∫
Ki

JN
i (u,w, x)dN̂i(du× dx) (8.18)

with appropriate G-predictable coefficients (a, Z,Γ, JA(i), JD(i), JF (i, j), JN
i ), we can ap-

ply Itô-Ventzell formula to derive the drift condition for the optimality. The straightfor-

ward calculation reveals that V (t, w) and its martingale coefficients can be decomposed

into the quadratic form of w as before. The optimal hedging strategy π∗ is still given by

the formula (4.17), and the solutions for (V2, Z2) are the same as those given in Lemma 10.

We can find V1 as

V1(t) = EA

[
e−

∫ T
t ηsdsH −

np∑
i=1

∫ T

t
e−

∫ s
t ηudu V2(s)

{
Qs(i)

(
κs(i)− L̄s(i)λ̂

N
s (i)

)

+es(i)λ̂
A
s (i)−

(
gs(i)λ̂

D
s (i) +

np∑
j=1

fs(i, j)λ̂
f
s (i, j)

)
1{Qs−(i)>0}

 ds
∣∣∣Gt

 (8.19)

where L̄s(i) =
∫
Ki

li(s, x)νi,s(x)dx . Thus, (V1, Z1) necessary for the optimal hedging

strategy can be calculated by the standard Monte Carlo simulations as before. The hedging

strategy π∗ is then obtained by combining the solution of (V2, Z2) from the ODEs.

Finally, V0 is given by

V0(t) = E

[
H2 −

∫ T

t

{
||Z1(s) + V1(s)θ̂s||2

V2(s)
+
∑
i

2κs(i)Qs(i)V1(s)

}
ds

+
∑
i

∫ T

t

[
e2s(i)V2(s)− 2es(i)

(
JA
1,s(i) + V1(s)

)]
λ̂A
s (i)ds

+
∑
i

∫ T

t

[
g2s(i)V2(s) + 2gs(i)

(
JD
1,s(i) + V1(s)

)]
λ̂D
s (i)1{Qs−(i)>0}ds

+
∑
i,j

∫ T

t

[
f2
s (i, j)V2(s) + 2fs(i, j)

(
JF
1,s(i, j) + V1(s)

)]
λ̂F
s (i, j)1{Qs−(i)>0}ds

+
∑
i

∫ T

t

∫
Ki

[
(Qs(i)li(s, x))

2V2(s) + 2Qs(i)li(s, x)
(
JN
1,i(s, x) + V1(s)

)]
νs,i(x)λ̂

N
s (i)dxds

∣∣∣Gt

]
(8.20)
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where

JA
1,t(i) = V1(t−;At−(i) + 1)− V1(t−) (8.21)

JD
1,t(i) =

[
V1(t−;Dt−(i) + 1)− V1(t−)

]
1{Qt−(i)>0} (8.22)

JF
1,t(i, j) =

[
V1(t−;Ft−(i, j) + 1)− V1(t−)

]
1{Qt−(i)>0} (8.23)

JN
1,i(t, x) =

V1

(
t−;Ct−(i) + 1,with size x

)
− V1(t−)

x
1{Qt−(i)>0} . (8.24)

One can apply the LSM method or the particle method to calculate V0 as previously

explained.

9 Conclusions

In this work, the prices of securities, the occurrences of insured events and (possibly a

network of) the investment flows are used to infer their drifts and intensities by a stochastic

filtering technique, which are then used to determine the optimal mean-variance hedging

strategy. A systematic derivation of the optimal strategy based on the BSDE approach

is provided, which is also shown to be implementable by a set of simple ODEs and the

standard Monte Carlo simulation.

As for the management of insurance portfolios, we have given a framework with mul-

tiple grades of loss severity, which allows a granular modeling of the change of demand

for insurance products after the insured events with different sizes. We have applied the

technique used in Queueing analysis to treat a complex network of the investment flows,

such as those in a group of funds within which investors can switch a fund to invest.

Although a lot of problems remain unsolved especially with regard to the model spec-

ifications, the recent great developments of computer systems capable of handling the

so-called big data and wide interests among industries in the efficient use of information

may make the installation of the framework a real possibility in near future. More con-

crete applications to a specific product or business model using real data will be left for

a future research, hopefully in a good collaboration with financial as well as non-financial

institutions.
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