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Abstract

This study provides an explanation of the emergence of power laws in trading

volume and asset returns. In the model, traders infer other traders’ private

signals regarding the value of an asset from their actions and adjust their own

behavior accordingly. When the number of traders is large and the signals for

asset value are noisy, this leads to power laws for equilibrium volume and returns.

We also provide numerical results showing that the model reproduces observed

distributions of daily stock volume and returns.
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1 Introduction

Recently, the literature on empirical finance has converged on a broad consensus: Daily

returns in equities, foreign exchange and commodities obey a power law. This striking

property of high frequency returns has been found across both space and time through

a variety of statistical procedures, from conditional likelihood methods and nonpara-

metric tail decay estimation to straightforward log-log regression.1 A power law has

also been obtained for trading volume by Gopikrishnan et al. [23] and Plerou et al.

[49].

While the heavy-tailed nature of returns is well understood (see, e.g., Fama [19],

Mandelbrot [40] and many other authors2), these new power law findings are highly

significant, mainly because extreme outcomes are by definition rare, so attempts to esti-

mate any prices or quantities with tail risk sensitivity through nonparametric methods

are deeply problematic (Salhi et al. [50]). Thus, information on the specific functional

form of the tails of these distributions has great value for theorists, econometricians

and practitioners. In addition, even elementary concepts from financial and economic

theory—such as the benefits of diversification in the presence of risk—are sensitive to

the precise nature of the tail properties of returns (see, e.g., Ibragimov [28]).

In this paper we respond to the developing empirical consensus by building a

simultaneous-move herding model of asset markets that generates a power law in both

1For examples of recent empirical studies see Jansen and de Vries [29], Lux [37], Cont et al. [16],

Gopikrishnan et al. [22], Ibragimov et al. [27] and Ankudinov et al. [3]. For overviews of the literature

see Lux and Alfarano [38] or Gabaix [20].
2In the financial econometrics literature, for example, de Haan et al. [18] and Stein and Stein [54]

incorporated high kurtosis under GARCH processes, Salhi et al. [50] proposed a regime switching

model, and Cont and Tankov [17] and Kyprianou et al. [34] adopted jump-diffusion processes and

Lévy processes to asset pricing.
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volume and price. The underlying driver of this power law is asymmetric information

on the value of assets. In particular, private information on the value of an asset is

dispersed among many traders. The action of buying suggests a positive private signal.

However, when traders’ action space is coarser than their private signal, their actions

only partially reveal private information. As a result of discreteness of the action space,

a single trader’s action can cause an avalanche of similar actions by other traders. This

avalanche leads to power laws in volume and returns.

The mathematical framework behind our power law is as follows: Consider the first

passage time of a stochastic process to zero, where zero represents market equilibrium

and the first passage time represents the resulting number of buyers. It is known that,

while a supermartingale dies down exponentially and a submartingale diverges with a

positive probability, a martingale exhibits a criticality: its first passage time follows

a power law distribution. We show that, in the model developed below, herding does

indeed obey a martingale, due to the fact that one buying trader induces on average

one other buying trader.

The intuition for this last fact is similar to Keynes’ beauty contest: When an

investor has an incentive to imitate the average behavior of n traders, the act of buying

by one trader has 1/n impact on the other traders’ behavior. While this would lead to a

continuum of equilibria if the trader’s action were continuous, discreteness of the action

space implies that the equilibrium is locally unique, with the property that buying by

one trader raises the other traders’ likelihood of buying by 1/n.

Our model builds on the herd behavior literature, which connects asymmetric in-

formation to excess volatility and kurtosis in asset pricing. The models of herding

and information cascades proposed by Banerjee [7] and Bikhchandani, Hirshleifer and
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Welch [8] have been employed to examine financial market fluctuations.3 In particular,

Gul and Lundholm [25] demonstrated the emergence of stochastic clustering by endog-

enizing traders’ choice of waiting time. Moreover, signal properties leading to herding

behavior in sequential trading were identified by Smith and Sørensen [51] and Park

and Sabourian [48]. We inherit the spirit of these models in which the asymmetric in-

formation among traders results in clustering behavior and market volatility. However,

none of these models generate a power law of financial fluctuations specifically.

Other market microstructure models have served as inspiration for components of

our research. For example, our model draws on Minehart and Scotchmer [41], where

a large number of informed traders simultaneously choose between buying one unit of

an asset or not buying the asset at all. Informed traders submit demand schedules

conditional on all possible prices, rather than choosing an action unconditionally on

prices. This type of market competition was formulated as Nash equilibria in supply

functions by Grossman [24] and Klemperer and Meyer [32], which have been introduced

to the analysis of asset markets with private signals by Kyle [33], Vives [56], and Attar,

Mariotti and Salanié [4]. However, none of these models lead to a power law. We employ

the supply function equilibrium with private signals in asset markets, and extend it to

the case where the action is discrete—buy or not buy. This restriction on action space

leads to power laws in equilibrium.

There are other models that generate a power law of returns. For example, models

of critical phenomena in statistical physics have been applied to herding behevior in

financial markets,4 in which a power law emerges if traders’ connectivity parameter falls

3See, e.g., Caplin and Leahy [11], Lee [35], Chari and Kehoe [13], and Cipriani and Guarino [14].

For extensive surveys, see Brunnermeier [9], Chamley [12], and Vives [55].
4Studies in this literature include Bak, Paczuski, and Shubik [6]; Cont and Bouchaud [15]; Stauffer

and Sornette [53].
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at criticality. These studies do not, however, address why trader connectivity should

exhibit criticality. In contrast, herding follows a martingale in our model as a result of

an equilibrium process. Nirei [44] sketched out the basic idea that herd behavior can

generate power-law size of cascades in the environment similar to Orléan [47], but fell

short of substantiating the claim with rigorous analysis.

In another strand of the literature, Lux and Sornette [39] show that a stochastic ra-

tional bubble can generate a power law. Gabaix et al. [21] also show the power laws of

trading volume and price changes if the amount of funds managed by traders follows a

power law. In contrast to these explanations, we focus on the role of asymmetric infor-

mation that results in herding behavior of investors. Many studies have associated the

asymmetric information with financial phenomena such as crises, cascades and herding,

from a historical account of crises by Mishkin [42] to the estimation of information con-

tent of trading volume on prices by Hasbrouck [26]. The latter noted, “Central to the

analysis of market microstructure is the notion that in a market with asymmetrically

informed agents, trades convey information and therefore cause a persistent impact

on the security price.” The present study seeks to link the investor behavior under

asymmetric information to the ubiquitously observed power-law fluctuations.

The remainder of the study is organized as follows. Section 2 presents the model.

Section 3.1 analytically shows that a power-law distribution emerges for trading volume

when the number of traders tends to infinity, and provides an intuition for the mecha-

nism behind it. Section 3.2 shows that a power law is obtained for returns. Section 3.3

numerically confirms that the equilibrium volumes follow a power law under a finite

number of traders, and that the equilibrium return distribution matches its empirical

counterpart. Section 4 concludes.
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2 Model

In this section we describe the basic features of the model, including the nature of the

asset market and the definition of equilibrium.

2.1 Market

The asset market consists of n informed traders, a continuum of uninformed traders

and an auctioneer. The uninformed traders supply a single asset and informed traders

demand it.5 The asset has common intrinsic value 1 in state H and 0 in state L. The

true state is not known to any market participant. All hold a common prior belief

Pr(H) = Pr(L) = 0.5.

Let S(p) denote aggregate supply of the uninformed traders at price p. We assume

that S is continuously differentiable and strictly increasing with S(0.5) = 0, so that

aggregate supply is zero at the price level that reflects common prior belief. We also

assume that p̄ := S−1(1) < 1, implying an upper bound on equilibrium price below the

maximum value of the asset.

Each informed trader chooses whether or not to buy a single trading unit, set to

1/n so as to normalize maximum total demand to unity. Hence aggregate demand

takes values from discrete set {0, 1/n, . . . , 1}. The equilibrium price P ∗ takes values

in P := {p0, p1, . . . , pn}, where pm for m ∈ {0, 1, . . . , n} is determined by the market-

clearing condition S(pm) = m/n.

Informed traders receive private signals that are correlated with the state. Signal

5We later discuss the case when both uninformed and informed traders can buy and sell. The

informational asymmetry between informed and uninformed traders in this model is similar to event

uncertainty, as introduced by Avery and Zemsky [5] as a condition for herding to occur in financial

markets.
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Xi is iid across i with conditional cumulative distribution function F s for s = H,L.

The two distributions have common bounded support X := [x, x̄] ⊂ R.

Each informed trader i = 1, 2, . . . , n submits his demand function to the auctioneer.

The demand function describes his action for each realization of price, given his private

signal. The permissible set of demand functions is D = {di : X 7→ {0, 1}P1}, where

P1 := P\{p0} = {p1, p2, . . . , pn}. Note that p0 is excluded from P1 because p0 cannot be

realized in equilibrium if any trader, including i, chooses buying at p0. Thus, traders

are allowed to demand assets only at prices strictly greater than p0. The demand

function indicates buying at p when di(p | xi) = 1 and not-buying when di(p | xi) = 0.

Let x = (xi)
n
i=1 denote a profile of private signals. Aggregate demand expressed in

terms of the number of buying traders is D(p | x) :=
∑n

i=1 di(p | xi), which maps X n

to {0, 1, . . . , n}P1 .

Decisions take place under the following timing. First, nature sets the state s ∈

{H,L}. Second, a signal profile x is drawn from conditional distribution (F s)n. Third,

informed traders submit demand function di(p | xi) to the auctioneer. Fourth, the

auctioneer determines equilibrium price p∗ through the following protocol: If D(p1 |

x) = 0, then the auctioneer sets p∗ = p0, since no informed trader is willing to buy given

that all other traders do not buy. If D(p1 | x) > 0, then the auctioneer determines

p∗ > p0 such that S(p∗) = D(p∗,x)/n. Finally, transactions take place. A unit of

asset is delivered to informed trader i with di(p
∗ | xi) = 1. The equilibrium number of

buying traders is determined as m∗ := D(p∗ | x).6

6The model may be extended to the case where informed traders can sell as well as buy or not buy

the asset. In the extended model, there are uninformed traders on both supply and demand sides.

An informed trader submits a demand function d that can take values 1, 0, or −1. The auctioneer

stipulates that no transactions take place if there exist non-zero traders buying at p1 and selling at

p−1. In this way, informed traders always transact against uninformed traders as in the original model.
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Since the asset has common value 1 in H and 0 in L while its purchase cost is p, a

buying trader (di(p | xi) = 1) obtains payoff 1− p in state H and −p in L, whereas a

not-buying trader (di(p | xi) = 0) obtains 0 in either state. We assume that informed

traders are risk-neutral and maximize their expected payoff. The expected payoff for

the choice di(p | xi) = 0 is 0 regardless of i’s belief. The expected payoff for the choice

di(p | xi) = 1 is ri(p, xi)− p, where ri(p, xi) := Pr(H | p, xi, di(p | xi) = 1) denotes the

probability of s = H conditional on that trader i receives signal xi and buys at p and

that p is an equilibrium price. Given xi and di(pm | xi) = 1, pm is an equilibrium price

if and only if there are m−1 other traders buying at pm, i.e.,
∑

j 6=i dj(pm | xj) = m−1.

Let Ωm,i denote such an event: Ωm,i := {(xj)j 6=i :
∑

j 6=i dj(pm | xj) = m−1}. Moreover,

xi is independent of other traders’ decisions dj conditional on m. Therefore, we can

write the conditional probability as follows for any m ∈ {1, 2, . . . , n}.

ri(pm, xi) =
Pr(Ωm,i, xi, H)

Pr(Ωm,i, xi)
=

Pr(Ωm,i | H)

Pr(Ωm,i, xi)
Pr(xi | H) Pr(H) (1)

A Bayesian Nash equilibrium consists of a profile of informed traders’ demand func-

tions di : X 7→ {0, 1}P1 , a profile of conditional probabilities ri(p, xi), and equilibrium

price correspondence p∗ for (X ,P) such that (i) for any i = 1, 2, . . . , n, and given dj

for j 6= i, there is no other function d′i ∈ D that achieves an expected payoff greater

than that achieved by di, (ii) for any i = 1, 2, . . . , n, ri(p, xi) is consistent with demand

functions {dj}j and equilibrium price correspondence p∗, and (iii) p∗ clears the market:

S(p∗) =
∑n

i=1 di(p
∗, xi)/n, ∀x ∈ X n.

2.2 Signal

We are concerned with the case where there are many informed traders who receive

private signals of the state, and where the informativeness of the signal is small. Thus,
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we consider a series of markets indexed by the number of informed traders, n. The

density function of F s
n, the distribution of the private signal, is denoted by f sn, for

s = H,L. We order the signal based on the monotone likelihood ratio property (MLRP)

such that the likelihood ratio `n := fHn /f
L
n is strictly increasing. This property holds

for a signal with two states without loss of generality. We further assume that f sn

is continuous, bounded, strictly positive over X , and has a bounded derivative. The

likelihood ratio `n(x) represents how likely the state is H when the signal is x.

We also define likelihood ratios Λn(x) := (1 − FH
n (x))/(1 − FL

n (x)) and λn(x) :=

FH
n (x)/FL

n (x). Λn(x) expresses the likelihood when the signal is greater than x. Thus,

a trader’s bidding action reveals the information Λn(x) to observers of the action under

a decision rule that a trader buys only if the signal is greater than x. Similarly, λn(x)

is the likelihood when the signal is smaller than x, and it is the information revealed

by inaction of the trader.

The likelihood ratios satisfy Λn(x) = λn(x̄) = 1, limx→x λn(x) = `n(x), and

limx→x̄ Λn(x) = `n(x̄) (obtained using L’Hopital’s rule). Also, MLRP implies 0 <

λn(x) < `n(x) < Λn(x) for any x interior of X as in Smith and Sørensen [51], and

strictly increasing likelihood ratios: Λ′n(x) > 0 and λ′n(x) > 0 (see Appendix for

proof). Figure 1 depicts these properties of the likelihood ratios.

2.3 Traders’ optimal strategy

As we saw previously, choice di(p, xi) = 1 yields expected payoff ri(p, xi)− p, whereas

choice di(p, xi) = 0 results in expected payoff 0 regardless of ri. Therefore, trader

i chooses di(p, xi) = 1 if and only if ri(p, xi) ≥ p. This condition is equivalent to

ρi(p, xi) ≥ p/(1−p), where ρi(p, xi) := ri(p, xi)/(1−ri(p, xi)) is a conditional likelihood

ratio for i with private signal xi and decision di(p, xi) = 1.
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Figure 1: Likelihood ratios `n = fHn /f
L
n , λn = FH

n /F
L
n , and Λn = (1− FH

n )/(1− FL
n )

The decision rule is characterized by a threshold under our two-state environment.

Using (1) and Pr(H) = Pr(L) = 0.5, we obtain

ρi(p, xi) =
Pr(Ωm,i | H)

Pr(Ωm,i | L)
`n(xi). (2)

Since `n(xi) is continuous and strictly increasing, ρi(pm, xi) is continuous and strictly

increasing in xi for any pm. Therefore, for each pm ∈ P1, there exists threshold σ ∈ X

such that it is optimal for trader i to buy if and only if xi ≥ σ. The threshold σ

indicates either an indifference level of signal ρi(pm, σ) = pm/(1 − pm) or a corner

solution σ = x, x̄ for each m. We denote a threshold function as σ : {1, 2, . . . , n} 7→ X .

Trader i’s optimal demand function follows a threshold rule

di(pm, xi) =

 1 if xi ≥ σ(m),

0 otherwise,

for each pm ∈ P1.

A buying trader at price pm can infer that there are m− 1 other buying traders at

pm if the price is realized under the stipulated rule for the auctioneer. Moreover, the
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threshold function σ(m) is common for all informed traders. Thus, a buying trader

can infer that, for pm to occur, there must be m− 1 other traders who receive signals

greater than σ(m) and n−m traders who receive signals smaller than σ(m). Such an

event occurs with probability

Pr(Ωm,i | s) =

(
n− 1

m− 1

)
(1− F s

n(σ(m)))m−1F s
n(σ(m))n−m

for each state s ∈ {H,L}, since the probability of receiving signal smaller than σ is

F s
n(σ). Therefore, the likelihood ratio for pm to occur is

Pr(Ωm,i | H)

Pr(Ωm,i | L)
=

(
1− FH

n (σ(m))

1− FL
n (σ(m))

)m−1(
FH
n (σ(m))

FL
n (σ(m))

)n−m
= Λn(σ(m))m−1λn(σ(m))n−m.

Substituting into (2), we obtain ρi(pm, xi) = Λn(σ(m))m−1λn(σ(m))n−m`n(xi). Thus,

the threshold σ(m) for m ∈ {1, 2, . . . , n} is implicitly determined by

pm
1− pm

= λn(σ)n−mΛn(σ)m−1`n(σ) (3)

if an interior solution σ exists.

Equation (3) is the key to the subsequent analysis. The right-hand side shows the

likelihood ratio of the posterior belief of a trader who receives signal xi = σ(m) and

buys at pm. This equation determines the threshold level of signal σ(m) at which a

trader is indifferent between buying and not-buying given pm. Due to the threshold

behavior shown above, we obtain aggregate demand D(pm,x) by counting the number

of informed traders with xi ≥ σ(m).

With this setup, the more informed traders buy, the more signals in favor of H are

revealed. This further encourages informed traders to buy. The resulting aggregate

demand curve is upward sloping if the signal revealed by larger demand has a greater
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effect on expected payoff than an increase in purchasing costs caused by the demand

does.

We formalize this environment as follows. Let δn denote the minimum distance

between Λn and λn in logarithm: δn := minx∈X (log Λn(x)− log λn(x)). We assume the

following property on the series of likelihood ratio functions.

Assumption 1. There exists a triplet (no, ξ, δ) such that no < ∞, ξ ∈ (0, 1), δ ∈

(0,∞), and δn > δ/nξ for any n > no.

Assumption 1 sets the lower bound on the informativeness of signal. It allows the

signal to deteriorate to pure noise as n→∞, but the speed of convergence to the pure

noise is strictly slower than 1/n.

With this setup, we obtain the following proposition stating that the aggregate

demand curve is upward sloping when n is sufficiently large.

Proposition 1. Under Assumption 1, there exists an integer no such that for any

n > no, the threshold level of signal σ(m) is decreasing in m and the aggregate demand

D(pm,x) is increasing in m.

Proofs are deferred to Appendix unless otherwise stated.

Figure 2 depicts an aggregate demand curve D(p,x). The upward-sloping aggregate

demand indicates the presence of strategic complementarity in informed traders’ buying

decisions through the information revealed by price: a higher price indicates that there

are more informed traders who receive high signals.7

The number of informed traders n needs to be large in order to obtain the upward

sloping demand curve in our model. The increment in price pm+1/pm caused by an

7The mechanism in which demand feeds on itself is reminiscent of Bulow and Klemperer [10]’s

“rational frenzies.”
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Figure 2: An equilibrium outcome for a realization of signal profile x

increase in demand m is of order 1/n. Thus, when n is small, purchasing costs can

increase quickly due to limited supply and overwhelm the effect of signal revealed by

the increase in demand, leading to a downward sloping demand curve. Given that

the signal does not deteriorate as fast as 1/n, the aggregate demand curve is upward

sloping for sufficiently large n. With the upward sloping demand function, we establish

the existence of equilibrium in a finite economy as follows.

Proposition 2. Under Assumption 1, for any n > no, there exists an equilibrium

outcome (p∗,m∗) for each realization of x.

While multiple equilibria may exist for each realization of x, we focus on the case

where the auctioneer selects the minimum number of buying traders among possible

equilibria, m†, for each x.8 Note that this equilibrium selection uniquely maps each

8By assuming that the auctioneer selects the minimum number of buying traders, we exclude
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realization of x to m†. Thus, M †
n is a random variable whose probability distribution

is determined by the probability distribution of (Xn,i)
n
i=1 and the equilibrium selection

mapping.

3 Results

3.1 Derivation of the power law

Next we characterize the minimum equilibrium aggregate trading volume M †
n and show

that it follows a power law distribution asymptotically in n. Since the asset price in

this model is determined by the equilibrium condition S(p∗) = m†/n, the power law

for the trading volume also implies a fat-tailed distribution of the equilibrium price P ∗.

In order to characterize M †
n, we introduce a stochastic process that counts the

number of traders who receive signal greater than x. Such a process is expressed as∑n
i=1 IXn,i≥x, where I is an indicator function: I = 1 if Xn,i ≥ x and I = 0 otherwise.

As x travels from maximum x̄ to minimum x, this process generates an increasing

number of buying traders. Now, we replace x with the threshold level of signal, σ(m).

Then,
∑n

i=1 IXn,i≥σ(m) indicates the number of traders with private information greater

than threshold σ(m). For each realization of x,
∑n

i=1 Ixi≥σ(m) is increasing in m because

σn(m) is decreasing in m by Proposition 1. Equilibrium m† is determined as the point

where this counting process achieves m† for the level of signal σ(m†) for the first time.

Namely, by appropriately defining the counting process, M †
n can be formulated as a

first passage time for the process to cut through the diagonal where time and counts

coincide. We construct such a counting process below. Throughout this analysis, we

fluctuations that arise purely from informational coordination such as in sunspot equilibria. Even

with this rule, we show that the equilibrium price exhibits large fluctuations.
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specify that the underlying random variable Xn,i follows FH
n , assuming that the true

state is H.

Equation (3) implicitly determines threshold σ continuously when m is a real vari-

able. By using the continuous threshold function, we define a change of variable as

t = σ−1(x). Note that t = m for m ∈ {1, 2, . . . , n}. Using t = σ−1(x) and fHn (x), the

probability density function defined over t is obtained as fHn (σ(t))|σ′(t)| for sufficiently

large n > no, because σ(t) is monotone in t for such n. Then, we construct a counting

process Γ(t) :=
∑n

i=1 Iσ−1(Xn,i)≥t.
9

When t increases from t to t + dt, the threshold σ(t) decreases. Thus, a trader

who chooses to buy before t continues to buy at t+ dt, whereas a trader who chooses

not to buy before t might switch to buying at t+ dt. The conditional probability of a

non-buying trader switching to buying between t and t + dt for a small dt is equal to

πn(t)dt := fHn (σ(t))|σ′(t)|dt/FH
n (σ(t)). Thus, the number of traders who buy between

t and t+ dt for the first time, conditional on Γ(t), follows a binomial distribution with

population parameter n − Γ(t) and probability parameter πn(t)dt. Γ(1) indicates the

number of traders with xi ≥ σ(1). Thus, the distribution of Γ(1) follows a binomial

distribution with population n and probability πon := 1 − FH
n (σ(1)). This completes

the definition of the stochastic process Γ(t) for t ∈ [1, n].

Let φn(t)dt denote the mean of Γ(t + dt) − Γ(t) for a small dt. Thus, φn(t) :=

πn(t)(n−Γ(t)). For a finite Γ(t), the binomial distribution of Γ(t+dt)−Γ(t) converges

to a Poisson distribution with mean φn(t)dt as n→∞. Hence, for sufficiently large n,

Γ(t) asymptotically follows a Poisson process with time-dependent intensity φn(t).

9Γ(t) differs from Γx(m) defined in Appendix (Proof of Proposition 2) in two regards. First, Γ(t)

is not conditional on x. Thus, Γ(t) is a random variable. Second, Γ(t) is defined over a transformed

variable of signal, t = σ−1(x). Despite these differences, both Γ(t) and Γx(m) share the property that

they count the number of traders with private signal greater than some threshold.
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In line with our concern with high-frequency fluctuations in volume and price, we

formalize the idea that the signal tends to pure noise in this series of markets as n

increases as follows:

Assumption 2. As n→∞, `n(x) converges to 1 uniformly in X .

Assumption 2 holds in short time intervals when the signal received by traders tends

to be noisy. Along with Assumption 1, we consider an asymptotic case where the signal

contains vanishingly small information on the fundamental value of an asset, and yet

the informativeness is larger than the impact of increasing purchasing costs.

Under this environment, it turns out that the intensity function φn converges to 1

as n→∞, as stated in the following lemma.

Lemma 1. Under Assumptions 1 and 2, Γ(t) asymptotically follows a Poisson process

with intensity 1 as n→∞.

The unitary intensity φn = 1 implies that the mean number of informed traders

who switch to buying from non-buying after observing an informed trader buying is

equal to 1.

Since Γ(1) = 0 indicates that no trader receives private signal greater than σ(1),

the equilibrium volume in this case is m† = 0. When Γ(1) = 1, one trader is willing

to buy at p1. Thus, the equilibrium volume is m† = 1. When Γ(1) > 1, the minimum

equilibrium volume m† is the minimum integer that satisfies Γ(m†) = m†. Thus, when

Γ(1) > 1, m† can be interpreted as the first passage time t at which Γ(t) achieves the

level t.

We focus on the first passage time conditional on Γ(1) > 1. It is convenient to

shift the time variable so that it starts from 0. We define G(t) := Γ(t + 1) and

ϕn(t) := φn(t + 1) for t ∈ [0, n − 1]. Note that, when Γ(m†) = m† is achieved,
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m†−Γ(1) = Γ(m†)−Γ(1) = G(m†− 1)−G(0) holds. Thus, m†− 1 corresponds to the

first passage time of G(t) reaching t with initial condition G(0) = Γ(1)− 1 > 0. Let a

positive integer co > 0 denote the initial value G(0).

G(t) asymptotically follows a Poisson process with intensity ϕn(t) and G(0) = co,

as n becomes large. Let τϕn(·) denote the first passage time of G(t) reaching t. Then,

τϕn(·) is also the first passage time of G(t) − G(0) reaching t − co. Let us define N(t)

as the Poisson process with constant intensity 1 and N(0) = 0. Then, τ1 denotes the

first passage time of N(t) reaching t − co. An inhomogeneous Poisson process with

intensity ϕn(t) for t ≥ 0 can be transformed by a change of time to a homogeneous

Poisson process as N(
∫ t

0
ϕn(u)du). Thus, the first passage time we consider is

τϕn(·) := inf

{
t ≥ 0 | N

(∫ t

0

ϕn(u)du

)
≤ t− co

}
,

where inf ∅ :=∞ by convention.

We consider a case where `n uniformly converges to 1 as n → ∞ (Assumption 2),

which implies that signal Xn,i is close to a pure noise. This case occurs, for example,

in short-term tradings in which the information content traders obtain from signals

during a trading period is quite small. With this setup, the following lemma establishes

that the first passage time of the inhomogeneous Poisson process G(t) converges in

distribution to the first passage time of the standard Poisson process N(t).

Lemma 2. Under Assumptions 1 and 2, τϕn(·) converges in distribution to τ1 as n→

∞.

We have shown that the minimum equilibrium number of buying traders M †
n, condi-

tional on M †
n > 1, has the same distribution as the stopping time: inf{t > 1 | Γ(t) = t}.

This M †
n corresponds to τϕn + 1, since G is shifted from Γ in time by 1. Lemma 2 then

shows that τϕn converges in distribution to τ1 for large n. Hence, we have shown that
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the distribution of τ1 + 1 characterizes the distribution of M †
n conditional on M †

n > 1

asymptotically for large n.

We can further derive the distribution function of τ1 explicitly, using the fact that

τ1 has the same distribution function as the sum of a branching process. The stopping

time τ1 follows the same distribution as M †
n − 1 conditional on that there are Γ(1) =

co+1 > 1 traders who receive private signal xi ≥ σ(1). Hence, we obtain the conditional

distribution of the equilibrium number of buying traders, M †
n | Γ(1), for sufficiently

large n.

Proposition 3. Under Assumptions 1 and 2, M †
n conditional on Γ(1) = c > 1 follows

asymptotically as n→∞,

Pr
(
M †

n = m | Γ(1) = c
)

=
(c− 1)(m− 1)m−c−1e−m+1

(m− c)!
, (4)

for m = c, c+ 1, . . . . Moreover, the tail of the asymptotic distribution follows a power

law with exponent 0.5, i.e., Pr(M †
n > m) ∝ m−0.5 for sufficiently large values of m.

Proposition 3 shows that the distribution of M †
n conditional on Γ(1) has a power-

law tail. This implies that, given there are Γ(1) traders who receive favorable private

signals xi ≥ σ(1), their buying actions may trigger a stochastic herd, and the size of

the herd follows a power-law distribution.

We can pin down the distribution of Γ(1) under a certain condition, in which

case we can explicitly derive an unconditional asymptotic distribution of M †
n. For

finite n, Γ(1) follows a binomial distribution with population n and probability πon :=

1−FH
n (σ(1)). The behavior of the asymptotic mean φo := limn→∞ nπ

o
n depends on the

specification of signal Xn,i. If φo is finite, Γ(1) follows a Poisson distribution with mean

φo asymptotically as n→∞. In this case, we obtain the unconditional distribution of

M † explicitly as follows.
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Proposition 4. Under Assumptions 1 and 2, and if φo <∞, the asymptotic distribu-

tion of M †
n as n→∞ follows, for m = 2, 3, . . .,

Pr(M †
n = m) =

e−φo−m+1(m− 1)m−1

m!

[
1 + (φo − 1)

(
1 +

φo
m− 1

)m−1
]
,

and Pr(M †
n = m) = φmo e

−φo for m = 0, 1. Moreover, M †
n has a power-law tail distribu-

tion with exponent 0.5.

Finally, we provide an example where the bounded φo exists under a particular class

of signals.

Assumption 3. The distributions of signal Xn,i satisfy F s
n(x) = ea

s
n(x−x̄) for s = H,L

in (x̄ − ε, x̄] for some ε > 0, where (aHn , a
L
n)∞n=no is a pair of bounded series of real

numbers which converges to (a, a) for some a > 0 and satisfies aHn > aLn > 0 and

log(aHn /a
L
n) > δ/nξ for any n > no.

In Appendix, we show that the distributions specified by this assumption are well

behaved and generate φo = 1. Thus, under this specific class of signals, we obtain a

simple distribution for the volume fluctuation as follows.

Proposition 5. Under Assumptions 1, 2 and 3, the asymptotic distribution of M †
n as

n→∞ follows, for m = 1, 2, . . .,

Pr(M †
n = m) =

e−m(m− 1)m−1

m!
,

and Pr(M †
n = 0) = e−1. M †

n has a power-law tail distribution with exponent 0.5.

Propositions 3, 4 and 5 indicate the emergence of a power-law tail for the equilibrium

number of buying traders. Proposition 5 shows that the asymptotic distribution of M †
n

does not depend on any model parameter. This implies that our result of power law is

quite robust to the details of model specification.
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In general, a power law with exponent α implies that any k-th moment for k ≥ α

is infinite. Thus, with exponent 0.5, M †
n does not have a finite asymptotic variance or

mean as n→∞. This implies that the variance of the fraction of buying traders, M∗
n/n,

can be quite large even when n is large. By integrating (M †
n/n)2 up to M †

n = n with a

power-law tail exponent 0.5, we find that the variance of M †/n decreases as n−0.5 when

n becomes large. This contrasts with the case when the traders act independently.

If traders’ choices (dn,i)
n
i=1 were independent, the central limit theorem predicts that

M †
n/n would asymptotically follow a normal distribution, whose tail is thin and variance

declines as fast as n−1. Thus, the variance of M †
n/n differs by factor n0.5 between our

model and the model with independent choices. This signifies the effect of stochastic

herding that amplifies the small fluctuations in the received signals Xn,i.
10

Even though such amplification effects can occur whenever traders’ actions are cor-

related, it requires a particular structure in the correlation for the amplification effect

to cause the variance to decline more slowly than n−1, i.e., the speed the central limit

theorem predicts. Mathematically, the amplification effect in our model is analogous to

a long memory process in which a large deviation from the long-run mean is caused by

long-range autocorrelation. In our static model, the long-range correlation of traders’

actions is captured by the asymptotic martingale process Γ(t). In fact, the power law

exponent 0.5 obtained in our model is closely related to the same exponent in the

Inverse Gaussian distribution that characterizes the first passage time of the Wiener

process.

The economic meaning of Γ(t) being a martingale in our model is that the mean

number of traders induced to buy by a buying trader is 1. This property can be

10On the implications of a tail distribution on aggregate fluctuations, see, for example, Nirei [46]

and Acemoglu, Ozdaglar and Tahbaz-Salehi [1].
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seen from optimal threshold condition (3). This condition reduces to a simple form

(1− µ) log λn(σ) + µ log Λn(σ) = 0, where µ := m/n, if we take the limit n→∞ while

fixing µ. The condition indicates that the geometric average of λ and Λ evaluated at

σ, which can be regarded as revealed likelihood on the true state revealed by traders’

actions, does not change even when µ takes different values. Suppose that a trader

switches from not-buying to buying. This increases µ, which leads to an increase in

the revealed likelihood that traders observe, and lowers the optimal threshold. This in

turn decreases the revealed likelihood, because traders learn that the signals received by

non-buying traders must have been below the decreased level of threshold. As a result,

the impact of an increase in µ on the geometric average of λ and Λ is counteracted by

a decrease in σ. These effects turn out to cancel out with each other when the signal

is vanishingly small (i.e., log Λn − log λn ≈ 0) and m is finite (µ ≈ 0). Hence, under

the noisy signal, any finite m satisfies the equilibrium condition above.

This environment is analogous to the fable of Keynes’s beauty contest, in which the

average action of a single trader responds one-to-one to the average actions of traders.

The beauty contest would lead to indeterminate equilibria, if there are a continuum of

traders or if the traders’ actions are continuous. This type of local indeterminacy is

avoided in our model with a finite number of traders and discrete actions. However,

the indeterminacy described above provides an intuition why our model can generate

equilibrium trading volumes at any order of magnitude as demonstrated by the power

law.

Our model depicts the situation where a large number of informed traders try

to glean information from other traders’ actions under noisy signal. A power law

of herd size emerges asymptotically when traders’ interaction leads to indeterminacy.

However, this does not necessarily imply that traders fail to learn. We can extend
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our model dynamically where traders draw private signal repeatedly and eventually

learn the true state.11 A power law in this case implies that the collective learning

does not occur smoothly over time. The noisy signal generates little transaction and

is hoarded privately for most of the times, but once in a while, a large herd occurs

and the accumulated private information is revealed. Thus, a power law of herd size

implies that the revelation happens at once in the collective learning of traders.

Propositions 3, 4 and 5 claim not only that various levels of aggregate trading vol-

umes M †
n are possible, but also that the distribution of M †

n has a particular regularity

signified by a power law. The power law for M †
n implies a particular fat-tailed distri-

bution of the equilibrium price P ∗n . In the following sections, we show a case where the

return distribution also follows a power law in our model.

3.2 Return distributions

Having established the power law for volume, we now turn to the power law for returns.

An important facet of the model to be specified is the supply function S(p), which

determines how the fluctuation of volume is translated to the fluctuation of returns.

In our model, informed traders’ demands are absorbed by uninformed traders’ supply.

Thus, the supply function of uninformed traders m∗ = S(p∗) determines the impact of

volume m∗ on the return q := log p∗ − log p0. The relation between an exogenous shift

in trading volume and a resulting shift in asset price, i.e. S−1, is called a price impact

function. Following the literature (see, e.g., Hasbrouck [26] and Lillo et al. [36]), we

specify the price impact function as a concave power function q = β(m/n)γ with β > 0

and 0 < γ < 1 for m = 1, 2, . . . , n.

The following proposition establishes that our model generates a power law for the

11See the working paper version [45] for the extension.
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returns distribution when the price impact is specified as the power function.

Proposition 6. Suppose that the volume m/n follows a power law Pr(m/n) ∝ (m/n)−α−1

and the supply function S satisfies

log(S−1(m))− log(S−1(0)) = β(m/n)γ (5)

for β, γ > 0. Then, returns q follow a power law,

Pr(q) ∝ q−α/γ−1.

Proof. By applying the change of variable for m/n using the supply function, we obtain

the power law for q as: Pr(q) ∝ Pr(m/n)|d(m/n)/dq| ∝ ((q/β)1/γ)−α−1(1/γ)q1/γ−1 ∝

q−α/γ−1.

As Gabaix et al. [21] and Lux and Alfarano [38] demonstrate, there is a growing

consensus among empiricists of financial data that stock returns generally obey the

“cubic law,” in which the return distribution follows a power law with exponent 3.

The cubic law corresponds to α/γ = 3 in the above equation. The analysis in the

previous section established that α = 0.5 holds asymptotically. Hence, the cubic law

holds in our asymptotic case if γ = 1/6. This value is consistent with the empirically

estimated range of γ ∈ [0.1, 0.5] (Lillo et al. [36]).

Gabaix et al. [21] provides a micro-foundation for a square-root specification of

price impact function, γ = 0.5, and combines it with the “half-cubic law” of trading

volume found by Plerou et al. [49], α = 1.5, to obtain the cubic law α/γ = 3. However,

Lux and Alfarano [38] note that it is not clear whether the half-cubic law of volume is

“of a similarly universal nature” as the cubic law of returns. While our model predicts

α = 0.5 in an asymptotic case with a diverging number of informed traders n and a

vanishingly small signal, we will show that the model is also capable of generating a
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different exponent when n is finite. In the next section, we explore through numerical

analyses the model’s prediction on the power law for returns and volume under finite

n and an empirically plausible price-impact function.

3.3 Quantitative analysis with finite n

In this section, we conduct numerical analysis of the model with a finite number of

informed traders n. The purpose of this exercise is to confirm that, even with finite

n, the number of buying traders M †
n follows a power law, which was shown as an

asymptotic property when n tends to infinity in the previous sections. Moreover, we

show that the fluctuation of equilibrium asset returns q = logP ∗n − log p(0) exhibits a

power law that matches with the returns distribution observed in empirical data.

The model is specified as follows. The signal distribution F s for s ∈ {H,L} is

normal with common standard deviation σ and different mean µH = 1 and µL = 0.

We set σ at between 30 and 50. This large standard deviation relative to the difference

in mean captures the situation where the informativeness of signal Xi is small. We set

the number of informed traders n at a finite but large value between 500 and 2000. The

supply function of uninformed traders is specified as in (5), and its parameters are set

at our estimates γ = 0.4642 and β = 0.768 as explained later. With these parameter

values, the optimal threshold function σ(·) is computed. Using the threshold function,

we conduct Monte Carlo simulations by randomly drawing a profile of private signals

(xi)
n
i=1 for 10 million times and computing m†n and p∗n for each draw.

The top panel of Figure 3 plots the histograms of M †
n for various parameter values

of n and σ. Since the histogram is plotted in log-log scale, a linear line indicates a

power law Pr(M †
n = m) ∝ m−α−1, where the slope of the linear line reflects −α − 1.

As can be seen, the simulated log-log histograms appear linear for a wide range of M †
n.
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This conforms to the model prediction that M †
n follows a power law distribution. Note

that the simulated histogram decays exponentially when M †
n/n is close to 1, due to the

finiteness of n.

The asymptotic results in Propositions 3, 4 and 5 predicted the exponent of power

law α to be 0.5. The top panel of Figure 3 confirms this pattern for finite n, when

(n, σ) = (800, 30) or (2000, 50). We also observe that the power law exponent can take

larger values when the parameter alignment differs, as observed in the case when n is

decreased (the circle-line compared to the cross-line) or when σ is increased (the cross-

line compared to the triangular-line). This deviation of exponent from the asymptotic

case α = 0.5 can result from the state-dependence of the intensity ϕn in our model

when n is finite (see, e.g., Sornette [52]). This property renders flexibility to our model

in fitting to various exponents for trading volume.

Given this flexibility, we bring our model to fit the empirical distributions of daily

volume and returns. We intend this exercise to be a proof of concept for the capacity

of our model as an explanation of the observed power laws. Our direct target for

comparison is the time-series fluctuations of a single stock volume and returns in daily

frequency. We use Nikkei Financial Quest dataset that includes daily volume and prices

for the firms listed in the first section of Tokyo Stock Exchange (TSE) from March 1988

to March 2018.

The bottom panel of Figure 3 shows histograms of daily trading volumes for four

single stocks. The volume is divided by the time-series average volume for each stock.

The four firms are selected at the quintiles of market capitalization size among all

manufacturing firms listed in the first section of TSE. The plotted histogram exhibits

a fat tail for each stock. However, the number of observations (7401) for each stock is

not sufficiently large to investigate the tail in detail, and the sample period (30 years)
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Figure 3: Histograms of volume. The volume is normalized by its time-series average.

Top: Histograms of equilibrium volume M †
n for various parameter values, where n is the

number of traders and σ is the standard deviation of the private information. Bottom:

Daily volume histograms for individual stocks and a pooled sample, along with the

model histogram. Data for individual firms cover 30 years (from 1988 to 2018), while

data for the pooled sample cover one year (2016). The individual firms are selected at

the quintiles of market capitalization size in TSE. The circle-line shows the histogram

of pooled data for all listed firms. The cross-line shows a simulated histogram generated

by our model with n = 800 and σ = 50. 26



is too long to assure the invariance of the daily volume distribution. To deal with this

data limit, we prepare a pooled dataset of a large number of stocks for a shorter sample

period. We collect daily trading volumes for all (2250) listed firms for year 2016, and

divide the volume by the average volume for each firm during the year. The circle-line

in the plot shows the histogram of the normalized volume for the pooled sample. We

now observe a longer tail, whose exponent is similar to the tails for individual stocks.

The pooled data shows that the exponent for volume is about 2 (the slope of the

histogram in log-log scale is 3). We then superimpose the volume histogram generated

by our model for the case (n, σ) = (800, 50), shown as the cross-line. As can be seen,

the simulated histogram reasonably agrees with the empirical histogram.

The top panel of Figure 4 shows the histograms of daily returns for the same

samples. We define the daily return as a logarithmic difference from the opening to

closing price. The open-close difference is used rather than a business day return so

that the time horizon of each observed return is homogenized. We subtract time-series

average returns and divide by standard error of the returns for each stock, and take

an absolute value for returns, pooling both positive and negative returns across stocks.

The empirical histograms for the individual stocks and the pooled sample show a power

law with exponent about 3, which is consistent with the literature (Lux and Alfarano

[38]). The model-generated histogram also shows a fat tail, which is slightly thinner

than data but clearly exhibits a power law.

The bottom panel of Figure 4 shows a scatter plot of daily volume and absolute

returns for all listed firms, along with the price-impact function specified in the simu-

lated model (5). The parameter values (γ = 0.4642, β = 0.768) are estimated by fitting

(5) to the pooled sample by the non-linear least squares.12 In sum, Figures 3 and 4 in-

12The plotted sample is truncated at the volume divided by mean being 50, in order to enhance
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Figure 4: Top: Histograms of the absolute values of daily returns. The horizontal axis

shows the daily return, which is the difference in logarithm of close and open prices for

each business day. The samples are the same as in Figure 3. Bottom: A scatter plot of

daily volume and absolute returns for all listed firms in 2016. The red line shows the

price-impact function fitted by the non-linear least squares.

28



dicate that our model is capable of generating the power laws of volume and absolute

returns with a price-impact function consistently estimated with the high-frequency

sample observed in TSE.

4 Conclusion

This study analyzed aggregate fluctuations of trading volume and prices that arise

from asymmetric information among traders in financial markets. In a herding model

in which each trader infers the private information of other traders only by observing

their actions, we found that the number of traders taking the same action at equilib-

rium exhibits large volatility with a statistical regularity—a power-law distribution.

Furthermore, we showed that the model is capable of generating a power-law distribu-

tion of asset returns. The simulated distributions of equilibrium returns and volume

were demonstrated to match the distributions of observed stock returns and volume.

The power law distribution of herding size emerges when the number of traders

is large and the signal is noisy, consistent with the empirical observation that the

power-law fluctuation of returns manifests in high frequency data. In our model, an

action by one trader is as informative as inaction by another. When some information

is revealed by a trader’s buying action, the inaction of other traders despite of their

observation of the initial buying action, reveals their private information in favor of

not buying. Thus, each trader’s action is influenced by the average action, resulting in

a near-indeterminate equilibrium, analogous to Keynes’ beauty contest. In this way,

our model of asymmetric information provides an economic reasoning for the criticality

condition that generates power law fluctuations.

visibility, while all the data are used for the parameter estimation.
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This study suggests several directions for extension. One would be to develop a

dynamic model that accounts for the time-series properties as pursued by, for example,

Alfarano et al. [2]. Another direction would be to extend the model by incorporating

more realistic market structure. Kamada and Miura [30] have taken a step in this

direction by extending this model to the case where both public and private signals

exist and where informed traders can take both buying and selling sides.

Appendix: Proofs

Properties of λn and Λn

Taking derivatives of λn and Λn, we have

dλn(x)

dx
=
fHn (x)

FL
n (x)

− FH
n (x)fLn (x)

(FL
n (x))2

=
fLn (x)

FL
n (x)

(`n(x)− λn(x)) , (6)

dΛn(x)

dx
= − fHn (x)

1− FL
n (x)

+
(1− FH

n (x))fLn (x)

(1− FL
n (x))2

(7)

=
fLn (x)

1− FL
n (x)

(Λn(x)− `n(x)) .

Thus, inequality λn(x) < `n(x) < Λn(x) implies that λ′n(x) > 0 for x ∈ (x, x̄] and

Λ′n(x) > 0 for x ∈ [x, x̄). At x = x, we obtain λ′n(x) = `′n(x)/2 > 0 by applying

L’Hopital’s rule for (6) and rearranging terms. Similarly, we obtain Λ′n(x̄) = `′n(x̄)/2 >

0 by evaluating (7) at x = x̄. Hence, we obtain λ′n(x) > 0 and Λ′n(x) > 0 for any

x ∈ X .

Proof of Proposition 1

The market-clearing condition, S(pm) = m/n, implicitly determines pm not only for

integers but also for any real number m. Thus, Equation (3) implicitly determines
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σ(m) for real numbers of m. In this proof, we extend pm and σ(m) to real numbers.

To be precise, we define real variables t ∈ [1, n], pt and σ(t), such that pt is determined

by the market-clearing condition S(pt) = t/n and σ(t) is implicitly determined by

0 = Φ(σ, t) := (n− t) log λn(σ) + (t− 1) log Λn(σ) + log `n(σ)− log
pt

1− pt
, (8)

which is a logarithmic transformation of (3) with m being replaced by t.

We first show that an interior solution σ of Φ(σ, t) = 0 exists at the boundaries t = 1

and t = n. Φ(σ, t) is increasing in σ, since λn, Λn, and `n are increasing functions. It

achieves minimum at σ = x, and the minimum value is Φ(x, t) = (n− t+1) log λn(x)−

log(pt/(1 − pt)), where we used Λn(x) = 1 and λn(x) = `n(x). Noting that λn(x) < 1

and log(pt/(1− pt)) > 0, we obtain Φ(x, t) < 0 for any t ∈ [1, n].

Φ(σ, t) achieves maximum at x̄, and the maximum value is obtained as Φ(x̄, t) =

t log Λn(x̄) − log(pt/(1 − pt)), using λn(x̄) = 1 and Λn(x̄) = `n(x̄). When t = 1, the

maximum is Φ(x̄, 1) = log Λn(x̄) − log(p1/(1 − p1)). log Λn(x̄) > δ/nξ holds under

Assumption 1, since log Λn(x)− log λn(x) ≥ δn and λn(x̄) = 1. In contrast, log(p1/(1−

p1)) declines to 0 as fast as 1/n, as shown below. The market-clearing condition implies

that S ′(pt)dpt = dt/n. Using this, we obtain

d log(pt/(1− pt))
dpt

dpt
dt

=
1

pt(1− pt)
1

nS ′(pt)
.

Then, there exists some c1 > 0 such that log(p1/(1− p1)) < c1/n, because

log
p1

1− p1

= log
p0

1− p0

+

∫ 1

0

1

pt(1− pt)
1

nS ′(pt)
dt,

where 1/S ′ is bounded since S(·) is strictly increasing. Thus, we obtain Φ(x̄, 1) >

δ/nξ − c1/n, which is strictly positive for sufficiently large n since ξ < 1.

When t = n, the maximum of Φ(σ, n) is n log Λn(x̄)− log(pn/(1− pn)). The second

term is bounded, because pn/(1 − pn) < p̄/(1 − p̄). The first term tends to positive
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infinity as n → ∞, since n log Λn(x̄) > δn1−ξ. Thus, Φ(x̄, n) > 0 for sufficiently large

n. Since Φ(x, t) < 0 and Φ(x̄, t) > 0 for t = 1 and t = n and since Φ is continuous in

σ, an interior solution σ exists for both t = 1, n when n is sufficiently large.

Next, we show that the interior solution σ is decreasing in t. The total derivative

of Φ(σ, t) = 0 is

1

pt(1− pt)
1

nS ′(pt)
dt

= log
Λn(σ)

λn(σ)
dt+

(
(n− t)λ

′
n(σ)

λn(σ)
+ (t− 1)

Λ′n(σ)

Λn(σ)
+
`′n(σ)

`n(σ)

)
dσ.

This determines the derivative of σ with respect to t as

dσ

dt
=

− log (Λn(x)/λn(x)) + {pt(1− pt)S ′(pt)n}−1

(n− t)λ′n(x)/λn(x) + (t− 1)Λ′n(x)/Λn(x) + `′n(x)/`n(x)

∣∣∣∣
x=σ(t)

. (9)

The denominator is strictly positive, since λn, Λn, and `n are strictly positive

and strictly increasing. In the numerator, the first term is strictly negative, and

− log(Λn(x)/λn(x)) < −δ/nξ by Assumption 1. The second term in the numerator

is positive and of order 1/n, as shown above. Thus, the numerator is negative for large

n. Hence, for sufficiently large values of n, we obtain that dσ/dt ≤ 0.

Since an interior solution σ for Φ(σ, t) exists for t = 1 and t = n and since an interior

solution σ is decreasing in t, an interior solution of (3) exists for any m ∈ {1, 2, . . . , n}.

Finally, since D(pm,x) is the number of traders with xi ≥ σ(m) for m = 1, 2, . . . , n,

the decreasing function σ(m) implies thatD(pm,x) is increasing inm for any realization

of x.

Proof of Proposition 2

We define an aggregate reaction function as a mapping from the number of buying

traders m to the number of buying traders determined by traders’ choices given pm
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and their private signals. Specifically, the aggregate reaction function is given by Γx :

{0, 1, . . . , n} 7→ {0, 1, . . . , n} for each realization of x. It coincides with D for m > 0,

i.e., Γx(m) := D(pm,x) for m ∈ {1, 2, . . . , n}. For m = 0, we let Γx(0) = D(p1,x).

Then, Γx is an increasing mapping of {0, 1, . . . , n} onto itself. Moreover, {0, 1, . . . , n}

is a finite totally ordered set, and thus it is a complete lattice. Therefore, by Tarski’s

fixed point theorem, there exists a non-empty closed set of fixed points of Γx.

The auctioneer chooses m∗ = 0 if D(p1,x) = 0, and chooses m∗ > 0 such that

D(pm∗ ,x)/n = S(pm∗) = m∗/n if D(p1,x) > 0. Hence, the fixed points of Γx coin-

cide with a set of equilibrium ouctome m∗. This establishes the existence of m∗ and

equilibrium price p∗ = pm∗ .

Proof of Lemma 1

We transform φ∞ := plimn→∞ φn using change of variable for density of t = σ−1(x):

φ∞(t) = plim
n→∞

πn(t)(n− Γ(t)) (10)

= plim
n→∞

(
1− Γ(t)

n

)
n|σ′(t)| f

H
n (x)

FH
n (x)

∣∣∣∣
x=σ(t)

.

Using Equations (6) and (9) for σ′(t), we obtain

n|σ′(t)| f
H
n (x)

FH
n (x)

=

∣∣∣∣∣∣ log(Λn(x)/λn(x))− {pt(1− pt)S ′(pt)n}−1(
1− t

n

) (
1− λn(x)

`n(x)

)
+ 1

n
FHn (x)
fHn (x)

(
(t−1)Λ′n(x)

Λn(x)
+ `′n(x)

`n(x)

)
∣∣∣∣∣∣ . (11)

We examine the right-hand side of (11) evaluated at x = σ(t) as n → ∞. Since

{pt(1−pt)S ′(pt)}−1 is bounded, the second term in the numerator is of order 1/n. The

second term in the denominator is also of order 1/n as can be shown below. First, fHn ,

Λn, and `n are strictly positive. Second, FH
n ≤ 1, and `′n is bounded, because f sn is
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assumed to have a bounded derivative. Finally, Λ′n(x) is bounded for x ∈ X , as shown

in (7).

We next examine Λn(x)/λn(x) and λn(x)/`n(x) in the right-hand side of (11). To

do so, we show that σ(t)→ x̄ as n→∞ for finite t. We note that

log Λn(σ) = log
1− FH

n (σ)

1− FL
n (σ)

= log
1/FL

n (σ)− λn(σ)

1/FL
n (σ)− 1

= log

(
1 +

1− λn(σ)

1/FL
n (σ)− 1

)
.

Since log(1 + y) ≤ y and 1 + log y ≤ y for any y ≥ 0, we have, for σ < x̄,

log Λn(σ) ≤ 1− λn(σ)

1/FL
n (σ)− 1

≤ − log λn(σ)

1/FL
n (σ)− 1

.

Hence, we obtain

log Λn(σ)− log λn(σ) ≤ − log λn(σ)

1− FL
n (σ)

.

Assumption 1 implies log Λn − log λn > δn−ξ. Thus, for sufficiently large n,

− log λn(σ) ≥ (1− FL
n (σ))δn−ξ. (12)

Now, Equation (8) can be modified as:

n log λn(σ) = log
pt

1− pt
+ t log

λn(σ)

Λn(σ)
+ log

Λn(σ)

`n(σ)
. (13)

The right-hand side of (13) is finite for any finite t. The left-hand side of (13) would

diverge toward negative infinity as n → ∞ if FL
n (σ) were bounded by a value strictly

below 1, as implied by inequality (12) and ξ < 1. Hence, (13) holds only if FL
n (σ) tends

to 1, which is equivalent to that σ(t)→ x̄ as n→∞ for any finite t. This implies that

Λn(σ(t))/λn(σ(t)) tends to `n(σ(t))/λn(σ(t)) as n→∞, since Λ(x̄) = `(x̄).

Thus, using zn := log(Λn(σ(t))/λn(σ(t))), the right-hand side of Equation (11) is

expressed as

lim
n→∞

zn −O(1/n)

(1− t/n) (1− e−zn) +O(1/n)
= lim

n→∞

zn −O(1/n)

(1− t/n) (zn +O(z2
n)) +O(1/n)

,
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where we used limn→∞ zn = 0 and Taylor expansion of ezn − 1 around zn = 0, and we

used notation yn = O(xn) if there exist co and no such that |yn| ≤ coxn for any n ≥ no.

Dividing both the denominator and numerator by zn and applying nzn > δn1−ξ with

ξ < 1 (Assumption 1), we obtain

lim
n→∞

1−O(1/(nzn))

(1− t/n) (1 +O(zn)) +O(1/(nzn))
= 1.

Substituting the above result in (10), we obtain φ∞(t) = plimn→∞ 1−Γ(t)/n. This

implies that φ∞(t) is bounded, and hence, the asymptotic variance of Γ(t+ dt)− Γ(t)

is also bounded. Hence as n → ∞, Γ(t)/n converges in the L2-norm, and thus in

probability, to 0. Hence, we obtain that φ∞(t) = 1 for finite t.

Proof of Lemma 2

We show that the random variable τϕn(·) defined over [0,∞] converges in distribution

to τ1 as n tends to ∞. We prove this by showing that the Laplace transform of τϕn(·)

converges to that of τ1 as n→∞. Namely, we show that, for any η > 0,

lim
n→∞

E
[
exp(−ητϕn(·))

]
= E [exp(−ητ1)] . (14)

Note that e−ητ is set at 0 for the events where τ =∞ by convention.

In (10), we observe that φn(t) = ϕn(t−1) is a product of (11) and a stochastic term

1 − Γ(t)/n. The former term converges to 1 uniformly over any finite interval [0, T ],

and the latter term converges in probability to 1 as n → ∞. Thus, the probability of

events in which Γ(t)/n exceeds n−ν0 for some t ∈ [0, T ] for a fixed ν0 ∈ (0, 1) declines to

0 as n→∞.13 Since e−ητ is bounded, such events have vanishingly small contribution

to the expectation in the left-hand side of (14). Combining with the fact that (11) is

13See Technical Appendix for the construction of ν0.
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uniformly convergent to 1, there exists a sequence εn such that 1− εn < ϕn(t) < 1 + εn

for finite t excluding those events where Γ(t)/n exceeds n−ν0 .

Since an inhomogeneous Poisson process can be transformed to a homogeneous

Poisson process with a change of time, inequalities τ1−εn ≤ τϕn(·) ≤ τ1+εn hold for

each realization of x. Thus, in order to establish (14), it is sufficient to show that

E[exp(−ητψ)] is continuous with respect to ψ > 0. We also note that

τψ = inf{t ≥ 0 | N(ψt) ≤ t− co}

= inf{t ≥ 0 | t−N(ψt) ≥ co}

=
1

ψ
inf

{
t ≥ 0 | t

ψ
−N(t) ≥ co

}
=

1

ψ
τ̃ψ

where τ̃ψ := inf {t ≥ 0 | N(t) ≤ t/ψ − co}.

Let ζ be a constant in (0, 1). Consider a stochastic differential equation:

dZ(t) = −ζZ(t-){dN(t)− dt}, Z(0) = 1,

where Z(t-) denotes the value of Z(t) before a jump occurs at t if any. The solution of

the stochastic differential equation is a martingale and satisfies

Z(t) = eζt(1− ζ)N(t) =

(
1

1− ζ

) t
ψ
−N(t)

exp

{(
ζ +

log(1− ζ)

ψ

)
t

}
,

where the second equation is obtained by multiplying and dividing by (1− ζ)t/ψ.

Now, for fixed η and ψ, there exists a unique ζ that satisfies an equation

ζψ + log(1− ζ) = −η.

Let ζ(η, ψ) denote the unique solution. Note that ζ(η, ψ) is continuous and monotoni-

cally increasing with respect to both η and ψ. Then, Z is written as

Z(t) =

(
1

1− ζ(η, ψ)

) t
ψ
−N(t)

exp

(
− η
ψ
t

)
.
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Note that t/ψ − N(t) = co at the stopping time t = τ̃ψ. Thus, Z(t) is positive and

takes a value less than or equal to {1− ζ(η, ψ)}−co at and before the stopping time

τ̃ψ. Namely, Z(t) is bounded. Therefore, E[Z(τ̃ψ)] = 1 holds by the optional sampling

theorem. (Note that Z = 0 for the events where τ̃ψ =∞.) Moreover, noting that N(t)

does not jump at the point of time τ̃ψ, we obtain that

Z(τ̃ψ) =

(
1

1− ζ(η, ψ)

)co
exp

(
− η
ψ
τ̃ψ

)
,

for both cases of τ̃ψ <∞ and τ̃ψ =∞. Thus,

E[exp(−ητψ)] = E
[
exp

(
− η
ψ
τ̃ψ

)]
= {1− ζ(η, ψ)}co .

Since ζ(η, ψ) is continuous with respect to ψ, this completes the proof.

Proof of Proposition 3

Consider the Poisson process N(t) with intensity 1 and N(0) = co > 0. The first

passage time τ1 of N(t) reaching t − co must be greater than or equal to co. Now

we introduce a process b with b(0) = co. During the time interval co, the increment

N(co) − N(0), denoted as b(1), follows a Poisson distribution with mean co. Since a

Poisson random variable is infinitely divisible, a Poisson random variable with mean co

is equivalent to co-fold convolution of the Poisson with mean 1. Thus, we can regard

b(1) as the sum of “children” borne by co = b(0) “parents,” where each parent bears a

number of children following the Poisson with mean 1. If b(1) = 0, the process b stops,

and the first passage time is b(0) = co. If b(1) > 0, the first passage time is greater

than or equal to b(0) + b(1). During the time interval (b(0), b(0) + b(1)], new increment

b(2) := N(b(0)+b(1))−N(b(0)) follows the Poisson distribution with mean b(1), which

is equivalent to b(1)-fold convolution of the Poisson with mean 1 and regarded as the
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number of children borne by b(1) parents (note that the increment b(1) of a Poisson

process is always an integer). This process b(u) continues for u = 1, 2, . . . , U , where

U denotes the stopping time at which b(U) is equal to 0 for the first time. Thus, the

first passage time τ1 is equal to
∑U

u=0 b(u), the total number of population generated

in the so-called Poisson branching process b(u) in which each parent bears a number

of children according to the Poisson distribution with mean 1.

It is known that the sum of the Poisson branching process, cumulated over time

until the process stops, follows a Borel-Tanner distribution (Kingman [31]; see also

Nirei [43]). When the Poisson mean of the branching process b(u) is φ > 0 generally,

the Borel-Tanner distribution is written as

Pr

(
U∑
u=0

b(u) = m | b(0) = co

)
=
co
m

e−φm(φm)m−co

(m− co)!
, (15)

for m = co, co + 1, . . . . By applying Stirling’s formula, we obtain the tail characteriza-

tion:

Pr

(
U∑
u=0

b(u) = m | b(0) = co

)
∝ e−(φ−1−log φ)mm−1.5 (16)

as m→∞. Since τ1 follows the same distribution as the sum of the Poisson branching

process with mean 1, it follows (15) and (16) with φ = 1.

Finally, we change variables using M †
n = τ1 + 1 and c = Γ(1) = G(0) + 1 = co + 1.

With m′ := m+ 1, (15) is rewritten as

Pr(M †
n = m′ | Γ(1) = c) =

c− 1

m′ − 1

e−φ(m′−1)(φ(m′ − 1))m
′−c

(m′ − c)!
.

Using φ = 1, we obtain the desired result.

Proof of Proposition 4

Under finite φo, Γ(1) asymptotically follows a Poisson distribution with mean φo.

Hence, form = {0, 1}, Pr(M †
n = m) asymptotically follows Pr(Γ(1) = m) = φmo e

−φo/m!.
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For m > 1, the unconditional distribution of M †
n is derived by combining the dis-

tribution (4) and the Poisson distribution with mean φo for Γ(1) as follows.

m∑
c=2

Pr
(
M † = m | Γ(1) = c

)
Pr(Γ(1) = c) (17)

=
m∑
c=2

(c− 1)(m− 1)m−c−1e−m+1

(m− c)!
φcoe

−φo

c!

=
m∑
c=1

(c− 1)(m− 1)m−c−1e−m+1

(m− c)!
φcoe

−φo

c!

=
e−φo−m+1(m− 1)m−1

m!

[
m∑
c=1

(φo/(m− 1))cm!

(m− c)!(c− 1)!
−

m∑
c=1

(φo/(m− 1))cm!

(m− c)!c!

]
.

Using the binomial theorem, we obtain

m∑
c=1

(φo/(m− 1))cm!

(m− c)!(c− 1)!
=

φom

m− 1

m∑
c=1

(φo/(m− 1))c−1(m− 1)!

(m− c)!(c− 1)!

=
φom

m− 1

m−1∑
c′=0

(φo/(m− 1))c
′
(m− 1)!

(m− 1− c′)!c′!

=
φom

m− 1

(
1 +

φo
m− 1

)m−1

and

m∑
c=1

(φo/(m− 1))cm!

(m− c)!c!
=

m∑
c=0

(φo/(m− 1))cm!

(m− c)!c!
− 1

=

(
1 +

φo
m− 1

)m
− 1.

Substituting back to (17), we obtain

e−φo−m+1(m− 1)m−1

m!

[
φom

m− 1

(
1 +

φo
m− 1

)m−1

−
(

1 +
φo

m− 1

)m
+ 1

]

=
e−φo−m+1(m− 1)m−1

m!

[
(φo − 1)

(
1 +

φo
m− 1

)m−1

+ 1

]
.
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Thus, we obtain the desired result. Applying Stirling’s formula, we obtain that the

tail follows a power law with exponent 0.5.

Proof of Proposition 5

The proof proceeds in two steps. First, we show that the distributions under As-

sumption 3 are compatible with Assumption 1. Second, we show that φo = 1. Then,

Proposition 5 is immediately obtained by substituting φo = 1 into the result in Propo-

sition 4.

The distributions in the class specified by Assumption 3 have positive density

f sn(x) = asne
asn(x−x̄) > 0 for s = H,L and increasing likelihood `n(x) = (aHn /a

L
n)e(aHn −aLn)(x−x̄)

for x ∈ (x̄− ε, x̄]. Moreover, the distributions satisfying Assumption 3 also satisfy As-

sumption 1 in (x̄− ε, x̄], as shown below. We have

log
Λn(x)

λn(x)
= log

1− eaHn (x−x̄)

1− eaLn(x−x̄)
− (aHn − aLn)(x− x̄).

L’Hopital’s rule yields:

log
Λn(x̄)

λn(x̄)
= log

1− eaHn (x−x̄)

1− eaLn(x−x̄)

∣∣∣∣∣
x=x̄

= log
aHn e

aHn (x−x̄)

aLne
aLn(x−x̄)

∣∣∣∣∣
x=x̄

= log
aHn
aLn
.

It can be also shown that log(Λn(x)/λn(x)) is decreasing in x as follows:

d

dx
log

Λn(x)

λn(x)
=

Λ′n(x)

Λn(x)
− λ′n(x)

λn(x)

=
fLn (x)

1− FL
n (x)

(
1− `n(x)

Λn(x)

)
+
fLn (x)

FL
n (x)

(
1− `n(x)

λn(x)

)
=

aLne
aLn(x−x̄)

1− eaHn (x−x̄)

(
1− eaHn (x−x̄)

1− eaLn(x−x̄)
− aHn
aLn
e(aHn −aLn)(x−x̄)

)
+ aLn

(
1− aHn

aLn

)
=

aLn
1− eaLn(x−x̄)

− aHn
1− eaHn (x−x̄)

< 0,

40



where the last inequality uses the fact,

∂

∂a

a

1− ea(x−x̄)
=

1− (1− a(x− x̄))ea(x−x̄)

(1− ea(x−x̄))2
> 0,

noting log(1 + y) − y < 0 for any y > 0. Hence, we have log(Λn(x)/λn(x)) ≥

log(Λn(x̄)/λn(x̄)) = log aHn /a
L
n > δ/nξ for any x ∈ (x̄− ε, x̄].

In the next step, we show that φo = 1 holds under Assumption 3. Equation (3)

implies that σ(1) must satisfy p1/(1 − p1) = λn(σ(1))n−1`n(σ(1)). This equation is

solved under Assumption 3 as

aHn (σ(1)− x̄) =
aHn

n(aHn − aLn)
log

(
p1

1− p1

aLn
aHn

)
.

Let zn denote the right-hand side of the above equation. Then, we obtain

1− FH
n (σ(1)) = 1− eaHn (σ(1)−x̄) = 1− ezn .

Taylor expansion around zn = 0 generates

1− FH
n (σ(1)) = − aHn

n(aHn − aLn)
log

(
p1

1− p1

aLn
aHn

)
+O(z2

n) (18)

=
aHn
aLn

log(aHn /a
L
n)

n(aHn /a
L
n − 1)

− aHn
aLn

log(p1/(1− p1))

n(aHn /a
L
n − 1)

+O(z2
n).

Since S(p1) = 1/n, S(p0) = 0 and p0 = 0.5, we have p1 = 0.5 + (nS ′(p0))−1 + O(n−2).

This implies that log(p1/(1 − p1)) = O(n−1). Also, aHn /a
L
n − 1 ≥ log(aHn /a

L
n) > δ/nξ.

Hence, the absolute value of the second term in (18) is bounded by O(nξ−2). Also by

L’Hopital’s rule we have

lim
(aHn /a

L
n)→1

log(aHn /a
L
n)

aHn /a
L
n − 1

= 1.

Applying these results to (18), we obtain φo = limn→∞ n(1− FH
n (σ(1))) = 1.
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