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Abstract

This study provides an explanation of the emergence of power laws in trading volume

and asset returns. In the model, traders infer other traders’ private signals regarding

the value of an asset from their actions and adjust their own behavior accordingly.

When the number of traders is large and the signals for asset value are noisy, this leads

to power laws for equilibrium volume and returns. We also provide numerical results

showing that the model reproduces observed distributions of daily stock volume and

returns.
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1 Introduction

Recently, the literature on empirical finance has converged on a broad consensus: Daily

returns in equities, foreign exchange and commodities obey a power law. This striking

property of high frequency returns has been found across both space and time through

a variety of statistical procedures, from conditional likelihood methods and nonpara-

metric tail decay estimation to straightforward log-log regression.1 A power law has

also been found for trading volume by Gopikrishnan et al. [24] and Plerou et al. [51].

While the heavy-tailed nature of returns is well understood (see, e.g., Fama [20],

Mandelbrot [42] and many other authors2), these new power law findings are highly

consequential, mainly because extreme outcomes are by definition rare, so attempts

to estimate any prices or quantities with tail risk sensitivity through nonparametric

methods are deeply problematic (Salhi et al. [52]). Thus, information on the specific

functional form of the tails of these distributions has great value for theorists, econo-

metricians and practitioners. In addition, even elementary concepts from financial and

economic theory—such as the benefits of diversification in the presence of risk—are

sensitive to the precise nature of the tail properties of returns (see, e.g., Ibragimov

[30]).

In this paper we respond to the developing empirical consensus by building a model

of asset markets that generates a power law in both volume and price. The underlying

1For examples of recent empirical studies see Jansen and de Vries [31], Lux [39], Cont et al. [17],

Gopikrishnan et al. [23], Ibragimov et al. [29] and Ankudinov et al. [3]. For overviews of the literature

see Lux and Alfarano [40] or Gabaix [21].
2In the financial econometrics literature, for example, de Haan et al. [19] and Stein and Stein [56]

incorporated high kurtosis under GARCH processes, Salhi et al. [52] proposed a regime switching

model, and Cont and Tankov [18] and Kyprianou et al. [36] adopted jump-diffusion processes and

Lévy processes to asset pricing.
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driver of this power law is asymmetric information on the value of assets. In particular,

private information on the value of an asset is dispersed among many traders. The

action of buying suggests a positive private signal. However, when traders’ action

space is coarser than their private signal, their actions only partially reveal private

information. As a result of discreteness of the action space, a single trader’s action

can cause clustering of similar actions by other traders. This trade clustering leads to

power laws in volume and returns.

To understand our power law result, suppose that, for each realization of private

signals, informed traders are sorted in descending order according to their signals.

The first group of traders buys regardless of the actions of other traders. The second

group buys if there is at least one trader buying. The third group buys if there are at

least two other traders buying, and so forth. Now consider a fictitious best response

dynamic where traders choose whether to buy or not after viewing the decisions of

previous traders. We show that, under suitable assumptions on the informativeness of

the private signal, the decision to buy on the part of one trader induces on average

one new trader to buy. An analogy can be made to Keynes’ beauty contest, where a

voter’s decision is affected by the average actions of n other voters. As a consequence,

one vote has 1/n impact on the decision of others. In our model, when an investor

has an incentive to imitate the average behavior of n traders, the act of buying by one

trader has 1/n impact on the other traders’ behavior.

To understand the implications of this property, we view excess demand as a

stochastic process, indexed by the number of buyers and generated by the fictitious

best response dynamic discussed above. The first passage time to zero for this process

produces an equilibrium number of buying traders. Because the decision to buy by one

trader induces on average one new trader to buy, this excess demand process becomes a
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martingale. It is well known that the first passage time to zero for a martingale follows

a power law distribution. Thus, we derive a power-law distribution for the number of

buying traders, which translates to the equilibrium trading volume.

In our model, the distribution for volume does not depend on the specific distri-

bution of signal. The volume distribution is determined by the likelihood ratio of

the signal in our model. When the signal informativeness is vanishingly small, the

likelihood ratio uniformly tends to 1, which leads to the power law for volume. This

result stands in stark contrast with the workhorse model for asset trading with private

information, which assumes normally distributed asset value and noise and generates

normally distributed asset returns.

The market environment of our model draws on Minehart and Scotchmer [43],

where a large number of informed traders receive private signals on a binary state

of the world, and simultaneously choose between buying one unit of an asset or not

buying the asset at all. Informed traders submit demand schedules conditional on all

possible prices, rather than choosing an action unconditionally on prices. This type of

market competition was formulated as Nash equilibria in supply functions by Grossman

[25] and Klemperer and Meyer [34], and has been introduced to the analysis of asset

markets with private signals by Kyle [35], Vives [58], and Attar, Mariotti and Salanié

[4]. However, none of these models lead to a power law. We analyze this class of models

in a setting where the action is binary—buy or not buy. This restriction on the action

space leads to power laws in equilibrium.

Herd behavior models have served as inspiration for our research, which connects

asymmetric information to excess fluctuations in asset pricing. The models of herding

and information cascades proposed by Banerjee [7] and Bikhchandani, Hirshleifer and
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Welch [8] have been employed to examine financial market fluctuations.3 In particular,

Gul and Lundholm [27] demonstrated the emergence of stochastic clustering by endog-

enizing traders’ choice of waiting time. Moreover, signal properties leading to herding

behavior in sequential trading were identified by Smith and Sørensen [53] and Park

and Sabourian [50]. However, none of these models generate a power law of financial

fluctuations specifically. We inherit the spirit of these models in which the asymmetric

information among traders results in trade clustering.

There are other models that generate a power law of returns. For example, models

of critical phenomena in statistical physics have been applied to herding behevior in

financial markets,4 in which a power law emerges if traders’ connectivity parameter falls

at criticality. These studies do not, however, address why trader connectivity should

exhibit criticality. In contrast, our model presents an economic environment in which

the criticality holds in the form of Keynes’ beauty contest—one buying action induces

on average one buying action. Nirei [46] sketched out the basic idea that herd behavior

can generate power-law size of cascades in the environment similar to Orléan [49], but

fell short of substantiating the claim with rigorous analysis. This paper generates a

power law in a standard market microstructure model, which allows us to relate the

conditions necessary for generating power laws to a broad range of studies in financial

economics.

In another strand of the literature, Lux and Sornette [41] show that a stochastic

rational bubble can generate a power law. Gabaix et al. [22] also show the power laws

of trading volume and price changes if the amount of funds managed by traders follows

3See, e.g., Caplin and Leahy [11], Lee [37], Chari and Kehoe [13], and Cipriani and Guarino [14].

For extensive surveys, see Brunnermeier [9], Chamley [12], and Vives [57].
4Studies in this literature include Bak, Paczuski, and Shubik [6]; Cont and Bouchaud [16]; Stauffer

and Sornette [55].
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a power law. In contrast to these explanations, we focus on the role of asymmetric

information that results in clustering behavior of investors. Many studies have associ-

ated the asymmetric information with financial phenomena such as crises, cascades and

herding, from a historical account of crises by Mishkin [44] to the estimation of informa-

tion content of trading volume on prices by Hasbrouck [28]. The latter noted, “Central

to the analysis of market microstructure is the notion that in a market with asym-

metrically informed agents, trades convey information and therefore cause a persistent

impact on the security price.” The present study seeks to link the investor behavior

under asymmetric information to the ubiquitously observed power-law fluctuations.

The remainder of the study is organized as follows. Section 2 presents the model.

Section 3.1 analytically shows that a power-law distribution emerges for trading volume

when the number of traders tends to infinity, and provides an intuition for the mecha-

nism behind it. Section 3.2 shows that a power law is obtained for returns. Section 3.3

numerically confirms that the equilibrium volumes follow a power law under a finite

number of traders, and that the equilibrium return distribution matches its empirical

counterpart. Section 3.4 discusses some extensions of the model. Section 4 concludes.

2 Model

In this section we describe the basic features of the model, including the nature of the

asset market and the definition of equilibrium.

2.1 Market

The asset market consists of n informed traders, a continuum of uninformed traders

and an auctioneer. The uninformed traders supply a single asset and informed traders
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demand it.5 The asset has common intrinsic value 1 in state H and 0 in state L. The

true state is not known to any market participant. All hold a common prior belief,

which is set to Pr(H) = Pr(L) = 0.5 without loss of generality.

Let S(p) denote aggregate supply of the uninformed traders at price p. We assume

that S is continuously differentiable and strictly increasing with S(0.5) = 0, so that

aggregate supply is zero at the price level that reflects common prior belief. We also

assume that p̄ := S−1(1) < 1, implying an upper bound on equilibrium price below the

maximum value of the asset.

Each informed trader chooses whether or not to buy a single trading unit, set to

1/n so as to normalize maximum total demand to unity. Hence aggregate demand

takes values from discrete set {0, 1/n, . . . , 1}. The equilibrium price P ∗ takes values

in P := {p0, p1, . . . , pn}, where pm for m ∈ {0, 1, . . . , n} is determined by the market-

clearing condition S(pm) = m/n. Since S(0.5) = 0, we have p0 = 0.5.

Informed traders, indexed by i, receive private signals that are dependent on the

state. Signal Xi is iid across i with conditional cumulative distribution function F s

for s = H,L. The two distributions have common bounded support X := [x, x̄] ⊂ R

so that the signal is not perfectly informative.

Each informed trader submits his demand function to the auctioneer. The demand

function describes his action for each realization of price, given his private signal. The

permissible set of demand functions is D = {di : X 7→ {0, 1}P1}, where P1 := P\{p0} =

{p1, p2, . . . , pn}.6 The demand function indicates buying at p when di(p | xi) = 1

5We later discuss the case when both uninformed and informed traders can buy and sell. The

informational asymmetry between informed and uninformed traders in this model is similar to event

uncertainty, as introduced by Avery and Zemsky [5] as a condition for herding to occur in financial

markets.
6Note that p0 is excluded from P1 because p0 cannot be realized in equilibrium if any trader,
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and not-buying when di(p | xi) = 0. Let x = (xi)
n
i=1 denote a profile of private

signals. Aggregate demand expressed in terms of the number of buying traders is

D(p | x) :=
∑n

i=1 di(p | xi), which maps X n to {0, 1, . . . , n}P1 .

Decisions take place under the following timing. First, nature sets the state s ∈

{H,L}. Second, a signal profile x is drawn from the n-fold product of the distribution

F s. Third, informed traders submit demand function di(p | xi) to the auctioneer.

Fourth, the auctioneer determines equilibrium price p∗ through the following protocol:

If D(p1 | x) = 0, then the auctioneer sets p∗ = p0, since no informed trader is willing

to buy given that all other traders do not buy. If D(p1 | x) > 0, then the auctioneer

determines p∗ > p0 such that S(p∗) = D(p∗,x)/n. Finally, transactions take place. A

unit of asset is delivered to informed trader i with di(p
∗ | xi) = 1. The equilibrium

number of buying traders is determined as m∗ := D(p∗ | x).7

Since the asset has common value 1 in H and 0 in L while its purchase cost is p, a

buying trader (di(p | xi) = 1) obtains payoff 1− p in state H and −p in L, whereas a

not-buying trader (di(p | xi) = 0) obtains 0 in either state. We assume that informed

traders are risk-neutral and maximize their expected payoff. The expected payoff for

the choice di(p | xi) = 0 is 0 regardless of i’s belief. The expected payoff for the choice

di(p | xi) = 1 is ri(p, xi)− p, where ri(p, xi) := Pr(H | p, xi, di(p | xi) = 1) denotes the

probability of s = H conditional on that trader i receives signal xi and buys at p and

including i, chooses buying at p0. Thus, traders are allowed to demand assets only at prices strictly

greater than p0.
7The model may be extended to the case where informed traders can sell as well as buy or not buy

the asset. In the extended model, there are uninformed traders on both supply and demand sides.

An informed trader submits a demand function d that can take values 1, 0, or −1. The auctioneer

stipulates that no transactions take place if there exist non-zero traders buying at p1 and selling at

p−1. In this way, informed traders always transact against uninformed traders as in the original model.
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that p is an equilibrium price. Given xi and di(pm | xi) = 1, pm is an equilibrium price

if and only if there are m−1 other traders buying at pm, i.e.,
∑

j 6=i dj(pm | xj) = m−1.

Let Ωm,i denote such an event: Ωm,i := {(xj)j 6=i :
∑

j 6=i dj(pm | xj) = m−1}. Moreover,

xi is independent of other traders’ decisions dj conditional on m. Therefore, we can

write the conditional probability, for any m ∈ {1, 2, . . . , n}, as

ri(pm, xi) =
Pr(Ωm,i, xi, H)

Pr(Ωm,i, xi)
=

Pr(Ωm,i | H)

Pr(Ωm,i, xi)
Pr(xi | H) Pr(H) (1)

Namely, ri(pm, xi) is a Bayesian updated belief for a buying trader i given xi and m.

Using this, our equilibrium concept is defined as follows.

Definition (Equilibrium). A Bayesian Nash equilibrium consists of a profile of in-

formed traders’ demand functions di : X 7→ {0, 1}P1, a profile of conditional probabili-

ties ri(p, xi), and equilibrium price correspondence p∗ for (X ,P) such that (i) for any

i = 1, 2, . . . , n and at each information set (p, xi), di(p, xi) maximizes expected payoff

(ri(p, xi)− p)di(p, xi) given dj for j 6= i, (ii) for any i = 1, 2, . . . , n, ri(p, xi) is consis-

tent with demand functions {dj}j and equilibrium price correspondence p∗, and (iii) p∗

clears the market: S(p∗) =
∑n

i=1 di(p
∗, xi)/n, ∀x ∈ X n.

2.2 Signal

We are concerned with the case where there are many informed traders who receive

private signals of the state, and where the informativeness of the signal is small. Thus,

we consider a sequence of markets indexed by the number of informed traders, n. The

density function of F s
n, the distribution of the private signal, is denoted by f sn, for

s = H,L. We implement the idea that the density fH tends to generate larger signals

by assuming that fHn , f
L
n satisfies the the monotone likelihood ratio property (MLRP)
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for each n. In other words, `n := fHn /f
L
n is strictly increasing on X . We further assume

that f sn is continuously differentiable and strictly positive over X .

Below we adopt the notation Λn(x) := (1 − FH
n (x))/(1 − FL

n (x)) and λn(x) :=

FH
n (x)/FL

n (x). The value Λn(x) expresses the likelihood when the signal is greater

than x. Thus, a trader’s bidding action reveals the information Λn(x) to observers of

the action under a decision rule that a trader buys only if the signal is greater than

x. Similarly, λn(x) is the likelihood when the signal is smaller than x, and it is the

information revealed by inaction of the trader.

We note for future reference that the likelihood ratios satisfy Λn(x) = λn(x̄) = 1,

limx→x λn(x) = `n(x), and limx→x̄ Λn(x) = `n(x̄) (obtained using l’Hôpital’s rule).

Also, MLRP implies 0 < λn(x) < `n(x) < Λn(x) for any x interior of X as in Smith

and Sørensen [53], and strictly increasing likelihood ratios: Λ′n(x) > 0 and λ′n(x) > 0

(see Appendix for proof). Figure 1 depicts these properties of the likelihood ratios.
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2.3 Traders’ optimal strategy

As we saw previously, choice di(p, xi) = 1 yields expected payoff ri(p, xi)− p, whereas

choice di(p, xi) = 0 results in expected payoff 0 regardless of ri. Therefore, trader

i chooses di(p, xi) = 1 if and only if ri(p, xi) ≥ p. This condition is equivalent to

ρi(p, xi) ≥ p/(1−p), where ρi(p, xi) := ri(p, xi)/(1−ri(p, xi)) is a conditional likelihood

ratio for i with private signal xi and decision di(p, xi) = 1.

The decision rule is characterized by a threshold under our two-state environment,

mapping the number of buyers to a signal value above which it is optimal to buy. Using

(1) and Pr(H) = Pr(L) = 0.5, we obtain

ρi(p, xi) =
Pr(Ωm,i | H)

Pr(Ωm,i | L)
`n(xi). (2)

Since `n(xi) is continuous and strictly increasing, ρi(pm, xi) is continuous and strictly

increasing in xi for any pm. Therefore, for each pm ∈ P1, there exists threshold σ ∈ X

such that it is optimal for trader i to buy if and only if xi ≥ σ. The threshold σ

indicates either an indifference level of signal ρi(pm, σ) = pm/(1 − pm) or a corner

solution σ = x, x̄ for each m. We denote a threshold function as σ : {1, 2, . . . , n} 7→ X .

Trader i’s optimal demand function follows a threshold rule

di(pm, xi) =

 1 if xi ≥ σ(m),

0 otherwise,

for each pm ∈ P1.

A buying trader at price pm can infer that there are m− 1 other buying traders at

pm if the price is realized under the stipulated rule for the auctioneer. Moreover, the

threshold function σ(m) is common for all informed traders. Thus, a buying trader

can infer that, for pm to occur, there must be m− 1 other traders who receive signals
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greater than σ(m) and n−m traders who receive signals smaller than σ(m). Such an

event occurs with probability

Pr(Ωm,i | s) =

(
n− 1

m− 1

)
(1− F s

n(σ(m)))m−1F s
n(σ(m))n−m

for each state s ∈ {H,L}, since the probability of receiving signal smaller than σ is

F s
n(σ). Therefore, the likelihood ratio for pm to occur is

Pr(Ωm,i | H)

Pr(Ωm,i | L)
=

(
1− FH

n (σ(m))

1− FL
n (σ(m))

)m−1(
FH
n (σ(m))

FL
n (σ(m))

)n−m
= Λn(σ(m))m−1λn(σ(m))n−m.

Substituting into (2), we obtain ρi(pm, xi) = Λn(σ(m))m−1λn(σ(m))n−m`n(xi). Thus,

the threshold σ(m) for m ∈ {1, 2, . . . , n} is implicitly determined by

pm
1− pm

= λn(σ)n−mΛn(σ)m−1`n(σ) (3)

if an interior solution σ exists.

Equation (3) is the key to the subsequent analysis. The right-hand side shows the

likelihood ratio of the posterior belief of a trader who receives signal xi = σ(m) and

buys at pm. This equation determines the threshold level of signal σ(m) at which a

trader is indifferent between buying and not-buying given pm. Due to the threshold

behavior shown above, we obtain aggregate demand D(pm,x) by counting the number

of informed traders with xi ≥ σ(m).

With this setup, the more informed traders buy, the more signals in favor of H are

revealed. This further encourages informed traders to buy. The resulting aggregate

demand curve is upward sloping if the signal revealed by larger demand has a greater

effect on expected payoff than an increase in purchasing costs caused by the demand

does. This is because the optimal threshold rule becomes a stop order when the signal

effect dominates the scarcity effect of price.
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We formalize this environment as follows. Let δn denote the minimum distance

between Λn and λn in logarithm: δn := minx∈X (log Λn(x)− log λn(x)). We assume the

following property on the sequence of likelihood ratio functions.

Assumption 1. There exists a triplet (n1, ξ, δ) such that n1 < ∞, ξ ∈ (0, 1), δ ∈

(0,∞), and δn > δ/nξ for any n > n1.

Assumption 1 sets the lower bound on the informativeness of signal. It allows the

signal to deteriorate to pure noise as n → ∞, but the speed of convergence to the

pure noise is strictly slower than 1/n. This property guarantees that the aggregate

information for all the informed traders as a group, nδn, increases without bound as n

increases.

With this setup, we obtain the following proposition stating that the aggregate

demand curve is upward sloping when n is sufficiently large.

Proposition 1. Under Assumption 1, there exists an integer no such that for any

n > no, the threshold level of signal σ(m) is decreasing in m and the aggregate demand

D(pm,x) is increasing in m.

Proofs are deferred to Appendix unless otherwise stated.

Figure 2 depicts an aggregate demand curve D(p,x). The upward-sloping aggregate

demand indicates the presence of strategic complementarity in informed traders’ buying

decisions through the information revealed by price: a higher price indicates that there

are more informed traders who receive high signals.8

The number of informed traders n needs to be large in order to obtain the upward

sloping demand curve in our model. The increment in price pm+1/pm along the supply

8The mechanism in which demand feeds on itself is reminiscent of Bulow and Klemperer [10]’s

“rational frenzies.”
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Figure 2: An equilibrium outcome for a realization of signal profile x

curve is of order 1/n, because each informed trader demands 1/n amount of the asset.

That is, an informed trader faces relatively scarce supply when n is small. In this case,

the increase in purchasing costs that corresponds to an increase in volume overwhelms

the signal effect of the increased volume, leading to a downward sloping demand curve.

Under Assumption 1 assuring that the signal does not deteriorate as fast as 1/n, the

aggregate demand curve is upward sloping for sufficiently large n.

With the upward sloping demand function, we establish the existence of equilibrium

in a finite economy:

Proposition 2. Under Assumption 1, for any n > no, there exists an equilibrium

outcome (p∗,m∗) for each realization of x.

While multiple equilibria may exist for each realization of x, we focus on the case

where the auctioneer selects the minimum number of buying traders among possible

equilibria, m†, for each x.9 This equilibrium selection uniquely maps each realization

9An interpretation of the selection rule is that the auctioneer is mandated by the exchange to
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of x to m†, rendering m† a realization of a proper random variable. Then, M †
n is the

equilibrium volume whose probability distribution is determined by the probability

distribution of (Xn,i)
n
i=1 and the equilibrium selection mapping.10

3 Results

In this section we present our main analytical results, including a power law for both

volume and returns. In addition to these analytical results, which are asymptotic,

we provide quantitative analysis to investigate the case of finite n. In the sequel, the

right tail of a random variable X is said to obey a power law with exponent α if

Pr(X > x) ∝ x−α for sufficiently large x.

3.1 Power law for volume

Our first step is to characterize the minimum equilibrium aggregate trading volume

M †
n and show that it follows a power law distribution asymptotically in n. As we

are concerned with high-frequency fluctuations in volume and price, we work in the

environment where the informativeness of signal is vanishingly small. We formalize this

idea as that the signal tends to pure noise in this sequence of markets as n increases

as follows:

Assumption 2. As n→∞, `n converges to 1 uniformly on X .

minimize the impact of transaction on prices (Hasbrouck [28]). By assuming that the auctioneer selects

the minimum number of buying traders, we exclude fluctuations that arise purely from informational

coordination such as in sunspot equilibria. Even with this rule of selecting minimum volume, we show

that the equilibrium volume and price in the model exhibit large fluctuations.
10Upper case letters (M†n, Xn,i, P

∗) denote random variables and lower case letters (m†, xi, p
∗)

indicate their realized values.
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Assumption 2 holds in short time intervals when the signal received by traders tends

to be noisy. Along with Assumption 1, we consider an asymptotic case where the signal

contains vanishingly small information on the fundamental value of an asset, and yet

the informativeness is larger than the impact of increasing purchasing costs.

We divideM †
n into two groups: the traders who buy even if there are no other traders

buying, and the other traders who buy as a consequence of the other traders buying.

The number of the first group of traders, D(p1,x), follows a binomial distribution with

population n and probability πon := 1 − F θ
n(σ(1)), where θ ∈ {H,L} denotes the true

state. If ψo := limn→∞ nπ
o
n finitely exists, D(p1,x) follows a Poisson distribution with

mean ψo asymptotically as n→∞.

With these notations, we obtain the distribution of M † explicitly as follows.

Proposition 3. If Assumptions 1–2 hold and ψo is finite, then, as n→∞,

Pr(M †
n = m)→ e−ψo−m+1(m− 1)m−1

m!

[
1 + (ψo − 1)

(
1 +

ψo
m− 1

)m−1
]
,

for each integer m ≥ 2 and Pr(M †
n = m) → ψmo e

−ψo for m = 0, 1. In particular, the

right tail of the asymptotic distribution obeys a power law with exponent 0.5.

Proposition 3 demonstrates the emergence of a power-law tail for volume. Note that

the obtained power law does not depend on the specifications of signal distributions.

The key environment to obtain the power law is Assumption 2 which requires that the

likelihood ratio ` converges to 1. Namely, the power law is generated when the signal

tends to a pure noise regardless of the distribution form of the signal.

While the signal distribution does not affect the emergence of power-law tail, it

affects ψo. We provide an example where the bounded ψo exists under a particular

class of signals.
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Assumption 3. The distributions of signal Xn,i satisfy F s
n(x) = ea

s
n(x−x̄) for s = H,L

in (x̄ − ε, x̄] for some ε > 0, where (aHn , a
L
n)∞n=no is a pair of bounded sequences of real

numbers which converges to (a, a) for some a > 0 and satisfies aHn > aLn > 0 and

log(aHn /a
L
n) > δ/nξ for any n > no.

The distributions specified by this assumption generate ψo = 1 as shown in Ap-

pendix. Thus, under this specific class of signals, we obtain a simple distribution for

the volume fluctuation as follows.

Proposition 4. If Assumptions 1–3 hold, then

Pr(M †
n = m)→ e−m(m− 1)m−1

m!

for integers m ≥ 1 and Pr(M †
n = 0) → e−1 as n → ∞. In particular, the asymptotic

distribution obeys a power law with exponent 0.5.

The power law for volume in Propositions 3 and 4 is generated by the traders’

clustering behavior in which a trader’s buy induces another trader’s buy. We sketch

the derivation of the power law below. Recall that we divide M †
n into D(p1,x) and

the remainder. In the example shown in Figure 2, D(p1,x) is equal to 2. We can

find a minimum equilibrium m† by following the aggregate demand schedule as long

as D(p,x) − S(p) > 0. In Appendix, we show that the demand schedule D(pm,x)

can be expressed as a Poisson process with intensity 1 by an appropriate definition of

“time” based on m. Hence, the number of traders who are induced to buy by the other

traders’ buying, M †
n −D(p1,x), can be expressed as a first passage time of the excess

demand D(p,x)− S(p) to reach 0.

Now consider a general Poisson process N(t) with intensity parameter φ > 0 where

N(0) = b0 is a positive integer. The first passage time of N(t) reaching t− b0 must be
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greater than or equal to b0. Now we introduce a process bu for u = 0, 1, . . .. During

the time interval b0, the increment N(b0) − N(0), denoted as b1, follows a Poisson

distribution with mean φb0. Since a Poisson random variable is infinitely divisible,

a Poisson random variable with mean φb0 is equivalent to b0-fold convolution of the

Poisson with mean φ. Thus, we can regard b1 as the number of traders induced to

buy by b0 traders, where each trader in b0 brings about a number of induced traders

following the Poisson with mean φ. If b1 = 0, the process bu stops, and the first passage

time is b0. If b1 > 0, the first passage time is greater than or equal to b0+b1. During the

time interval (b0, b0 + b1], new increment b2 := N(b0 + b1)−N(b0) follows the Poisson

distribution with mean φb1, which is equivalent to b1-fold convolution of the Poisson

with mean φ and regarded as the number of traders induced by b1 traders (note that

the increment b1 of a Poisson process is always an integer). This process bu continues

for u = 1, 2, . . . , U , where U denotes the stopping time at which bU is equal to 0 for

the first time. Thus, the first passage time is equal to
∑U

u=0 bu, i.e., the total number

of population generated in the so-called Poisson branching process bu in which each

trader bears a number of induced traders according to the Poisson distribution with

mean φ.

It is known that the sum of the Poisson branching process, cumulated over time

until the process stops, follows a Borel-Tanner distribution (Kingman [33]; see also Nirei

[45]). When the Poisson mean of the branching process bu is φ > 0, the Borel-Tanner

distribution is written as

Pr

(
U∑
u=0

bu = m | b0

)
=
b0

m

e−φm(φm)m−b0

(m− b0)!
, (4)

for m = b0, b0 + 1, . . . . By applying Stirling’s formula to the factorial (m − b0)!, we
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obtain the tail characterization:

Pr

(
U∑
u=0

bu = m | b0

)
∝ e−(φ−1−log φ)mm−1.5 (5)

as m→∞. In Appendix, we show that φ = 1 holds in our asymptotic characterization

of M †
n. Substituting φ = 1 into (5), we obtain that the tail probability of M †

n = m is

proportional to m−1.5. Hence, the tail cumulative probability Pr(M †
n > m) decays as

m−0.5.

In general, a power law with exponent α implies that any k-th moment for k ≥ α

is infinite. Thus, with exponent 0.5, M †
n does not have a finite asymptotic variance or

mean as n→∞. This implies that the variance of the fraction of buying traders, M∗
n/n,

can be quite large even when n is large. By integrating (M †
n/n)2 up to M †

n = n with a

power-law tail exponent 0.5, we find that the variance of M †/n decreases as n−0.5 when

n becomes large. This contrasts with the case when the traders act independently.

If traders’ choices (dn,i)
n
i=1 were independent, the central limit theorem predicts that

M †
n/n would asymptotically follow a normal distribution, whose tail is thin and variance

declines as fast as n−1. Thus, the variance of M †
n/n differs by factor n0.5 between our

model and the model with independent choices. This signifies the effect of stochastic

clustering that amplifies the small fluctuations in the received signals Xn,i.
11

Even though such amplification effects can occur whenever traders’ actions are cor-

related, it requires a particular structure in the correlation for the amplification effect

to cause the variance to decline more slowly than n−1, i.e., the speed the central limit

theorem predicts. Mathematically, the amplification effect in our model is analogous to

a long memory process in which a large deviation from the long-run mean is caused by

long-range autocorrelation. In our static model, the long-range correlation of traders’

11On the implications of a tail distribution on aggregate fluctuations, see, for example, Nirei [48]

and Acemoglu, Ozdaglar and Tahbaz-Salehi [1].
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actions is captured by excess demand D(pm,x) − S(pm), which can be regarded as a

stochastic process when m exogenously increases. In our model, the mean number of

traders induced to buy by a buying trader is equal to 1, as indicated by φ = 1 above.

This property makes the excess demand process a martingale. In fact, the power law

exponent 0.5 obtained in our model is closely related to the same exponent in the

Inverse Gaussian distribution that characterizes the first passage time of the Wiener

process.

The economic meaning of D(pm,x)−S(pm) being a martingale in our model is that

the mean number of traders induced to buy by a buying trader is 1. This property can

be seen from optimal threshold condition (3). This condition reduces to a simple form

(1− µ) log λn(σ) + µ log Λn(σ) = 0, where µ := m/n, if we take the limit n→∞ while

fixing µ. The condition indicates that the geometric average of λ and Λ evaluated at

σ, which can be regarded as revealed likelihood on the true state revealed by traders’

actions, does not change even when µ takes different values. Suppose that a trader

switches from not-buying to buying. This increases µ, which leads to an increase in

the revealed likelihood that traders observe, and lowers the optimal threshold. This in

turn decreases the revealed likelihood, because traders learn that the signals received by

non-buying traders must have been below the decreased level of threshold. As a result,

the impact of an increase in µ on the geometric average of λ and Λ is counteracted by

a decrease in σ. These effects turn out to cancel out with each other when the signal

is vanishingly small (i.e., log Λn − log λn ≈ 0) and m is finite (µ ≈ 0). Hence, under

the noisy signal, any finite m satisfies the equilibrium condition above.

This environment is analogous to the fable of Keynes’s beauty contest, in which the

average action of a single trader responds one-to-one to the average actions of traders.

The beauty contest would lead to indeterminate equilibria, if there are a continuum of
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traders or if the traders’ actions are continuous. This type of local indeterminacy is

avoided in our model with a finite number of traders and discrete actions. However,

the indeterminacy described above provides an intuition why our model can generate

equilibrium trading volumes at any order of magnitude as demonstrated by the power

law.

Our model depicts the situation where a large number of informed traders try

to glean information from other traders’ actions under noisy signal. A power law of

clustering size emerges asymptotically when traders’ interaction leads to indeterminacy.

However, this does not necessarily imply that traders fail to learn. We can extend our

model dynamically where traders draw private signal repeatedly and eventually learn

the true state.12 A power law in this case implies that the collective learning does not

occur smoothly over time. The noisy signal generates little transaction and is hoarded

privately for most of the times, but once in a while, a large cluster of trades occurs

and the accumulated private information is revealed. Thus, the power law for volume

implies that the revelation happens at once in the collective learning of traders.

Propositions 3 and 4 claim not only that various levels of aggregate trading volumes

M †
n are possible, but also that the distribution of M †

n has a particular regularity signified

by a power law. The power law for M †
n can imply a fat-tailed distribution of the

equilibrium price P ∗n depending on the form of supply function. In the following section,

we show the case where the return distribution also follows a power law in our model.

3.2 Power law for returns

Having established the power law for volume, we now turn to the power law for returns.

An important facet of the model to be specified is the supply function S(p), which

12See the working paper version [47] for the extension.

20



determines how the fluctuation of volume is translated to the fluctuation of returns.

In our model, informed traders’ demands are absorbed by uninformed traders’ supply.

Thus, the supply function of uninformed traders m∗ = S(p∗) determines the impact of

volume m∗ on the return q := log p∗ − log p0. The relation between an exogenous shift

in trading volume and a resulting shift in asset price, i.e. S−1, is called a price impact

function. Following the literature (see, e.g., Hasbrouck [28] and Lillo et al. [38]), we

specify the price impact function as q = β(m/n)γ with β > 0 and 0 < γ < 1 for

m = 1, 2, . . . , n.

The following proposition establishes that our model generates a power law for the

returns distribution when the price impact is specified as the power function.

Proposition 5. If volume m/n follows a power law Pr(m/n) ∝ (m/n)−α−1 and the

supply function S satisfies

log(S−1(m))− log(S−1(0)) = β(m/n)γ (6)

for β, γ > 0, then returns q follow a power law with exponent α/γ.

Proof. By applying the change of variable for m/n and using the specified supply

function, we obtain

Pr(q) ∝ Pr(m/n)|d(m/n)/dq| ∝ ((q/β)1/γ)−α−1(1/γ)q1/γ−1 ∝ q−α/γ−1.

Hence q follow a power law with exponent α/γ.

There is a growing consensus among empiricists of financial data that stock returns

generally obey the “cubic law,” in which the return distribution follows a power law

with exponent 3 (see, e.g., Gabaix et al. [22]; Lux and Alfarano [40]; Gu and Ibragimov

[26]). The cubic law corresponds to α/γ = 3 in the above equation. The analysis in the
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previous section established that α = 0.5 holds asymptotically. Hence, the cubic law

holds in our asymptotic case if γ = 1/6. This value is consistent with the empirically

estimated range of γ ∈ [0.1, 0.5] (Lillo et al. [38]).

Gabaix et al. [22] provides a micro-foundation for a square-root specification of

price impact function, γ = 0.5, and combines it with the “half-cubic law” of trading

volume found by Plerou et al. [51], α = 1.5, to obtain the cubic law α/γ = 3. However,

Lux and Alfarano [40] note that it is not clear whether the half-cubic law of volume is

“of a similarly universal nature” as the cubic law of returns. While our model predicts

α = 0.5 in an asymptotic case with a diverging number of informed traders n and a

vanishingly small signal, we will show that the model is also capable of generating a

different exponent when n is finite. In the next section, we explore through numerical

analyses the model’s prediction on the power law for returns and volume under finite

n and an empirically plausible price-impact function.

3.3 Quantitative analysis with finite n

In this section, we conduct numerical analysis of the model with a finite number of

informed traders n. The purpose of this exercise is to confirm that, even with finite

n, the number of buying traders M †
n follows a power law, which was shown as an

asymptotic property when n tends to infinity in the previous sections. Moreover, we

show that the fluctuation of equilibrium asset returns q = logP ∗n − log p(0) exhibits a

power law that matches with the returns distribution observed in empirical data.

The model is specified as follows. The signal distribution F s for s ∈ {H,L} is

normal with common standard deviation σ and different means µH = 1 and µL = 0.

We set σ at between 30 and 50. This large standard deviation relative to the difference

in mean captures the situation where the informativeness of signal Xi is small. We set
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the number of informed traders n at a finite but large value between 500 and 2000. The

supply function of uninformed traders is specified as in (6), and its parameters are set

at our estimates γ = 0.4642 and β = 0.768 as explained later. With these parameter

values, the optimal threshold function σ(·) is computed. Using the threshold function,

we conduct Monte Carlo simulations by randomly drawing a profile of private signals

(xi)
n
i=1 106 times and computing m†n and p∗n for each draw.

The left panel of Figure 3 plots the histograms of M †
n for various parameter values

of n and σ. Since the histogram is plotted in log-log scale, a linear line indicates a

power law Pr(M †
n = m) ∝ m−α−1, where the slope of the linear line reflects −α − 1.

As can be seen, the simulated log-log histograms appear linear for a wide range of M †
n.

This conforms to the model prediction that M †
n follows a power law distribution. Note

that the simulated histogram decays exponentially when M †
n/n is close to 1, due to the

finiteness of n.

The asymptotic results in Propositions 3 and 4 predicted the exponent of power

law α to be 0.5. The left panel of Figure 3 confirms this pattern for finite n, when

(n, σ) = (800, 30) or (2000, 50). We also observe that the power law exponent can take

larger values when the parameter alignment differs, as observed in the case when n is

decreased (the circle-line compared to the cross-line) or when σ is increased (the cross-

line compared to the triangular-line). This deviation of exponent from the asymptotic

case α = 0.5 can result from finite n, as we discuss in more detail in the next section.

By this property, our model has flexibility in fitting to various exponents for trading

volume observed empirically.

Given this flexibility, we bring our model to fit the empirical distributions of daily

volume and returns. We intend this exercise to be a proof of concept for the capacity

of our model as an explanation of the observed power laws. Our direct target for
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Figure 3: Histograms of volume. The volume is normalized by its time-series average.

Left: Histograms of equilibrium volume M †
n for various parameter values, where n is the

number of traders and σ is the standard deviation of the private information. Right:

Daily volume histograms for individual stocks and a pooled sample, along with the

model histogram. Data for individual firms cover 30 years (from 1988 to 2018), while

data for the pooled sample cover one year (2016). The individual firms are selected at

the quintiles of market capitalization size in TSE. The circle-line shows the histogram

of pooled data for all listed firms. The cross-line shows a simulated histogram generated

by our model with n = 800 and σ = 50, and the plus-line shows the case with a higher

β.
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comparison is the time-series fluctuations of a single stock volume and returns in daily

frequency. We use Nikkei Financial Quest dataset that includes daily volume and prices

for the firms listed in the first section of Tokyo Stock Exchange (TSE) from March 1988

to March 2018.

The right panel of Figure 3 shows histograms of daily trading volumes for four single

stocks. The volume is divided by the daily average volume for each stock. The four

firms are selected at the quintiles of market capitalization size among all manufacturing

firms listed in the first section of TSE. The plotted histogram exhibits a fat tail for each

stock. However, the number of observations (7401) for each stock is not sufficiently

large to investigate the tail in detail, and the sample period (30 years) is too long to

assure the invariance of the daily volume distribution. To deal with this data limit, we

prepare a pooled dataset of a large number of stocks for a shorter sample period. We

collect daily trading volumes for all (2250) listed firms for year 2016, and divide the

volume by the average volume for each firm during the year. The circle-line in the plot

shows the histogram of the normalized volume for the pooled sample. We now observe

a longer tail, whose exponent is similar to the tails for individual stocks. The pooled

data shows that the exponent for volume is about 2 (the slope of the histogram in

log-log scale is 3). We then superimpose the volume histogram generated by our model

for the case (n, σ) = (800, 50), shown as the cross-line. As can be seen, the simulated

histogram reasonably agrees with the empirical histogram.

The power-law exponent can be estimated using Hill estimator. Since the power law

applies only for the tail distribution, we augment the Hill estimator with an estimated

lower threshold for the tail region, following the standard methodology proposed by

Clauset et al. [15]. The estimated power law exponents for volume for the first to fourth

quintile stocks and for the pooled data are 1.73 (0.04), 1.31 (0.04), 2.50 (0.08), 3.68
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(0.25), and 1.89 (0.02), respectively (standard errors in parentheses). The Hill estimate

of the power-law exponent for the simulated volume is within the above range, 2.03.

The left panel of Figure 4 shows the histograms of daily returns for the same

samples. We define the daily return as a logarithmic difference from the opening to

closing price. The open-close difference is used rather than a business day return so

that the time horizon of each observed return is homogenized. We subtract time-

series average returns and divide by standard error of the returns for each stock, and

take an absolute value for returns, pooling both positive and negative returns across

stocks. The empirical histograms for the individual stocks and the pooled sample show

a power law with exponent about 3, which is consistent with the literature (Lux and

Alfarano [40]). The model-generated histogram also shows a fat tail, which is slightly

thinner than data but clearly exhibits a power law. The Hill estimates of the power-law

exponent for returns for the quintile stocks and the pooled data are 4.52 (0.72), 2.49

(0.11), 3.26 (0.16), 2.83 (0.13), and 3.62 (0.03), whereas that for the simulated returns

is 4.38.

The right panel of Figure 4 shows a scatter plot of daily volume and absolute returns

for all listed firms, along with the price-impact function specified in the simulated model

(6). The parameter values (γ = 0.4642, β = 0.768) are estimated by fitting (6) to the

pooled sample by the non-linear least squares.13 In sum, Figures 3 and 4 indicate

that our model is capable of generating the power laws of volume and absolute returns

with a price-impact function consistently estimated with the high-frequency sample

observed in TSE.

13The plotted sample is truncated at the volume divided by mean being 50, in order to enhance

visibility, while all the data are used for the parameter estimation.
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Figure 4: Left: Histograms of the absolute values of daily returns. The horizontal axis

shows the daily return, which is the difference in logarithm of close and open prices for

each business day. The samples are the same as in Figure 3. Right: A scatter plot of

daily volume and absolute returns for all listed firms in 2016. The red line shows the

price-impact function fitted by the non-linear least squares.
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3.4 Extension

Larger power-law exponent for volume

Propositions 3 and 4 show that the model generates the power-law exponent for volume

to be 0.5. This exponent is smaller than most empirical estimates, which were sum-

marized as the half-cubic law by some researchers. This gap can be easily filled. The

model exponent 0.5 is obtained asymptotically where the number of traders n tends

to infinity and the informativeness of signal vanishes. In a finite economy, the volume

distribution takes a more general form (5) which includes the asymptotic result as a

limiting case φ→ 1. Consider an extended model in which φ exhibits variation within

[1− ε, 1] uniformly. Then, the tail distribution follows an integral of (5) across φ as

1

ε

∫ 1

1−ε
e−(φ−1−log φ)mm−1.5dφ ∝ (e(ε+log(1−ε))m − 1)m−2.5.

Note that the power exponent is increased by 1. The power-law exponent is now 1.5,

exactly matching the half-cubic law.

This property that the power-law exponent is increased when the underlying param-

eter fluctuates around the critical value (φ = 1 in our case) is known as the sweeping of

instability (see Sornette [54]). This property explains why we observe that the power-

law exponent for volume deviates upward from 0.5 in the previous section where n is

set at a finite value.

Learning by uninformed traders

Our benchmark model treats the uninformed traders completely unaware of the fact

that the price movement is driven by informed traders. This assumption can be relaxed.

Suppose that the uninformed traders know that some price movements contain infor-

mation on the value of assets, but they cannot distinguish such price movements from

28



purely random movements. Thus, the uninformed traders perceive that the price move-

ments reflect revealed information of informed traders with some probability π. Let plm

denote the price the uninformed traders accept for supplying m in this environment,

while they are willing to accept the price pm (defined in our benchmark model) in order

to fill their liquidity need for supplying m even if there is no information contained in

the transaction. Then, the price satisfies plm−p0 = (plm−p0+pm−p0)π+(pm−p0)(1−π),

implying (plm − p0) = (pm − p0)/(1− π).

This result implies that the supply function S(p) becomes steeper by 1/(1−π) when

uninformed traders can learn with probability π. Since the supply elasticity does not

affect our asymptotic results, the power laws obtained in Section 3.1 continue to hold

under this environment. Numerical results under a finite number of traders may be

affected by the learning possibility. In fact, Figures 3 and 4 show that this is the case.

The steeper supply function corresponds to the higher β in the price-impact function

(6). We specify that π = 1/3, which corresponds to that β = 1/(1− π) is increased by

50%. The power laws for volume and returns under the high β are shown in the right

panel of Figure 3 and the left panel of Figure 4. We observe that exponents for the

both cases become greater than the benchmark case.

4 Conclusion

This study analyzed aggregate fluctuations of trading volume and prices that arise

from asymmetric information among traders in financial markets. In an asset market

model in which each trader infers the private information of other traders only by ob-

serving their actions, we found that the number of traders taking the same action at

equilibrium exhibits large volatility with a statistical regularity—a power-law distri-
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bution. Furthermore, we showed that the model is capable of generating a power-law

distribution of asset returns. The simulated distributions of equilibrium returns and

volume were demonstrated to match the distributions of observed stock returns and

volume.

The power law distribution of trade clustering emerges when the number of traders

is large and the signal is noisy, consistent with the empirical observation that the

power-law fluctuation of returns manifests in high frequency data. In our model, an

action by one trader is as informative as inaction by another. When some information

is revealed by a trader’s buying action, the inaction of other traders despite of their

observation of the initial buying action, reveals their private information in favor of

not buying. Thus, each trader’s action is influenced by the average of both buy and

not-buy actions, resulting in a near-indeterminate equilibrium, analogous to Keynes’

beauty contest. In this way, our model of asymmetric information provides an economic

reasoning for the criticality condition that generates power law fluctuations.

This study suggests several directions for extension. One would be to develop a

dynamic model that accounts for the time-series properties as pursued by, for example,

Alfarano et al. [2]. Another direction would be to extend the model by incorporating

more realistic market structure. Some extensions seem to be easily incorporated. For

example, trading size can be heterogeneous across informed traders. Even in this case,

if informed traders can observe the number of buying informed traders, our result of

power law for volume holds. Other extensions, such as the case where informed traders

can choose from a discrete set of actions rather than a binary set, seem more involved.

Kamada and Miura [32] have taken a step in this direction by extending this model to

the case where both public and private signals exist and where informed traders can

take both buying and selling sides.
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Appendix: Proofs

Properties of λn and Λn

Taking derivatives of λn and Λn, we have

dλn(x)

dx
=
fHn (x)

FL
n (x)

− FH
n (x)fLn (x)

(FL
n (x))2

=
fLn (x)

FL
n (x)

(`n(x)− λn(x)) , (7)

dΛn(x)

dx
= − fHn (x)

1− FL
n (x)

+
(1− FH

n (x))fLn (x)

(1− FL
n (x))2

(8)

=
fLn (x)

1− FL
n (x)

(Λn(x)− `n(x)) .

Thus, inequality λn(x) < `n(x) < Λn(x) implies that λ′n(x) > 0 for x ∈ (x, x̄]

and Λ′n(x) > 0 for x ∈ [x, x̄). At x = x, we obtain λ′n(x) = `′n(x)/2 > 0 by applying

l’Hôpital’s rule for (7) and rearranging terms. Similarly, we obtain Λ′n(x̄) = `′n(x̄)/2 > 0

by evaluating (8) at x = x̄. Hence, we obtain λ′n(x) > 0 and Λ′n(x) > 0 for any x ∈ X .

Proof of Proposition 1

The market-clearing condition, S(pm) = m/n, implicitly determines pm not only for

integers but also for any real number m. Thus, Equation (3) implicitly determines

σ(m) for real numbers of m. In this proof, we extend pm and σ(m) to real numbers.

To be precise, we define real variables t ∈ [1, n], pt and σ(t), such that pt is determined

by the market-clearing condition S(pt) = t/n and σ(t) is implicitly determined by

0 = Φ(σ, t) := (n− t) log λn(σ) + (t− 1) log Λn(σ) + log `n(σ)− log
pt

1− pt
, (9)

which is a logarithmic transformation of (3) with m being replaced by t.

We first show that an interior solution σ of Φ(σ, t) = 0 exists at the boundaries t = 1

and t = n. Φ(σ, t) is increasing in σ, since λn, Λn, and `n are increasing functions. It
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achieves minimum at σ = x, and the minimum value is Φ(x, t) = (n− t+1) log λn(x)−

log(pt/(1 − pt)), where we used Λn(x) = 1 and λn(x) = `n(x). Noting that λn(x) < 1

and log(pt/(1− pt)) > 0, we obtain Φ(x, t) < 0 for any t ∈ [1, n].

Φ(σ, t) achieves maximum at x̄, and the maximum value is obtained as Φ(x̄, t) =

t log Λn(x̄) − log(pt/(1 − pt)), using λn(x̄) = 1 and Λn(x̄) = `n(x̄). When t = 1, the

maximum is Φ(x̄, 1) = log Λn(x̄)− log(p1/(1− p1)). Assumption 1 implies log Λn(x̄) >

δ/nξ, since log Λn(x) − log λn(x) ≥ δn and λn(x̄) = 1. In contrast, log(p1/(1 − p1))

declines to 0 as fast as 1/n, as shown below. The market-clearing condition implies

that S ′(pt)dpt = dt/n. Using this, we obtain

d log(pt/(1− pt))
dpt

dpt
dt

=
1

pt(1− pt)
1

nS ′(pt)
.

Then, there exists some c1 > 0 such that log(p1/(1− p1)) < c1/n, because

log
p1

1− p1

= log
p0

1− p0

+

∫ 1

0

1

pt(1− pt)
1

nS ′(pt)
dt,

where 1/S ′ is bounded since S(·) is strictly increasing. Thus, we obtain Φ(x̄, 1) >

δ/nξ − c1/n, which is strictly positive for sufficiently large n since ξ < 1.

When t = n, the maximum of Φ(σ, n) is n log Λn(x̄)− log(pn/(1− pn)). The second

term is bounded, because pn/(1 − pn) < p̄/(1 − p̄). The first term tends to positive

infinity as n → ∞, since n log Λn(x̄) > δn1−ξ. Thus, Φ(x̄, n) > 0 for sufficiently large

n. Since Φ(x, t) < 0 and Φ(x̄, t) > 0 for t = 1 and t = n and since Φ is continuous in

σ, an interior solution σ exists for both t ∈ {1, n} when n is sufficiently large.

Next, we show that the interior solution σ is decreasing in t. The total derivative

of Φ(σ, t) = 0 is

1

pt(1− pt)
1

nS ′(pt)
dt

= log
Λn(σ)

λn(σ)
dt+

(
(n− t)λ

′
n(σ)

λn(σ)
+ (t− 1)

Λ′n(σ)

Λn(σ)
+
`′n(σ)

`n(σ)

)
dσ.
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This determines the derivative of σ with respect to t as

dσ

dt
=

− log (Λn(x)/λn(x)) + {pt(1− pt)S ′(pt)n}−1

(n− t)λ′n(x)/λn(x) + (t− 1)Λ′n(x)/Λn(x) + `′n(x)/`n(x)

∣∣∣∣
x=σ(t)

. (10)

The denominator is strictly positive, since λn, Λn, and `n are strictly positive

and strictly increasing. In the numerator, the first term is strictly negative, and

− log(Λn(x)/λn(x)) < −δ/nξ by Assumption 1. The second term in the numerator

is positive and of order 1/n, as shown above. Thus, the numerator is negative for large

n. Hence, there exists some no such that for any n > no, inequality dσ/dt ≤ 0 holds.

Since an interior solution σ for Φ(σ, t) exists for both t ∈ {1, n} and since an interior

solution σ is decreasing in t, an interior solution of (3) exists for any m ∈ {1, 2, . . . , n}.

Finally, since D(pm,x) is the number of traders with xi ≥ σ(m) for m = 1, 2, . . . , n,

the decreasing function σ(m) implies thatD(pm,x) is increasing inm for any realization

of x.

Proof of Proposition 2

We define an aggregate reaction function as a mapping from the number of buying

traders m to the number of buying traders determined by traders’ choices given pm

and their private signals. Specifically, the aggregate reaction function is given by Γx :

{0, 1, . . . , n} 7→ {0, 1, . . . , n} for each realization of x. It coincides with D for m > 0,

i.e., Γx(m) := D(pm,x) for m ∈ {1, 2, . . . , n}. For m = 0, we let Γx(0) = D(p1,x).

Then, Γx is an increasing mapping of {0, 1, . . . , n} onto itself for n > no. Moreover,

{0, 1, . . . , n} is a finite totally ordered set, and hence a complete lattice. Therefore, by

Tarski’s fixed point theorem, there exists a non-empty closed set of fixed points of Γx.

The auctioneer chooses m∗ = 0 if D(p1,x) = 0, and chooses m∗ > 0 such that

D(pm∗ ,x)/n = S(pm∗) = m∗/n if D(p1,x) > 0. Hence, the fixed points of Γx coin-
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cide with a set of equilibrium ouctome m∗. This establishes the existence of m∗ and

equilibrium price p∗ = pm∗ .

Preparation for the proof of Proposition 3

In order to characterizeM †
n, we introduce a stochastic process that counts the number of

traders who receive signal greater than x. Such a process is expressed as
∑n

i=1 IXn,i≥x,

where I is an indicator function: I = 1 if Xn,i ≥ x and I = 0 otherwise. As x

travels from maximum x̄ to minimum x, this process generates an increasing number

of buying traders. Now, we replace x with the threshold level of signal, σ(m). Then,∑n
i=1 IXn,i≥σ(m) indicates the number of traders with private information greater than

threshold σ(m). For each realization of x,
∑n

i=1 Ixi≥σ(m) is increasing in m because

σn(m) is decreasing in m by Proposition 1. Equilibrium m† is determined as the point

where this counting process achieves m† for the level of signal σ(m†) for the first time.

Namely, by appropriately defining the counting process, M †
n can be formulated as a

first passage time for the process to cut through the diagonal where time and counts

coincide.

We construct such a counting process below. Equation (3) implicitly determines

threshold σ continuously when m is a real variable. By using the continuous thresh-

old function, we define a change of variable as t = σ−1(x). Note that t = m for

m ∈ {1, 2, . . . , n}. Using t = σ−1(x) and f θn(x), where θ denotes the true state, the

probability density function defined over t is obtained as f θn(σ(t))|σ′(t)| for sufficiently

large n > no, because σ(t) is monotone in t for such n. Then, we construct a count-

ing process Γ(t) :=
∑n

i=1 Iσ−1(Xn,i)≥t.
14 Since our model is static, the “time” t is just

14Γ(t) differs from Γx(m) defined in the previous section (Proof of Proposition 2) in two regards.

First, Γ(t) is not conditional on x. Thus, Γ(t) is a random variable. Second, Γ(t) is defined over a

34



fictitiously introduced here in order to define a stochastic process Γ(t). The fictitious

notion of “time” turns out to be useful, as we employ the analysis of first passage time

below.

When t increases from t to t + dt, the threshold σ(t) decreases. Thus, a trader

who chooses to buy before t continues to buy at t+ dt, whereas a trader who chooses

not to buy before t might switch to buying at t+ dt. The conditional probability of a

non-buying trader switching to buying between t and t + dt for a small dt is equal to

πn(t)dt := f θn(σ(t))|σ′(t)|dt/F θ
n(σ(t)). Thus, the number of traders who buy between t

and t + dt for the first time, conditional on Γ(t), follows a binomial distribution with

population parameter n − Γ(t) and probability parameter πn(t)dt. Γ(1) indicates the

number of traders with xi ≥ σ(1). Thus, the distribution of Γ(1) follows a binomial

distribution with population n and probability πon := 1−F θ
n(σ(1)). This completes the

definition of the stochastic process Γ(t) for t ∈ [1, n].

Let φn(t)dt denote the mean of Γ(t + dt) − Γ(t) for a small dt. Thus, φn(t) :=

πn(t)(n−Γ(t)). For a finite Γ(t), the binomial distribution of Γ(t+dt)−Γ(t) converges

to a Poisson distribution with mean φn(t)dt as n→∞. Hence, for sufficiently large n,

Γ(t) asymptotically follows a Poisson process with time-dependent intensity φn(t).

Under Assumption 2, it turns out that the intensity function φn converges to 1 as

n→∞, as stated in the following lemma.

Lemma 1. Under Assumptions 1 and 2, Γ(t) asymptotically follows a Poisson process

with intensity 1 as n→∞.

The proof is shown in the next section. The unitary intensity φn = 1 implies that

the mean number of informed traders who switch to buying from non-buying after

transformed variable of signal, t = σ−1(x). Despite these differences, both Γ(t) and Γx(m) share the

property that they count the number of traders with private signal greater than some threshold.
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observing an informed trader buying is equal to 1.

Since Γ(1) = 0 indicates that no trader receives private signal greater than σ(1),

the equilibrium volume in this case is m† = 0. When Γ(1) = 1, one trader is willing

to buy at p1. Thus, the equilibrium volume is m† = 1. When Γ(1) > 1, the minimum

equilibrium volume m† is the minimum integer that satisfies Γ(m†) = m†. Thus, when

Γ(1) > 1, m† can be interpreted as the first passage time t at which Γ(t) achieves the

level t.

We focus on the first passage time conditional on Γ(1) > 1. It is convenient to

shift the time variable so that it starts from 0. We define G(t) := Γ(t + 1) and

ϕn(t) := φn(t + 1) for t ∈ [0, n − 1]. Note that, when Γ(m†) = m† is achieved,

m†−Γ(1) = Γ(m†)−Γ(1) = G(m†− 1)−G(0) holds. Thus, m†− 1 corresponds to the

first passage time of G(t) reaching t with initial condition G(0) = Γ(1)− 1 > 0. Let a

positive integer co > 0 denote the initial value G(0).

G(t) asymptotically follows a Poisson process with intensity ϕn(t) and G(0) = co,

as n becomes large. Let τϕn(·) denote the first passage time of G(t) reaching t. Then,

τϕn(·) is also the first passage time of G(t) − G(0) reaching t − co. Let us define N(t)

as the Poisson process with constant intensity 1 and N(0) = 0. Then, τ1 denotes the

first passage time of N(t) reaching t − co. An inhomogeneous Poisson process with

intensity ϕn(t) for t ≥ 0 can be transformed by a change of time to a homogeneous

Poisson process as N(
∫ t

0
ϕn(u)du). Thus, the first passage time we consider is

τϕn(·) := inf

{
t ≥ 0 | N

(∫ t

0

ϕn(u)du

)
≤ t− co

}
,

where inf ∅ :=∞ by convention.

We consider a case where `n uniformly converges to 1 as n → ∞ (Assumption 2),

which implies that signal Xn,i is close to a pure noise. This case occurs, for example,

in short-term tradings in which the information content traders obtain from signals
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during a trading period is quite small. With this setup, the following lemma establishes

that the first passage time of the inhomogeneous Poisson process G(t) converges in

distribution to the first passage time of the standard Poisson process N(t).

Lemma 2. Under Assumptions 1 and 2, τϕn(·) converges in distribution to τ1 as n→

∞.

The proof is shown in the subsequent section. We have shown that M †
n conditional

on M †
n > 1 has the same distribution as the first passage time: inf{t > 1 | Γ(t) = t}.

M †
n corresponds to τϕn + 1, reflecting that G is shifted from Γ in time by 1. Lemma 2

then shows that τϕn converges in distribution to τ1 for large n. Hence, we have shown

that the minimum equilibrium number of buying traders, M †
n, conditional on M †

n > 1

follows asymptotically for large n the distribution of τ1 + 1.

As shown in Section 3.1, τ1 follows the same distribution as the sum of a branching

process
∑U

u=0 bu, where the initial value for the branching process is G(0) = Γ(1)− 1.

Hence, we obtain the conditional distribution of M †
n | Γ(1) for sufficiently large n as

follows.

Lemma 3. Under Assumptions 1 and 2, M †
n conditional on Γ(1) > 1 follows asymp-

totically as n→∞,

Pr
(
M †

n = m | Γ(1)
)

=
(Γ(1)− 1)(m− 1)m−Γ(1)−1e−m+1

(m− Γ(1))!
, (11)

for m = Γ(1),Γ(1) + 1, . . . .

Proof. As shown in Section 3.1, τ1 follows (4) with φ = 1. We change variables in (4)

using τ1 = M †
n − 1 and b0 = G(0) = Γ(1)− 1. With m′ := m+ 1, (4) is rewritten as

Pr(M †
n = m′ | Γ(1)) =

Γ(1)− 1

m′ − 1

e−φ(m′−1)(φ(m′ − 1))m
′−Γ(1)

(m′ − Γ(1))!
.

Using φ = 1, we obtain (11).
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Lemma 3 shows that the distribution of M †
n conditional on Γ(1) has a power-law

tail. This implies that, given there are Γ(1) traders who receive favorable private signals

xi ≥ σ(1), their buying actions may trigger stochastic clustering, and the size of the

cluster follows a power-law distribution.

Proof of Lemma 1

We transform φ∞ := plimn→∞ φn using change of variable for density of t = σ−1(x):

φ∞(t) = plim
n→∞

πn(t)(n− Γ(t)) (12)

= plim
n→∞

(
1− Γ(t)

n

)
n|σ′(t)| f

θ
n(x)

F θ
n(x)

∣∣∣∣
x=σ(t)

.

Using Equations (7) and (10) for σ′(t), we obtain

n|σ′(t)| f
H
n (x)

FH
n (x)

=

∣∣∣∣∣∣ log(Λn(x)/λn(x))− {pt(1− pt)S ′(pt)n}−1(
1− t

n

) (
1− λn(x)

`n(x)

)
+ 1

n
FHn (x)
fHn (x)

(
(t−1)Λ′n(x)

Λn(x)
+ `′n(x)

`n(x)

)
∣∣∣∣∣∣ , (13)

n|σ′(t)| f
L
n (x)

FL
n (x)

=

∣∣∣∣∣∣ log(Λn(x)/λn(x))− {pt(1− pt)S ′(pt)n}−1(
1− t

n

) ( `n(x)
λn(x)

− 1
)

+ 1
n
FLn (x)
fLn (x)

(
(t−1)Λ′n(x)

Λn(x)
+ `′n(x)

`n(x)

)
∣∣∣∣∣∣ . (14)

We examine the right-hand side of (13) and (14) evaluated at x = σ(t) as n→∞.

Since {pt(1−pt)S ′(pt)}−1 is bounded, the second term in the numerator is of order 1/n.

The second term in the denominator is also of order 1/n as can be shown below. First,

Λn, `n, and f θn for θ ∈ {H,L} are strictly positive. Second, F θ
n ≤ 1, and `′n is bounded

because f sn is assumed to have a bounded derivative. Finally, Λ′n(x) is bounded for

x ∈ X , as shown in (8).

We next examine Λn(x)/λn(x) and λn(x)/`n(x) in the right-hand side of (13). To
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do so, we show that σ(t)→ x̄ as n→∞ for finite t. We note that

log Λn(σ) = log
1− FH

n (σ)

1− FL
n (σ)

= log
1/FL

n (σ)− λn(σ)

1/FL
n (σ)− 1

= log

(
1 +

1− λn(σ)

1/FL
n (σ)− 1

)
.

Since log(1 + y) ≤ y and 1 + log y ≤ y for any y ≥ 0, we have, for σ < x̄,

log Λn(σ) ≤ 1− λn(σ)

1/FL
n (σ)− 1

≤ − log λn(σ)

1/FL
n (σ)− 1

.

Hence, we obtain

log Λn(σ)− log λn(σ) ≤ − log λn(σ)

1− FL
n (σ)

.

Assumption 1 implies log Λn − log λn > δn−ξ. Thus, for sufficiently large n,

− log λn(σ) ≥ (1− FL
n (σ))δn−ξ. (15)

Now, Equation (9) can be modified as:

n log λn(σ) = log
pt

1− pt
+ t log

λn(σ)

Λn(σ)
+ log

Λn(σ)

`n(σ)
. (16)

The right-hand side of (16) is finite for any finite t. The left-hand side of (16) would

diverge toward negative infinity as n → ∞ if FL
n (σ) were bounded by a value strictly

below 1, as implied by inequality (15) and ξ < 1. Hence, (16) holds only if FL
n (σ) tends

to 1, which is equivalent to that σ(t)→ x̄ as n→∞ for any finite t. This implies that

Λn(σ(t))/λn(σ(t)) tends to `n(σ(t))/λn(σ(t)) as n→∞, since Λ(x̄) = `(x̄).

Thus, using zn := log(Λn(σ(t))/λn(σ(t))), the right-hand side of Equation (13) as

n→∞ is expressed as

lim
n→∞

zn −O(1/n)

(1− t/n) (1− e−zn) +O(1/n)
= lim

n→∞

zn −O(1/n)

(1− t/n) (zn +O(z2
n)) +O(1/n)

,

39



where we used limn→∞ zn = 0 and Taylor expansion of ezn − 1 around zn = 0, and we

used notation yn = O(xn) if there exist c2 and n2 such that |yn| ≤ c2xn for any n ≥ n2.

Dividing both the denominator and numerator by zn and applying nzn > δn1−ξ with

ξ < 1 (Assumption 1), we obtain

lim
n→∞

1−O(1/(nzn))

(1− t/n) (1 +O(zn)) +O(1/(nzn))
= 1.

Similarly, the right-hand side of Equation (14) as n→∞ is

lim
n→∞

zn −O(1/n)

(1− t/n) (ezn − 1) +O(1/n)
= 1.

Substituting the above result in (12), we obtain φ∞(t) = plimn→∞ 1−Γ(t)/n. This

implies that φ∞(t) is bounded, and hence, the asymptotic variance of Γ(t+ dt)− Γ(t)

is also bounded. Hence as n → ∞, Γ(t)/n converges in the L2-norm, and thus in

probability, to 0. Hence, we obtain that φ∞(t) = 1 for finite t.

Proof of Lemma 2

We show that the random variable τϕn(·) defined over [0,∞] converges in distribution

to τ1 as n tends to ∞. We prove this by showing that the Laplace transform of τϕn(·)

converges to that of τ1 as n→∞. Namely, we show that, for any η > 0,

lim
n→∞

E
[
exp(−ητϕn(·))

]
= E [exp(−ητ1)] . (17)

Note that e−ητ is set at 0 for the events where τ =∞ by convention.

In (12), we observe that φn(t) = ϕn(t−1) is a product of (13) or (14) and a stochastic

term 1−Γ(t)/n. The former term converges to 1 uniformly over any finite interval [0, T ],

and the latter term converges in probability to 1 as n → ∞. Thus, the probability

of events in which Γ(t)/n exceeds n−ν0 for some t ∈ [0, T ] for a fixed ν0 ∈ (0, 1)
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declines to 0 as n → ∞.15 Since e−ητ is bounded, such events have vanishingly small

contribution to the expectation in the left-hand side of (17). Combining with the fact

that (13) and (14) are uniformly convergent to 1, there exists a sequence εn such that

1− εn < ϕn(t) < 1 + εn for finite t excluding those events where Γ(t)/n exceeds n−ν0 .

Since an inhomogeneous Poisson process can be transformed to a homogeneous

Poisson process with a change of time, inequalities τ1−εn ≤ τϕn(·) ≤ τ1+εn hold for

each realization of x. Thus, in order to establish (17), it is sufficient to show that

E[exp(−ητχ)] is continuous with respect to χ > 0. We also note that

τχ = inf{t ≥ 0 | N(χt) ≤ t− co}

= inf{t ≥ 0 | t−N(χt) ≥ co}

=
1

χ
inf

{
t ≥ 0 | t

χ
−N(t) ≥ co

}
=

1

χ
τ̃χ

where τ̃χ := inf {t ≥ 0 | N(t) ≤ t/χ− co}.

Let ζ be a constant in (0, 1). Consider a stochastic differential equation:

dZ(t) = −ζZ(t-){dN(t)− dt}, Z(0) = 1,

where Z(t-) denotes the value of Z(t) before a jump occurs at t if any. The solution of

the stochastic differential equation is a martingale and satisfies

Z(t) = eζt(1− ζ)N(t) =

(
1

1− ζ

) t
χ
−N(t)

exp

{(
ζ +

log(1− ζ)

χ

)
t

}
,

where the second equation is obtained by multiplying and dividing by (1− ζ)t/χ.

Now, for fixed η and χ, there exists a unique ζ that satisfies an equation

ζχ+ log(1− ζ) = −η.
15See Technical Appendix for the construction of ν0.
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Let ζ(η, χ) denote the unique solution. Note that ζ(η, χ) is continuous and monotoni-

cally increasing with respect to both η and χ. Then, Z is written as

Z(t) =

(
1

1− ζ(η, χ)

) t
χ
−N(t)

exp

(
− η
χ
t

)
.

Note that t/χ − N(t) = co at the stopping time t = τ̃χ. Thus, Z(t) is positive and

takes a value less than or equal to {1− ζ(η, χ)}−co at and before the stopping time

τ̃χ. Namely, Z(t) is bounded. Therefore, E[Z(τ̃χ)] = 1 holds by the optional sampling

theorem. (Note that Z = 0 for the events where τ̃χ =∞.) Moreover, noting that N(t)

does not jump at the point of time τ̃χ, we obtain that

Z(τ̃χ) =

(
1

1− ζ(η, χ)

)co
exp

(
− η
χ
τ̃χ

)
,

for both cases of τ̃χ <∞ and τ̃χ =∞. Thus,

E[exp(−ητχ)] = E
[
exp

(
− η
χ
τ̃χ

)]
= {1− ζ(η, χ)}co .

Since ζ(η, χ) is continuous with respect to χ, this completes the proof.

Proof of Proposition 3

Under finite ψo, Γ(1) asymptotically follows a Poisson distribution with mean ψo.

Hence, form = {0, 1}, Pr(M †
n = m) asymptotically follows Pr(Γ(1) = m) = ψmo e

−ψo/m!.

For m > 1, the unconditional distribution of M †
n is derived by combining the dis-
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tribution (11) and the Poisson distribution with mean ψo for Γ(1) as follows.

m∑
c=2

Pr
(
M † = m | Γ(1) = c

)
Pr(Γ(1) = c) (18)

=
m∑
c=2

(c− 1)(m− 1)m−c−1e−m+1

(m− c)!
ψcoe

−ψo

c!

=
m∑
c=1

(c− 1)(m− 1)m−c−1e−m+1

(m− c)!
ψcoe

−ψo

c!

=
e−ψo−m+1(m− 1)m−1

m!

[
m∑
c=1

(ψo/(m− 1))cm!

(m− c)!(c− 1)!
−

m∑
c=1

(ψo/(m− 1))cm!

(m− c)!c!

]
.

Using the binomial theorem, we obtain
m∑
c=1

(ψo/(m− 1))cm!

(m− c)!(c− 1)!
=

ψom

m− 1

m∑
c=1

(ψo/(m− 1))c−1(m− 1)!

(m− c)!(c− 1)!

=
ψom

m− 1

m−1∑
c′=0

(ψo/(m− 1))c
′
(m− 1)!

(m− 1− c′)!c′!

=
ψom

m− 1

(
1 +

ψo
m− 1

)m−1

and
m∑
c=1

(ψo/(m− 1))cm!

(m− c)!c!
=

m∑
c=0

(ψo/(m− 1))cm!

(m− c)!c!
− 1

=

(
1 +

ψo
m− 1

)m
− 1.

Substituting back to (18), we obtain

e−ψo−m+1(m− 1)m−1

m!

[
ψom

m− 1

(
1 +

ψo
m− 1

)m−1

−
(

1 +
ψo

m− 1

)m
+ 1

]

=
e−ψo−m+1(m− 1)m−1

m!

[
(ψo − 1)

(
1 +

ψo
m− 1

)m−1

+ 1

]
.

Thus, we obtain the desired result. Applying Stirling’s formula for m!, we obtain

that the tail follows a power law with exponent 0.5.
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Proof of Proposition 4

The proof proceeds in two steps. First, we show that the distributions under As-

sumption 3 are compatible with Assumption 1. Second, we show that ψo = 1. Then,

Proposition 4 is immediately obtained by substituting ψo = 1 into the result in Propo-

sition 3.

The distributions in the class specified by Assumption 3 have positive density

f sn(x) = asne
asn(x−x̄) > 0 for s = H,L and increasing likelihood `n(x) = (aHn /a

L
n)e(aHn −aLn)(x−x̄)

for x ∈ (x̄− ε, x̄]. Moreover, the distributions satisfying Assumption 3 also satisfy As-

sumption 1 in (x̄− ε, x̄], as shown below. We have

log
Λn(x)

λn(x)
= log

1− eaHn (x−x̄)

1− eaLn(x−x̄)
− (aHn − aLn)(x− x̄).

L’Hôpital’s rule yields:

log
Λn(x̄)

λn(x̄)
= log

1− eaHn (x−x̄)

1− eaLn(x−x̄)

∣∣∣∣∣
x=x̄

= log
aHn e

aHn (x−x̄)

aLne
aLn(x−x̄)

∣∣∣∣∣
x=x̄

= log
aHn
aLn
.

It can be also shown that log(Λn(x)/λn(x)) is decreasing in x as follows:

d

dx
log

Λn(x)

λn(x)
=

Λ′n(x)

Λn(x)
− λ′n(x)

λn(x)

=
fLn (x)

1− FL
n (x)

(
1− `n(x)

Λn(x)

)
+
fLn (x)

FL
n (x)

(
1− `n(x)

λn(x)

)
=

aLne
aLn(x−x̄)

1− eaHn (x−x̄)

(
1− eaHn (x−x̄)

1− eaLn(x−x̄)
− aHn
aLn
e(aHn −aLn)(x−x̄)

)
+ aLn

(
1− aHn

aLn

)
=

aLn
1− eaLn(x−x̄)

− aHn
1− eaHn (x−x̄)

< 0,

where the last inequality uses the fact,

∂

∂a

a

1− ea(x−x̄)
=

1− (1− a(x− x̄))ea(x−x̄)

(1− ea(x−x̄))2
> 0,
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noting log(1 + y) − y < 0 for any y > 0. Hence, we have log(Λn(x)/λn(x)) ≥

log(Λn(x̄)/λn(x̄)) = log aHn /a
L
n > δ/nξ for any x ∈ (x̄− ε, x̄].

In the next step, we show that ψo = 1 holds under Assumption 3. Equation (3)

implies that σ(1) must satisfy p1/(1 − p1) = λn(σ(1))n−1`n(σ(1)). This equation is

solved under Assumption 3 as

aθn(σ(1)− x̄) =
aθn

n(aHn − aLn)
log

(
p1

1− p1

aLn
aHn

)
.

Let yθn denote the right-hand side of the above equation. Then, we obtain

1− F θ
n(σ(1)) = 1− eaθn(σ(1)−x̄) = 1− eyθn .

Taylor expansion around yθn = 0 generates

1− F θ
n(σ(1)) = − aθn

n(aHn − aLn)
log

(
p1

1− p1

aLn
aHn

)
+O((yθn)2) (19)

=
aθn
aLn

log(aHn /a
L
n)

n(aHn /a
L
n − 1)

− aθn
aLn

log(p1/(1− p1))

n(aHn /a
L
n − 1)

+O((yθn)2).

Since S(p1) = 1/n, S(p0) = 0 and p0 = 0.5, we have p1 = 0.5 + (nS ′(p0))−1 + O(n−2).

This implies that log(p1/(1 − p1)) = O(n−1). Also, aHn /a
L
n − 1 ≥ log(aHn /a

L
n) > δ/nξ.

Hence, the absolute value of the second term in (19) is bounded by O(nξ−2). Also we

have lim(aHn /a
L
n)→1(log(aHn /a

L
n))/(aHn /a

L
n − 1) = 1. Applying these results to (19), we

obtain ψo = limn→∞ n(1− F θ
n(σ(1))) = 1 for any θ ∈ {H,L}.

Technical Appendix

This technical appendix provides detailed derivations omitted above.
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Derivation of λ′n(x) = `′n(x)/2 and Λ′n(x̄) = `′n(x̄)/2 for Equations

(7,8)

Using (7), we obtain

lim
x→x

λ′n(x) = fLn (x) lim
x→x

`n(x)− λn(x)

FL
n (x)

= fLn (x)
`′n(x)− λ′n(x)

fLn (x)

= `′n(x)− λ′n(x)

which implies λ′n(x) = `′n(x)/2.

Similarly, using (8) we obtain

lim
x→x̄

Λ′n(x) = fLn (x̄) lim
x→x̄

Λn(x)− `n(x)

1− FL
n (x)

= fLn (x̄)
Λ′n(x̄)− `′n(x̄)

−fLn (x̄)

= −(Λ′n(x̄)− `′n(x̄))

which implies Λ′n(x̄) = `′n(x̄)/2.

Supplement on Proof of Lemma 2

In this section, we show that the probability of Γ(t)/n in (12) exceeding n−ν0 for some

ν0 > 0 converges to 0 as n→∞.

From Lemma 1, Kt ≡ Γ(t+ 1)−Γ(1) asymptotically follows a Poisson distribution

with mean t. Combining with inequalities
√

2πe−kkk+0.5 ≤ k! ≤ e1−kkk+0.5 for any
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integer k, we obtain

Pr(Kt ≥ k) =
∞∑

Kt=k

tKte−t/Kt!

=
∞∑
s=0

tk+se−t/(k + s)!

= tke−t
∞∑
s=0

ts

s!

s!

(k + s)!

≤ tke−t
∞∑
s=0

ts

s!

e1−sss+0.5

√
2πe−(k+s)(k + s)k+s+0.5

= tke−t
∞∑
s=0

ts

s!

ek+1

√
2π(k + s)k

(
s

k + s

)s+0.5

≤ tke−t
∞∑
s=0

ts

s!

ek+1

√
2πkk

=
e√
2π

(
te

k

)k
.

Now we consider a region t ∈ [0, T ] and let k = n1−ν0 for some ν0 ∈ (0, 1). The

upper bound of Pr(KT ≥ k) becomes (e/
√

2π)(nν0−1Te)n
1−ν0 , which converges to 0 from

above as n → ∞. Also note that Γ(t) is non-decreasing in t. Thus, the probability of

events in which Γ(t) exceeds k = n1−ν0 declines to 0 as n→∞.

Derivation of (5)

This section derives the asymptotic expression (5) from (4) by applying Stirling’s for-

mula m! ∼
√

2πm(m/e)m as m→∞.
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Substituting Stirling’s formula into (4), we obtain

bo
m

e−φm(φm)m−bo

(m− bo)!
∼ bo
m

e−φm+m−bo(φm)m−bo√
2π(m− bo)(m− bo)m−bo

=
bo

m
√

2π(m− bo)
e−φm+m−bo+(m−bo) log φ

(
1− bo

m

)−m+bo

∼ bo(φe)
−bo

m
√

2π(m− bo)
e−(φ−1−log φ)mebo

∼ boφ
−bo

√
2π

e−(φ−1−log φ)m

m1.5
.
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