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Abstract 

 This study investigates infinitely repeated games of a prisoner’s dilemma with additive 

separability in which the monitoring technology is imperfect and private. Behavioral incentives 

indicate that a player is not only motivated by pure self-interest but also by social preference such 

as reciprocity, and that a player often becomes naïve and selects an action randomly due to her 

cognitive limitation and uncertain psychological mood as well as the strategic complexity caused 

by monitoring imperfection and private observation. By focusing on generous tit-for-tat strategies, 

we characterize a behavioral version of Nash equilibrium termed behavioral equilibrium in an 

accuracy-contingent manner. By eliminating the gap between theory and evidence, we show that 

not pure self-interest but reciprocity plays a substantial role in motivating a player to make 

decisions in a sophisticated manner. 
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1. Introduction 

 

 This study examines the impact of behavioral incentives on equilibrium outcomes in 

infinitely repeated games of a prisoner’s dilemma with the additive separability of payoff 

matrix. We assume that the monitoring technology is imperfect and private. Each player 

cannot directly observe whether the opponent selects the cooperative action or the 

defective action. However, each player can imperfectly monitor the opponent’s action 

choice through private observation of a noisy signal. The signal is either “good” or “bad,” 

and a player is more likely to observe the good signal when the opponent selects the 

cooperative action. In this setting, this study investigates the role of noisy signal 

observations on implicit collusion. 

 Previous works in the repeated game literature have investigated the impact of 

monitoring accuracy on the degree to which the history-dependence of players’ strategic 

behaviors facilitates their implicit collusion. 3  Since the monitoring technology is 

imperfect, it is not certain that each player will receive the good signal when the opponent 

makes the cooperative action choice. Therefore, monitoring imperfection inevitably 

interferes with the full achievement of implicit collusion.4 

 When the monitoring accuracy is high enough, a player can avoid the welfare loss 

caused by monitoring imperfection. The more accurate the monitoring technology is, the 

more convinced a player who observes the bad (good) signal is that the opponent made 

the defective (cooperative) action choice. Hence, the more accurate the monitoring 

technology, the more effectively a player can retaliate against the opponent.5 A prediction 

from standard equilibrium theory indicates that a player retaliates less in the high accuracy 

scenario than in the low accuracy scenario. 

 In contrast with this prediction, however, Kayaba, Matsushima, and Toyama (2019) 

reports experimental results indicating that subjects in laboratory experiments tend to 

retaliate more in the high accuracy scenario than in the low accuracy scenario. In 

 
3 For a survey, see Mailath and Samuelson (2006) for instance. 
4 See Green and Porter (1984) and Abreu, Pearce, and Stacchetti (1990), for example. 
5 The folk theorem holds even with such imperfect monitoring, thus indicating that if the discount 
factor is close to unity, a wide variety of allocations including approximate efficiency can be attained 
by subgame perfect equilibria (e.g., Fudenberg, Levine, and Maskin, 1994; Matsushima, 2004; Sugaya, 
2019). 
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laboratory experiments, the expected payoff to an individual from the cooperative action 

choice tends to be higher than that from the defective action choice when the monitoring 

is accurate, while the expected payoff from the cooperative action choice tends to be 

lower than that from the defective action choice when the monitoring is inaccurate. Hence, 

these experimental findings suggest the presence of incentives of real people to pursue 

retaliation and cooperation beyond the simple maximization of pure self-interest. 

 Based on these observations, this study sheds light on behavioral aspects of players 

such as social preference and bounded rationality. We assume that noisy signal 

observation influences the observer’s psychological state, thus motivating her social 

preferences and cognitive limitation. 

A player is often motivated not only by pure self-interest but also by social 

preference such as reciprocity; a player feels guilty when she selects the defective action 

even though she observed the good signal, while a player is annoyed when she selects the 

cooperative action even if she observed the bad signal. Moreover, a player often becomes 

naïve and selects an action randomly, independently of her pure self-interest and 

reciprocal motives, due to her cognitive limitation and uncertain psychological mood as 

well as the strategic complexity caused by monitoring imperfection and private 

observation. 

 By incorporating such reciprocity and naïveté into players’ incentives, we define 

behavioral equilibrium as an extension of standard Nash equilibrium notion. To simplify 

strategic interaction, this study will focus on generous tit-for-tat (g-TFT) strategies, which 

are straightforward stochastic extensions of the tit-for-tat (TFT) strategy (e.g., Molander, 

1985; Nowak and Sigmund, 1992; Takahashi, 2010; Matsushima, 2013). This study also 

assumes that in each period, each player does not consider the impact of her current action 

choice on her future behavioral attitude of reciprocity and naïveté. We propose a 

characterization of g-TFT behavioral equilibria in an accuracy-contingent fashion in this 

setting. 

 G-TFT is the most concise manner to describe cooperation, retaliation, and 

forgiveness in repeated interactions. In a g-TFT strategy, a player retaliates against the 

opponent by selecting the defective action more often when she observes the bad signal 

than when she observes the good signal. In line with this argument, importantly, the 

experimental studies of Kayaba, Matsushima, and Toyama (2019) indicates that among a 
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wide variety of strategies, a significant proportion of experimental subjects adopts a g-

TFT strategy even if they employ heterogeneous g-TFT. 

 G-TFT has a substantial advantage over deterministic TFT, which generally fails to 

be an equilibrium, while, given a high enough discount factor, g-TFT equilibria (in the 

standard sense) exist irrespective of the level of monitoring accuracy. In any (accuracy-

contingent) g-TFT equilibrium, the more accurate the monitoring technology is, the less 

intensively a player retaliates against the opponent. This view, however, contradicts the 

experimental results given by Kayaba, Matsushima, and Toyama (2019). 

 By incorporating reciprocity and naïveté into equilibrium theory, this study 

demonstrates a characterization result implying that in an accuracy-contingent g-TFT 

behavioral equilibrium, the more accurate the monitoring technology is, the more 

severely each player retaliates against the opponent. This result contradicts the prediction 

of standard equilibrium theory that does not account for behavioral incentives but is more 

consistent with the experimental evidences. 

 Our characterization result also indicates that the more often a player behaves 

naïvely, the less motivated she is by reciprocity. Hence, reciprocity motivates a player to 

behave in the more sophisticated manner. We further show that the more accurate the 

monitoring technology is, the less kind a player is against the opponent; given low enough 

levels of monitoring accuracy, the less accurate the monitoring technology is, the more 

positively reciprocal the player is. Given high enough levels of monitoring accuracy, the 

more accurate the monitoring technology is, the more negatively reciprocal the player is. 

At a medium level of monitoring accuracy, a player is neither positively nor negatively 

reciprocal; she becomes the most naïve at this medium level of monitoring accuracy. 

 This study should be regarded as the first systematic attempt in the repeated game 

literature to propose a behavioral theory that reconciles with experimental results. The 

literature of experimental repeated games has examined the relevance of theoretical 

predictions without behavioral incentives and the prevalence of various strategies by 

employing the Strategy Frequency Estimation Method (e.g., Dal Bò and Fréchette, 2011; 

Fudenberg, Rand, and Dreber, 2012; Aoyagi, Bhaskar, and Fréchette, 2019; Kayaba, 

Matsushima, and Toyama, 2019). These works commonly supported the predictions that 

subjects are more likely to collude as the monitoring technology is more accurate, and 

also indicated that subjects tend to employ heterogeneous strategies. Importantly, Kayaba, 
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Matsushima, and Toyama (2019) experimentally showed that a large proportion of 

subjects employ heterogeneous g-TFT strategies, and that their retaliation is severer as 

the monitoring technology is more accurate. Since the latter experimental observation is 

inconsistent with the theoretical prediction without behavioral incentives, it should be 

regarded as an important research to develop a new behavioral theory that can describe 

this observation as equilibrium behavior. This is exactly what this study attempts to do. 

 Previous studies in the behavioral economics literature show that social preferences 

facilitate cooperation (e.g., Güth, Schmittberger, and Schwarze, 1982; Berg, Dickhaut, 

and McCabe, 1995; Fehr and Gächter, 2000), and preferences depend on various contexts 

(e.g., Rabin 1993; Charness and Rabin, 2002; Dufwenberg and Kirchsteiger, 2004; Falk 

and Fishbacher, 2005). This study parameterizes the relevant contexts simply by the level 

of monitoring accuracy. Duffy and Muñoz-García (2012) demonstrate that social 

preference facilitates collusion when the discount factor is insufficient. In our study, the 

monitoring technology is a crucial determinant of whether social preferences aid 

collusion. Social preferences facilitate collusion when monitoring is inaccurate, while 

they prevent people from colluding when monitoring is accurate. 

There exists a literature of bounded rationality in economics and game theory such 

as limited attention, limited cognitive power, and limited awareness.6 This study makes 

an extreme assumption that in each period, a player is either ideally sophisticated or 

perfectly naïve (unaware), and whether she is ideally sophisticated is exogenously 

determined in a history-dependent, stochastic, and unconscious manner. 

The remainder of this study is organized as follows. Section 2 defines the repeated 

prisoner’s dilemma with additive separability and with imperfect private monitoring. 

Section 3 introduces the g-TFT strategy and behavioral equilibrium. We then demonstrate 

our characterization result. Section 4 investigates accuracy-contingent symmetric models. 

Section 5 concludes. 

 

2. Prisoner’s Dilemma with Additive Separability 

 

 This study investigates an infinitely repeated game of prisoners’ dilemma with 

 
6 See Spiegler (2014) for instance. 
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additive separability, the component game of which is described by Figure 1. 

 

  player 2 
  C D 

player 1 
 

C 1   1 1g   21 g  

D 11 g   2g  0   0 

 

Figure 1: Prisoners' Dilemma with Additive Separability 

  

 Let us call C  and D  the cooperative action and defective action, respectively. In 

each period, each player selects either C   or D  . When an action profile 

2
1 2( , ) { , }a a a C D   is selected, each player {1,2}i  receives the (expected value of) 

instantaneous payoff 1 2( , )iu a a R , where 

1 2( , ) ( , ) 1u C C u C C  , 1 2( , ) ( , ) 0u D D u D D  , 

1 1( , )u C D g  , 2 2( , ) 1u C D g  , 

1 1( , ) 1u D C g  , and 2 2( , )u D C g  . 

Due to the additive separability of payoff matrix, irrespective of the opponent’s action 

choice, each player i   generates a cost ig   by selecting the cooperative action C  

instead of the defective action D , but provides the opponent j i  a benefit equal to 

1 jg  . We assume that 0ig    for each {1,2}i  , and 1 2 1g g   . Hence, the 

cooperative action profile ( , )C C   maximizes their total welfare, while the defective 

action profile ( , )D D  is the dominant strategy profile, and it is Pareto-inferior to ( , )C C . 

 We assume that monitoring is imperfect and private. Each player i  cannot directly 

observe the actions that the opponent j i   has selected in the current and previous 

periods. However, at the end of each period, she privately observes a noisy signal denoted 

by { , }j c d    for the opponent 'j s   action choice. Let us call c   and d   the good 

and bad signals, respectively. 

 We define the level of monitoring accuracy for each player 'i s  action choice as a 

probability index 1( ,1)2ip   ; the opponent j i   observes the good signal c   (the 
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bad signal d  ) with probability ip   when player i   selects the cooperative action C  

(the defective action D  , respectively). Since 1i ip p   , the probability of the 

opponent 'j s  receiving the good signal c  is higher when player i  selects C  than 

when she selects D  . The greater ip  , the more accurately the opponent j i   can 

monitor player 'i s  action choice. Note that by cooperating, player i  can increase the 

chance that the opponent j i  observes the good signal c , making this opponent likely 

to respond cooperating in the next period. 

To measure the level of monitoring accuracy as a single value for simplicity, this 

study assumes that the probability of the good signal when the cooperative action is 

selected and the probability of the bad signal when the defective action is selected are 

equivalent. (This assumption is irrelevant to the outcome of this study.) 

 

3. Generous Tit-For-Tat Strategy 

 

Let (0,1)i   denote the discount factor of player i . This study allows players to 

have different discount factors. Each player 'i s  payoff in the infinitely repeated game 

is given by the discounted sum of her instantaneous payoffs 1

1

( ( ))t
i i

t

u a t





 , where ( )a t  

denotes the action profile selected in period t . We define a strategy for each player i  as 

a mapping from histories of her previous action choices and private signal observations 

to her mixed actions, which is denoted by is . Each player i  selects a strategy is  to 

maximize the associated expected payoff 1

1

[ ( ( )) | ]t
i i

t

E u a t s





 , provided that she expects 

her opponent j i  to behave according to js , where 1 2( , )s s s  and [ | ]E s  denotes 

the expectation operator conditional on the strategy profile s . 

 This study focuses on equilibrium play according to a generous tit-for-tat (g-TFT) 

strategy, and also on the player’s incentive to make a signal-contingent action choice by 

ignoring incentive issues in the first period 1. Hence, we denote a g-TFT strategy for each 

player {1,2}i  simply by 
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   2( ( ), ( )) (0,1)i i is r c r d  , 

according to which, in each period 2t  , player i  makes the cooperative action choice 

C  with probability ( ) (0,1)i jr    whenever she observes signal { , }j c d   in period 

1t   . To eliminate trivial cases, we assume ( ) 0i jr     for each {1,2}i   and 

{ , }j c d   throughout this study. 

Associated with a g-TFT strategy is , we define the retaliation intensity of player i  

as the difference in cooperation rate between the good and bad signal scenarios, that is, 

( ) ( )i ir c r d . The retaliation intensity measures the degree to which a player punishes the 

opponent when she observes the bad signal. 

 As Matsushima (2013) has shown, due to the additive separability of payoff matrix, 

the incentive constraint in each period 2t    is simply described by the following 

conditions: for each {1,2}i , 

(1)    [ (1 )(2 1){ ( ) ( )}i i i i j jg g p r c r d    ]⇒[ ( ) ( ) 0i ir c r d  ], 

and 

(2)   [ (1 )(2 1){ ( ) ( )}i i i i j jg g p r c r d    ]⇒[1 ( ) 1 ( ) 0i ir c r d    ]. 

Each player 'i s  choice of C  instead of D  generates a cost ig  in period t , while, 

in period 1t  , this choice generates a gain 1 ig  from the cooperative response of the 

opponent j   with probability ( ) (1 ) ( )i j i jp r c p r d    rather than probability 

(1 ) ( ) ( )i j i jp r c p r d   . Note that the opponent j   observes the good signal c   with 

probability ip  (1 ip ) when player i  selects the cooperative action C (the defective 

action D, respectively). It is important to note that due to the additive-separability of 

payoff matrix, the instantaneous gain from her action choice in period 1t    plus the 

discounted sum of payoffs after period 2t   is independent of her action choice in the 

current period 2t  , provided that the opponent follows a g-TFT strategy after period 

2t  . This is why we can express the incentive constraints simply by (1) and (2). 

Due to the belief-free nature (e.g., Ely and Välimäki, 2002; Piccione, 2002), we can 

derive the equilibrium constraints of g-TFT strategy profile, (1) and (2), simply from the 

equivalence between the instantaneous gain from selecting C rather than D, given by ig , 
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and the resultant loss in the next period, given by 

   (1 ){ ( ) (1 ) ( )} (1 ){(1 ) ( ) ( )}i i i j i j i i i j i jg p r c p r d g p r c p r d         

   (1 )(2 1){ ( ) ( )}i i i j jg p r c r d    , 

that is, 

(3)   (1 )(2 1){ ( ) ( )}i i i i j jg g p r c r d    . 

Let us define 

   ( )
(1 )(2 1)

j
i i j

j j j

g
R R p

g p
 

 
. 

Note that the equality (3) is equivalent to 

(4)   ( ) ( ) ( )i i i jr c r d R p   for each {1, 2}i . 

Hence, a g-TFT strategy profile s  is a Nash equilibrium in this section’s sense if and 

only if the associated retaliation intensity of player i  is equivalent to ( )i jR p  for each 

{1, 2}i . It is clear from (4) and 0 ( ) ( ) 1i ir c r d    that there exists a (non-trivial) g-

TFT Nash equilibrium if and only if for each {1, 2}i , 0 ( ) 1i jR p  , that is, 

(5)   
(1 )(2 1)

j
j

j j

g

g p
 

 
. 

Note that ( )i jR p  is decreasing in the level of monitoring accuracy jp  for the opponent, 

thus contradicting the experimental evidences reported by Kayaba, Matsushima, and 

Toyama (2019). 

 

4. Behavioral Equilibrium 

 

This section introduces a behavioral version of g-TFT equilibrium and shows the 

possibility that the retaliation intensity is increasing in the level of monitoring accuracy. 

We define the notion of behavioral equilibrium as a modification of the conditions (1) and 

(2) in the following manner. Each player {1,2}i  is motivated not only by pure self-

interest but also by cognitive limitation termed naïveté, which is denoted by 1[0, )2i  , 

and by social preference termed reciprocity, which is denoted by 2( ( ), ( ))i iw c w d R . 
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In every period, with probability 2 i , player i  becomes naïve and randomly 

selects between actions C  and D . The player has cognitive limitation the degree of 

which depends on her uncertain psychological mood as well as various parameters such 

as the level of monitoring accuracy. For simplicity, we assume that her psychological 

mood is either ideally sophisticated or totally unaware, and that whether she is ideally 

sophisticated or not is randomly determined. Due to this naïveté, a g-TFT strategy for 

player i , ( ( ), ( ))i i is r c r d , must satisfy 

(6)   min[ ( ),1 ( ), ( ),1 ( )]i i i i ir c r c r d r d    .7 

We assume that the above-mentioned randomness is drawn independently across players. 

 With the remaining probability 1 2 i , player i  makes her action choice in the 

sophisticated manner. In addition to pure self-interest, we introduce a motive of social 

preference termed reciprocity ( ( ), ( ))i iw c w d   as follows. Suppose that player i  

observes the good signal c ; she feels guilty when she selects the defective action D  

despite observing the good signal. In this case, she can avoid a psychological cost 

( ) 0iw c   by selecting the cooperative action C . Next, suppose that player i  observes 

the bad signal d ; she is annoyed when she selects the cooperative action C  despite 

observing the bad signal d . In this case, she can avoid a psychological cost ( ) 0iw d   

by selecting the defective action D . 

 Whenever player i  observes the good signal c , her instantaneous gain from 

selecting action D  is given by ( )i ig w c , while her resultant future loss is given by 

(1 )(2 1){ ( ) ( )}i i i j jg p r c r d    . We assume that each player i  does not consider the 

impact of her current action choice on her future behavioral aspects. From this assumption, 

player i  is willing to select the cooperative action C if 

   ( ) (1 )(2 1){ ( ) ( )}i ii i j ji c p r r dg cw g    , 

while she is willing to select the defective action D if 

 
7 The introduction of naïveté generally restricts the class of g-TFT equilibria discussed in Section 3, 
but it still leaves this class non-empty whenever 

( ) 1 2i j iR p    for each {1,2}i . 
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   ( ) (1 )(2 1){ ( ) ( )}i ii i j ji c p r r dg cw g    . 

Similarly, whenever player i  observes the bad signal d , her instantaneous gain from 

selecting action D  is given by ( )i ig w d , while her resultant future loss is given by 

(1 )(2 1){ ( ) ( )}i i i j jg p r c r d    . Hence, player i  is willing to select the cooperative 

action C if 

   (1 )(2 1){ ( )}( ) () i ii i j ji g pg w rd c r d    , 

while she is willing to select the defective action D if 

   (1 )(2 1){ ( )}( ) () i ii i j ji g pg w rd c r d    . 

Based on these arguments, we define behavioral equilibrium as an extension of the 

conditions (1) and (2) as follows. 

 

Definition 1: A g-TFT strategy profile 1 2( , )s s s  is said to be a behavioral equilibrium, 

or, shortly, an equilibrium, with respect to {1,2}( , , , , ( ), ( ))i i i i i i ig p w c w d    if for each 

{1,2}i , 

(7)    [ ( ) (1 )(2 1){ ( ) ( )}i i i i i j jg w c g p r c r d     ]⇒[ ( )i ir c  ], 

(8)   [ ( ) (1 )(2 1){ ( ) ( )}i i i i i j jg w c g p r c r d     ]⇒[1 ( )i ir c   ], 

(9)    [ ( ) (1 )(2 1){ ( ) ( )}i i i i i j jg w d g p r c r d     ]⇒[ ( )i ir d  ], 

and 

(10)   [ ( ) (1 )(2 1){ ( ) ( )}i i i i i j jg w d g p r c r d     ]⇒[1 ( )i ir d   ]. 

 

This study assumes that for each {1,2}i : 

   either ( ) 0iw c   or ( ) 0iw d  . 

A player i  is said to be positively (negatively) reciprocal if ( ) 0iw c   ( ( ) 0iw d  , 

respectively). The following theorem demonstrates an important characterization result 

and clarifies the relation between behavioral aspects and equilibrium. 

 

Theorem 1: Consider an arbitrary g-TFT strategy profile s , where for each {1,2}i , 

( )ir c , ( )ir d , 1 ( )ir c , and 1 ( )ir d  are all different, and equality (4) does not hold. 
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Then, s  is an equilibrium if and only if for each i N , equality (1) and the following 

properties hold; if 

   ( ) ( ) ( )j j j ir c r d R p  , 

then: 

(11)   ( ) (1 )(2 1){ ( ) ( )} 0i i i i i j jw c g g p r c r d      , 

   ( ) 0iw d  , and ( )i ir d  . 

If 

   ( ) ( ) ( )j j j ir c r d R p  , 

then: 

(12)   ( ) (1 )(2 1){ ( ) ( )} 0i i i i j j iw d g p r c r d g      , 

( ) 0iw c  , and 1 ( )i ir c   . 

 

Proof: The proof of the “if” part is a direct consequence of Definition 1. The proof of the 

“only if” part is as follows. Suppose that 

   ( ) ( ) ( )j j j ir c r d R p  . 

Then, the left-hand side of (9) holds; as a result, 

   ( )i ir d  . 

Since ( )ir c  and 1 ( )ir c  are different from i , it follows from (7) and (8) that 

   ( ) (1 )(2 1){ ( ) ( )}i i i i i j jg w c g p r c r d     , 

thus implying (11). Since ( )iw c  is positive, player i  is positively reciprocal, meaning 

that ( ) 0iw d  . 

 Next, suppose that: 

   ( ) ( ) ( )j j j ir c r d R p  . 

Then, the left-hand side of (8) holds; as a result, 

   1 ( )i ir c   . 

Since ( )ir d  and 1 ( )ir d  are different from i , it follows from (9) and (10) that 

   ( ) (1 )(2 1){ ( ) ( )}i i i i i j jg w d g p r c r d     , 

thus implying (12). Since ( )iw d  is positive, player i  is negatively reciprocal, meaning 
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that ( ) 0iw c  . 

Q.E.D. 

 

 From Theorem 1, player i  is positively reciprocal if the retaliation intensity is 

lower than iR , while she is negatively reciprocal if the retaliation intensity is higher than 

iR . The more negatively reciprocal or the less positively reciprocal a player is, the greater 

the opponent’s retaliation intensity is. From Theorem 1, we can automatically derive the 

uniqueness of equilibrium as follows. 

 

Theorem 2: A g-TFT strategy profile s  is a behavioral equilibrium if and only if the 

following property holds for each player {1,2}i ; if the opponent j i  is positively 

reciprocal ( ( ) 0iw c  ), then 

   
( )

( )
(1 )(2 1)

j j
i i

j j j

g w c
r c

g p





 
 

 and ( )i ir d  , 

while, if opponent j  is negatively reciprocal ( ( ) 0iw d  ), then 

   ( ) 1i ir c    and 
( )

( ) 1
(1 )(2 1)

j j
i i

j j j

g w d
r d

g p





  
 

. 

 

 The uniqueness implied by Theorem 2 is in contrast with the null-reciprocal 

(standard) case, which has multiplicity of g-TFT Nash equilibrium whenever the strict 

inequality of (5) holds for each {1,2}i . 

 From Theorem 2, we can automatically derive the existence of equilibrium; that is, 

there exists a behavioral equilibrium if and only if for each {1,2}i , either 

( ) 0iw c  , ( )j jg w c , and 
( )

(1 2 )(1 )(2 1)
j j

j
i j j

g w c

g p






  

, 

or 

   ( ) 0iw d   and 
( )

(1 2 )(1 )(2 1)
j j

j
i j j

g w d

g p






  

.8 

 
8  From Theorem 2, it generically holds that for each {1,2}i , ( )ir c , ( )ir d , 1 ( )ir c , and 
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Hence, from the comparison with the condition (5), the condition for the existence is more 

restrictive when a player is negatively reciprocal than when she is null-reciprocal (purely 

self-interested), while it is less restrictive when a player is positively reciprocal than when 

she is null-reciprocal. 

Moreover, from Theorem 2, we can automatically derive the retaliation intensity 

( ) ( )i ir c r d  associated with the (unique) behavioral equilibrium; if the opponent j i  

is positively reciprocal, then 

   
( )

( ) ( )
(1 )(2 1)

j j
i i

j j j

g w c
r c r d

g p


 
 

, 

while, if the opponent j  is negatively reciprocal, then 

   
( )

( ) ( )
(1 )(2 1)

j j
i i

j j j

g w d
r c r d

g p


 
 

. 

 

5. Symmetry 

 

 This section considers a symmetric model in which there exists ( , , )g p  such that 

   ( , , ) ( , , )i i ig p g p   for each {1,2}i . 

We allow players’ behavioral aspects to be heterogeneous and contingent on a common 

level of monitoring accuracy p ; therefore, ( ( ), ( ; ), ( ; ))i i ip w c p w d p  instead of 

( , ( ), ( ))i i iw c w d . In line with Kayaba, Matsushima, and Toyama (2019), we allow 

players' g-TFT strategies to be heterogeneous. Moreover, an equilibrium should be 

contingent on the level of monitoring accuracy p ; therefore, ( ) ( ( ; ), ( ; ))i i is p r c p r d p  

instead of ( ( ), ( ))i i is r c r d . 

 Let us set an arbitrary level 1( ,1)2p  , which we call the minimum level of 

monitoring accuracy. This section assumes that both the accuracy-contingent behavioral 

aspect ( ( ), ( ; ), ( ; ))i i ip w c p w d p  and the accuracy-contingent equilibrium strategy 

( ) ( ( ; ), ( ; ))i i is p r c p r d p  are continuous in [ ,1]p p . 

 
1 ( )ir d  are all different. 
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5.1. Kindness and Retaliation Intensity 

 

 As a measure of the degree to which the accuracy-contingent reciprocity 

( ( ; ), ( ; ))i iw c p w d p  motivates player i   to make the cooperative action choice, this 

section considers a notion of kindness as follows. 

 

Definition 2: Player i  is said to be more kind at p  than at p  if: 

   either ( ; ) ( ; )w c p w c p   or ( ; ) ( ; )w d p w d p  . 

 

 Definition 2 implies that a player is more kind at p  than at p  if she is positively 

reciprocal at p  and is negatively reciprocal at p . The experimental work by Kayaba, 

Matsushima, and Toyama (2019) reported that the retaliation intensities observed in 

laboratories are increasing in the level of monitoring accuracy. The following theorem 

indicates that the introduction of behavioral aspects plays the substantial role in 

explaining this experimental observation. 

 

Theorem 3: Suppose that ( )s p  is an accuracy-continent equilibrium. If the retaliation 

intensity of player i , ( ; ) ( ; )i ir c p r d p , is increasing in [ ,1]p p , then, the higher the 

monitoring accuracy p  is, the less kind the opponent j  is. 

 

Proof: See Appendix A. 

 

 Theorem 3 implies that in the high accuracy scenario, a player tends to be more 

negatively reciprocal as the level of monitoring accuracy increases. This tendency makes 

the retaliation intensity more severe and works against the success in cooperation induced 

by the improvement of monitoring technology. In the low accuracy scenario, a player 

tends to be more positively reciprocal as the level of monitoring accuracy decreases. This 

tendency makes the retaliation intensity milder and mitigates the lack of cooperation 

caused by the deterioration of the monitoring technology. 
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5.2. Naïveté and Reciprocity 

 

Kayaba, Matsushima, and Toyama (2019) also reported experimental results 

showing that the more likely experimental subjects are to make the cooperative action 

choice, the more accurate the monitoring technology is. Based on this finding, this section 

considers an accuracy-contingent equilibrium ( )s p  such that for each {1,2}i , 

( ; )ir c p , ( ; )ir d p , and ( ; ) ( ; )i ir c p r d p  are all continuous and increasing in p . 

 

Theorem 4: Consider an arbitrary accuracy-contingent equilibrium ( )s p . Suppose that 

for each {1,2}i , ( ; )ir c p , ( ; )ir d p , and ( ; ) ( ; )i ir c p r d p  are continuous and 

increasing in p . Then, for each i N , ( )i p  is increasing, ( ; )iw c p  is decreasing, 

and ( ; ) 0iw d p   in ˆ[ , ]ip p p , while ( )i p  is decreasing, ( ; )iw d p  is increasing, 

and ( ; ) 0iw c p   in ˆ[ ,1]ip p . 

 

Proof: See Appendix B. 

 

 In the high enough accuracy scenario, a player tends to be negatively reciprocal and 

is likely to be sophisticated as unintended results. In the low enough accuracy scenario, a 

player tends to be positively reciprocal and is likely to be sophisticated. In the medium 

accuracy scenario, a player tends to be purely self-interested and is likely to be naïve. 

Theorem 4 shows the presence of the unintended trade-off between naïveté and 

reciprocity; the more likely a player is to be naïve, the less reciprocal she tends to be. 

Hence, we can conclude that a player's sophisticated decision-making is motivated not by 

her pure self-interest but by social preference concerning reciprocity. 

 

6. Concluding Remarks 

 

 This study incorporated reciprocity and naïveté into infinitely repeated prisoner’s 

dilemma with imperfect private monitoring, and described strategic behavior as 



17 
 

behavioral equilibrium in a consistent manner with experimental evidences. This study is 

the first systematic analysis of repeated games that fills the gap between theory and 

evidence. 

We have several issues that are left unsolved as possible future research. For instance, 

this study focused on g-TFT strategies; however, other types of strategies such as grim-

trigger, lenience, and long-term punishment, which are prominent from theoretical and 

empirical viewpoints, should also be investigated. 

This study should be extended to more general games beyond prisoner’s dilemma. 

Without any substantial difficulty, we can extend this study to a three-or-more-player 

social dilemma with additive separability. Since this study’s analysis crucially depends 

on the additive separability assumption, it would be a challenging problem to consider 

games without this assumption. 

This study assumes that each player does not consider the impact of her current 

action choice on her future behavioral aspects. Due to the backward induction technique, 

without any substantial change of this study’s arguments, we can replace this assumption 

with the assumption that each player does not consider the impact of her current action 

choice on her future behavioral aspects after a fixed finite time interval. On the other hand, 

it would be a substantial and difficult open problem to consider the case in which a player 

considers the impact of her current action choice on her behavioral aspects throughout 

the future. 

The impact of reciprocity and naïveté on implicit collusion should be investigated 

more directly through creating new experimental designs. For example, to clarify the 

impact of reciprocity, we should conduct experiments in which subjects play repeated 

games against not real people (natural intelligence) but machines (artificial intelligence). 

To clarify the impact of naïveté, we should conduct experiments in which each subject 

has a plenty of time to think before decision and she is even permitted to decide in 

consultation with multiple neutral people. 

All the research directions described above are important but beyond the purpose of 

this study. 
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Appendix A: Proof of Theorem 3 

 

Since ( ; ) ( ; )i ir c p r d p   is increasing and ( )R p   is decreasing in p  , it follows 

from Theorem 1 that there is a unique level of monitoring accuracy ˆ [ ,1]jp p   that 

satisfies the following properties for each [ ,1]p p ; if ˆ jp p , then: 

   ( ; ) ( ; ) ( )i ir c p r d p R p  , 

and, therefore, ( ; )jw c p  is decreasing in ˆ[ , ]ip p p . If ˆ jp p , then: 

   ( ; ) ( ; ) ( )i ir c p r d p R p  , 

and, therefore, ( ; )jw d p  is increasing in ˆ[ ,1]ip p . These properties imply that the 

higher p  is, the less kind opponent j  is. 

Q.E.D. 
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Appendix B: Proof of Theorem 4 

 

From Theorem 2, if ˆ ip p , then, 

   ( ) ( ; )i ip r d p  . 

Since ( ; )ir d p  is increasing in p , ( )i p  is increasing in ˆ[ , ]ip p p . If ˆ ip p , then, 

   ( ) 1 ( ; )i ip r c p   . 

Since ( ; )ir c p  is increasing in p , ( )i p  is decreasing in ˆ[ ,1]ip p . From these 

observations and Theorem 1, we obtain the proof of Theorem 4. 

Q.E.D. 
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