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Abstract. This paper studies sequential costly state verification as a formal representation of
loan-default negotiation in an infinite horizon principal-agent model with privately observed two-
state Markov income shocks. The main result is as follows: With some particular parametric
assumptions, there exists a trade equilibrium where costly state verifications occur recurrently
only when lender believes that high state is probable while borrower knows that the true state is
low. In the trade equilibrium, default plays a positive role in ex ante contingent agreement. Also,
as an application to international finance, this paper gives some insights into autarkic-financing
features in the world’s poorest economies.

1. Introduction

This paper studies sequential costly state verification (or CSV) as a formal representation of

loan-default negotiation in an infinite horizon principal-agent model with privately observed first-

order Markov income shocks. This model has three main characteristics as compared to the previous

defaultable contract literature. First, default means that a borrower (1) breaks his payment promise,

and negotiates for a restructuring plan by incurring some positive, finite costs, then (2) reorganizes

under the agreed plan, where he is protected from the lender’s intervention and is given some

payment allowance during a planned period of time, and (3) continues the relationship with the

same lender beyond a default. We may call this type of default as reorganization default. The

default may occur recurrently in the model. Then, a borrower’s default decision is not specifically

anticipated as a response to the terms of the agreement, and is averse to a lender. In the previous

default literature, a default is often defined as a terminal event. However, the presumption of default

seems unrealistic. A defaulting borrower often keeps accessing to the loan markets after a default.

In addition, a borrower may keep the relationship with the same lender beyond a default. Even a

liquidation (or repudiation) is a result after a consideration of reorganization. In practice, this type
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of default is associated with sovereign debt in international finance and Chapter 11 bankruptcy

in corporate finance.1 Our interest is in that type of default. The second characteristic is that

a privately-observed shock process is Markov. This is more realistic than most previous models

with no intertemporal exogenous links of the private variables. So, we study the inertial effect

of reorganization default in equilibrium. The third characteristic is that the lender, as well as

the borrower, faces a time-consistency problem. Most contracting literature models the agent’s

time-consistency constraint but assumes that the principal can commit in advance to its future

treatment of the agent. In contrast, this model assumes limited commitment not only on the part

of the borrower but also on the part of the lender. That is, we study the subgame perfectness of the

equilibrium in a non-cooperative dynamic Bayesian game. This paper provides a positive analysis

of the strategic loan-default negotiations, that is, what conditions under which both lender and

borrower choose reorganization default over autarky enforcement after an interim negotiation. Our

main result is: If lender’s autarky utility level is state-dependent (that is, lender’s and borrower’s

utility are positively correlated), and with some particular parametric assumptions, then there

exists a trade equilibrium where costly disclosures and defaults occur recurrently only when lender

believes that high state is probable while borrower knows that the true state is low. The default

plays a positive role in ex ante contingent agreement. Also, in equilibrium, for several subsequent

dates after a default, borrower is allowed to make only low payments, no matter what the true

states are. We may call the consecutive dates as an episode of inertia or as a reorganization episode

with payment allowance. In equilibrium, state verification occurs when, and only when, a default

occurs. The trade equilibrium does not stipulate autarky after a default, even temporarily.

This model is basically a dynamic version of Townsend [27]’s CSV environment. There are risk-

neutral lender and borrower, who consume single non-storable consumption goods in infinite horizon

discrete-time (t = 0, 1, 2, . . .). The stage environment is similar to Townsend’s. Lender has one unit

of indivisible physical input, while borrower has no physical input. There is no capital depreciation

and accumulation. If lender delivers the input to borrower, then borrower produces the goods with

his investment project and the input. Borrower has private information about his current income

and stochastic prospects for future income. State verification (or disclosure) technology is available.

Using the technology causes one-period non-pecuniary cost, and makes current private information

of borrower’s output known to lender with complete accuracy. Before date 0, the lender agrees to let

the borrower use the capital for an indefinite period. The investment occurs only at the outset of the

1Notice that in the previous Chapter 11 bankruptcy literature, loan-default negotiation among multi-creditors is
one of the main concerns (for example, seniority problems). However, my model is a simple principal-agent model,
and so does not deal with multi-creditor negotiation problems.
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game. Subsequently, from date 0, they share output from borrower’s project unless the agreement

is terminated. Precisely, at each date, first, output is produced from borrower’s project with the

input, and provides accurate knowledge of the state to borrower. Then, borrower decides whether

or not to disclose current state to lender. If disclosure occurs, then disclosure cost is imposed on

borrower, and lender sees the true state. At the same time, borrower makes a payment to lender.

Then, they consume the allocated goods. Next, lender decides whether or not to terminate the

agreement. If lender terminates the agreement, then lender repossesses the input. The game ends.

Subsequently, each lives in autarky. On the other hand, if lender commits to the agreement, then

they move on to the next-date stage game.

This model differs from standard CSV models in several crucial points. First, this model is

an infinite horizon model, in contrast to most CSV models, which are 2-date models.2 Secondly,

the income shock process is two-state first-order Markov: high and low income levels {L, H} with

0 < L < H. In particular, both shocks are persistent, and high-income shock is more persistent

than low-income shock. Then, the players’ continuation utilities are not independent of their his-

tory. That is, the dynamic game is a Markov game, not a repeated game, in the sense that a stage

game has a physical link to the stage games played in the past. Thirdly, there exists no explicit,

direct communication. That is, borrower cannot make any report to lender in the game. Still,

information flows from borrower to lender because some actions or outcomes are feasible only in

particular states. Then, this game is characterized as a dynamic signaling game induced by ob-

servable outcomes and physical actions. Fourthly, as is discussed above, most importantly, there

exists opportunities of loan-default negotiations under the two-sided limited commitment. Autarky

enforcement and default (or disclosure) decisions are distinguished explicitly. Finally, before ad-

dressing the optimal contracting, this paper takes a game approach where a fixed dichotomous

payment choice set is imposed: high and low payment levels {xl, xh} with 0 < xl < xh. This

approach intends to, as a positive analysis, stress an equilibrium loan-negotiation performance in

a game in a intuitive way. In addition, for simplicity, the game approach imposes a feasibility

constraint on the payment choice set: 0 < xl < L < xh < H, that is, xh is infeasible in L. This

approach is more restrictive in some respects than the parametric specification of most CSV models.

However, there are trade-offs between the two approaches. In fact, the game approach has some

advantages over the optimal contracting approach, making up for the limitations. First, the opti-

mal contracting approach presumes a continuum of payments choices, and so could be complicated,

especially in a dynamic model, to induce strategic implications in equilibrium. In contrast, the

2Wang [28] and Monnet-Quintin [21] are exceptions.
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dichotomous-payment game approach enables us to use a game tree and to analyze the loan-default

negotiation dynamics in a very intuitive way. Second, since borrower faces a disclose-or-not deci-

sion at each date, a model with the dichotomous payment choice set is a simplest way to analyze

the state contingency of the equilibrium loan negotiation. However, a model with three or more

payment choices might be interesting. For example, suppose that in addition to {xl, xh}, there is

another choice that borrower pays nothing. Then, we can conjecture that in equilibrium, lender

might allow borrower to make zero payment without enforcing autarky right after a disclosure.

Then, after a little while, positive payments would be required to let the relationship be kept.

In fact, from a dynamic viewpoint, a time-dependent dichotomous payment rule could be Pareto

improving, as shown in the optimal contracting part later. Still, at each component game, bor-

rower would face no larger than dichotomous choices in equilibrium, even though three or more

payment choices are prepared. So, the dichotomous choice structure grasps the role of loan-default

negotiation in a dynamic CSV environment very well. Third, in general, the restriction that xh is

infeasible in L might be dominated in the optimal contract. In fact, even if xh is feasible in L, and

with some parametric assumptions, then high payment would be state-revealing. However, if only

an appropriate fixed choice set is chosen, then the feasibility restriction might be reasonably true

in equilibrium. In addition, the restriction simplifies the game structure drastically, because high

payment itself would reveal the current true state H. In summary, the dichotomous payment game

approach taken here seems adequate to provide a qualitative, positive theory of how reorganization

default operates in practice.

In these environments, this paper focuses on a stationary pure-strategy weak sequential equilib-

rium where strategies are restricted to Markovian ones.3 It, first, proves the existence of a stationary

equilibrium, and, then, characterizes the equilibrium default performance. Precisely, it shows that,

with some relevant parametric assumptions, there exists a trade equilibrium where costly disclosure

(or default) occurs recurrently only when there is some conflict of economic perspectives between

lender and borrower, that is, when lender believes that high state is probable while borrower knows

that the true state is low. More precisely, in a trade equilibrium, two episodes evolve alternatively:

pooling and separating episodes. While lender believes that high state is less probable, lender

prefers to commit to the agreement for any borrower’s action, because the expected autarky utility

level is low. Then, borrower is allowed to make low payments without disclosing his true states. It is

a pooling episode, during which time there occurs inertia due to the cost. On the other hand, once

3The philosophical backgrounds of the Markov strategies are: (1) No bootstrapping, (2) ”Bygones are bygones”
property, and (3) ”Minor causes lead to minor effects” property (Maskin-Tirole [20]). The Markovian property has
the simplest form of the behaviors that are consistent with rationality in dynamic models.
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lender’s posterior belief of high state becomes sufficiently high after a while, high payment is paid

in high state while the conflict of their economic perspectives brings about default in low state. It is

a separating episode. The costly default is a trigger into payment allowance. Therefore, in a trade

equilibrium, there co-exist a no-monitoring pooling episode and a conditional-monitoring separating

episode. Behind the equilibrium default performance, there is the following logic. When both play-

ers know that borrower’s income will recover in future, lender has incentive to keep the relationship

beyond a default, even though the current low state is revealed. Meanwhile, borrower chooses the

default by incurring disclosure cost to enjoy payment allowance for several subsequent dates and

expects his own recovery during the periods. The model induces two theoretical predictions: (1)

Defaultable debt-type contract is enforceable in a trade equilibrium in costly verifiable informa-

tion environments, and (2) In comparing across dynamic CSV environments, higher disclosure cost

implies lower equilibrium default probability.

1.1. Related literature. In the related literature, there exist several versions of dynamic contract

models with default. They can be categorized into two groups: symmetric information models

and asymmetric information models. As to symmetric information models, we can refer to debt-

constrained markets models.4 There, a defaulting borrower is necessarily excluded from the loan

markets forever. Since the models assume symmetric information in asset markets, there occurs

no bankruptcy in equilibrium. However, the exclusion assumption seems unrealistic. Endogenous

default literature replaces the exclusion assumption with the assumption of finite, positive default

penalty/cost. Dubey-Geanakoplos-Shubik [3] and Zame [29] study default in finite-period general

equilibrium models with incomplete security markets. In their models, a security is defined as a

promise to pay, and default means that agent does not -or cannot- keep some of these promises

and incurs default penalty. The default is ascribed to the impossibility of perfectly foreseeing all

possible contingencies. In the environments, they focus on perfect competition in the given security

markets where some kind of market incompleteness is equivocally stimulated. However, they avoid

game-theoretic treatments of default. Also, Lustig [18] studies default by presuming collateral

in Lucas-type asset markets in infinite horizon. That is, if agent opts for a default, then all his

assets are seized as collateral, but the agent can keep his private endowment from the seizure, and

subsequently continue to access to the security markets beyond the default. However, he does not

study a role of asymmetric information in loan-default negotiation.

4For example, Alvarez-Jermann [2], Kehoe-Perri [11] [12], Kehoe-Levine [13] [14], Kocherlakota [16].
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On the other hand, as to asymmetric information models, default is ascribed explicitly to incom-

plete information. This paper belongs to the category. In this category, first, we can refer to the

incomplete contracting literature, which formulates a default as an unforeseen sudden event, and

allows renegotiation to occur ex post (Hart-Moore [9]). In particular, the literature assumes inabil-

ity to write a contingent contract due to some bounded rationality, and restricts the discussions

to simple institutions (ownership contract, authority problem, short-term contract, etc.). However,

rational investor might anticipate default dynamically, even though it is not ex ante describable

specifically due to costly disclosure, and try to enclose the anticipation in the ex ante agreement

when ex post actions and payoffs are describable (Maskin-Tirole [19]). Contrary to the incomplete

contracting models, this paper focuses on state-contingent aspects in loan-default negotiations, and

particularly shows that the existence of the inertia leads to the irrelevance of disclosure cost from

an ex-ante viewpoint. In terms of dynamic CSV models, Wang [28] is most closely related to this

paper in the sense that they study a dynamic CSV with deterministic monitoring and 2-state in-

come shocks in infinitely horizontal discrete-time.5 That paper presumes IID technology shocks of

privately observed incomes. Then, there is no intertemporal link between recurrent monitorings in

equilibrium. In fact, their main concern is not regarding equilibrium default behaviors. In their

monitoring equilibrium, a monitoring occurs in and only in low state. In that sense, the default be-

havior is static to shock. By presuming a risk-averse borrower with CARA one-time utility function,

their study focuses on a comparative static relationship between the ARA coefficient and the cut-off

monitoring cost level below which a conditional monitoring policy only in low state is optimal. Due

to the time-separable utility structure, the ARA coefficient works as substitution not only across

states but also over time. So, there is a non-monotonic relationship between the cut-off monitoring

cost and the ARA coefficient.6 In contrast, this paper focuses on equilibrium loan-default negotia-

tion performance under Markov technological structure. In most dynamic situations, intertemporal

exogenous links of privately observed incomes are realistic. Especially, individual income process is

likely to be serially correlated in actual economies. As pointed out in Fernandes-Phelan [7], with

the assumption of intertemporal exogenous links of private variables, at the beginning of a given

date, a borrower’s forward looking utility that follows a given strategy for a given contract is not in-

dependent of past histories. In general, such time-dependence of privately-observed variable causes

some pertinent effect on equilibrium contractual performance. Tchistyi [26] studies the optimality

5Monnet-Quintin [21] study stochastic monitoring in a finite number of periods.
6A recursive utility formulation such as a Kihlstrom-Mirman type [15] might induce interesting implications.
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of a credit line with performance pricing under the circumstances where privately-observed vari-

able follows two-state Markov process and voluntary reports are possible. On the line, this paper

elaborates time-dependent equilibrium default behaviors, especially the existence of inertia after

a default and the co-existence of a no-monitoring pooling episode and a conditional-monitoring

separating episode.

The empirical research is beyond the scope of this dissertation, although the results proved

here provide a basis for such research. Duffie-Singleton [5] and Duffie-Pedersen-Singleton [4] study

defaultable bond models where default time arrives based on an exogenously-given intensity prob-

ability distribution. Such exogeneity of default may be a good approximation under some para-

metric environments but is unrealistic in terms of loan-default negotiation. This paper may give a

structural-form interpretation to those defaultable bond models.

This paper is organized as follows. Next section describes our physical and informational en-

vironments under a dichotomous payment game approach. Section 3 formalizes a game-theoretic

representation of the loan-default negotiations, and defines equilibrium notion. Section 4 char-

acterizes the equilibrium and solves. Section 5 generalizes the game formulation into an optimal

contracting problem. Final section concludes with some discussions of possibilities of future exten-

sions.

2. Environment

2.1. Players. There are two infinitely-lived players: borrower and lender (denoted by player i =

1, 2, respectively) in discrete-time: t ∈ T := {0, 1, . . . ,∞}. Each consumes non-storable consump-

tion goods (or output) and has a linear one-period utility with a constant discount rate 0 < β < 1.

Precisely, for some sequences {c1t ≥ 0, c2t ≥ 0}∞t=0 where cit denotes one-period consumption level

of player i at date t, lifetime utility levels are defined as
∑∞

t=0 βtc1t and
∑∞

t=0 βtc2t. However,

player 2’s autarky lifetime utility levels are lower-bounded by positive values, which may depend

on the termination-date state of nature (See below).

2.2. Technology. Player 2 has one unit of physical input before date 0, while player 1 has no input.

If player 2 invests in player 1’ project, then the project at date t produces St units of consumption

goods: St ∈ S = {L,H} with 0 < L < H and S0 = L. Call St as state of nature (or state) at date t

and S as state-of-nature space. State-of-nature (or income shock) process St is first-order Markov:

St+1 = St with probability πSt > 1
2 ; St+1 6= St with probability 1 − πSt where 1

2 < πL < πH .

In words, both shocks are persistent, and in addition, high-income shock is more persistent than
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low-income shock.7 If player 2 does not invest in player 1’s project, then no production occurs in

the economy.

State verification (or disclosure) technology is available and provides accurate information of

current output of player 1 to player 2. For each t, let disclosure result be denoted by mt ∈ {−, +}
where mt = + means use of disclosure and mt = − means no disclosure. St is common knowledge

if disclosure occurs at t (or if t = 0), while St is private information of player 1 otherwise. The

disclosure cost is non-pecuniary, that is, if disclosure occurs, then the non-pecuniary cost z is

subtracted from player 1’s utility level at the date.

2.3. Game form and information structure. Before date 0, player 2 agrees to let player 1 use

the capital for an indefinite period. The agreement is characterized by a dichotomous set {xl, xh}.
In this model, we impose a certain choice set {xl, xh} as given. In the sense, this model does not

deal with mechanism designs of the agreement, but studies an equilibrium under a given game form

(or agreement). In particular, we assume 0 < xl < L < xh < H.8 At the same time, player 2 invests

his input in player 1’s project. From date 0 onwards, player 1 produces output with the input, and

makes a payment to player 2 under the agreement. Timing of events at the stage game at each date

from date 0 is as follows. At each date t, output is produced from player 1’s project with the input,

and provides accurate knowledge of current state to player 1. Then, player 1 decides whether or

not to disclose the state to player 2. If disclosure occurs, then disclosure cost is imposed on player

1, and player 2 sees the state. At the same time, player 1 makes a payment level x(t) to player

2, choosing it from the given set {xl, xh}. Then, they consume the allocated goods. Next, player

2 chooses whether or not to terminate the agreement (A means player 2’s agreement termination

decision and induces autarky from then onwards forever, while C means his continuation decision).

On the one hand, if player 2 decides to commit to the agreement, then the game moves on to the

next-date stage game. On the other hand, if player 2 decides to terminate the agreement, then

each lives in autarky subsequently forever. Player 1 has no chance of having positive consumption

from the date on forever, while player 2 receives V L (or V H , respectively) units of lifetime utility

at the termination date when the termination-date state is L (or H). In particular, we assume

that βxl

1−β < V L ≤ V H < V̄ H where V̄ H = β[(1−βπL){πHxh+(1−πH)xl}+(1−βπH){πLxl+(1−πL)xh}]
(1−βπH)(1−βπL)−β2(1−πH)(1−πL) .

The lower bound βxl

1−β implies player 2’s worst future scenario under the agreement, that is, his

discounted continuation utility level when low payment is made from the next period onwards

7The assumption may insure that the borrower’s income tends to be sufficiently high in probability to cause
lender’s incentive to keep the contractual relationship, even though low shock is persistent.

8This assumption is restrictive, but makes clear the effect of loan-default negotiations in the Markovian techno-
logical structure.
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forever. So, the lower bound insures player 2’s autarky threat to be credible. As to the upper

bound V̄ H , suppose that high payment xh is necessarily made in state H. Then, player 2’s

discounted expected continuation utility levels after current state H and L respectively are:

V̄ H = β
{
πH

(
xh + V̄ H

)
+ (1− πH)

(
xl + V̄ L

)}
,

V̄ L = β
{
πL

(
xl + V̄ L

)
+ (1− πL)

(
xh + V̄ H

)}
.

Directly, the parametric result is achieved. Also, V̄ H > V̄ L. So, the upper bound implies player

2’s best future scenario after current state H when high payment xh is made in state H under

the agreement, that is, his discounted continuation utility level after current state H when high

payment xh is necessarily made in state H. So, the upper bound keeps player 2 from exploiting

too much rent. In summary, the inequalities imply that player 2 has sufficiently beneficial, but not

so beneficial, outside options relative to the agreement characterized by the dichotomous payment

choice set {xl, xh}. Note that we assume that at the time of player 2’s agreement termination

decision, the true state is revealed without any cost. During the game, player 1 cannot make

any report – even an unverified one – to player 2 under the agreement. By the assumption of

xh > L > xl > 0, xh is not feasible in state L. Hence, the high payment itself would reveal

the high state H. Therefore, information flows from player 1 to player 2 either if high payment,

determined by player 1 and observed by player 2, is made or if disclosure takes place. Player 1’s

information consists of calendar date, current and past outcomes, and disclosed outcomes, current

and past payments, while player 2’s information consists of calendar date, initial state L, and

when disclosure has occurred in the past, what was the outcome, and current and past payments.

Notationally, define pt ∈ [0, 1] as player 2’s date-t posterior belief that date-t state would be H

after player 1’s date-t actions. Also, V (pt) := (1− pt) V L + ptV H . The timing of the events in

the game is shown in Table 2.1. Also, the game tree in an extensive-form stage game is shown in

Figure 1.
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Timing of events
♦ Before date 0:
1. Two players make a lending contract.
2. Player 2 transfers his input to player 1.
♦ Stage game at each date from date 0:
1. Output is produced from player 1’s project with the input, and provides
accurate knowledge of current state to player 1.
2. Player 1 decides whether or not to disclose the state to player 2.
3. If disclosure occurs, then disclosure cost is imposed on player 1, and player 2
sees the state.

At the same time, player 1 makes a payment to player 2. They consume
the allocated goods.
4. Player 2 decides whether or not to terminate the contract.
5. If player 2 terminates the contract, then player 2 repossesses the input.
The game ends. Then, each lives in autarky subsequently.

On the other hand, if player 2 continues the contract, then they move on to
next-date stage game.

Table 1. Timing of events

 

Nature 

Borrower 

L H 

(xl,+) (xl,-) (xl,-) 
(xh,-) 

(xl,+) 
(xh,+) 

C A C C C C C A A A A A 

Stage 3t 

Stage 3t+1 

Stage 3t+2 

Lender 

Figure 1. Date-t extensive-form stage game
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3. Strategies and equilibrium notion

The game form is characterized by {xl, xh}. This game is essentially an indirect communication

game in the sense that by construction a standard direct communication is impossible, and so the

message space consists of physical actions and outcomes. Player set is expanded to involve player

0 that represents nature who controls state of nature at chance nodes. Hence, i ∈ I := {0, 1, 2}.
The stage index of the extensive-form game is defined as k = k(t, j) = 3t + j for each t ∈ T and

j = 0, 1, 2. Also, t(k) is integer part of k
3 and j(k) = k − 3t(k). That is, each date t ∈ T consists

of three extensive-form game stages {3t, 3t + 1, 3t + 2}. Let K denote the set of all the stages. Let

n (or n(k)) and Nk respectively denote a node (or in particular, a node at stage k) and the set of

nodes at stage k. N :=
⋃

k∈K Nk. Let N (or Nk resp.) denote all the subsets of N (or Nk) where

Nk ⊂ N . Let E denote the set of terminal nodes in the game form. Then, every node n ∈ N�E

is characterized by two labels: a player who controls the node, i(n) ∈ I, and i(n)’s information set

s(n). Also, we may write n = i(n).s(n). In particular, 0.0 denotes the root of the whole game at

date 0, that is, N0 = {0.0}. Note that for n ∈ N3t+j , i(n) = j ∈ I.

Next, formalize moves. Let M denote the set of all possible moves in the game form, M :=

{L,H} ∪ {{−, +} × {xh, xl}} ∪ {A,C}. In particular, define move operator as a single-valued

selection mapping θ : N ∪ {−1} → M ∪ {−1} as follows.9 First of all, θ(n) ∈ M for n ∈ N�E.

More precisely, if n ∈ N3t�E for each t, then θ(n) ∈ {L,H}. If n ∈ N3t+1 for each t, then θ(n) ∈
{−, +}×{xh, xl}. For convenience, let player 1’s (compound) actions be denoted by σ−l := (−, xl),

σ+
l := (+, xl), σ−h := (−, xh), and σ+

h := (+, xh). Σ :=
{
σ−l , σ+

l , σ−h , σ+
h

}
.10 If n ∈ N3t+2 for each t,

then θ(n) ∈ {A,C}. Secondly, if n ∈ E, then θ(n) = −1. Thirdly, θ(−1) = −1. Notice that, after

any terminal node, this mapping has the image −1 as a character, not as a move. Let Θ denote the

set of all possible move functions. Define a recursive operator 〈·, ·〉 : {N ∪ {−1}}×Θ → N ∪ {−1},
that is, a mapping from a node or −1 and its move to its immediately-following node or −1. If

k = 3t for each t and n ∈ Nk, then n is a chance node (i.e., i(n) = 0) and θ(n) ∈ {L,H} and

so 〈n,L〉 , 〈n,H〉 ∈ Nk+1. If k = 3t + 1 for each t and n ∈ Nk and n−1 ∈ Nk−1, then i(n) = 1,

θ(n) ∈ Σ, and either n = 〈n−1, L〉 or n = 〈n−1,H〉 holds. Since by the assumption of xl < L < xh,

xh is not feasible in state L. If the true state is L (that is, n = 〈n−1, L〉), then there are two

possible actions. So,
〈
n, σ+

l

〉
,
〈
n, σ−l

〉
in Nk+1. On the other hand, if the true state is H (that

is, n = 〈n−1,H〉), then there are four possible actions. So,
〈
n, σ+

l

〉
,
〈
n, σ−l

〉
,
〈
n, σ+

h

〉
,
〈
n, σ−h

〉 ∈

9This represents strategies in a reduced form. Later, we will define the corresponding strategy mappings in a
structural form.

10Notice that by the construction, σ+
h is always dominated.



LOAN-DEFAULT NEGOTIATION 12

Nk+1. If k = 3t + 2 for each t and n ∈ Nk, then i(n) = 2, θ(n) ∈ {A,C}, and 〈n, A〉 , 〈n,C〉 ∈
Nk+1. Then, n′ = 〈n,A〉 ∈ Nk+1 is a terminal node. Then, 〈n′, θ(n′)〉 = 〈n′,−1〉 = −1. Hence,

E = {n′ : n′ = 〈n,A〉 for any n ∈ N3t+2∀t}, that is, the set of terminal nodes at the whole game.

Further, 〈−1, θ(−1)〉 = −1. On the other hand, if n′ = 〈n,C〉, then n′ ∈ N3t+3 and i(n′) = 0.

Then, 〈n′, L〉 , 〈n′,H〉 ∈ N3t+4. Therefore, the character −1 implies that it follows the terminal

node. Define player 1’s stage-k + 1 payoff as a mapping ū : {N ∪ {−1}} × Θ → R as follows.

Fix k, n ∈ Nk ∪ {−1}, and n−1 ∈ Nk−1 ∪ {−1}. If n = 〈n−1, L〉, then ū(n, σ−l ) = L − xl

and ū(n, σ+
l ) = L − xl − z. If n = 〈n−1,H〉, then ū(n, σ−l ) = H − xl, ū(n, σ+

l ) = H − xl − z,

ū(n, σ−h ) = H − xh, and ū(n, σ+
h ) = H − xh − z. If n 6= 〈n−1, L〉 and n 6= 〈n−1,H〉, then

ū(n, θ(n)) = 0. Also, define player 2’s stage-k + 1 payoff as a mapping v̄ : {N ∪ {−1}} ×Θ → R as

follows. Fix k, n ∈ Nk∪{−1}, n−1 ∈ Nk−1∪{−1}, and n−2 ∈ Nk−2∪{−1}. If either n =
〈
n−1, σ

−
l

〉

or n =
〈
n−1, σ

+
l

〉
and if n−1 = 〈n−2, L〉, then v̄(n,C) = xl and v̄(n,A) = xl + V L. If either

n =
〈
n−1, σ

−
l

〉
or n =

〈
n−1, σ

+
l

〉
and if n−1 = 〈n−2,H〉, then v̄(n,C) = xl and v̄(n,A) = xl + V H .

If either n =
〈
n−1, σ

−
h

〉
or n =

〈
n−1, σ

+
h

〉
, then v̄(n,C) = xh and v̄(n,A) = xh +V H . For all other

node n ∈ N∪{−1}, v̄(n, θ(n)) = 0. Note that ū(n(3t+3), θ(n(3t+3))) and v̄(n(3t+3), θ(n(3t+3)))

are rewarded at a node n ∈ N3t+3 but are discounted by βt as we interpret as if payoffs occur during

date t. Also, we may write ū(n) = ū(n, θ(n)) and v̄(n) = v̄(n, θ(n)) unless they cause any confusion.

Information set at each node is formalized as follows. Player 1’s information set s(n) at a node

n ∈ N3t+1 for each t are singletons because he is fully informed. On the other hand, player 2’s

information set s(n) is not singleton because of informational asymmetry. Yet, by the assumption

of xl < L < xh, the high payment itself would reveal the high state H. Therefore, player 2’s infor-

mation set s(n) at a node n ∈ N2 are
{(

0.0, L, σ+
l

)}
,
{(

0.0,H, σ+
l

)}
,
{(

0.0, L, σ−l
)
,
(
0.0, H, σ−l

)}
,

{(
0.0,H, σ−h

)}
, and

{(
0.0,H, σ+

h

)}
. Then, fix a node n ∈ N3t+2 equipped with s(n) for some

t ≥ 1. For y ∈ N3t+5, the information set s (y) are:
{(

n,L, σ+
l

) | s(n)
}
,

{(
n,L, σ−l

) | s(n)
} ∪

{(
n,H, σ−l

) | s(n)
}
,

{(
n,H, σ−h

) | s(n)
}
,

{(
n, H, σ+

l

) | s(n)
}
,

{(
n, H, σ+

h

) | s(n)
}
. Hence, by in-

duction, the information set sequence is defined recursively.

Information evolution is formalized as follows. Define a measure that is assigned to a subset

of N as a mapping ∆ : N → [0, 1] such that ∆(N) = 1.11 In addition, let the corresponding

marginal measure with respect to branch mappings following n ∈ Nk−1 with i(n) = 1, 2 for each

k be denoted by δ
i(n)
t(k) : Nk → [0, 1]. We may also write this as δ unless it causes any confusion.

{
∆1

t , ∆
2
t

}
:=

{
δ1
s , δ2

s

}∞
s≥t

. For each stage k = 3t ∀t ∈ T , let true chance probability be denoted by a

measure π : Nk+1 → [0, 1] such that if θ (n (3t + 1)) = θ (n (3t + 4)) = L, then π (n (3t + 4)) = πL,

11The measure is well-defined by the Kolmogorov extension theorem.
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if θ (n (3t + 1)) = L and θ (n (3t + 4)) = H, then π (n (3t + 4)) = 1− πL, if θ (n (3t + 1)) = H and

θ (n (3t + 4)) = L, then π (n (3t + 4)) = 1 − πH , and if θ (n (3t + 1)) = θ (n (3t + 4)) = H, then

π (n (3t + 4)) = πH . Next, for each stage k = 3t + 1 for each t, define player 2’s posterior belief of

which node he is located in. Assume that the player 2’s belief over current state evolves based on

Bayesian updating while not revealing the true states. Precisely, if state L is revealed at date t ≥ 0,

then pt = 0, while if state H is revealed at date t, then pt = 1. Afterwards, so long as true state is not

revealed either via disclosure or high payment, pt = πHpt−1+(1− πL) (1− pt−1). Define λ(pt−1, σt)

as 1 if state L is revealed at date t given pt−1, σt (otherwise 0) and η(pt−1, σt) as 1 if state H is

revealed at date t given pt−1, σt (otherwise 0). Also let the posterior in not revealing true states at

date t given pt−1 be denoted by µ(pt−1) = πHpt−1 +(1− πL) (1− pt−1). Then, pt = ψ (pt−1, σt) :=

λ(pt−1, σt)·0+η(pt−1, σt)·1+{1− λ(pt−1, σt)− η(pt−1, σt)}·µ(pt−1). pt+k monotonically converges

to P := 1−πL

(1−πH)+(1−πL) as k goes to infinity during no state-revealing. Suppose that low state is

revealed at a certain date. Then, his posterior belief of high state is monotonically, concavely

increasing as time goes unless the true state is revealed, like p = 0, 1− πL, (πH + πL) (1− πL) , . . .,

and converges to a posterior that high shock is probable (i.e., P > 1
2 ). An intuitive logic behind

that belief evolution is as follows. Since low state is persistent (i.e., πL > 1
2 ), player 2 believes that

low state is probable (i.e., p < 1
2 ) for a while after low state is revealed. But he also knows that once

high state occurs even with a small chance (i.e., (1− πL)), high state is repeated more persistently

at the subsequent dates (i.e., πL < πH). Due to the higher persistence of high state, his current

belief of high state is increasing date-by-date. After a while, it exceeds 1
2 . The increment is getting

smaller as time goes since the probability is, by definition, upper-bounded. Then, the posterior

p converges to P > 1
2 . Parallel to this belief evolution, after low state is revealed at a date, the

expected autarky utility (i.e., V (pt) = (1− pt)V L+ptV H) is monotonically, concavely increasing

in t unless the true state is revealed. The set of the posterior sequences is denoted by Π ⊂ [0, 1]N×Σ.

Now, for each stage k = 3t for each t, define player 2’s posterior belief of which node he is located

in as a measure π̄ : Nk+1 → [0, 1] such that if θ (n (3t + 1)) = L, then π̄ (n (3t + 1)) = 1 − pt and

if θ (n (3t + 1)) = H, then π̄ (n (3t + 1)) = pt. Hence, πs is recursively induced as functions of

π̄, ∆1, ∆2.

Now, define player 1’s expected discounted continuation utility U(3t+1, ∆1
t , ∆

2
t , π̄ | n) at a node

n ∈ N3t+1 for each t as:

U(3t + 1, ∆1
t ,∆

2
t , π̄ | n(3t + 1) ∈ N3t+1)
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=
∑

n(3t+2)∈N3t+2

δ(n(3t + 2)) ·




ū (n (3t + 2)) +
∑

n(3t+3)∈N3t+3

δ (n (3t + 3)) ·

β




∑
n(3t+4)∈N3t+4

π (n (3t + 4)) ·

U(3t + 4, ∆1
t+1, ∆

2
t+1, π̄ | n(3t + 4) ∈ N3t+4)







Also, define player 2’s expected discounted continuation utility V (3t + 2,∆1
t+1, ∆

2
t , π̄ | n) at a node

n ∈ N3t+2 for each t as:

V (3t + 2, ∆1
t+1,∆

2
t , π̄ | n(3t + 2) ∈ N3t+2)

=
∑

y∈s(n(3t+2))

πs(y)·

∑

n(3t+3)∈N3t+3

δ(n (3t + 3))




v̄ (n (3t + 3)) + β
∑

n(3t+4)∈N3t+4

π̄ (n (3t + 4)) ·



∑
n(3t+5)∈N3t+5

δ (n (3t + 5)) ·

V (3t + 5, ∆1
t+2, ∆

2
t+1, π̄ | n(3t + 5) ∈ N3t+5)







The assessment
(
∆1

0, ∆
2
0, π̄

)
is said to be a weak sequential equilibrium (or wSE) iff for each t

and every ∆̃1
t and ∆̃2

t , U(3t + 1, ∆1
t , ∆

2
t , π̄ | n ∈ N3t+1) ≥ U(3t + 1, ∆̃1

t , ∆
2
t , π̄ | n ∈ N3t+1) and

V (3t + 2, ∆1
t+1, ∆

2
t , π̄ | n ∈ N3t+2) ≥ V (3t + 2, ∆1

t+1, ∆̃
2
t , π̄ | n ∈ N3t+2). In particular, a wSE is

said to be a trade equilibrium iff it is strictly preferred to financial autarky for each time.

4. Equilibrium

4.1. Stationary pure-strategy trade equilibrium. This section studies the long-run property

of a trade equilibrium. In particular, we focus on a stationary trade equilibrium in which players

1 and 2 play strategies of a particular form in the following senses. First, we focus on pure-

strategies of both players. Assume that the game has a pure-strategy wSE. Second, player 1’s

strategies are assumed to be stationary and Markovian in the sense that they depend only on

the fixed-dimensional, current coarsest information set. Specifically, player 1’s pure-strategy is

characterized by a selection mapping σ̃ : [0, 1] × {L,H} → Σ, that is, σ̃ consists of disclosure

and payment pure strategies, each of which maps player 2’s stage-3t + 1 posterior belief pt−1

(i.e., before player 1’s action at date t) and player 1’s privately-observed current true state St

to either player 1’s disclosure/payment single-valued selection. Let m̃ and x̃ respectively denote

the disclosure and payment pure-strategies, that is, σ̃ = (m̃, x̃). In particular, x̃ is said to be

feasible if 0 ≤ x̃(pt−1,H) ≤ H, and 0 ≤ x̃(pt−1, L) ≤ L for each pt−1. Let X̃ denote the set of

feasible x̃. By the assumption of xh > L, xh is not feasible in state L. Let M̃ denote the set
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of m̃. Then, Σ̃ represents the set of feasible disclosure/payment pure-strategies. σt = (mt, xt)

denotes player 1’s stage-3t + 1 action pair. On the other hand, player 2’s autarky enforcement

pure-strategy is characterized by a mapping: ã : [0, 1] × Σ → {A,C}, that is, a mapping from

player 2’s current posterior belief p ∈ [0, 1], and player 1’s σ ∈ Σ to player 2’s autarky enforcement

decision a ∈ {A,C}. Also, at denotes player 2’s stage-3t + 2 action. Directly from the previous

section’s equilibrium representation, the pure-strategy wSE is well-defined. Let the optimized action

sequences be denoted by {σ∗t , a∗t }∞t=0 where σ∗t = (x∗t ,m
∗
t ) for each t. Let player 1’s and player 2’s

date-t optimized utility levels respectively be denoted by u∗(t, pt−1, St) and v∗(t, pt) induced by the

optimized action sequences from date t on.

A stationary wSE is categorized into three episodes from a dynamic perspective. Precisely, since

this program involves informational asymmetry, the equilibrium allocation may take one of three

episodes for each t: (1) a full-disclosure episode (disclosure occurs for either state at date t), (2)

a disclosure-contingent separating episode (disclosure occurs when and only when state L occurs

at date t), and (3) a no-disclosure pooling episode (disclosure never occurs for either state at date

t). Over time, the wSE may evolve over the three episodes. They are categorized via screening

conditions, which are induced directly by player 1’s disclosure/payment actions. In particular,

since the technological structure is Markovian, the screening conditions are history-dependent.

Therefore, the optimization procedure is forward-looking, and has difficulty with solving for the

stationary solutions via standard dynamic programming method as in Stokey-Lucas [25]. Against

the difficulty, as in Fernandes-Phelan [7]00), let w(pt) denote player 2’s date-t + 1 continuation

utilities that player 1 would insure to player 2 just at stage 3t + 2 by taking a particular action

σt given pt−1 and ψ (pt−1, ·) at stage 3t + 1 (i.e., pt = ψ (pt−1, σt)) when assuming that both

players 1 and 2 behave optimally from stage 3t + 2 on given σt. Crucially, σt might not be an

equilibrium. Then, the continuation utilities w (pt) are classified into three cases by particular

values of pt = ψ (pt−1, σt), each of which is induced by player 1’s particular action σt:

w(1) = E2
t

[
v∗

(
t + 1, ψ

(
1, σ∗∗t+1

))]

w(0) = E2
t

[
v∗

(
t + 1, ψ

(
0, σ∗∗t+1

))]

w(µ (pt−1)) = E2
t

[
v∗

(
t + 1, ψ

(
µ (pt−1) , σ∗∗t+1

))]

where E2
t denotes player 2’s expectation operator over information state at his decision stage 3t+2,

and
{
σ∗∗s+1, a

∗∗
s

}∞
s=t

denotes the optimized action sequences given particular σt. Among the above

three particular actions, one is in equilibrium while the others are out of equilibrium. Hence,
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{
σ∗∗s+1, a

∗∗
s

}∞
s=t

may be different from
{
σ∗s+1, a

∗
s

}∞
s=t

if σt is out of equilibrium. The equilibrium

continuation utility formulates promise-keeping, while the out-of-equilibrium continuation utility

formulates threat-keeping. Let σ(pt) = (x(pt), m(pt)) denote the action pair σt = (xt,mt) that

induces w(pt). Also, let player 1’s expected next-date discounted utility level when promising

expected next-date (i.e., date-t + 1) discounted utility level w(pt) to player 2 after stage-3t + 1

action given St when assuming that both players 1 and 2 behave optimally from stage 3t + 2 on

given σt be denoted by:

y(St, w(pt)) := E1
t [u∗ (t + 1, St+1, pt) | St]

where E1
t [· | St] denotes player 1’s expectation operator over next-date state conditional on St at

his decision stage 3t + 1. Now, we characterize conditions that classify the above three episodes.

First, given pt−1 6= 1, if player 2’s expected autarky utility is relatively low (i.e., βw(µ (pt−1)) ≥
V (µ (pt−1))), then player 2 commits to the agreement, regardless of player 1’s action. So, player 1

takes a low payment/no disclosure action. That is, it is a pooling episode. On the other hand, given

pt−1 6= 1, if player 2’s expected autarky utility is sufficiently high (i.e., βw(µ (pt−1)) < V (µ (pt−1))),

then the true state may be revealed. That is, either episode (1) or (2) occurs. By the surjectiveness

of the strategy mappings, a direct-revelation principle holds. So, we confine our attention to a

dynamic signaling problem. Notice, however, that this model is different from standard dynamic

signaling problems in the sense that due to the disclosure cost, there are dates during which player

2 does not enforce autarky if player 1 makes the low payment without revealing his true state. We

call the dates an inertia time. Importantly, the inertia is caused endogenously in equilibrium and

does not disturb both players’ making a state-contingent contract ex ante. Define a date-t screening

condition as follows:

(4.1) If pt−1 = 1 or if βw(µ (pt−1)) < V (µ (pt−1)) for pt−1 6= 1, then

βy (L,w(0)) ≥ z and βy (H, w(1)) ≥ min {xh − xl, z} .

In words, suppose that high state is not revealed at the previous date (i.e., pt−1 6= 1), and that

if the true state were concealed at this date as well, lender’s expected autarky utility would be

higher than the continuation utility under low-payment/no disclosure action at the current date

(i.e., βw(µ (pt−1)) < V (µ (pt−1))). Then, βy (L,w(0)) ≥ z implies that in state L, borrower takes

a disclosure action as his best response (Figure 2.1). Then, if lender commits to the agreement

subsequently, then borrower could renege on high payment that would be required for lender’s
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commitment if he were not to reveal the true state. So, disclosing the low state would induce

payment allowance. This incident is interpreted as a default in our terminology. On the other hand,

βy (H, w(1)) ≥ min {xh − xl, z} implies that in state H, borrower reveals the true state by taking

either a disclosure action or a high payment action as his best response (Figure 1). The same logic

holds when the high state was revealed at the previous date (i.e., pt−1 = 1). So, the above condition

(4.1) characterizes borrower’s date-t action such that if the high state was revealed at the previous

date, or if lender’s expected autarky utility would be higher than the continuation utility under low-

payment/no-disclosure action when the true state were concealed at the current date, then borrower

reveals the true state in either state as his best response. Contrary to standard signalling models,

because of the disclosure cost, the truth-revealing is not required in equilibrium when the condition

βw(µ (pt−1)) ≥ V (µ (pt−1)) holds. In fact, if βw(µ (pt−1)) ≥ V (µ (pt−1)), then borrower’s low-

payment/no-disclosure action could cause lender’s commitment to the agreement. We show below

that the disclosure cost could be irrelevant to a state-contingent agreement in equilibrium. Call the

date-t condition (4.1) as date-t temporary screening condition after the terminology of Green [8].

Applying the first part of Theorem 2.1 of Fernandes-Phelan [7],

Lemma 4.1. A trade equilibrium is achieved only if Condition (4.1) is satisfied for all t.

Now, we prove the existence of a stationary wSE. The proof consists of two steps. First, we

impose several assumptions, some of which put restrictions on endogenous variables, and show

there exists a stationary wSE under the assumptions. Second, we show that conversely, if there is

a trade equilibrium, then it satisfies all the assumptions. Assumptions are as follows. First,

Assumption 4.1. V L < V H .

This implies that the autarky threats are state-dependent (that is, player 1 and 2’s utility are

positively correlated). That economic meaning is discussed in the next subsection. Next, assume

that either episode (1) or (2) occurs in equilibrium:

Assumption 4.2. ∃t : βw(pt) ≥ V (pt) and βw(µ (pt)) < V (µ (pt)).

Without this assumption, player 1 may make only low payment in no-disclosure pooling situation

throughout the game. Then, player 2 cannot commit to the agreement. Third, as to the screening

conditions,

Assumption 4.3. Condition (4.1) is satisfied for all t.
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Due to Lemma 4.1, this is required to achieve a trade equilibrium. In addition, the following

assumptions are imposed:

Assumption 4.4. β {y(L,w (0))− y(L,w (pt−1))} ≤ z for any t when pt−1 < 1.

Assumption 4.5. xh − xl ≥ β {y(H, w (1))− y(H, w (pt−1))} for any t when pt−1 < 1.

These two assumptions imply that both disclosure cost and high payment are sufficiently high

to make room for player 1 to choose a low-payment/no-disclosure action when player 2 does not

enforce autarky for either disclosure decision. Further,

Assumption 4.6. βw(1) ≥ V H .

This excludes the possibility of autarky in high state. Finally,

Assumption 4.7. xh − xl ≤ z.

If this assumption is not true, the disclosure is so costless that player 1 has incentive to use dis-

closure technology and make a low payment in state H. So, player 2 always receives low payment.

This is time-inconsistent. So, in the case, episode (1) does not occur. In terms of dynamic pro-

gramming methods, current-date disclosure and payment actions have influence on the next-period

decision space via the promise-keeping and screening conditions in the Markovian structure. So,

generally, the equilibrium correspondence Γ : Π × S → Π is not convex, that is, for some pt−1, St,

pt /∈ Γ(pt−1, St). Now, w (pt−1) and V (µ (pt−1)) are added to state variables. Let the extended

state variable set be denoted by Zt := (pt−1, St, w (pt−1) , V (µ (pt−1))). Next, define an one-step

recursion operator T : C(Z) → C(Z) regarding player 1’s optimization program given player 2’s

optimal actions, that is, a mapping from a continuous function of the extended state variables Z to

a continuous function of the extended state variables Z as follows:12

T (u)(Z) = sup
(x,m)∈Σ

S − x− 1mz + βE1
t [u(Z ′) | S]

s.t. (i) p = ψ (p−, σ) = λ(p−, σ) · 0 + η(p−, σ) · 1 + {1− λ(p−, σ)− η(p−, σ)} · µ(p−)

(ii) S′ = S with probability πS >
1
2

and

S′ 6= S with probability 1− πS where
1
2

< πL < πH

(iii)(a) w(0) ≤ x(µ (0)) + βw(µ (0)).

12For any time-dependent variable y, y denotes its current value, y′ denotes its next-date value, y− denotes its
previous-date value. Define difference operator ∆ such that ∆y = y − y− and ∆y′ = y′ − y.
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(b) For 0 < p− < 1, if βw(µ (p−)) ≥ V (µ (p−)), then

w(p−) ≤ x(µ (p−)) + βw(µ (p−)), or else

w(p−) ≤ (1− µ (p−)) {x(0) + βw (0)}+ µ (p−) {x(1) + βw (1)} ,

(c) Or else w (1) ≤ (1− πH) {x(0) + βw (0)}+ πH {x(1) + βw (1)} ,

where µ (p−) = (πL + πH − 1)p− + (1 − πL) and V (p) = (1− p)V L + pV H . Restriction (i)

denotes the evolution of player 2’s posterior belief. Restriction (ii) denotes the evolution of player

1’s income shock. Restriction (iii) denotes the evolution of player 2’s continuation utility subject

to the screening conditions characterized by Condition (4.1). Specifically, Restriction (iii-a) means

that after low state is disclosed at the previous date, player 1 makes a low payment without a

disclosure at current date. Then, a pooling episode (i.e., episode (3)) begins. By Assumption 4.2,

such date may exist. Restriction (iii-b) means that when player 2’s expected autarky utility is

relatively low, player 1 keeps making a low payment without a disclosure. If it turns out that a

low payment action without a disclosure would lead to autarky at current date, then the true state

is revealed in either state by Condition (4.1). This is the start of episode (2). Restriction (iii-c)

means that after high state is revealed at the previous date, the true state is revealed in either

state at current date as well. The monotonic structure of player 2’s continuation utility evolution

is induced by the monotonically increasing evolution of player 2’s posterior belief of high state after

low state is disclosed. Let Φ(p−, S) denote the set of w (p−) and V (µ (p−)) satisfying Restriction

(iii) (i.e., player 2’s continuation utility evolution) given p−, S. By a straightforward application of

the self-generation operation of Abreu-Pearce-Stacchetti [1],

Lemma 4.2. Suppose that Assumptions 4.1-4.7 are satisfied. Then, Φ(p−, S) is non-empty and

compact for each p−, S.

In other words, Z is sufficient to describe wSE agreement recursively (Figure 2).

Now, our main result of this section is achieved.

Theorem 4.1. Suppose that Assumptions 4.1-4.7 are satisfied. Then there exists a trade equilib-

rium characterized by a stationary value function u such that u = u∗. A transition function on the

Markov shocks converges weakly to invariant probability distributions that have a cycle. Conversely,

if there is a trade equilibrium, then it satisfies Assumptions 4.1-4.7.

Proof. Suppose that Assumptions 4.1-4.7 are satisfied. State space is compact. Because the shock is

first-order Markov, and because pτ is monotonically convergent to P (i.e., 1
2 < 1−πL

(1−πL)+(1−πH) < 1)
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Figure 2. Lender’s continuation utility evolution

as τ goes to infinity unless the true state is revealed, by Lemmas 4.1,4.2 above and Theorem

9.6 in Stokey-Lucas ([25], p.263), T has a fixed point in C(Z). Therefore, u is achieved. As to

the shock variable S, since the shock space is compact and a transition function on the Markov

process has the Feller property and is monotone, there exist invariant probability distributions, to

which the transition function converges weakly. Due to the time-dependent screening conditions,

however, the transition function does not satisfy the mixing condition. Because of the monotonic

belief evolution, the invariant distributions have cycles after each disclosure. By the principle of

optimality, w(p−) is monotone in p−. Next, conversely, we examine the sufficiency of the claim.

Suppose that the value function exists. Directly, Assumptions 4.2, 4.4-4.7 are satisfied. Suppose

that Condition (4.1) is not satisfied for some date. By Lemma 4.1, it leads to autarky almost

surely. It contradicts. Hence, Assumption 4.3 is satisfied. Next, suppose that V L = V H (say V ).

βxl

1−β < V < β{πHxh+(1−πH)xl}
1−β . Suppose that w(p−) is non-decreasing in p−. If βw(0) ≥ V , then

by the hypothesis, player 1’s best response is always σ−l . Hence, w = βxl

1−β . By βxl

1−β < V , player

2 enforces autarky at stage 2. Therefore, βw(0) < V . Then, there must be some date t∗ such

that for all t ≥ t∗, βw(pt∗) ≥ V . Then, during a disclosure-contingent separating episode (i.e.,

t ≥ t∗), player 1’s best response causes w(1) = βxl

1−β . It contradicts. On the other hand, suppose

that w(p−) is strictly decreasing in p−. Then, βw(0) > V . Therefore, w(1) = β(1−πH)
1−βπH

w(0) +
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πHxh+(1−πH)xl

1−βπH
< w(0). That is, w(0) > πHxh+(1−πH)xl

1−β . It contradicts with the assumption of

V < β{πHxh+(1−πH)xl}
1−β . Hence, Assumption 4.1 is satisfied. Also, w(p−) is strictly increasing in

p−. The desired result is achieved. ¤

Call the weakly-convergent characteristic of the stationary equilibrium as Markov stationarity.

Define τ(t) as number of dates elapsed since the last disclosure of state L at or prior to date t.

In addition, let τH(τ(t)) denote number of dates elapsed from the last high payment after the last

disclosing of state L at or prior to date t where we assume that τH(τ(t)) is not finite until high

payment is made after disclosing state L. Immediately,

Corollary 4.1. With respect to x̃, either the number of dates elapsed from the last disclosure τ or

player 2’s posterior belief of high state pτ−1 is a sufficient statistic.

Therefore, there exists a mapping f : [0, 1] → R+, which maps the posterior pτ−1 to the output

transfer amount xτ such that f(pτ−1) = x̃(pτ−1, Sτ ) for τ ≥ 1. Now, redefine time scale by τ . Also,

redefine value functions as follows: V (pτ ): Player 2’s value function evaluated at the beginning of

date τ ≥ 0 and U(Sτ+1, pτ ): Player 1’s value function for τ + 1 ≥ 1.

4.1.1. Application: International finance in the world’s poorest economies. This subsection studies

an application of the above model to international finance. In the model, a trade equilibrium would

require player 2’s outside options to be state-dependent, because Condition (4.1) in the Bayesian

game would hold almost surely only if the autarky threats are state-dependent (that is, player 1

and 2’s utility are positively correlated).13 More precisely, if the autarky threats are not state-

dependent, then player 1 could only pay low payment throughout the game. Then, it would lead

to autarky.

Corollary 4.2. If V L = V H , then autarky is the only equilibrium.

This result gives some insights into autarkic-financing features in the world’s poorest economies.

Very poor agricultural economies tend to be independent of world business cycles caused mainly

by manufacturing economies. Then, an external investor faces difficulty with sorting out privately-

observed outcomes in state-independent agricultural economies.14 Thus, the external investor could

13In general, if lender’s autarky utility level is state-independent, there might exist a trade equilibrium only if

V H ≥ β{πHxh+(1−πH )xl}
1−β

. By the model construction, borrower necessarily commits to the agreement except for

choosing reorganization defaults. So, lender could exploit much rent (i.e., V H ≥ β{πHxh+(1−πH )xl}
1−β

> V̄ H).

Also, in the equilibrium, the continuation utility tends to be negatively correlated between lender and borrower
dynamically. Such trade equilibrium is not interesting from an economic perspective. Therefore, this paper excludes
the case by imposing the restriction on lender’s autarky utility levels. that is, V H < V̄ H .

14Note again that we impose the parametric restriction on lender’s autarky utility.
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not threaten the borrower in the economies credibly, and so would have no incentive to commit to

the agreement, even if the borrower’s production level is not so low. Thus, the very poor agricultural

economies tend to live in financial autarky. This result might be of some relevance to many of the

world’s poorest economies such as Sudan.

4.2. Solutions. The solutions are as follows. While player 2’s posterior belief of high state is low

after state L occurs and it is verified by disclosure, player 2 commits to the agreement no matter

what disclosure action is taken, because player 2’s expected autarky lifetime utility is not sufficiently

high. Therefore, player 1’s best response is σ−l .
{
σ−l , C

}
is a pooling equilibrium for τ < τ∗ (Figure

3).

 

Nature 

Borrower 

L H 

(xl,+) (xl,-) (xl,-) 
(xh,-) 

(xl,+) 
(xh,+) 

C A C C C C C A A A A A 

Stage 3t 

Stage 3t+1 

Stage 3t+2 

Lender 

Figure 3. Stage game: Pooling epsiode

When player 2’s posterior belief of high state hits a threshold p∗ after a while, player 2’s expected

autarky lifetime utility becomes sufficiently high to threaten the low payment. As a result, if xl

is paid, then player 2 imposes autarky unless state L is verified by disclosure. On the other hand,

if xh is paid, then player 2 commits to the agreement no matter what disclosure action is taken.

Therefore, player 1’s best responses are σ+
l in state L and σ−h in state H.

{{
σ+

l , C
}

,
{
σ−h , C

}}

is a separating equilibrium. Hence, in the trade equilibrium, costly disclosures occur recurrently

only when player 2 believes that high state is probable while player 1 knows that true state is low

(Figure 4).



LOAN-DEFAULT NEGOTIATION 23

 

Nature 

Borrower 

L H 

(xl,+) (xl,-) (xl,-) 
(xh,-) 

(xl,+) 
(xh,+) 

C A C C C C C A A A A A 

Stage 3t 

Stage 3t+1 

Stage 3t+2 

Lender 

Figure 4. Stage game: Separating episode

Proposition 4.1. In a trade equilibrium, there exists τ∗ such that for τ < τ∗,
{
σ−l , C

}
is (pooling)

wSE in either state, while for τ ≥ τ∗,
{
σ+

l , C
}

in state L and
{
σ−h , C

}
in state H are (separating)

wSE.

Obviously, p∗ = pτ∗ . In addition, τH(τ∗) = 0. For τ < τ∗, the true state is not revealed from a

realized profile of payment process in equilibrium. This is because the existence of disclosure cost

interrupts state-revelation for low income level. In this model, player 2 cannot predict disclosures

and defaults specifically, but since he can observe player 1’s payment action each date, the existence

of the cost does not disturb ex ante agreement in a payoff-relevant way. More precisely, player 2

allows player 1 to make only the low payments for several subsequent dates after a default while

player 2 believes that the economy is in a recession. We may call the equilibrium situation as inertia.

A costly disclosure is a trigger to the inertia. The inertia provides player 1 with a reorganization

opportunity. The equilibrium default is a reorganization default. Then, once player 2 gets to believe

that the economy is booming, high payment is required for player 2’s commitment unless player 1

asks for a reorganization default by verifying his current low income level with the costly disclosure

technology. The dynamic default performance is a contrast to standard CSV models.

Next, define a payoff-contingent agreement γ := N× Σ → {A,C} with a dated menu list N× Σ

that deterministically announced before date 0. There, N× Σ is the dated message space, and the

corresponding outcome function is well characterized as above.
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Corollary 4.3. A payoff-contingent agreement γ with a date menu list: σ−l for τ < τ∗ and
{
σ+

l , σ−h
}

for τ ≥ τ∗ could enforce the same wSE outcomes as above.

This type of agreement may be called as being of a dynamic defaultable-debt type in the senses

that the payout processes are deterministically continuous on a.e. sample path, except for a count-

able, discrete set of discontinuities, and that player 1 has a right to default at any date by incurring

disclosure cost and to continue the relationship beyond the default.

Finally, we simulate a trading equilibrium for a certain sequence of shock realization, and an-

alyze comparative static with respect to structural parameters. Set β = 0.97, (L,H) = (1, 2),

(V L, V H) = (35, 39), (πL, πH) = (0.6, 0.96), z = 0.45, (xl, xh) = (0.8, 1.2). We achieve a trade

equilibrium as in Figure 5.
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Figure 5. Simulation

Given the dichotomous payment choice set, Assumptions 4.3,4.7 induce the upper and lower

bound zh, zl of z such that higher disclosure cost increases τ∗ (that is, lowers bankruptcy probability)

only if z ∈ [zl, zh]. If disclosure cost is too large to hold Assumption 4.3 (i.e., z > zh), then no
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disclosure occurs in state L even if the posterior is high, because the large disclosure cost would kill

the agreement opportunity. On the contrary, if disclosure cost is too small to hold Assumptions 4.3

and 4.7 (i.e., z < zl), then disclosure occurs in state H as well as in state L because player 2 prefers

truth. Either case leads to autarky equilibrium, although the cost environments are totally the

opposite. In particular, suppose that lowering disclosure cost causes the violation of Assumption

4.7. Then, σ+
l is the best response for either shock. Then, it does not save the disclosure cost

in equilibrium. Player 1 does not commit to the game form, and enforces autarky. Intuitively, it

means that more interim information revelation would kill the financing opportunity between the

two players.

5. Optimal contract

This section generalizes the above dichotomous payment game formulation into an optimal con-

tracting problem. The modifications are as follows. First, with respect to the game form, the di-

chotomous payment choice set {xl, xh} is removed. So is the feasibility restriction xl < L < xh < H.

Instead, during date-t component game (each t ∈ T ), at stage 3t + 1, player 1 decides whether or

not to disclose his current state. Subsequently, at stage 3t+ 3
2 , player 1 makes a voluntary payment

(See the modified component game form in Figure 6).

 

[Nature] 

[Borrower] 

L H 

+ - - + 

C A C C C A A A 

Stage 3t 

Stage 3t+1 

Stage 3t+2 

[Lender] 

Stage 3t+3/2 

[Borrower] 
F F F F 

Figure 6. Modified Game Form

Therefore, with respect to stationary Markovian strategy mappings, player 1’s disclosure strategy

is represented by a mapping m̃ : [0, 1] × {L,H} → {−,+}, that is, mt = m̃ (pt−1, St). Player 1’s
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voluntary payment strategy is defined as a mapping F : [0, 1] × {L,H} × {−, +} → R+, that is,

xt = F (pt−1, St,mt). Payment must be feasible in the sense that for each t, St−F (pt, St,mt) ≥ 0.

Player 2’s autarky enforcement strategy is formalized as a mapping ã : {−, +}×R+×[0, 1] → {A,C},
that is, at = ã (mt, xt, pt), where pt is revised from pt−1 after mt, xt are realized.

Second, instead of imposing the exogenous threats {V L, V H}, we presume an endogenous

threat formulation induced by player 2’s self-production, which is less productive in either state

than player 1’s production. Precisely, if player 2 repossesses his capital, then he starts his self-

production. Notice that, like the game approach, once he repossesses the capital, he must keep

it forever. We presume that his income process is subject to the same Markov chain shocks as

player 1’s. This means that the Markov shock process is a common macro shock process. Let the

outcome be denoted by aL in L and aH in H with 0 ≤ aL ≤ aH < H and aL < L. Also, under the

self-production, player 2 can observe his own outcome with perfect accuracy. Note that we have

assumed that only producers can see the realized shocks. We still presume that player 2 decides

autarky enforcement decision after receiving player 1’s voluntary payment at the current date, and

that if autarky is enforced, the current true state is revealed to player 2 costlessly. Then, let VL

(or VH) denote player 2’s life-time self-production value in case the previous-date state is L (or H).

That is,

VH =
aH {(1− β)πH + β (1− πL)}+ aL (1− πH)
(1− βπH) (1− βπL)− β2 (1− πH) (1− πL)

,

VL =
aH (1− πL) + aL {(1− β) πL + β (1− πH)}
(1− βπH) (1− βπL)− β2 (1− πH) (1− πL)

Therefore, VH ≥ VL with equality only if aH = aL. Let VA (pt) denote player 2’s expected lifetime

self-production value from date t + 1 onwards given his current posterior belief pt after observing

player 1’s current actions:

VA (pt) = (1− pt)VL + ptVH .

That is, βVA (pt) works as expected autarky threat in date-t component game for each t ∈ T .

Now, again, focus on a stationary Markovian wSE, in particular a stationary Markovian trade

equilibrium. Induce a temporary screening condition for t ∈ T ,

(5.1) If F (µ (pt−1) , L, 0) ≥ F (0, L, 1) + z + β {y(L, w(µ (pt−1)))− y (L,w(0))} ,

then F (1,H, 0) is paid in H while default occurs in L.
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In the similar way to the game approach,

Lemma 5.1. A trade equilibrium is achieved only if Condition (5.1) is satisfied for all t.

In a trade equilibrium, a disclosure can occur only in state L. In words, player 1 asks for payment

allowance in a recession when payment has become too high while in an default inertia. Hence, we

can guess straightforwardly that either player 2’s posterior belief or the number of dates elapsed

from the last disclosure of L is a sufficient statistic for the voluntary payment. We may also write

the voluntary payment function F (pt) in equilibrium. Therefore, we define players’ continuation

utility as in the game approach unless it causes any confusion.

Now, we solve for an optimal contract. The solution method consists of two steps in the similar

way to the game approach: We first impose several assumptions, some of which put restrictions on

endogenous variables, and show there exists a stationary Markovian trade equilibrium under the

assumptions, and second conversely show that if there is a trade equilibrium, then it satisfies all

the assumptions.

Assumptions are as follows. First,

Assumption 5.1. aL < aH .

This implies that the autarky threats are state-dependent. This is required for player 1 and 2’s

utility to be positively correlated in equilibrium. Without this assumption, player 2’s continuation

utility would be no higher than his utility level in a wSE equilibrium. Second, assume that episode

(1) occurs in equilibrium:

Assumption 5.2. F (µ (pt−1) , L, 0) ≥ F (0, L, 1)+z+β {y(L, w(µ (pt−1)))− y (L, w(0))} for some

t almost surely.

This corresponds to Assumption 4.2 in the game approach. Assumption 5.1 is necessary to

this assumption. At least, if F (µ (pt−1) , L, 0) exceeds L, then the payment itself would reveal his

current true state H. Physically, if aL, aH are sufficiently high that Assumption 5.2 holds, then VA

would become high enough to threaten player 1 to reveal his true state for some t almost surely.

Without this assumption, a trade equilibrium would not be achieved. Finally, as to the screening

conditions,

Assumption 5.3. Condition (5.1) is satisfied for all t.

Due to Lemma 5.1, this assumption is required to achieve a trade equilibrium. In addition,

it corresponds to Assumptions 4.4-4.7. Define a one-step recursion operator T : C(Z) → C(Z)
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regarding player 1’s best response program given player 2’s optimal actions, that is, a mapping from

a continuous function of the extended state variables Z (i.e., Z = {p−, S, w (p−) , VA (µ (p−))}) to

a continuous function of the extended state variables Z as follows:

T (u)(Z) = sup
(m,F )

S − F (p)− 1mz + βE1
t [u(Z ′) | S]

s.t. (i) p = ψ (p−, σ) = λ(p−, σ) · 0 + η(p−, σ) · 1 + {1− λ(p−, σ)− η(p−, σ)} · µ(p−)

(ii) S′ = S with probability πS >
1
2

and

S′ 6= S with probability 1− πS where
1
2

< πL < πH

(iii)(a) If F (µ (p−) , L, 0) < F (0, L, 1) + z + β {y(L,w(µ (p−)))− y (L,w(0))} , then

w(p−) ≤ F (µ (p−)) + βw(µ (p−)) where w(µ (p−)) = VA(µ (p−)).

(b) Or else F (1,H, 0) is paid in H while a default occurs in L.

where µ (p−) = (πL +πH −1)p−+(1−πL) and VA(p) = (1− p)VL +pVH . Therefore, in the similar

to the proof of Theorem 4.1,

Theorem 5.1. Suppose that Assumptions 5.1-5.3 are satisfied. Then there exists a trade equilib-

rium characterized by a stationary value function u such that u = u∗. A transition function on the

Markov shocks converges weakly to invariant probability distributions that have a cycle. Conversely,

if there is a trade equilibrium, then it satisfies Assumptions 5.1-5.3. Further, the optimal contract

is of a defaultable debt type.

In words, in the optimal contracting, player 1 makes a payment insuring player 2’s autarky utility

level so long as the temporary screening condition (5.1) is slack. Once the screening condition (5.1)

binds, player 1 reveals his true state. In particular, when he encounters state L, he discloses the

current state to player 2 and asks for payment allowance. It shows a positive role of costly default.

With respect to the optimal default and payment performance, a payment function F (p(t)) is

increasing concavely for 0 ≤ p(t) < 1, while it is constant for p(t) = 1 (Figure 7). Then,

Corollary 5.1. In a trade equilibrium, there exists a deterministic time τ∗ such that for τ < τ∗,

{F (pτ ) , C} is a pooling wSE in either state, while for τ ≥ τ∗, {F (0) , C} in state L and {F (1) , C}
in state H are separating wSE. In particular, the equilibrium payment levels during the inertia

episode are increasing concavely in the number of dates elapsed from the last disclosure of L. Also,

there exists a corresponding payoff-contingent payment rule.
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Figure 7. Equilibrium Payment Performance

Hence, essentially, both the equilibrium default and payment performance are grasped by the

above dichotomous payment game approach, except for time-dependent payment profiles during

inertia episodes.

6. Concluding remarks

This paper studied sequential costly state verifications in an infinite horizon principal-agent

model with first-order Markov technology shocks. Two main results were obtained: (1) If lender’s

autarky utility level is state-independent, then no trade (i.e., autarky) is the only equilibrium, (2) If

lender’s autarky utility level is state-dependent, and with some particular parametric assumptions,

then there exists a trade equilibrium where costly disclosures occur recurrently only when lender

believes that high state is probable while borrower knows that true state is low.

I conclude by pointing out the model’s limitations and possibilities of future extensions. First,

this paper restricts the discussions to several specific physical and informational structures for stress-

ing the effect of default on ex ante agreement in costly information environment with Markovian

technological structure. However, the simple specifications seem to cause some limited applicabil-

ity to actual financial economy. Precisely, first, the risk-neutrality assumption is restrictive from

an empirical perspective. Also theoretically, as Hellwig [10] discusses, the risk-aversion of players
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might cause the suboptimality of a debt-type contract because a loan contract should play both

the roles of insurance and financing. Second, more importantly, the simple principal-agent frame-

work might be another limitation. Especially, the framework might cause difficulty with dealing

with competitive security pricing. In actual financial contracts, competitive solutions, rather than

autarky levels, might formulate credible threats. In addition, it is known that a competition among

mechanism designers might lead to a failure of the standard revelation principle (Epstein-Peters

[6]). Therefore, the extension to a multi-player competition framework could be non-trivial to study

actual defaultable securities.15

Secondly, empirical research is beyond the scope of this paper, although the results proved here

provide a basis for such research. There exists enormous empirical finance literature of defaultable

bonds such as Duffie-Singleton [5]. It, however, has often presumed that a default time arrives

based on exogenously-given stochastic processes such as Poisson processes, and has had difficulty

with disentangling credit events and liquidity factors in high yield spreads in debt pricing. Our

model may provide a better framework to elaborate analytically a role of loan-default negotiation

in defaultable bond pricing (e.g. Nakamura [23] [24]).
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