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Abstract

The ε-contamination has been studied extensively as a convenient
and operational specification of Knightian uncertainty. However, it is
formulated in a static, one-shot economic environment. This paper ex-
tends this concept into a dynamic and sequential framework, allowing
learning and guaranteeing time consistency of intertemporal decision.
We develop the theory of the rectangular ε-contamination, which can
be represented by a sequence of ε’s that “contaminates” the condi-
tional principal probability measure. We then compare this sequential
(thus closed-loop) rectangular ε-contamination with the initial-period
one-shot (thus open-loop) ε-contamination, which is a straightforward
extension of the static ε-contamination.
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1 Introduction

The ε-contamination has been studied extensively as a convenient and opera-
tional specification of Knightian uncertainty. In the ε-contamination frame-
work, the decision-maker is assumed to be (1 − ε) × 100%-certain that she
faces a particular probability measure, which may be called a “principal”
probability measure, but with ε × 100%-fear she feels completely ignorant
so that she may think she faces the worst case. This concept is applied
to analyze the effect of Knightian uncertainty on the economic agent’s be-
havior such as search (Nishimura and Ozaki, 2004), asset pricing (Epstein
and Wang, 1994), voting (Chu and Liu, 2002) and learning (Nishimura and
Ozaki, 2017, Chapter 14). Also, it has a simple and intuitive axiomatic
foundation (Nishimura and Ozaki, 2006).1 The ε-contamination also comes
up in the statistics literature on robustness (for example, see Berger, 1985).

The ε-contamination described above, however, is formulated in a static,
one-shot economic environment. Since many economic problems are dy-
namic and sequential in nature, we need a dynamic and sequential version
of the ε-contamination. In particular, it is desirable to formulate sequential
ε-contamination exhibiting time consistency of the intertemporal choices,
since it is customarily assumed in many practical applications. It is well-
known (Epstein and Schneider, 2003) that Knightian uncertainty should ex-
hibit the rectangularity property in order to guarantee time consistency of
intertemporal decision-making in the maxmin expected utility model under
Knightian uncertainty (Gilboa and Schmeidler, 1989). Thus, we formulate
“time-consistent” or rectangular ε-contamination as a dynamic extension of
static, one-shot ε-contamination.

There is another issue in the dynamic formulation, which is learning.
The issue can be explained by the analogy of the issue of learning under tra-
ditional framework of no Knightian uncertainty. Suppose that the decision-
maker faces a particular probability measure. If she thinks she knows all
parameters of the probability measure, she has no need to learn from new
observation. In contrast, if she is uncertain about some of the parameters,
she wants to learn about these uncertain parameters from new observation.

The situation is the same in the case of Knightian uncertainty, in which
the decision-maker faces a set of probability measures. If she thinks she
knows all parameters of the probability measures in the set, she has no need
to learn from new observation. However, if she is uncertain about some of
the parameters, she wants to learn about these uncertain parameters of the
probability measures in the set from new observation. In this paper, we
take the latter approach, and formulates the rectangular ε-contamination
with learning .

1Nishimura and Ozaki (2006) treat ε as exogenously given. See also Kopylov (2009) for
another axiomatization from a different perspective in which ε is a preference parameter
that is endogenously derived.
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We then compare the sequential rectangular ε-contamination with the
initial-period one-shot ε-contamination in which ε-contamination is applied
all at once in the initial period with respect to all possible evolutions of
probability measures from the initial period to the last. The initial-period
one-shot ε-contamination is a straightforward extension of the static, one-
shot ε-contamination, though it may cause time inconsistency.2

The results are remarkable. The rectangular ε-contamination can be
represented by a sequence of ε’s that “contaminates” the conditional “prin-
cipal” probability measure, which has a simple closed form that is dependent
on the initial ε. The rectangular ε-contamination only slightly dilates the
initial-period one-shot ε-contamination so as to make it satisfy the rectan-
gularity. However, the both sets become exactly the same a posteriori when
updated by generalized Bayes’ rule, which is well-known updating rule for
Knightian uncertainty.

The organization of the paper is as follows. In Section 2, we present the
model and explain the main results in a two-period model. There we also
present an example in which the initial-period one-shot ε-contamination is
not rectangular, so that it does not guarantee time-consistency of decision-
making. Section 3 extends the analyses of Section 2 to arbitrarily finitely
many periods, and obtain the main results. Section 4 contains some con-
cluding remarks.

2 Two-Period Models

2.1 Notations

This section exclusively considers the two-period model to illustrate the
basic results of this paper in an intuitive way. The model will be extended
to an arbitrary finite-horizon model in Section 3. The following notations
draw on Chapter 14 of Nishimura and Ozaki (2017) at the outset, and then,
they will be further simplified for the future use.

Let S be a state space for each single period and let Ω := S × S be the
whole state space. A generic element of Ω is denoted by (s1, s2).

The information structure, which represents the basis of the decision-
maker’s view of the world, is exogenously given by a filtration F := 〈Ft〉t=0,1,2.
Let m,n ≥ 2 and let 〈Ei〉mi=1 and 〈Fj〉nj=1 be two finite partitions of S.
Throughout this section, we fix these two partitions. We assume that F1 is
represented by a finite partition of Ω of the form: 〈Ei × S〉i, and that F2 is
represented by a finite partition of Ω of the form: 〈Ei × Fj〉i,j .

We abuse a notation by using a partition also to denote the algebra
generated by that partition on S and Ω. By this convention, F1 and F2 are

2In the control theory terminology, the initial-period one-shot ε-contamination is an
“open-loop” one, while sequential rectangular ε-contamination is a “closed-loop” one.
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the algebras on Ω and it holds that F0 ⊆ F1 ⊆ F2, where F0 := {φ,Ω}.
Thus, information increases as time goes by.

Consider a measurable space (Ω,Fi) and let M (Ω,Fi) be the space of all
probability charges on it (i = 1, 2). Given p ∈M (Ω,F2), we denote by p|1
(= p|F1) its restriction on (Ω,F1). Although p|1 is formally a charge on Ω,
it can be naturally regarded as the one on the measurable space, (S, 〈Ei〉i),
and in that case, p|1(·) = p(· × S). Thus viewed, p|1 can be considered as
the first-period marginal probability charge of p. We henceforth write p|1(Ei)
simply as pi for all i ≤ m.

Given p ∈M (Ω,F2), i ≤ m and Ei satisfying p(Ei × S) > 0, we denote
by p|Ei(·) the “posterior” probability charge on (S, 〈Fj〉j) conditional on the
occurrence of Ei × S. Here, the adjective “posterior” signifies the fact that
this is a probability charge the decision-maker obtains after she made an
observation, Ei, in the first period (and when she updates based on it).
That is, (∀i, j) p|Ei(Fj) := p(Ei × Fj)/p(Ei × S). With this conventional
wording, we henceforth write p|Ei(Fj) simply as pij for all i ≤ m and j ≤ n.
In a casual word, pij is the conditional probability charge of Fj given Ei.

Finally, given p ∈ M (Ω,F2), we henceforth write p(Ei × Fj) simply as
pi,j for all i ≤ m and j ≤ n.

2.1.1 The Decomposition of A Probability Charge

So far, we have defined three real numbers: pi, pij , and pi,j , for each p ∈
M (Ω,F2) and each i and j. (Note that pij and pi,j are totally different
objects.)

By means of all these notations, an important result called the “decom-
position of a probability charge in terms of its conditional and marginal”
is stated as follows: Given any probability charge p ∈ M (Ω,F2), p can be
written as

(∀i, j) pi,j = pi · pij (1)

as far as p(Ei × S) > 0.
Conversely, given any list (vector) of first-period marginals of p ∈M (Ω,F2)

(where each marginal is identified with an element of M (S, 〈Ei〉i)), (pi)i :=
(p1, p2, . . . , pm), as well as any set of lists (vectors) of well-defined condi-
tionals (where any element of the set is similarly identified with a list of
elements of M (S, 〈Fj〉j)),

{(pij)j}i := {(p11, p12, . . . , p1n), (p21, p22, . . . , p2n), . . . , (pm1, pm2, . . . , pmn)} ,

the right-hand side of Equation (1) “defines” a probability charge p ∈
M (Ω,F2) with i and j varying.

This decomposition (that is, Equation (1)) will be used repeatedly in
what follows.
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2.2 Knightian Uncertainty and Rectangularity

A nonempty subset P of M (Ω,F2) is called Knightian uncertainty .
Given any Knightian uncertainty, P, its first-period marginal Knightian

uncertainty , denoted by P|1, is the nonempty subset of M (S, 〈Ei〉i) that is
defined by

P|1 := { p|1 | p ∈P } ,

where p|1 is the first-period marginal probability charge of p defined in the
previous subsection and it is written in the conventional wording so that
p|1 ∈M (S, 〈Ei〉i).

Next, let P be Knightian uncertainty, suppose that E ∈ 〈Ei〉i was ob-
served in the first period, and suppose that every probability charge in
P is updated by Bayes’ rule. As a result of this procedure, we obtain
P|E ⊆M (S, 〈Fj〉j) which is defined by

P|E := { p|E(·) | p ∈P } ,

where p|E(·) is the “posterior” probability charge defined in the previous
subsection. Note that P|E = φGB(P, E) by the notation of Nishimura and
Ozaki (2017, Chapter 14), where “GB” abbreviates “generalized Bayes.”
The set P|E may be thought of as the state of uncertainty in the second
period after the observation E was made in the first period.

Knightian uncertainty P is rectangular by definition if for any p′, p′′ ∈
P, (p′i · p′′ij)i,j ∈ P, where p′ is decomposed into (∀i, j) p′i,j = p′i · p′ij , p′′ is
decomposed into (∀i, j) p′′i,j = p′′i · p′′ij and (p′i · p′′ij)i,j defines a probability
charge on M (Ω,F2) by Equation (1). The concept of rectangularity was
introduced by Epstein and Schneider (2003).

A novelty of the rectangularity is that the next proposition holds when-
ever it is satisfied. To state the proposition precisely, for any real-valued
F2-measurable function u on Ω, we denote by Ep [u] its mathematical ex-
pectation with respect to p ∈M (Ω,F2).

In the next proposition, ui denotes arbitrary real-valued Fi-measurable
function on Ω (i = 1, 2) and E is an arbitrary element of the partition, 〈Ei〉i.
Note here that because a function u1 and the second expectation in the right-
hand side of (2) below are both F1-measurable, the first expectation in the
right-hand side of (2) is well-defined with respect to the first-period marginal
probability charge, p′.

Also, note that the expectation Ep′′ [u2] in the right-hand side of (2) is
the “conditional expectation.” That is, to be more precise, it is equal to
Ep′′ [u2 |〈Ei × S〉i ] (s1, s2) with s1 ∈ E. The F1-measurability mentioned in
the previous paragraph is with respect to the argument, s1.3

3More precisely, it is with respect to (s1, s2).
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Proposition 1 Let P be a weak ∗compact subset of M (Ω,F2). Then, both
P|1 and P|E are also weak ∗compact. Thus, all the minima in (2) exist.
Furthermore, if P is rectangular, we have

min
p∈P

Ep [u1 + u2] = min
p′∈P|1

Ep′
[
u1 + min

p′′∈P|E
Ep′′ [u2]

]
. (2)

Proof First, because a set of probability charges with the common finite
support can be identified as a subset of the finite-dimensional Euclidean
space, the weak ∗ compactness of P implies that so are P|1 and P|E .

Second, given any p = (pi,j)i,j ∈P, note that (1) implies that p can be
written as p = (p′i · p′′ij)i,j , where (p′i)i ∈ P|1 is the list of the first-period
marginals of p and (p′′ij)j ∈P|E is the list of well-defined conditionals when
E = Ei is observed in the first period.

Third, by the law of iterated expectations, and by the remark made right
before the statement of the proposition, we obtain

Ep [u2] = Ep′
[
Ep′′ [u2]

]
= Ep′

[
Ep′′ [u2 |〈Ei × S〉i ] (s1, s2)

]
,

where the outer expectations of the middle and right terms aggregate with
respect to s1. Therefore, we obtain

Ep [u1 + u2] = Ep′
[
u1 + Ep′′ [u2]

]
.

Fourth, we show that “≥” holds in (2). The equality in the previous
paragraph immediately implies that for any p ∈P,

Ep [u1 + u2] ≥ min
p′∈P|1

Ep′
[
u1 + min

p′′∈P|E
Ep′′ [u2]

]
,

which proves the claim. We remark that we did not use the rectangularity
of P.

Fifth and Finally, we show “≤” holds in (2). To this end, on the contrary,
assume that > holds there. By the compactness of the relevant sets, there
exist p′∗ = (p′∗i )i ∈ P|1 and p′′∗ = (p′′∗ij )j ∈ P|E that attain the minima
in the right-hand side of (2). By the rectangularity of P, p∗ := (p∗i,j)i,j :=
(p′∗i × p′′∗ij )i,j must be contained by P. Thus,

min
p∈P

Ep [u1 + u2] > min
p′∈P|1

Ep′
[
u1 + min

p′′∈P|E
Ep′′ [u2]

]
= Ep′∗

[
u1 + Ep′′∗ [u2]

]
= Ep∗ [u1 + u2]

≥ min
p∈P

Ep [u1 + u2] ,

where we invoked the law of iterated expectations again. This is a contra-
diction we desire. �
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2.3 The Initial-Period One-Shot ε-Contamination

This subsection defines the initial-period one-shot ε-contamination for the
two-period model presented in the previous subsection. This is a straight-
forward extension of the static one-shot ε-contamination.

Formally, let p0 be a probability charge on (Ω,F2) such that (∀i) p0
i > 0,

and let ε ∈ (0, 1). We may call this probability charge as a “principal”
probability charge. We assume that the decision-maker’s view about the
world is represented by the initial-period one-shot ε-contamination of p0,
denoted by

{
p0
}ε

, which is defined by{
p0
}ε

:=
{

(1− ε)p0 + εq
∣∣ q ∈M (Ω,F2)

}
. (3)

As suggested in the footnote of Introduction, this can also be called “open-
loop” ε-contamination. For notational simplicity, we hereafter omit the ad-
jective “initial-period one-shot” and simply call

{
p0
}ε

as the ε-contamination
of p0 so long as it does not cause any confusion.

Clearly,
{
p0
}ε ⊆M (Ω,F2). It is easy to observe that{

p0
}ε∣∣

1
=
{
p0|1

}ε
. (4)

We change Definition (3) into a slightly more convenient equivalent form,
which can be utilized to define rectangular ε-contamination in the next sub-
section.

Firstly, note that any element p ∈ M (Ω,F2) can be alternatively ex-
pressed as an (m× n)-dimensional vector, p, as

p = (p1,1, p1,2, . . . , p1,n; p2,1, p2,2, . . . , p2,n; . . . ; pm,1, pm,2, . . . , pm,n)

which satisfies p ∈ [0, 1]m×n and
∑m

i=1

∑n
j=1 pi,j = 1. For simplicity, we

write this as p = (pi,j)i,j (while we already used this notations in some
occasions). As is apparent in the above formulation, p includes all possible
“evolutions” of probability charges over two periods.

Secondly, by the use of this notation, Definition (3) will become

{
p0
}ε

=
{

(1− ε)
(
p0
i,j

)
i,j

+ ε (qi,j)i,j

∣∣∣ (qi,j)i,j ∈ [0, 1]m×n

and
∑

i,j qi,j = 1
}
. (5)

Now, for any q ∈ M (Ω,F2), define (∀i, j) δi,j := ε[−p0
i,j + qi,j ]. then,

it can be easily verified that the requirement that (∀i, j) qi,j ∈ [0, 1] and∑
i,j qi,j = 1 is equivalent to the requirement that (∀i, j) δi,j ∈ [−εp0

i,j , ε(1−
p0
i,j)] and

∑
i,j δi,j = 0. Therefore, (5) is further rewritten as, since by (1),

p0
i,j = p0

i · p0
ij ,
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{
p0
}ε

=
{ (

p0
i · p0

ij + δi,j
)
i,j

∣∣∣ (∀i, j) δi,j ∈ [δi,j , δ̄i,j ] and
∑

i,j δi,j = 0
}

(6)

where
δi,j := −εp0

i,j and δ̄i,j := ε(1− p0
i,j) . (7)

Thus, the initial-period one-shot (open-loop) ε-contamination is repre-
sented by (6) and (7). This suggests a neat formulation of rectangular
ε-contamination, which will be defined formally in the next subsection.

2.4 The Rectangular ε-Contamination

Let p0 ∈ M (Ω,F2) be such that (∀i) p0
i > 0. Now, let ε be a lengthy real

vector defined by ε := (εi; ε̄i; εij ; ε̄ij)i,j , where we assume that (∀i, j) −p0
i ≤

εi ≤ 0 ≤ ε̄i ≤ 1− p0
i and −p0

ij ≤ εij ≤ 0 ≤ ε̄ij ≤ 1− p0
ij .

Then, we use ε to define the rectangular ε-contamination,
{
p0
}recε

, by

{
p0
}recε

:=
{(

(p0
i + εi)(p

0
ij + εij)

)
i,j

∣∣∣ (∀i) εi ∈ [εi, ε̄i];
∑

i εi = 0;

(∀i, j) εij ∈ [εij , ε̄ij ] and (∀i)
∑

j εij = 0
}
. (8)

Note that the restrictions imposed on the range within which εi and
εij may move around are necessary for (p0

i + εi)i and (∀i) (p0
ij + εij)j to be

probability charges as well as for p0 to be included in
{
p0
}recε

. In contrast
with the “open-loop” initial-period one-shot ε-contamination, the rectan-
gular ε-contamination allows the change in Knightian uncertainty after an
observation in the first period because ε may depend on i. Thus, it can be
described as the “cloed-loop” ε-contamination (compare (8) and (6)).

The rectangular ε-contamination defined above is in fact rectangular as
its name suggests, which is shown in the following proposition.

Proposition 2 The rectangular ε-contamination defined by (8) is rectan-
gular.

Proof First, observe that, for any p ∈
{
p0
}recε

and for any i, j, pi = p0
i +εi

and pij = p0
ij + εij because (∀i)

∑
j εij = 0 by assumption.

Second, to complete the proof, let p′, p′′ ∈
{
p0
}recε

. Then, p′ can be writ-

ten as
(

(p0
i + ε′i)(p

0
ij + ε′ij)

)
i,j

for some (ε′i)i and (ε′ij)ij satisfying (8), and

p′′ can be so as
(

(p0
i + ε′′i )(p0

ij + ε′′ij)
)
i,j

for some (ε′′i )i and (ε′′ij)ij satisfying

(8). Then, from the first paragraph, we conclude that

(p′i · p′′ij)i,j =
(
(p0

i + ε′i)(p
0
ij + ε′′ij)

)
i,j

holds. Because (ε′i)i and (ε′′ij)ij satisfy all the requirements in (8), (p′i·p′′ij)i,j ∈
P and the proof is complete. �
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The main objective of this subsection is to scrutinize the relation between
the (initial-period one-shot or “open-loop”) ε-contamination introduced in
the previous subsection and the (“closed-loop”) rectangular ε-contamination
introduced right above.

To this end, we set the vector introduced at the start of this subsection,
ε = (εi; ε̄i; εij ; ε̄ij)i,j , as follows: (∀i, j)

εi := −εp0
i ; ε̄i := ε(1− p0

i ); εij :=
−εp0

ij

(1− ε)p0
i + ε

; ε̄ij :=
ε(1− p0

ij)

(1− ε)p0
i + ε

, (9)

where ε is the one with which the “open-loop” ε-contamination is defined
in (3), or in (6) and (7).

Note that the specification of ε by (9) satisfies all the inequalities we
assumed in the first paragraph of this subsection. We hereafter consider the
recursive ε-contamination characterized by this ε, that is, by (9).

Proposition 3 (First-Period Marginals) The first-period marginal Knigh-
tian uncertainty of the rectangular ε-contamination ((8) and (9)) and that
of the ε-contamination ((6) and (7)) coincide. That is,{

p0
}recε∣∣

1
=
{
p0
}ε∣∣

1
.

Proof First note that{
p0
}recε∣∣

1
=
{(
p0
i + εi

)
i

∣∣∣ (∀i) εi ∈ [εi, ε̄i] and
∑

i εi = 0
}
.

Therefore, the result follows from (4) and (6) by noting that (∀i)
∑

j δi,j = εi
and

∑
j δ̄i,j = ε̄i. �

This proposition suggests that the “bounds” εi and ε̄i that appear in the
recursive ε-contamination are “tight.”

The next proposition shows that the recursive ε-contamination is at least
as large as the “open-loop” ε-contamination.

Proposition 4 It holds that
{
p0
}ε ⊆ {p0

}recε
.

Proof Let p ∈
{
p0
}ε

and write it as p = (p0
i,j + δi,j)i,j with some (δi,j)i,j

that satisfies the requirements stated in (6).
By definition, it follows that p|1 ∈

{
p0
}ε∣∣

1
. This, (6), and (7) mean that

we can write p|1 as p|1 =
(
p0
i + δ′i

)
i

with some (δ′i)i such that (∀i) − εp0
i ≤

δ′i ≤ ε(1− p0
i ) and

∑
i δ
′
i = 0. That is, let (∀i) δ′i :=

∑
j δi,j .

For each i, define εi by εi := δ′i. Then, by definition and the previous
paragraph, it holds that

∑
i εi = 0, that εi = −εp0

i ≤ δ′i = εi and that
ε̄i = ε(1 − p0

i ) ≥ δ′i = εi, where (∀i) εi and ε̄i are defined by (9). Thus, all
the requirements for εi in (8) are now met.

9



Next, for each i, j, define εij by εij := (δi,j − δ′ip
0
ij)/(p

0
i + δ′i). Then,

(∀i)
∑

j εij = (
∑

j δi,j − δ′i
∑

j p
0
ij)/(p

0
i + δ′i) = (δ′i − δ′i)/(p0

i + δ′i) = 0, where

we used the definition of δ′i and the fact that (∀i) p0
ij is a (conditional)

charge.
Let εij and ε̄ij be as defined in (9). First, we show that (∀i, j) εij ≥ εij .

To this end, note that ∂εij/∂δ
′
i = (−p0

i,j − δi,j)/(p0
i + δ′i)

2 < 0, where the

numerator must be negative because −p0
i,j − δi,j ≤ −p0

i,j − (−εp0
i,j) = (ε −

1)p0
i,j < 0 since δi,j ≥ −εp0

i,j and ε < 1. Therefore, εij attains its lower
bound when δ′i attains its upper bound. We thus obtain (∀i, j)

εij ≥
−εp0

i,j − ε(1− p0
i )p

0
ij

p0
i + ε(1− p0

i )

=
−εp0

i,j − εp0
ij + εp0

i,j

p0
i + ε(1− p0

i )

=
−εp0

ij

(1− ε)p0
i + ε

= εij .

Second, we show that (∀i, j) εij ≤ ε̄ij , note that εij = (δi,j−
∑

` δi,` p
0
ij)/(p

0
i +∑

` δi,`), and hence that ∂εij/∂δi,j =
∑

`6=j(p
0
i,` + δi,`)/(p

0
i +

∑
` δi,`)

2 > 0.4

Therefore, εij attains its maximum when δi,j is maximal, that is, when
δi,j = ε(1− p0

i,j). However, this occurs precisely only when δi,` = −εp0
i,` for

` 6= j because if otherwise, the two requirements that
∑

i,j δi,j = 0 and that

(∀i, j) δi,j ≥ −εp0
i,j cannot be satisfied simultaneously. Therefore, at this

time, it holds that
∑

` δi,` = ε(1− p0
i ), and we obtain

εij ≤
ε(1− p0

i,j)− ε(1− p0
i )p

0
ij

p0
i + ε(1− p0

i )

=
ε(1− p0

ij)

(1− ε)p0
i + ε

= ε̄ij .

So far, we have found (εi)i and (εij)i,j that satisfies (8) and (9).
Finally, it suffices to verify that for these (εi)i and (εij)i,j , it holds that

p0
i,j + δi,j = (p0

i + εi)(p
0
ij + εij) for each i and j. But, this is immediate from

the definitions of εi and εij : (∀i, j)

(p0
i + εi)(p

0
ij + εij)

= p0
i,j + εip

0
ij + (p0

i + εi)εij

= p0
i,j + δ′ip

0
ij + (p0

i + δ′i)
δi,j − δ′ip0

ij

p0
i + δ′i

4We may assume the strict positivity here because the numerator being zero will take
place only when pi,j = 1 for some i and j, which implies, together with the assumption
that p ∈

{
p0
}ε

, that p0 = (0, . . . , 0, 1, 0, . . . , 0), meaning that p0 represents no risk, which
we excluded in the start of subsection 2.4.
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= p0
i,j + δ′ip

0
ij + δi,j − δ′ip0

ij

= p0
i,j + δi,j ,

which completes the proof. �

However, it does not hold that
{
p0
}ε ⊇ {p0

}recε
as the next example

shows. Thus, this example shows that the initial-period one-shot (“open-
loop”) ε-contamination may not be rectangular so that it may not guarantee
time consistency of intertemporal decisions.

Example 2.1 Let S := {T,B}. Then, we have Ω = {TT, TB,BT,BB}.
Let p0 be a probability charge on (Ω, 2Ω) defined by p0({TT}) = p0({TB}) =
p0({BT}) = p0({BB}) = 1/4 and we consider

{
p0
}ε

for an arbitrary ε ∈
(0, 1). We may write p0({TT}) as p0

T,T , and so on.

We see that p =
(

1
4 + ε

4 ,
1
4 + ε

4 ,
1
4 −

ε
4 ,

1
4 −

ε
4

)
∈
{
p0
}ε

(let q :=
(

1
2 ,

1
2 , 0, 0

)
),

and that p′ =
(

1
4 + ε

4 ,
1
4 −

ε
4 ,

1
4 + ε

4 ,
1
4 −

ε
4

)
∈
{
p0
}ε

(let q :=
(

1
2 , 0,

1
2 , 0
)
).

From p, we can compute the first-period marginal of p, p|1, as p|1 =
(pT , pB) =

(
1
2 + ε

2 ,
1
2 −

ε
2

)
, and the conditionals of p, pTT and so on, as

pTT = pTB = pBT = pBB = 1/2. Similarly, from p′, we can compute
p′|1 = (p′T , p

′
B) =

(
1
2 ,

1
2

)
, p′TT = 1

2 + ε
2 , p′TB = 1

2 −
ε
2 , p′BT = 1

2 + ε
2 and

p′BB = 1
2 −

ε
2 .

These computations show that (pT p
′
TT , pT p

′
TB, pBp

′
BT , pBp

′
BB) =(

1

4
+
ε

2
+
ε2

4
,
1

4
− ε2

4
,
1

4
− ε2

4
,
1

4
− ε

2
+
ε2

4

)
would be an element of

{
p0
}ε

, if it were rectangular. But it is not, in fact,

because pBp
′
BB = 1

4 −
ε
2 + ε2

4 < 1
4 −

ε
4 = (1− ε)p0

B,B, which is the minimum

value pB,B can take on as long as p belongs to
{
p0
}ε

. �

Let P ⊆M (Ω,F2) be any Knightian uncertainty. Then, consider rect-
angular Knightian uncertainty containing P that is minimal . We call it
the rectangular-hull of P, if any, and denote it by rectP. That is, if P ′ is
rectangular and containing P, then rectP ⊆P ′.

Our next result is concerned with the rectangular-hull of the ε-contamination.

Proposition 5 (Rectangular-Hull) For any p0 ∈M (Ω,F2) and any ε ∈
(0, 1), it holds that rect

({
p0
}ε)

=
{
p0
}recε

.

Proof Because
{
p0
}recε

is rectangular (Proposition 2), it suffices to prove
that any rectangular set including

{
p0
}ε

contains
{
p0
}recε

.
Let p0 ∈ M (Ω,F2), let ε ∈ (0, 1), and let i and j be arbitrarily fixed

below.
First, note that there exists p′ ∈

{
p0
}ε

such that p′i = (1−ε)p0
i +ε, which

is the maximum value the first-period marginal, pi, can assume subject to
p ∈

{
p0
}ε

. To do this, we can let (qi,j)i,j be such that
∑

` qi,` = 1.

11



Second, note that there exists p′′ ∈
{
p0
}ε

such that

p′′ij =
(1− ε)p0

i,j + ε

(1− ε)p0
i + ε

,

which is the maximum value the conditional, pij , can assume subject to
p ∈

{
p0
}ε

. To do this, we can let (qi,j)i,j be such that qi,j = 1.

The above two paragraphs show that p′i ·p′′ij = (1−ε)p0
i,j +ε is a value pi,j

can assume as long as p is an element of any rectangular set that contains{
p0
}ε

. Here, some computations exhibit

p′i · p′′ij = (1− ε)p0
i,j + ε =

(
p0
i + ε(1− p0

i )
)(
p0
ij +

ε(1− p0
ij)

(1− ε)p0
i + ε

)
= (p0

i + ε̄i)(p
0
ij + ε̄ij) ,

where ε̄i and ε̄ij are defined by (9).
Similarly, note that there exists p′′′ ∈

{
p0
}ε

such that p′′′i = (1 − ε)p0
i ,

which is the minimum value the first-period marginal, pi, can assume subject
to p ∈

{
p0
}ε

. (Let (qi,j)i,j be such that (∀`) qi,` = 0.) Also note that there

exists p′′′′ ∈
{
p0
}ε

such that

p′′′′ij =
(1− ε)p0

i,j

(1− ε)p0
i + ε

,

which is the minimum value the conditional, pij , can assume subject to
p ∈

{
p0
}ε

. (Let (qi,j)i,j be such that
∑

`6=j qi,` = 1.)

Therefore, by a similar reasoning as above, p′′′i · p′′′′ij is a value pi,j can

assume as long as p is an element of any rectangular set that contains
{
p0
}ε

.
Here, some computations exhibit

p′′′i · p′′′′ij = (1− ε)p0
i ·

(1− ε)p0
i,j

(1− ε)p0
i + ε

= (1− ε)p0
i ·

(
p0
ij −

εp0
ij

(1− ε)p0
i + ε

)
= (p0

i + εi)(p
0
ij + εij) ,

where εi and εij are defined by (9).

By the first paragraph, we know that rect
({
p0
}ε) ⊆ {

p0
}recε

. Fur-
thermore, the arguments so far show that we can always find a probability
charge in any rectangular set containing

{
p0
}ε

that achieves the “upper rim”
of
{
p0
}recε

for arbitrary i and j and (possibly) another probability charge
in such a set that achieves the “lower rim” of

{
p0
}recε

for arbitrary i and j.
This fact proves that both sets are identical. �

We close this subsection by presenting another intuitive and convenient
expression of the rectangular ε-contamination, which we call the ε-ε′ con-
tamination. That is, the rectangular ε-contamination can be characterized
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as the ε-contamination of the “principal” probability charge before making
observation and its ε′-contamination after making observation, where ε′ has
a simple formula that depends on ε.

Let p ∈ M (Ω,F2), let ε ∈ (0, 1), let the “bounds” (εi; ε̄i; εij ; ε̄ij)i,j be
related with ε by (9), and let the rectangular ε-contamination is defined by
(8). Then, we have

Proposition 6 (ε-ε′ Contamination) It holds that{
p0
}recε

=
{((

(1− ε)p0
i + εqi

)
·
(
(1− ε′i)p0

ij + ε′iqij
))

i,j

∣∣∣ (∀i) qi ∈ [0, 1];∑
i qi = 1; (∀i, j) qij ∈ [0, 1] and (∀i)

∑
j qij = 1

}
, (10)

where for each i, ε′i is defined by

ε′i :=
ε

(1− ε)p0
i + ε

.

Furthermore, (∀i) ε′i > ε.

Proof First, note that we have (∀i) (1−ε)p0
i +εqi = p0

i +ε(qi−p0
i ). Then,

it is immediate that εi := ε(qi − p0
i ) satisfies all the requirements in (8) and

(9) by (10).
Second, note that (∀i, j) (1 − ε′i)p0

ij + ε′iqij = p0
ij + ε′i(qij − p0

ij). Then,

it is immediate that εij := ε′i(qij − p0
ij) satisfies all the requirements in (8)

and (9) by (10) and the definition of ε′i.
Finally, the last claim follows from the fact that (1 − ε)p0

i + ε < 1 for
each i, which holds because (∀i) p0

i < 1 since we assume that (∀i) p0
i > 0

(see the start of Subsection 2.4). �

Proposition 6 (in particular, its claim that (∀i) ε′i > ε) suggests that am-
biguity dilates upon learning, which is a remarkable property of ambiguity.
In light of (2) of Proposition 1, this is almost saying that “P|1 ( P|E .”5

Note that Equations (10) and (2) clearly show that time-consistency
(rectangularity) and dilation of ambiguity upon learning are completely con-
sistent.

2.5 Learning with Rectangular ε-Contamination

This subsection studies learning procedure when the uncertainty is charac-
terized by the rectangular ε-contamination. The learning when the uncer-
tainty is characterized by the “open-loop” ε-contamination was extensively
studied by Nishimura and Ozaki (2017, Chapter 14).

5This is not exactly right though, because we need to assume the condition concerning
“value of information.” For the complete details, see Nishimura and Ozaki (2017, Chapter
14).
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Now, let p0 ∈M (Ω,F2), let ε ∈ (0, 1), and let
{
p0
}recε

be the rectangu-
lar ε-contamination defined by (8). Also, let Ei ∈ 〈Ek〉k for some i. Then,
the definition of the second-period marginal uncertainty and Proposition 6
imply{

p0
}recε∣∣

Ei
=
{(

(1− ε′i)p0
ij + ε′iqij

)
j

∣∣∣ (∀j) qij ∈ [0, 1] and
∑

j qij = 1
}
,

(11)
where ε′i is as define in Proposition 6.

The next proposition is one of the main results of this paper. This
proposition shows that “posterior” Knightian uncertainty of the rectangu-
lar ε-contamination after observation is the same as the “posterior” of the
(initial-period one-shot) ε-contamination.

Proposition 7 (“Posteriors”) For any i and for any Ei ∈ 〈Ek〉k,{
p0
}recε∣∣

Ei
=
{
p0
}ε∣∣

Ei
.

Proof Note that it holds that{
p0
}ε∣∣

Ei
=
{
p0|Ei(·)

}ε′i =
{(
p0
ij

)
j

}ε′i∣∣
Ei

=
{
p0
}recε∣∣

Ei
.

Here, the first equality follows from Theorem 14.5.1 of Nishimura and Ozaki
(2017, Chapter 14)6; the second equality is simple manipulation; and the
third equality holds by (11) and the definition of ε′i. Thus the proof is
complete. �

3 Arbitrarily-Finite-Horizon Models

The purpose of this section is to show the results obtained for the two-period
models in the previous section hold true in arbitrarily-finite-horizon models,
and thus they are general results.

3.1 (Slightly Heavy) Notations

Let T ∈ N\{0, 1} be a length of a finite horizon, and for each t ∈ {1, 2, . . . , T},
nt (≥ 2) be a number of elements of each finite partition of S; that is, let
〈E1,i1〉

n1
i1=1, 〈E2,i2〉

n2
i2=1, . . . , 〈ET,iT 〉

nT
iT =1 be finite partitions of S, which are

fixed throughout the rest of the paper. We identify each of (S, 〈E1,i1〉
n1
i1=1),

(S2, 〈E1,i1×E2,i2〉
n1
i1=1

n2
i2=1), . . . , (ST , 〈E1,i1×E2,i2×· · ·×ET,iT 〉

n1
i1=1

n2
i2=1 . . .

nT
iT =1)

with each of the measurable spaces, (Ω,F1), (Ω,F2), . . . , (Ω,FT ), exactly
as we did in the previous section. (Note that Ω := ST .)

Let M (Ω,FT ) be the space of all probability charges on (Ω,FT ). Given
p ∈M (Ω,FT ), we write the joint probability charge, p(E1,i1 × E2,i2 × · · · ×

6Note that ε′ there is equal to ε′i here.
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ET,iT ), simply as pi1,i2,...,iT , where for each t ≤ T , Et,it ∈ 〈Et,it〉nt
it=1. For

each p ∈M (Ω,FT ), the first-t-period marginal of p is denoted and defined
by7

(∀t)(∀i1, i2, . . . , it) pi1 i2 ... it := p(E1,i1 × E2,i2 × · · · × Et,it × S × · · · × S) .

Obviously, the first-T -period marginal is identical to the joint probability
charge.

Next, the one-period-ahead conditional of p given E1,i1×E2,i2×· · ·×Et,it

is denoted and defined by

(∀t ≤ T − 1)(∀i1, i2, . . . , it) p+
it+1|i1 i2 ... it :=

pi1 i2 ... it it+1

pi1 i2 ... it
,

where the probability charges in the numerator and denominator are the
first-some-appropriate-period marginals defined above.8

For any p ∈ M (Ω,FT ), we denote its first-t-period marginal charge in
M (Ω,Ft) (not a single number) by pt,

9 as well as its one-period-ahead con-
ditional charge in M (S, 〈Et+1,it+1〉it+1) (not a single number) given E1,i1 ×
E2,i2 × · · · × Et,it by p+(·|E1,i1 × E2,i2 × · · · × Et,it).

3.1.1 The Decomposition of A Probability Charge

For each p ∈M (Ω,FT ), its decomposition into its marginal and (one-period-
ahead) conditional is now represented as follows:

(∀t ≤ T − 1) pi1 i2 ... it it+1 = pi1 i2 ... it · p+
it+1|i1 i2 ... it , (12)

where the left-hand side in (12) is p’s fisrt-(t + 1)-period marginal, while
its right-hand side is the product of p’s fisrt-t-period marginal and its one-
period-ahead marginal given the first t observations.

These decompositions (that is, Equations (12)) will be used repeatedly
in what follows.

3.2 Knightian Uncertainty and Rectangularity

A nonempty subset P of M (Ω,FT ) is called Knightian uncertainty .
Given any Knightian uncertainty, P, and any t ≤ T −1, its first-t-period

marginal Knightian uncertainty , denoted by Pt, is the nonempty subset of
M (Ω,Ft) that is defined by

Pt := { pt | p ∈P } ,
7When T = 2, pi1 = p|1(E1,i1), where the right-hand side was introduced in the

previous section.
8When T = 2, p+ is well-defined only when t = 1 and p+i2|i1 = pi1i2 , where the right-

hand side was introduced in the previous section.
9Note that it is only when t = 1 that p|t = pt holds, where the former appeared in the

previous section.
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where pt is the first-t-period marginal probability charge defined in the pre-
vious subsection.10

Again, let P be Knightian uncertainty, t ≤ T −1 and suppose that E1×
· · ·×Et ∈ 〈E1,i1×· · ·×Et,it〉i1,...,it has been observed in the first t periods, and
that every probability charge in Pt+1 is updated by Bayes’ rule. As a result
of this procedure, we obtain the one-period-ahead conditional Knightian
uncertanty, denoted P+|E1×···×Et , which is a subset of M (S, 〈Et+1,it+1〉it+1).
That is,

P+|E1×···×Et :=
{
p+(·|E1 × · · · × Et) | p ∈P

}
,

where p+ is the one-period-ahead probability charge defined in the previous
subsection.

Knightian uncertainty, P, is rectangular by definition if for any p′, p′′ ∈
P, it holds that

(∀t ≤ T − 1)
(
p′i1 i2 ... it · p

′′+
it+1|i1 i2 ... it

)
i1,i2,...,it,it+1

∈Pt+1 .

Note that if Knighian uncertainty is a singleton (that is, if it is a risk), then
it is clearly rectangular in view of (12).

In order to state an important result, let t ≤ T and denote by ut an
arbitrary real-valued function on Ω that is Ft-measurable. As we did in the
previous section, we denote by Ep[u] the mathematical expectation of such
a function with respect to a probability charge p ∈M (Ω,FT ).

The next proposition states that rectangular Knightian uncertainty im-
plies that the iterated or sequential maxmin preference, which is a dynamic
extension of the atemporal preference à la Gilboa and Schmeidler (1989) is
identified with the one-shot “open-loop” maxmin preference.

Proposition 8 (Epstein-Schneider, 2003) Let P be rectangular Knigh-
tian uncertainty that is weak ∗compact. Then,

min
p∈P

Ep
[∑T

i=1 ui

]
= min

p′∈P1

Ep′
[
u1 + min

p′′∈P+|E1

Ep′′
[∑T

i=2 ui

]]
= · · · · · · · · ·

= min
p′∈P1

Ep′
[
u1 + min

p′′∈P+|E1

Ep′′
[
u2 + min

p(3)∈P+|E1×E2

Ep(3)
[
u3 + · · ·

min
p(T )∈P+|E1×···×ET−1

Ep(T )
[uT ] · · ·

]]]
,

where p(t) is an abbreviation of p
′′···′(t primes), which is a generic probability

charge which is relevant there.

10Note that it is only when t = 1 that P|t = Pt holds. See the previous footnote.
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Proof We only prove the equation:

min
p∈P

Ep
[∑T

i=1 ui

]
= min

p′∈P1

Ep′
[
u1 + min

p′′∈P+|E1

Ep′′
[
u2 + min

p(3)∈P+|E1×E2

Ep(3)
[
u3 + · · ·

min
p(T )∈P+|E1×···×ET−1

Ep(T )
[uT ] · · ·

]]]
.

The other ones can be proved very similarly. Also, we only prove that “≤”
holds because the other direction of the inequality can be proved almost the
same way as Proposition 1 without invoking the rectangularity.

To this end, assume that > holds there on the contrary. By the com-
pactness of the relevant Knightian Uncertainty, which is guaranteed by the
assumed weak ∗compactness of P, there exists a sequence of probability
charges such that p′∗ ∈P1, p

′′∗ ∈P+|E1 , . . . , p
(T )∗ ∈P+|E1×···×ET−1

, each
of which attains the corresponding minimum.

Here, note that by the decomposition of a risk, for any sequence of
observations, E1, . . . , ET , it holds that

p∗i1,i2,...,iT = p∗i1i2...iT := p
(T−1)∗
i1i2...iT−1

· p(T )∗
iT |i1i2...iT−1

= p
(T−2)∗
i1i2...iT−2

· p(T−1)∗
iT−1|i1i2...iT−2

· p(T )∗
iT |i1i2...iT−1

= . . . . . . . . .

= p′∗i1 · p
′′∗
i2|i1 · · · p

(T )∗
iT |i1i2...iT−1

(see the Equation (12)).
By exactly the same logic as Proposition 1, we reached the contradiction

because
(
p∗i1,i2,...,iT

)
i1,i2,...,iT

∈P by the rectangularity . �
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3.3 The Rectangular ε-Contamination

Let p0 ∈ M (Ω,FT ) and let ε ∈ (0, 1). Then, the (initial-period one-shot)
ε-contamination of p0 is denoted and defined by{

p0
}ε

:=
{

(1− ε)p0 + εq
∣∣ q ∈M (Ω,FT )

}
. (13)

Use the same p0 and ε to define εi1 := −εp0
i1

, ε̄i1 := ε(1 − p0
i1

), and
(∀t ∈ {2, . . . , T})

εi1...it :=
−εp0+

it|i1...it−1

(1− ε)p0
i1...it−1

+ ε
and ε̄i1...it :=

ε(1− p0+
it|i1...it−1

)

(1− ε)p0
i1...it−1

+ ε
, (14)

where p0+ is the one-period-ahead conditional of p0 defined in Section 3.1.
Then, the rectangular ε-contamination of p0 is defined by11

{
p0
}recε

:=
{(

(p0
i1 + εi1)(p0+

i2|i1 + εi1i2) · · · (p0+
iT |i1...iT−1

+ εi1...iT )
)
i1,...,iT

∣∣∣
(∀i1) εi1 ∈ [εi1 , ε̄i1 ];

∑
i1
εi1 = 0; . . . ;

(∀i1, . . . , iT ) εi1...iT ∈ [εi1...iT , ε̄i1...iT ]

and (∀i1, . . . , iT−1)
∑

iT
εi1...iT−1iT = 0

}
. (15)

Proposition 9 The rectangular ε-contamination is rectangular.

Proof The proof can be conducted very closely following the proof for the
case where T = 2 (Proposition 2). Therefore, it is omitted. �

Proposition 10 It holds that
{
p0
}ε ⊆ {p0

}recε
.

Proof When T = 2, the claim holds true (Proposition 4).
Now, let

{
p0
}ε

be the initial-period one-shot ε-contamination with T = 3

and use the same p0 and ε to define p2 :=
(

(p0
i1

+ εi1)(p0+
i2|i1 + εi1i2)

)
i1i2
∈

M (S2, 〈E1,i1 × E2,i2〉i1,i2). By the way of the construction of
{
p0
}recε

with
T = 3 from p2, the claim for T = 3 can be proved by very closely fol-
lowing the proof for the case where T = 2 by letting εi1i2i3 := (δi1,i2,i3 −
δi1,i2p

0+
i3|i1i2)/(p0

i1i2
+δi1,i2), where δi1,i2 :=

∑
i3
δi1,i2,i3 and p0

i1i2
:=
∑

i3
p0
i1i2i3

for some δi1,i2,i3 . Thus, we omit the details of the proof.
For T ≥ 4, repeat the procedure briefly described in the previous para-

graph. �

11We use a boldface letter to express the epsilon because it is a vector, not a single
number.
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Proposition 11 It holds that{
p0
}recε

=
{( (

(1− ε1)p0
i1 + ε1qi1

) (
(1− ε2

i1)p0+
i2|i1 + ε2

i1qi1i2
)
· · ·(

(1− εTi1...iT−1
)p0+

iT |i1...iT−1
+ εTi1...iT−1

qi1i2...iT
))

i1,i2,...,iT

∣∣∣
(∀i1) qi1 ∈ [0, 1];

∑
i1
qi1 = 1; . . . ; (∀i1, . . . , iT ) qi1...iT ∈ [0, 1]

and (∀i1, . . . , iT−1)
∑

iT
qi1...iT−1iT = 1

}
, (16)

where ε1 := ε that is the one defining the initial-period one-shot ε-contamination,
and for each t ∈ {2, . . . , T} and each (i1, . . . , it−1), εti1...it−1

is defined by

εti1...it−1
:=

ε

(1− ε)p0
i1...it−1

+ ε
.

Furthermore, (∀i1, . . . , iT−1) ε1 < ε2
i1
< · · · < εTi1...iT−1

, unless Et = S.

Proof The first half of the claim can be proved by very closely following
the proof for the case when T = 2, and hence, the details of the proof is
omitted.

To show that it holds that, for any sequence of observations, ε1 < ε2
i1
<

· · · < εTi1...iT−1
, simply note that p0

i1...it−1
> p0

i1...it−1it
unless Et = S by the

definition of marginals. �

3.4 Learning with Rectangular ε-Contamination

The one-period-ahead conditional Knightian uncertainty of any rectangular
ε-contamination has a very convenient form.

To precisely observe this, let p0 ∈M (Ω,FT ) and let ε ∈ (0, 1) as usual.
First, note that for any t ≤ T , Proposition 11 and the definition of the
marginal imply that{

p0
}recε
t

=
( (

(1− ε1)p0
i1 + ε1qi1

) (
(1− ε2

i1)p0+
i2|i1 + ε2

i1qi1i2
)
· · ·(

(1− εti1...it−1
)p0+

it|i1...it−1
+ εti1...it−1

qi1i2...it
))

i1,i2,...,it
,

where q′s satisfies the conditions imposed in (16) and εti1...it−1
is defined in

the previous subsection.
Then, the definition of the one-period-ahead conditional in turn implies

that for any t ≤ T and any E1 × · · · × Et−1,({
p0
}recε)+ ∣∣

E1×···×Et−1
=
{(

1−εti1...it−1

)
p0+(·|E1×· · ·×Et−1) + εti1...it−1

q
∣∣

q ∈M (S, 〈Et,it〉it)
}
. (17)

Here, note that the resemblance between (11) and (17), which strongly
suggests that the next proposition holds true.
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Proposition 12 For any t ≤ T and any E1 × · · · × Et−1, it holds that({
p0
}recε)+ ∣∣

E1×···×Et−1
=
({
p0
}ε)+ ∣∣

E1×···×Et−1
.

Proof The way of the construction of the one-period-ahead conditional
allows us to mimic the proof for the case where T = 2 (Proposition 7), and
hence we omit the proof. �

In order to state our final result on the learning behavior with the rectan-
gular ε-contamination, we largely simplify the dynamic structure underlying
our model.12

Let (Ω,FT ) := (ST ,⊗T
t=1〈Ei〉ni=1), where ⊗T

t=1〈Ei〉ni=1 is the T -time self-
direct-product of the identical finite partition of S, 〈Ei〉ni=1. Also, assume
that p0 := p00 ⊗ p00 ⊗ · · · ⊗ p00, which is the T -time self-direct-product of
some p00 ∈M (S, 〈Ei〉ni=1).

Then, we can prove the following proposition.

Proposition 13 For any t ≤ T and any Ei1 × . . . × Eit−1 × Eit such that
Eit 6= S, it holds that({

p0
}recε)+ ∣∣

Ei1
×···×Eit−1

(
({
p0
}recε)+ ∣∣

Ei1
×···×Eit−1

×Eit
.

Proof In view of the Equation (17) and the current underlying stochastic
structure, the left-hand side of the inclusion in the proposition turns out to
be {(

1− εti1...it−1

)
p00 + εti1...it−1

q
∣∣ q ∈M (S, 〈Ei〉i)

}
,

while its right-hand side turns out to be{(
1− εt+1

i1...it

)
p00 + εt+1

i1...it
q
∣∣ q ∈M (S, 〈Ei〉i)

}
.

Then, the result follows because εti1...it−1
< εt+1

i1...it
by Proposition 11. �

The last proposition exhibits that an active learning by observing the
occurrence of an event always dilates the degree of uncertainty whenever
Knightian uncertainty is specified by the rectangular ε-contamination and
underlying stochastic structure is as in the proposition.13

As we already claimed with respect to two-period models, we must
emphasize again that Proposition 8 (in particular, its last equation), the
first equation of subsection 3.4 as well as Proposition 13 show that time-
consistent (rectangularity) and dilation of ambiguity upon learning are com-
pletely consistent.

12We can dispense with this restriction by paying a cost that the conclusion of the next
proposition holds only when the complicated conditions are all met.

13Shishkin R© Ortoleva (2019) try to measure the degree of the dilation of ambiguity
upon learning in a more general framework.
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4 Concluding Remarks

The analyses conducted in this paper strongly suggests a promising direc-
tion of a new research. An arbitrarily-finite-horizon model may be extended
to the infinite-horizon model, where the rectangularity generates the “recur-
sive” ε-contamination, with or without learning.

Then, the dynamic recursive preference represented by the Koopmans-
type equation for the maxmin behavior may allow the application of dynamic
programming techniques and such a model could be a benchmark for more
applied research where the pessimism characterized in the form of the ε-
contamination may play a central role.

A perfect-knowledge assumption with respect to the range of parameter
values, that is, the rectangular (recursive) ε-contamination without learning
may facilitate the analyses largely by its stationary structure of some kind.
By using such a model, we may provide an operational model that could have
a potential power to explain seemingly complicated economic phenomena.
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