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Abstract

In this work, we study an equilibrium-based continuous asset pricing problem which
seeks to form a price process endogenously by requiring it to balance the flow of sales-and-
purchase orders in the exchange market, where a large number of agents 1 ≤ i ≤ N are
interacting through the market price. Adopting a mean field game (MFG) approach, we find
a special form of forward-backward stochastic differential equations of McKean-Vlasov type
with common noise whose solution provides a good approximate of the market price. We
show the convergence of the net order flow to zero in the large N -limit and get the order of
convergence in N under some conditions. We also extend the model to a setup with multiple
populations where the agents within each population share the same cost and coefficient
functions but they can be different population by population.

Keywords : FBSDE of McKean-Vlasov type, common noise, general equilibrium

1 Introduction

One of the most important problems in the financial economics is to understand how the asset
price processes are formed through the interaction among a large number of rational competitive
agents. In this paper, using a stylized model of security exchange, we try to explicitly form an
approximate market price process which balances the flow of sales-and-purchase orders from a
large number of rational financial institutions. If we directly force the price process to balance
the net order flow, the strategies of the agents become strongly coupled and the problem is
hardly solvable. In fact, it is even unclear how to make the cost functions of the agents well-
defined, since the market price results in a very complicated recursive functional of strategies of
all the agents that makes it difficult to guarantee the convexity of the cost functions. In order
to circumvent this problem, we make use of the recent developments of mean field games.

Since its inception brought by the pioneering works of Lasry & Lions [20, 21, 22] and Huang,
Malhame & Caines [18], mean field game has rapidly developed into one of the most actively
studied topics in the field of probability theory, applied mathematics, engineering, finance and
economics. The greatest strength of the mean field game approach is to render notoriously

∗All the contents expressed in this research are solely those of the author and do not represent any views or
opinions of any institutions. The author is not responsible or liable in any manner for any losses and/or damages
caused by the use of any contents in this research.

†Quantitative Finance Course, Graduate School of Economics, The University of Tokyo.
‡Quantitative Finance Course, Graduate School of Economics, The University of Tokyo.
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difficult problems of stochastic differential games among many agents tractable by transforming
it to a simpler form of stochastic control problem. There exist two approaches to the mean field
games, one is analytic approach using partial differential equations (PDEs), and the others is
probabilistic approach based on forward-backward stochastic differential equations (FBSDEs).
For details of analytic approach and its applications, the interested readers may consult the
works of Bensousssan, Frehse & Yam [3], Gomes, Nurbekyan & Pimentel [14], Achdou et.al. [1],
Gomes, Pimentel & Voskanyan [15] and also Kolokoltsov & Malafeyev [19]. On the other hand,
the probabilistic approach was developed by the series of works of Carmona & Delarue [4, 5, 6]
and the recent two volumes of monograph [7, 8] provide its full mathematical details and many
references for a wide array of applications of mean field games.

Interestingly, from the perspective of equilibrium asset pricing, the number of applications of
mean field games is quite limited. In most of the existing literature, the authors have given a re-
sponse function of the price process exogenously and searched an approximate Nash equilibrium
among agents. See, for example, applications to optimal trading as well as liquidation of portfo-
lio, exploitation of exhaustible resources and related issues among many agents [10, 11, 12, 23],
or an application to electricity pricing with smart grids [2, 9]. In the work [17], the authors treat
explicitly the balance of demand and supply in the oil market, but the demand is exogenously
given as a function of the oil price. One notable exception is the work of Gomes & Saude [16], in
which the authors explicitly force demand and supply to balance and endogenously construct the
market clearing electricity price. They use the analytic approach and the resultant equilibrium
price process becomes deterministic due to the absence of common noise.

In the current paper, we extend the work [16] by adopting the probabilistic approach. In
order to understand the price processes, in particular those of financial assets, including sys-
temic signals which impacts all the agents is crucially important. We find an interesting form of
FBSDEs of McKean-Vlasov type with common noise as a limit problem. Although it involves
dependence in conditional law, it only appears as a conditional expectation. This allows us to
adopt the well-known Peng-Wu’s continuation method [24] to prove the existence of a unique
strong solution. The resultant candidate of the market price process is derived completely en-
dogenously by the optimal trading strategies of the agents facing systemic information (including
securities’ coupon stream) as well as idiosyncratic noise. Another benefit of probabilistic ap-
proach is that it allows us to quantify the relation between the actual game with finite number
of agents and its large population limit. In a similar manner to the standard mean field games
in proving ε-Nash equilibrium, we show that the solution of the mean-field limit problem ac-
tually provides asymptotic market clearing in the large-N limit. Under additional integrability
conditions, Glivenko-Cantelli convergence theorem in the Wasserstein distance even provides a
specific order of convergence in terms of the number of agents N . We also discuss the extension
of the model to the situation with multiple populations where the agents share the same cost and
coefficient functions within each population but they can be different population by population.
This will provide an important tool to study the price formation in the presence of different type
of agents such as Buy-side and Sell-side institutions, for example.

The organization of the paper is as follows: After explaining the notation in Section 2, we
give an intuitive derivation of the limit problem from the game of finite number of agents in
Section 3, which motivates the readers to study the special type of FBSDEs of MKV-type. The
solvability of the FBSDE is studied in Section 4. Using the derived regularity of the solution,
we prove the asymptotic market clearing in Section 5. In Section 6, we discuss the extension
of the model to the setup with multiple populations. Finally, in Section 7, we give concluding
remarks. We discuss further extensions of the model and future directions of research.
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2 Notation

We introduce (N+1) complete probability spaces:

(Ω
0
,F0

,P0
) and (Ω

i
,F i

,Pi
)Ni=1 ,

endowed with filtrations Fi
:= (F i

t)t≥0, i ∈ {0, · · · , N}. Here, F0
is the completion of the

filtration generated by d0-dimensional Brownian motion W 0 (hence right-continuous) and, for

each i ∈ {1, · · · , N}, Fi
is the complete and right-continuous augmentation of the filtration

generated by d-dimensional Brownian motions W i as well as a W i-independent n-dimensional
square-integrable random variables (ξi). (ξi)Ni=1 are supposed to have the same law. We also
introduce the product probability spaces

Ωi = Ω
0 × Ω

i
, F i, Fi = (F i

t )t≥0, Pi , i ∈ {1, · · · , N}

where (F i,Pi) is the completion of (F0 ⊗ F i
,P0 ⊗ Pi

) and Fi is the complete and right-

continuous augmentation of (F0
t ⊗ F i

t)t≥0. In the same way, we define the complete proba-
bility space (Ω,F ,P) endowed with F = (Ft)t≥0 satisfying the usual conditions as a product of

(Ω
i
,F i

,Pi
;Fi

)Ni=0.
Throughout the work, the symbol L and Lϖ denote given positive constants, the symbol C

a general positive constant which may change line by line. When we want to emphasize that
C depends only on some specific variables, say a and b, we use the symbol C(a, b). For a given
constant T > 0, we use the following notation for frequently encountered spaces:
• L2(G;Rd) denotes the set of Rd-valued G-measurable square integrable random variables.
• S2(G;Rd) is the set of Rd-valued G-adapted continuous processes X satisfying

||X||S2 := E
[
sup

t∈[0,T ]
|Xt|2

] 1
2 < ∞ .

• H2(G;Rd) is the set of Rd-valued G-progressively measurable processes Z satisfying

||Z||H2 := E
[(∫ T

0
|Zt|2dt

)] 1
2
< ∞ .

• L(X) denotes the law of a random variable X.
• P(Rd) is the set of probability measures on (Rd,B(Rd)).
• Pp(Rd) with p ≥ 1 is the subset of P(Rd) with finite p-th moment; i.e., the set of µ ∈ P(Rd)
satisfying

Mp(µ) :=
(∫

Rd

|x|pµ(dx)
) 1

p
< ∞ .

We always assign Pp(Rd) with (p ≥ 1) the p-Wasserstein distance Wp, which makes Pp(Rd) a
complete separable metric space. As an important property, for any µ, ν ∈ Pp(Rd), we have

Wp(µ, ν) = inf
{
E[|X − Y |p]

1
p ;L(X) = µ,L(Y ) = ν

}
, (2.1)

where “inf” is taken over all random variables with laws equal to µ and ν, respectively. For
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more details, see Chapter 5 in [7]. We frequently omit the arguments such as (G,Rd) in the
above definitions when there is no confusion from the context.

3 Intuitive Derivation of the Mean Field Problem

In this section, in order to introduce the special form of forward-backward stochastic differential
equations of McKean-Vlasov type to be studied in this paper, we give a heuristic derivation of
the mean-field limit problem from the corresponding equilibrium problem with finite number of
agents. As a motivating example, we consider the equilibrium-based pricing problem of n types
of securities, which are continuously traded in the security exchange in the presence of a large
number of participating agents indexed by i ∈ {1, · · · , N}. Every agent is supposed to have
many small clients who can only trade directly to the agent via over-the-counter markets (OTC)
and have no access to the security exchange.

We suppose that each agent i ∈ {1, · · · , N} tries to solve the problem

inf
αi∈Ai

J i(αi) (3.1)

with some cost functional

J i(αi) := E
[∫ T

0
f(t,Xi

t , α
i
t, ϖt, c

0
t , c

i
t)dt+ g(Xi

T , ϖT , c
0
T , c

i
T )
]
,

subject to the dynamic constraint:

dXi
t =

(
αi
t + l(t,ϖt, c

0
t , c

i
t)
)
dt+ σ0(t,ϖt, c

0
t , c

i
t)dW

0
t + σ(t,ϖt, c

0
t , c

i
t)dW

i
t

with Xi
0 = ξi ∈ L2(F i

0;Rn). Here, (Xi
t)t≥0 is an Rn-valued process denoting the time-t position

of the n securities for the agent i with the initial position ξi. (c0t )t≥0 ∈ H2(F0
;Rn) denotes

the coupon payments from the securities or the market news commonly available to all the

agents, while (cit)t≥0 ∈ H2(Fi
;Rn) denotes some independent factors affecting only on the agent

i. Moreover, (cit)t≥0 are also assumed to have the common law for all 1 ≤ i ≤ N . We further
suppose c0T and ciT are square integrable to handle the terminal cost g. Each agent controls
(αi

t)t≥0 denoting the trading speed though the security exchange. The remaining terms (l, σ0, σ)
denote the order flow to the agent from his/her clients through over-the-counter (OTC) markets.
(ϖt)t≥0 is the market price of the n securities. The space of admissible strategies Ai of the agent
i is the set of processes (αi

t)t≥0 adapted to the complete right-continuous augmentation of the
filtration

(
σ{ϖs : s ≤ t}) ∨ F i

t

)
t≥0

satisfying

E
∫ T

0
|αi

t|2dt < ∞ .

In contrast to the standard optimization problems with a given market price process, we want
to understand the fundamental mechanism of financial market which determines the market
price by the equilibrium condition. The equilibrium price (ϖt)t≥0 adapted to the filtration F is
determined endogenously so that the optimal strategies of the agents (α̂i

t)
N
i=1 satisfy the market
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clearing condition for every t ∈ [0, T ], P-a.s.

N∑
i=1

α̂i
t = 0 , (3.2)

which denotes the balance point of demand and supply at the security exchange.
Although we have already made simplistic assumptions such that the cost functions as well

as the coefficient functions of all the agents are common, the problem is still hardly solvable.
Due to the clearing condition (3.2), we cannot adopt an open-loop equilibrium approach. In
particular, (ϖt)t≥0 becomes a complicated functional of the agents’ trading strategies and hence
the problem for each agent is highly recursive with respect to (αi

t)t≥0,1≤i≤N . It is even unclear
how to guarantee the cost function well-defined by making it convex with respect to the controls.

In order to obtain some insight, let us consider a much simpler situation. It is natural
to suppose that the impact to the market price (ϖt)t∈[0,T ] from the individual agent becomes

negligibly small when N is sufficiently large. Moreover, (ϖt)t∈[0,T ] is likely to be given by F0
-

progressively measurable process since the effects from the idiosyncratic parts from many agents
are expected to be canceled out. If this is the case, the problem for each agent reduces to the
standard stochastic optimal control problem in a given random environment (ϖt, c

0
t , c

i
t)t∈[0,T ]

with Fi-adapted trading strategy (αi
t)t∈[0,T ]. Let us first investigate this simple problem in

details. We introduce the cost functions: f : [0, T ] × (Rn)5 → R, g : (Rn)4 → R, f : [0, T ] ×
(Rn)4 → R and g : (Rn)3 → R, which are measurable functions such that

f(t, x, α,ϖ, c0, c) := 〈ϖ,α〉+ 1

2
〈α,Λα〉+ f(t, x,ϖ, c0, c),

g(x,ϖ, c0, c) := −δ〈ϖ,x〉+ g(x, c0, c) .

Assumption 3.1. (MFG-a)
(i) Λ is a positive definite n × n symmetric matrix with λIn×n ≤ Λ ≤ λIn×n in the sense of
2nd-order form where λ and λ are some constants satisfying 0 < λ ≤ λ.
(ii) For any (t, x,ϖ, c0, c),

|f(t, x,ϖ, c0, c)|+ |g(x, c0, c)| ≤ L(1 + |x|2 + |ϖ|2 + |c0|2 + |c|2) .

(iii) f and g are continuously differentiable in x and satisfy, for any (t, x, x′, ϖ, c0, c),

|∂xf(t, x′, ϖ, c0, c)− ∂xf(t, x,ϖ, c0, c)|+ |∂xg(x′, c0, c)− ∂xg(x, c
0, c)| ≤ L|x′ − x| ,

and |∂xf(t, x,ϖ, c0, c)|+ |∂xg(x, c0, c)| ≤ L(1 + |x|+ |ϖ|+ |c0|+ |c|).
(iv)The functions f and g are convex in x in the sense that for any (t, x, x′, ϖ, c0, c),

f(t, x′, ϖ, c0, c)− f(t, x,ϖ, c0, c)− 〈x′ − x, ∂xf(t, x,ϖ, c0, c)〉 ≥ γf

2
|x′ − x|2 ,

g(x′, c0, c)− g(x, c0, c)− 〈x′ − x, ∂xg(x, c
0, c)〉 ≥ γg

2
|x′ − x|2 ,

with some constants γf , γg ≥ 0.
(v) l, σ0, σ are the measurable functions defined on [0, T ]× (Rn)3 and are Rn,Rn×d0 and Rn×d-
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valued, respectively. Moreover they satisfy the linear growth condition:

|(l, σ0, σ)(t,ϖ, c0, c)| ≤ L(1 + |ϖ|+ |c0|+ |c|)

for any (t,ϖ, c0, c).
(vi) δ ∈ [0, 1) is a given constant.

The first term 〈ϖ,α〉 of f denotes the direct cost incurred by the sales and purchase of the
securities and the second term 1

2〈α,Λα〉 is some fee to be paid to the exchange depending on
the trading speed, or may be interpreted as some internal cost. The first term of g denotes the
mark-to-market value at the closing time with some discount factor δ < 1.1 f and g denote the
running as well as the terminal cost which are affected by the market price, coupon streams, or
the news.

Remark 3.1. If we think c0 as a coupon stream of the securities, one may consider for example,

f(t, x,ϖ, c0, c) = −〈c0, x〉+ f
′
(t, x,ϖ, c)

as a running cost with an appropriate measurable function f
′
. For securities with a given ma-

turity T with exogenously specified payoff c0, such as bonds and futures, it is natural to consider

g(x, c0) = g(x, c0) = −〈c0, x〉

as the terminal cost.

For this problem, the (reduced) Hamiltonian is given by

H(t, x, y, α,ϖ, c0, c) = 〈y, α+ l(t,ϖ, c0, c)〉+ f(t, x, α,ϖ, c0, c) .

Since ∂αH(t, x, y, α,ϖ, c0, c) = y +ϖ + Λα, the minimizer of the Hamiltonian is

α̂(y,ϖ) := −Λ(y +ϖ) (3.3)

where Λ := Λ−1. The adjoint FBSDE associated with the stochastic maximal principle for each
agent 1 ≤ i ≤ N is thus given by,

dXi
t =

(
α̂(Y i

t , ϖt) + l(t,ϖt, c
0
t , c

i
t)
)
dt+ σ0(t,ϖt, c

0
t , c

i
t)dW

0
t + σ(t,ϖt, c

0
t , c

i
t)dW

i
t ,

dY i
t = −∂xf(t,X

i
t , ϖt, c

0
t , c

i
t)dt+ Zi,0

t dW 0
t + Zi

tdW
i
t , (3.4)

with Xi
0 = ξi and Y i

T = ∂xg(X
i
T , ϖT , c

0
T , c

i
T ).

Theorem 3.1. Under Assumption (MFG-a) and a given (ϖt)t∈[0,T ] ∈ H2(F0
;Rn), the problem

(3.1) for each agent is uniquely characterized by the FBSDE (3.4) which is strongly solvable with
a unique solution (Xi, Y i, Zi,0, Zi) ∈ S2(Fi;Rn)× S2(Fi;Rn)×H2(Fi;Rn×d0)×H2(Fi;Rn×d).

Proof. Since the cost functions are jointly convex with (x, α) and strictly convex in α, the
problem is the special situation investigated in Section 1.4.4 in [8]. Note that, in our case, the
diffusion terms σ0, σ are independent of (Xi, αi). The proof is the direct result of Theorem 1.60
in the same reference.

1We shall see that the condition δ < 1 is necessary to obtain well-defined terminal condition for the limit
problem.

6



Using the above solution, the optimal strategy of each agent is given by

α̂i
t = −Λ(Y i

t +ϖt), t ∈ [0, T ] .

Let us check the market clearing condition. In the current situation, (3.2) is equivalent to

ϖt = − 1

N

N∑
i=1

Y i
t

which is of course inconsistent with the our simplifying assumption that requires (ϖt)t≥0 to be an

F0
-adapted process. However, in the current setup, for any t ∈ [0, T ], (Y i

t )
N
i=1 are exchangeable

random variables due to the construction of the probability space, common coefficient functions,
and the fact that (ξi)Ni=1 as well as (cit, t ∈ [0, T ])Ni=1 are assumed to be i.i.d. Thus De Finetti’s
theory of exchangeable sequence of random variables tells,

lim
N→∞

1

N

N∑
i=1

Y i
t = E

[
Y 1
t |

⋂
k≥1

σ{Y j
t , j ≥ k}

]
a.s.

See for example Theorem 2.1 in [8]. It also seems natural to expect that the tail σ-field is reduced

to F0
t . Therefore we can expect that, in the large-N limit, the market price of the securities

may be given by ϖt = −E[Y 1
t |F

0
t ].

The above observation motivates us to consider the following FBSDE:

dXt =
(
α̂
(
Yt,−E[Yt|F

0
t ]
)
+ l

(
t,−E[Yt|F

0
t ], c

0
t , ct

))
dt

+σ0
(
t,−E[Yt|F

0
t ], c

0
t , ct

)
dW 0

t + σ
(
t,−E[Yt|F

0
t ], c

0
t , ct

)
dW 1

t ,

dYt = −∂xf
(
t,Xt,−E[Yt|F

0
t ], c

0
t , ct

)
dt+ Z0

t dW
0
t + ZtdW

1
t ,

with X0 = ξ with YT =
δ

1− δ
E
[
∂xg(XT , c

0
T , cT )|F

0
T

]
+∂xg(XT , c

0
T , cT ). To simplify the notation,

we have omitted the superscript 1 from Y 1, X1, ξ1 and c1. Let us remark on the terminal

condition. YT = ∂xg(XT ,−E[YT |F
0
T ], c

0
T , cT ) is not yet fully specified. Taking the conditional

expectation in the both sides gives

E[YT |F
0
T ] = δE[YT |F

0
T ] + E

[
∂xg(XT , c

0
T , cT )|F

0
T

]
,

which implies E[YT |F
0
T ] =

1
1−δE

[
∂xg(XT , c

0
T , cT )|F

0
T

]
. Substituting this expression for E[YT |F

0
T ]

in ∂xg, we get the above specification of the terminal condition.
This is the FBSDE we are going to study in the following. It is of McKean-Vlasov type

with common noise, and similar to the FBSDEs relevant for the extended mean field games.
In the following, we are going to prove the existence of a unique solution to the above FBSDE

under appropriate conditions and then show that −E[Yt|F
0
t ] is actually a good approximate of

the market price by investigating how accurately it achieves the market clearing condition (3.2)
when N increases.
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4 Solvability of the mean-field FBSDE

We now investigate the solvability of the FBSDE derived in the last section

dXt =
(
α̂
(
Yt,−E[Yt|F

0
t ]
)
+ l

(
t,−E[Yt|F

0
t ], c

0
t , ct

))
dt

+σ0
(
t,−E[Yt|F

0
t ], c

0
t , ct

)
dW 0

t + σ
(
t,−E[Yt|F

0
t ], c

0
t , ct

)
dW 1

t ,

dYt = −∂xf
(
t,Xt,−E[Yt|F

0
t ], c

0
t , ct

)
dt+ Z0

t dW
0
t + ZtdW

1
t , (4.1)

with X0 = ξ with YT =
δ

1− δ
E
[
∂xg(XT , c

0
T , cT )|F

0
T

]
+ ∂xg(XT , c

0
T , cT ). α̂ is defined as in (3.3).

(c0t )t≥0 ∈ H2(F0
;Rn) and (ct)t≥0 ∈ H2(F1

;Rn) with square integrable c0T , cT are given as inputs.
Let us remind the notation to write ξ = ξ1 and c = c1.

4.1 Unique existence for small T

Assumption 4.1. (MFG-b)
For any (t, x, c0, c) ∈ [0, T ]× (Rn)3 and any ϖ,ϖ′ ∈ Rn, the coefficient functions l, σ0, σ and f
satisfy

|(l, σ0, σ)(t,ϖ, c0, c)− (l, σ0, σ)(t,ϖ
′, c0, c)|+ |∂xf(t, x,ϖ, c0, c)− ∂xf(t, x,ϖ

′, c0, c)| ≤ Lϖ|ϖ −ϖ′| .

Due to the Lipschitz continuity and the absence of (Z0, Z) in the diffusion coefficients of the
forward SDE, we have the following short-term existence result.

Theorem 4.1. Under Assumptions (MFG-a,b), there exists some constant τ > 0 which depends
only on (L,Lϖ, λ, δ) such that for any T ≤ τ , there exists a unique strong solution (X,Y, Z0, Z) ∈
S2(F1;Rn)× S2(F1;Rn)×H2(F1;Rn×d0)×H2(F1;Rn×d) to the FBSDE (4.1).

Proof. Although there exist terms involving E[Yt|F
0
t ], one can adopt the standard technique for

the Lipschitz FBSDE. See, for example, the proof of Theorem 1.45 [8].

4.2 Unique existence for general T

In order to obtain existence result for general T , we are going to apply the technique developed
by Peng & Wu [24]. In the case of the standard optimization problem, the joint convexity in the
state and control variables combined with strict convexity in the control variable are enough to
obtain the unique existence. Interestingly however, we need a strict convexity also in the state

variable X in our problem. As we shall see, this is because the term −E[Yt|F
0
t ] which appears

due to the clearing condition weakens the convexity.

Assumption 4.2. (MFG-c1)
(i) The functions σ0 and σ are independent of the argument ϖ.
(ii) For any t ∈ [0, T ], any random variables x, x′, c0, c ∈ L2(F ;Rn) and any sub-σ-field G ⊂ F ,
the function l satisfies the monotone condition with some positive constant γl > 0:

E
[
〈l(t,E[x|G], c0, c)− l(t,E[x′|G], c0, c), x− x′〉

]
≥ γlE

[
E[x− x′|G]2

]
.
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(iii) There exists a strictly positive constant γ satisfying 0 < γ ≤
(
γf − L2

ϖ

4γl

)
∧ γg. Moreover,

for any x, x′, c0, c ∈ L2(F ;Rn) and any sub-σ-field G ⊂ F , the function g satisfies

γgE[|x− x′|2] + δ

1− δ
E
[
〈E

[
∂xg(x, c

0, c)− ∂xg(x
′, c0, c)|G

]
, x− x′〉

]
≥ γE[|x− x′|2] .

Remark 4.1. If l and ∂xg have separable forms such as h(x) + hc(c0, c) with some functions
h and hc, then the conditions (ii) and (iii) are satisfied when the function h is monotone.
Economically speaking, the condition (ii) implies that the demand from the individual OTC
clients of each agent toward the security decreases when its market price rises.

The next theorem is the first main existence result.

Theorem 4.2. Under Assumptions (MFG-a,b,c1), there exists a unique strong solution (X,Y, Z0, Z) ∈
S2(F1;Rn)× S2(F1;Rn)×H2(F1;Rn×d0)×H2(F1;Rn×d) to the FBSDE (4.1).

Proof. In order to simplify the notation, let us define the functionals B,F and G for any
y, x, c0, c ∈ L2(F ;Rn) by

B(t, y, c0, c) :=
(
−Λ(y − E[y|F0

t ]) + l(t,−E[y|F0
t ], c

0, c)
)
,

F (t, x, y, c0, c) := −∂xf
(
t, x,−E[y|F0

t ], c
0, c

)
,

G(x, c0, c) :=
δ

1− δ
E
[
∂xg(x, c

0, c)|F0
T

]
+ ∂xg(x, c

0, c) . (4.2)

With the convention ∆y := y − y′, ∆x := x− x′, one can easily confirms

E
[
〈B(t, y, c0, c)−B(t, y′, c0, c),∆y〉

]
≤ −γlE

[
E[∆y|F0

t ]
2
]
,

E
[
〈F (t, x, y, c0, c)− F (t, x′, y′, c0, c),∆x〉

]
≤ −

(
γf − L2

ϖ

4γl

)
E[|∆x|2] + γlE

[
E[∆y|F0

t ]
2
]
,

E
[
〈G(x, c0, c)−G(x′, c0, c),∆x〉

]
≥ γE[|∆x|2], (4.3)

where the first estimate follows from (MFG-c1)(ii) and Jensen’s inequality, the second from
(MFG-a)(iv), (MFG-b) and Cauchy-Schwarz inequality. The third one is the direct consequence
of (MFG-c)(iii).

We first make the following hypothesis: there exists some constant ϱ ∈ [0, 1) such that,

for any (Ibt )t≥0, (I
f
t )t≥0 in H2(F1;Rn) and any η ∈ L2(F1

T ;Rn), there exists a unique solution

(xϱ, yϱ, z0,ϱ, zϱ) ∈ S2(F1;Rn)× S2(F1;Rn)×H2(F1;Rn×d0)×H2(F1;Rn×d) to the FBSDE:

dxϱt =
(
ϱB(t, yϱt , c

0
t , ct) + Ibt

)
dt+ σ0(t, c

0
t , ct)dW

0
t + σ(t, c0t , ct)dW

1
t ,

dyϱt = −
(
(1− ϱ)γxϱt − ϱF (t, xϱt , y

ϱ
t , c

0
t , ct) + Ift

)
dt+ z0,ϱt dW 0

t + zϱt dW
1
t , (4.4)

with xϱ0 = ξ and yϱT = ϱG(xϱT , c
0
T , cT )+(1−ϱ)xϱT +η. Note that when ϱ = 0 we have a decoupled

set of SDE and BSDE and hence the hypothesis trivially holds. Our goal is to extend the ϱ
up to 1 by following Peng-Wu’s continuation method [24]. Now, for an arbitrary set of inputs
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(x, y, z0, z) ∈ S2(F1;Rn)2 ×H2(F1;Rn×d0)×H2(F1;Rn×d) and constant ζ ∈ (0, 1), consider

dXt =
[
ϱB(t, Yt, c

0
t , ct) + ζB(t, yt, c

0
t , ct) + Ibt

]
dt+ σ0(t, c

0
t , ct)dW

0
t + σ(t, c0t , ct)dW

1
t ,

dYt = −
[
(1− ϱ)γXt − ϱF (t,Xt, Yt, c

0
t , ct) + ζ(−γxt − F (t, xt, yt, c

0
t , ct)) + Ift

]
dt

+Z0
t dW

0
t + ZtdW

1
t , (4.5)

with X0 = ξ and YT = ϱG(XT , c
0
T , cT ) + (1− ϱ)XT + ζ(G(xT , c

0
T , cT )− xT ) + η. The existence

of the solution (X,Y, Z0, Z) ∈ S2 × S2 ×H2 ×H2 is guaranteed by the previous hypothesis. We
are going to prove the map (x, y, z0, z) 7→ (X,Y, Z0, Z) defined above becomes strict contraction
when ζ > 0 is chosen small enough.

For two set of inputs (x, y, z0, z) and (x′, y′, z0′, z′), let us denote the corresponding solutions
to (4.5) by (X,Y, Z0, Z) and (X ′, Y ′, Z0′, Z ′), respectively. We put ∆Xt := Xt − X ′

t, ∆Yt :=
Yt−Y ′

t and similarly for the others. Applying Itô’s formula to 〈∆Xt,∆Yt〉 and using the estimates
(4.3), we obtain

E
[
〈∆XT ,∆YT 〉

]
≤ −γE

∫ T

0
|∆Xt|2dt

+ζCE
∫ T

0

[
|∆Yt|(|∆yt|+ E[∆yt|F

0
t ]) + |∆Xt|(|∆xt|+ E[|∆yt|F

0
t ])

]
dt ,

E
[
〈∆XT ,∆YT 〉

]
≥ (ϱγ + (1− ϱ))E[|∆XT |2]− ζCE

[
|∆XT |(|∆xT |+ E[|∆xT ||F

0
T ])

]
,

with some ϱ-independent constant C. Let us set γc := min(1, γ) > 0. Then one easily confirms
0 < γc ≤ ϱγ + (1− ϱ) for any ϱ ∈ [0, 1). Then the above estimates yields

γcE
[
|∆XT |2 +

∫ T

0
|∆Xt|2dt

]
≤ ζCE

[
|∆XT |(|∆xT |+ E[|∆xT ||F

0
T ])

]
+ζCE

∫ T

0

[
|∆Yt|(|∆yt|+ E[∆yt|F

0
t ]) + |∆Xt|(|∆xt|+ E[|∆yt|F

0
t ])

]
dt .

Using Young’s inequality and and a new constant C, we get

E[|∆XT |2] + E
∫ T

0
|∆Xt|2dtd ≤ ζCE

∫ T

0

(
|∆Yt|2 + (|∆xt|2 + |∆yt|2)

)
dt+ ζCE[|∆xT |2] . (4.6)

Treating X,X ′ as inputs, the standard estimates for the Lipschitz BSDEs (see, for example,
Theorem 4.2.3 in [25]) gives

E
[
sup

t∈[0,T ]
|∆Yt|2 +

∫ T

0
(|∆Z0

t |2 + |∆Zt|2)dt
]

≤ CE
[
|∆XT |2 +

∫ T

0
|∆Xt|2dt

]
+ ζCE

[
|∆xT |2 +

∫ T

0
(|∆xt|2 + |∆yt|2)dt

]
.

Combining with (4.6) and choosing ζ > 0 small, we obtain

E
[
sup

t∈[0,T ]
|∆Yt|2 +

∫ T

0
(|∆Z0

t |2 + |∆Zt|2)dt
]
≤ ζCE

[
|∆xT |2 +

∫ T

0
(|∆xt|2 + |∆yt|2)dt

]
. (4.7)
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By the similar procedures, we also have

E
[
sup

t∈[0,T ]
|∆Xt|2

]
≤ ζCE

[
|∆xT |2 +

∫ T

0
(|∆xt|2 + |∆yt|2)dt

]
. (4.8)

From (4.7) and (4.8), we obtain

E
[
sup

t∈[0,T ]
|∆Xt|2 + sup

t∈[0,T ]
|∆Yt|2 +

∫ T

0
(|∆Z0

t |2 + |∆Zt|2)dt
]

≤ ζCE
[
sup

t∈[0,T ]
|∆xt|2 + sup

t∈[0,T ]
|∆yt|2 +

∫ T

0
(|∆z0t |2 + |∆zt|2)dt

]
.

Thus there exists ζ > 0, being independent of the size of ϱ, that makes the map (x, y, z0, z) 7→
(X,Y, Z0, Z) strict contraction. Therefore the initial hypothesis holds true for (ϱ + ζ), which
establishes the existence. The uniqueness follows from the next proposition.

Proposition 4.1. Given two set of inputs (ξ, c0, c), (ξ′, c0′, c′), coefficients (δ,Λ), (δ′,Λ′) and the

coefficient functions (l, σ0, σ, f , g), (l
′, σ′

0, σ
′, f

′
, g′) satisfying Assumptions (MFG-a,b,c1), let us

denote the corresponding solutions to (4.1) by (X,Y, Z0, Z) and (X ′, Y ′, Z0′, Z ′), respectively.
We also define the functionals (B,F,G)and (B′, F ′, G′) by (4.2) with corresponding coefficients,
respectively. Then, we have the following stability result:

E
[
sup

t∈[0,T ]
|∆Xt|2 + sup

t∈[0,T ]
|∆Yt|2 +

∫ T

0
(|∆Z0

t |2 + |∆Zt|2)dt
]

≤ CE
[
|∆ξ|2 + |G|2 +

∫ T

0

(
|F (t)|2 + |B(t)|2 + |σ0(t)|2 + |σ(t)|2

)
dt
]
,

where C is a constant depending only on T as well as the Lipschitz constants of the system, and

B(t) := B(t, Y ′
t , c

0
t , ct)−B′(t, Y ′

t , c
0′
t , c

′
t),

F (t) := F (t,X ′
t, Y

′
t , c

0
t , ct)− F ′(t,X ′

t, Y
′
t , c

0′
t , c

′
t),

(σ0, σ)(t) = (σ0(t, c
0
t , ct)− σ′

0(t, c
0′
t , c

′
t), σ(t, c

0
t , ct)− σ′(t, c0′t , c

′
t)),

G := G(X ′
T , c

0
T , cT )−G′(X ′

T , c
0′
T , c

′
T ) ,

and ∆ξ := ξ − ξ′, ∆Xt := Xt −X ′
t and similarly for the other variables.

Proof. Let us put ∆B(t) := B(t, Yt, c
0
t , ct)−B(t, Y ′

t , c
0
t , ct), ∆F (t) := F (t,Xt, Yt, c

0
t , ct)−F (t,X ′

t, Y
′
t , c

0
t , ct)

and ∆G := G(XT , c
0
T , cT )−G(X ′

T , c
0
T , cT ). We get by Itô’s formula that

E
[
〈∆XT ,∆G+G〉

]
= E

[
〈∆ξ,∆Y0〉+

∫ T

0

(
〈F (t),∆Xt〉+ 〈B(t),∆Yt〉

+〈σ0(t),∆Z0
t 〉+ 〈σ(t),∆Zt〉+

(
〈∆F (t),∆Xt〉+ 〈∆B(t),∆Yt〉

))
dt
]
.
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Using (4.3), we obtain

γE
[
|∆XT |2 +

∫ T

0
|∆Xt|2dt

]
≤ E

[
〈∆ξ,∆Y0〉 − 〈∆XT , G〉

+

∫ T

0

(
〈F (t),∆Xt〉+ 〈B(t),∆Yt〉+ 〈σ0(t),∆Z0

t 〉+ 〈σ(t),∆Zt〉
)
dt
]
. (4.9)

On the other hand, the standard estimates for Lipschitz SDEs and BSDEs give

E
[
sup

t∈[0,T ]
|∆Yt|2 +

∫ T

0
(|∆Z0

t |2 + |∆Zt|2)dt
]

≤ CE
[
|G|2 +

∫ T

0
|F (t)|2dt

]
+ CE

[
|∆XT |2 +

∫ T

0
|∆Xt|2dt

]
, (4.10)

E
[
sup

t∈[0,T ]
|∆Xt|2

]
≤ CE

[
|∆ξ|2 +

∫ T

0

[
|B(t)|2 + |σ0(t)|2 + |σ(t)|2

]
dt
]
+ CE

∫ T

0
|∆Yt|2dt .

Combining the above inequalities (4.9) and (4.10) gives

E
[
sup

t∈[0,T ]
|∆Xt|2 + sup

t∈[0,T ]
|∆Yt|2 +

∫ T

0
(|∆Z0

t |2 + |∆Zt|2)dt
]

≤ CE
[
|∆ξ|2 + |G|2 +

∫ T

0

[
|F (t)|2 + |B(t)|2 + |σ0(t)|2 + |σ(t)|2

]
dt
]

+CE
[
〈∆ξ,∆Y0〉 − 〈∆XT , G〉+

∫ T

0

[
〈F (t),∆Xt〉+ 〈B(t),∆Yt〉+ 〈σ0(t),∆Z0

t 〉+ 〈σ(t),∆Zt〉
]
dt
]
.

Now simple application of Young’s inequality establishes the claim.

Corollary 4.1. Under Assumptions (MFG-a,b,c1), the solution (X,Y, Z0, Z) to the FBSDE
(4.1) satisfies the following estimate:

E
[
sup

t∈[0,T ]
|Xt|2 + sup

t∈[0,T ]
|Yt|2 +

∫ T

0
(|Z0

t |2 + |Zt|2)dt
]
≤ CE

[
|ξ|2 + |∂xg(0, c0T , cT )|2

+

∫ T

0

(
|∂xf(t, 0, 0, c0t , ct)|2 + |l(t, 0, c0t , ct)|2 + |(σ0, σ)(t, c0t , ct)|2

)
dt
]
,

where C is a constant depending only on T, δ and Lipschitz constants of the system.

Proof. By quick inspection of the proof for Proposition 4.1, one can confirm that as long as
there exists a solution (X ′, Y ′, Z0′, Z ′) ∈ S2 × S2 × H2 × H2, their coefficients need not sat-

isfy Assumption (MFG-a,b,c1). In particular, by putting ξ′ and (l′, σ′
0, σ

′, f
′
, g′) all zero, we

have a trivial solution (X ′, Y ′, Z0′ , Z ′) = (0, 0, 0, 0). The desired estimate now follows from
Proposition 4.1.

Securities of maturity T with exogenously specified payoff

If we consider the exchange markets of bonds and futures, or other financial derivatives with
maturity T , those securities cease to exist at T after paying exogenously specified amount of
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cash c0T . In this case, it is natural to consider with δ = 0 and

g(x, c0) = g(x, c0) := −〈c0, x〉 , (4.11)

since there is no reason to put penalty on the outstanding volume at T . In this case, the terminal
function g in (4.11) does not have the strict convexity. Fortunately, even in this case, we can
prove the unique existence as well as the stability result of the same form.

Assumption 4.3. (MFG-c2)
(i) The functions σ0 and σ are independent of the argument ϖ.
(ii) For any t ∈ [0, T ], any random variables x, x′, c0, c ∈ L2(F ;Rn) and any sub-σ-field G ⊂ F ,
the function l satisfies the monotone condition with some positive constant γl > 0:

E
[
〈l(t,E[x|G], c0, c)− l(t,E[x′|G], c0, c), x− x′〉

]
≥ γlE

[
E[x− x′|G]2

]
.

(iii) γ := γf − L2
ϖ

4γl is strictly positive and the terminal function g is given by (4.11) with δ = 0.

Theorem 4.3. Under Assumptions (MFG-a,b,c2), there exists a unique strong solution (X,Y, Z0, Z) ∈
S2(F1;Rn)×S2(F1;Rn)×H2(F1;Rn×d0)×H2(F1;Rn×d) to the FBSDE (4.1). Moreover, the same
form of stability and L2 estimates given in Proposition 4.1 and Corollary 4.1 hold.

Proof. Note that, in this case, the terminal condition for the BSDE is independent of XT . Thus,
as in Theorem 2.3 [24], we put yϱT = YT = −c0T in (4.4) and (4.5), respectively. Using the fact
that 〈∆XT ,∆YT 〉 = 0, one can follow the same arguments to get the desired result. The proof
of the stability result can also be done in almost exactly the same way.

5 Asymptotic Market Clearing

We are now ready to investigate if our FBSDE (4.1) actually provides a good approximate of

the market price and if so, how accurate it is. By Theorem 3.1, if we use (−E
[
Yt|F

0
t

]
)t∈[0,T ]

as the input (ϖt)t∈[0,T ], where (Yt)t∈[0,T ] is the unique solution to the FBSDE (4.1) with the
convention ξ = ξ1 and c = c1, the optimal strategy of the individual agent is given by

α̂i
mf(t) := α̂(Y i

t ,−E[Yt|F
0
t ]) = −Λ(Y i

t − E[Yt|F
0
t ]) (5.1)

where (Y i
t )t∈[0,T ] is the solution to (3.4) with (ϖt = −E

[
Yt|F

0
t

]
)t∈[0,T ].

Theorem 5.1. If the conditions for Theorem 4.1, Theorem 4.2 or Theorem 4.3 are satisfied
then we have

lim
N→∞

E
∫ T

0

∣∣∣ 1
N

N∑
i=1

α̂i
mf(t)

∣∣∣2dt = 0 .

Moreover if there exists some constant Γ such that supt∈[0,T ] E
[
|Yt|q

] 1
q ≤ Γ < ∞ for some q > 4,

then there exists some constant C independent of N such that

E
∫ T

0

∣∣∣ 1
N

N∑
i=1

α̂i
mf(t)

∣∣∣2dt ≤ CΓ2ϵN , (5.2)
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where ϵN := N−2/max(n,4)
(
1 + log(N)1{n=4}

)
.

Proof. Let us consider the following set of FBSDEs with 1 ≤ i ≤ N on the filtered probability
space (Ω,F ,P;F) constructed in Section 2.

dXi
t =

(
−Λ(Y i

t − E[Y i
t|F

0
t ]) + l(t,−E[Y i

t|F
0
t ], c

0
t , c

i
t)
)
dt

+σ0(t,−E[Y i
t|F

0
t ], c

0
t , c

i
t)dW

0
t + σ(t,−E[Y i

t|F
0
t ], c

0
t , c

i
t)dW

i
t ,

dY i
t = −∂xf(t,X

i
t,−E[Y i

t|F
0
t ], c

0
t , c

i
t)dt+ Zi,0

t dW 0
t + Zi

tdW
i
t ,

with Xi
0 = ξi and Y i

T = δ/(1 − δ)E[∂xg(Xi
T , c

0
T , c

i
T )|F

0
T ] + ∂xg(X

i
T , c

0
T , c

i
T ). Thanks to the

existence of unique strong solution, Yamada-Watanabe Theorem for FBSDEs (see, Theorem
1.33 [8]), there exists some measurable function Φ such that for every 1 ≤ i ≤ N ,

(Xi
t, Y

i
t)t∈[0,T ] = Φ

(
(c0t )t∈[0,T ], (W

0
t )t∈[0,T ], ξ

i, (cit)t∈[0,T ], (W
i
t )t∈[0,T ]

)
.

Hence, conditionally on F0
, the set of proceses (Xi

t, Y
i
t)t∈[0,T ] with 1 ≤ i ≤ N are independently

and identically distributed. In particular, we have P-a.s.

E[Y i
t|F

0
t ] = E[Yt|F

0
t ], ∀t ∈ [0, T ],

E[∂xg(Xi
T , c

0
T , c

i
T )|F

0
T ] = E[∂xg(XT , c

0
T , cT )|F

0
T ] . (5.3)

Note that, under the convention ξ1 = ξ and c1 = c, we actually have (X1, Y 1) = (X,Y ). From
(5.3), we conclude that (Xi

t , Y
i
t , Z

i,0
t , Zi

t)t∈[0,T ] = (Xi
t, Y

i
t, Z

i,0
t , Zi

t)t∈[0,T ] in S2(Fi) × S2(Fi) ×
H2(Fi)×H2(Fi). Therefore,

1

N

N∑
i=1

α̂i
mf(t) = −Λ

( 1

N

N∑
i=1

Y i
t − E[Y 1

t |F
0
t ]
)
. (5.4)

We can easily check that

E
[
W2

( 1

N

N∑
i=1

δY i
t
,L(Y 1

t |F
0
t )
)2∣∣∣F0

t

]
≤ 2

N

N∑
i=1

E
[
|Y i

t|2|F
0
t

]
+ 2E

[
|Y 1

t |2|F
0
t

]
= 4E

[
|Y 1

t |2|F
0
t

]
.

Since (Y i
t)1≤i≤N are F0

t -conditionally independently and identically distributed and also Y 1 ∈
S2, the same arguments leading to (2.14) in [8] imply that the pointwise convergence holds:

lim
N→∞

E
[
W2

( 1

N

N∑
i=1

δY i
t
,L(Y 1

t |F
0
t )
)2]

= 0 . (5.5)

We are now going to show that the set of functions, (fN )N∈N defined by

[0, T ] 3 t 7→ fN (t) := E
[
W2

(
µt, µt

)2] ∈ R

with µt :=
1
N

∑N
i=1 δY i

t
and µt := L(Y 1

t |F
0
t ) are precompact in the set C([0, T ];R) endowed with
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the topology of uniform convergence. In fact, uniformly in N ,

sup
t∈[0,T ]

|fN (t)| ≤ 4 sup
t∈[0,T ]

E
[
|Y 1

t |2
]
≤ C < ∞ (5.6)

where C is given by the estimate in Corollary 4.1. Moreover, for any 0 ≤ t, s ≤ T , Cauchy-
Schwarz, (5.6) and the triangular inequalities give

|fN (t)− fN (s)| ≤ E
[(

W2(µt, µt) +W2(µs, µ2)
)2] 1

2E
[(

W2(µt, µt)−W2(µs, µ2)
)2] 1

2

≤ CE
[(

W2(µt, µt)−W2(µs, µs)
)2] 1

2 ≤ CE
[
W2(µt, µs)

2 +W2(µt, µs)
2
] 1

2
.

≤ CE
[ 1

N

N∑
i=1

|Y i
t − Y i

s|2 + |Y 1
t − Y 1

s|2
] 1

2

≤ CE
[
|Y 1

t − Y 1
s|2

] 1
2 ,

uniformly in N , where we have used the fact that (Y i)i≥1 are conditionally i.i.d at the last
inequality. Since (Y 1

t )t∈[0,T ] is a continuous process, the above estimate tells that (fN )N∈N
is equicontinuous, which is also uniformly equicontinuous since we are working on the finite
interval. Now, Arzela-Ascoli theorem implies the desired precompactness.

Combining with the pointwise convergence (5.5), we thus conclude

lim
N→∞

sup
t∈[0,T ]

E
[
W2

( 1

N

N∑
i=1

δY i
t
,L(Y 1

t |F
0
t )
)2]

= 0 . (5.7)

From the definition of Wasserstein distance (2.1), we have

∣∣∣ 1
N

N∑
i=1

Y i
t − E[Y 1

t |F
0
t ]
∣∣∣ ≤ W1

( 1

N

N∑
i=1

δY i
t
,L(Y 1

t |F
0
t )
)
,

and hence, from (5.4),

E
∫ T

0

∣∣∣ 1
N

N∑
i=1

α̂i
mf(t)

∣∣∣2dt ≤ C sup
t∈[0,T ]

E
[
W2

( 1

N

N∑
i=1

δY i
t
,L(Y 1

t |F
0
t )
)2]

. (5.8)

The first conclusion now follows from (5.7). The latter claims directly follows from the expression
(5.8) and the (Fourth Step) in the proof of Theorem 2.12 in [8].

Theorem 5.1 justifies our intuitive understanding and a special type of FBSDEs (4.1) derived
in Section 3 as a reasonable model to approximate the market clearing price. When there exists
higher integrability, Glivenko-Cantelli convergence theorem in the Wasserstein distance even
provides a specific order ϵN of convergence in terms of the number of agents N (5.2). See
Theorem 5.8 and Remark 5.9 in [7] for more details.

Remark 5.1. Consider the situation treated in Theorem 4.3, for example, a market model of
a Futures contract. If the contract pays unit amount of the underlying asset per contract whose
value is exogenously given by c0T , our mean-field limit model (4.1) gives YT = −c0T . This means
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that the modeled Futures price satisfies ϖT = −E[YT |F
0
T ] = c0T , which guarantees the convergence

of the modeled price to the value of the underlying asset at the maturity T . This is a crucially
important feature that any market model of this type of securities must satisfy.

6 Extension to Multiple Populations

The main limitation of the last model is that there exists only one type of agents who share the
common cost functions as well as the coefficient functions for their state dynamics. Interestingly,
it is rather straightforward to extend the model to the situation with multiple populations,
where the agents in each population share the same cost and coefficient functions but they can
be different population by population. From the perspective of the practical applications, this
is a big advantage since we can analyze, for example, the interactions between the Sell-side
and Buy-side institutions for financial applications, or consumers and producers for economic
applications. For general issues of mean field games as well as mean field type control problems in
the presence of multiple populations without common noise, see Fujii [13]. Although there exists
a common noise in the current model, the conditional law only enters as a form of expectation.
Therefore, as long as the system of FBSDEs is Lipschitz continuous, there exists a unique strong
solution at least for small T . For general T , although it is rather difficult to find appropriate
set of assumptions, it is still possible for some simple cases. In this section, our main task is to
find an appropriate limit model that extends (4.1) for multiple populations and the sufficient
conditions that make appropriate monotone conditions hold, which guarantees the existence of
unique solution.

In the following, we shall treat m populations indexed by p ∈ {1, · · · ,m}. For each
p, Np ≥ 1 agents are assumed to belong to the population. We denote by (p, i) the ith
agent in the population p. First, let us enlarge the probability space constructed in Sec-

tion 2. In addition to (Ω
0
,F0

,P0
;F0

), we introduce (Ω
p,i
,Fp,i

,Pp,i
;Pp,i

) with 1 ≤ i ≤ Np

and 1 ≤ p ≤ m, each of which is generated by (ξp,i,W p,i) with d-dimensional Brownian motion
W p,i and a W p,i-independent Rn-valued square integrable random variable ξp,i. For each p,
(ξp,i)

Np

i=1 are assumed to have the common law. We define (Ωp,i,Fp,i,Pp,i;Fp,i) as the product of

(Ω
0
,F0

,P0
;F0

) and (Ω
p,i
,Fp,i

,Pp,i
;Pp,i

). Finally (Ω,F ,P;F) is defined as a product of all the

spaces (Ω
0
,F0

,P0
;F0

) and (Ω
p,i
,Fp,i

,Pp,i
;Fp,i

), 1 ≤ i ≤ Np, 1 ≤ p ≤ m, and (Ωi,F i,Pi;Fi) as a

product of (Ω
0
,F0

,P0
;F0

) and (Ω
p,i
,Fp,i

,Pp,i
;Fp,i

) with 1 ≤ p ≤ m. Every probability space is
assumed to be complete and every filtration is assumed to be complete and right-continuously
augmented to satisfy the usual conditions.

As we have done in Section 3, we first assume that the market price of n securities is given

exogenously by ϖt ∈ H2(F0
;Rn). Under this setup, we consider the control problem for each

(p, i) agent defined by
inf

αp,i∈Ap,i
Jp,i(αp,i) , (6.1)

with

Jp,i(αp,i) := E
[∫ T

0
fp(t,X

p,i
t , αp,i

t , ϖt, c
0
t , c

p,i
t )dt+ gp(X

p,i
T , ϖT , c

0
T , c

p,i
T )

]
,
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subject to the dynamic constraint:

dXp,i
t =

(
αp,i
t + lp(t,ϖt, c

0
t , c

p,i
t )

)
dt+ σp,0(t,ϖt, c

0
t , c

p,i
t )dW 0

t + σp(t,ϖt, c
0
t , c

p,i
t )dW p,i

t

with Xp,i
0 = ξp,i. As before we assume (c0t )t≥0 ∈ H2(F0

;Rn) and (cp,it )t≥0 ∈ H2(Fp,i
;Rn). In

addition, within each population p, the random sources (cp,it )t≥0 are assumed to have a common
law 1 ≤ i ≤ Np. Admissible strategies Ap,i is the space H2(Fp,i;Rn). The measurable functions
fp : [0, T ]× (Rn)5 → R, gp : (Rn)4 → R, fp : [0, T ]× (Rn)4 → R and gp : (Rn)3 → R are given by

fp(t, x, α,ϖ, c0, c) := 〈ϖ,α〉+ 1

2
〈α,Λpα〉+ fp(t, x,ϖ, c0, c) ,

gp(x,ϖ, c0, c) := −δ〈ϖ,x〉+ gp(x, c
0, c) .

Assumption 6.1. (MFG-A) We assume the following conditions uniformly in p ∈ {1, · · · ,m}.
(i) Λp is a positive definite n × n symmetric matrix with λIn×n ≤ Λp ≤ λIn×n in the sense of
2nd-order form where λ and λ are some constants satisfying 0 < λ ≤ λ.
(ii) For any (t, x,ϖ, c0, c),

|fp(t, x,ϖ, c0, c)|+ |gp(x, c0, c)| ≤ L(1 + |x|2 + |ϖ|2 + |c0|2 + |c|2) .

(iii) fp and gp are continuously differentiable in x and satisfy, for any (t, x, x′, ϖ, c0, c),

|∂xfp(t, x
′, ϖ, c0, c)− ∂xfp(t, x,ϖ, c0, c)|+ |∂xgp(x′, c0, c)− ∂xgp(x, c

0, c)| ≤ L|x′ − x| ,

and |∂xfp(t, x,ϖ, c0, c)|+ |∂xgp(x, c0, c)| ≤ L(1 + |x|+ |ϖ|+ |c0|+ |c|).
(iv)The functions fp and gp are convex in x in the sense that for any (t, x, x′, ϖ, c0, c),

fp(t, x
′, ϖ, c0, c)− fp(t, x,ϖ, c0, c)− 〈x′ − x, ∂xfp(t, x,ϖ, c0, c)〉 ≥ γf

2
|x′ − x|2 ,

gp(x
′, c0, c)− gp(x, c

0, c)− 〈x′ − x, ∂xgp(x, c
0, c)〉 ≥ γg

2
|x′ − x|2 ,

with some constants γf , γg ≥ 0.
(v) lp, σp,0, σp are the measurable functions defined on [0, T ] × (Rn)3 and are Rn,Rn×d0 and
Rn×d-valued, respectively. Moreover they satisfy the linear growth condition:

|(lp, σp,0, σp)(t,ϖ, c0, c)| ≤ L(1 + |ϖ|+ |c0|+ |c|)

for any (t,ϖ, c0, c).
(vi) δ ∈ [0, 1) is a given constant.

Under Assumption (MFG-A), Theorem 3.1 guarantees that the control problem (6.1) for
each agent (p, i) is uniquely characterized by

dXp,i
t =

(
α̂p(Y

p,i
t , ϖt) + lp(t,ϖt, c

0
t , c

p,i
t )

)
dt+ σp,0(t,ϖt, c

0
t , c

p,i
t )dW 0

t + σp(t,ϖt, c
0
t , c

p,i
t )dW p,i

t ,

dY p,i
t = −∂xfp(t,X

p,i
t , ϖt, c

0
t , c

p,i
t )dt+ Zp,i,0

t dW 0
t + Zp,i

t dW p,i
t , (6.2)

with Xp,i
0 = ξp,i and Y p,i

T = −δϖT +∂xgp(X
p,i
T , c0T , c

p,i
T ). We have defined α̂p(y,ϖ) := −Λp(y+ϖ)

17



and Λp := (Λp)
−1 as before. There exists a unique strong solution (Xp,i

t , Y p,i
t , Zp,i,0

t , Zp,i
t )t∈[0,T ] ∈

S2(Fp,i;Rn) × S2(Fp,i;Rn) × H2(Fp,i;Rn×d0) × H2(Fp,i;Rn×d), and the optimal trading strategy
for the agent (p, i) is given by

α̂p,i
t = α̂p(Y

p,i
t , ϖt) , ∀t ∈ [0, T ].

Let us check the market clearing condition under this setup. In order to balance the demand
and supply of securities at the exchange, we need to have

∑m
p=1

∑Np

i=1 α̂(Y
p,i
t , ϖt) = 0. This

requires the market price to satisfy

ϖt = −
( m∑
p=1

npΛp

)−1
m∑
p=1

npΛp

( 1

Np

Np∑
i=1

Y p,i
t

)
,

where N =
∑m

p=1Np and np := Np/N . At the moment, this is inconsistent to the initial

assumption that requires (ϖt)t≥0 to be F0
-adapted. However, since for each 1 ≤ p ≤ m,

(Y p,i
t )

Np

i=1 are F
0
-conditionally independently and identically distributed, we may follow the same

arguments used in Section 3. If we take N → ∞ while keeping the relative size of populations
np constant, we can expect to obtain

ϖt = −Ξ̂

m∑
p=1

Λ̂pE[Y p,1
t |F0

t ] (6.3)

in the large population limit where

Λ̂p := npΛp, Ξ̂ :=
( m∑
p=1

Λ̂p

)−1
.

Remark 6.1. When Λp = Λ for every population p, one can easily check that (6.3) becomes

ϖt = −
m∑
p=1

npE[Y p,1
t |F0

t ] .

Since Y of the adjoint equation represents the marginal cost i.e., the first order derivative of
the value function with respect to the state variable x, the above expression of ϖ implies that
the market price may be given by the population-weighted average of the marginal benefit (-cost)
across the entire populations.

6.1 Limit problem with multiple populations

By the observation we have just made, we are motivated to study the following limit problem
with 1 ≤ p ≤ m:

dXp
t =

(
α̂p

(
Y p
t , ϖ(E[Yt|F

0
t ])

)
+ lp

(
t,ϖ(E[Yt|F

0
t ]), c

0
t , c

p
t

))
dt

+σp,0
(
t,ϖ(E[Yt|F

0
t ]), c

0
t , c

p
t

)
dW 0

t + σp
(
t,ϖ(E[Yt|F

0
t ]), c

0
t , c

p
t

)
dW p,1

t ,

dY p
t = −∂xfp

(
t,Xp

t , ϖ(E[Yt|F
0
t ]), c

0
t , c

p
t

)
dt+ Zp,0

t dW 0
t + Zp

t dW
p,1
t , (6.4)
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with Xp
0 = ξp and

Y p
T =

δ

1− δ
Ξ̂

m∑
p=1

Λ̂pE
[
∂xgp(X

p
T , c

0
T , c

p
T )|F

0
T

]
+ ∂xgp(X

p
T , c

0
T , c

p
T ) .

We put as before ξp := ξp,1 and cp := cp,1 to lighten the notation. Here,

ϖ(E[Yt|F
0
t ]) := −Ξ̂

m∑
p=1

Λ̂pE[Y p
t |F

0
t ], α̂p(y,ϖ) := −Λp(y +ϖ)

and hence (6.4) is actually an m-coupled system of FBSDEs of McKean-Vlasov type. One can
derive the terminal condition from

Y p
T = −δϖ(E[YT |F

0
T ]) + ∂xgp(X

p
T , c

0
T , c

p
T ) , (6.5)

by summing over 1 ≤ p ≤ m after taking conditional expectation given F0
T . In the following,

we use the notation

(Xt, Yt, Z
0
t , Zt)t∈[0,T ] =

(
(Xp

t )
m
p=1, (Y

p
t )

m
p=1, (Z

p,0
t )mp=1, (Z

p
t )

m
p=1

)
t∈[0,T ]

. (6.6)

6.2 Solvability for small T

For small T , Lipschitz continuity suffices to guarantee the existence of a unique solution.

Assumption 6.2. (MFG-B)
Uniformly in p ∈ {1, · · · ,m}, for any (t, x, c0, c) ∈ [0, T ] × (Rn)3 and any ϖ,ϖ′ ∈ Rn, the
coefficient functions lp, σp,0, σp and fp satisfy

|(lp, σp,0, σp)(t,ϖ, c0, c)− (lp, σp,0, σp)(t,ϖ
′, c0, c)|

+|∂xfp(t, x,ϖ, c0, c)− ∂xfp(t, x,ϖ
′, c0, c)| ≤ Lϖ|ϖ −ϖ′| .

The following theorem follows exactly in the same way as Theorem 4.1.

Theorem 6.1. Under Assumptions (MFG-A,B), there exists some constant τ > 0 which de-
pends only on (L,Lϖ, δ, np,Λp) such that for any T ≤ τ , there exists a unique strong solution

(X,Y, Z0, Z) ∈ S2
(
F1; (Rn)m

)
× S2

(
F1; (Rn)m

)
× H2

(
F1; (Rn×d0)m

)
× H2

(
F1; (Rn×d)m

)
to the

FBSDE (6.4).

Remark 6.2. Note that the above system of FBSDEs becomes a linear-quadratic form by choos-
ing (lp, σp,0, σp, fp, gp) appropriately. In this case, the problem reduces to solving ordinary dif-
ferential equations of Riccati type. Therefore, the existence of a solution for a given T can be
tested, at lest numerically, by checking the absence of a “blow up” in its solution.

6.3 Solvability for general T

We now move on to the existence result of a unique solution for general T . It is very difficult to
find general existence criteria for fully-coupled multi-dimensional FBSDEs. A the moment, in
order to apply well-known Peng-Wu’s method, let us put the following simplifying assumptions.
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Assumption 6.3. (MFG-C1)
(i) For every 1 ≤ p ≤ m, the functions σp,0 and σp are independent of the argument ϖ.
(ii) Λp=Λ and np = 1/m for every p.
(iii) For any t ∈ [0, T ], any random variables xp, xp′, c0, cp ∈ L2(F ;Rn) and any sub-σ-field
G ⊂ F , the functions (lp)

m
p=1 satisfy with some positive constant γl > 0,

m∑
p=1

E
[〈
lp
(
t,E[x|G], c0, c0

)
− lp

(
t,E[x′|G], c0, cp

)
, xp − xp′

〉]
≥ mγlE

[
E[x− x′|G]2

]
,

where x := 1
m

∑m
p=1 x

p and similarly for x′.

(iv) There exists a strictly positive constant γ satisfying 0 < γ ≤
(
γf − L2

ϖ

4γl

)
∧ γg. Moreover,

the functions (gp)
m
p=1 satisfy for any xp, xp′, c0, cp ∈ L2(F ;Rn) and any sub-σ-field G ⊂ F ,

δ

1− δ
m−1E

[〈 m∑
p=1

E[∂xgp(xp, c0, cp)− ∂xgp(x
p′, c0, cp)|G],

m∑
p=1

(xp − xp′)
〉]

+γg
m∑
p=1

E[|xp − xp′|2] ≥ γ

m∑
p=1

E[|xp − xp′|2] .

Remark 6.3. The conditions (iii) and (iv) in the above assumption are rather restrictive. The
condition (iii) is satisfied, for example, if lp has a separable form lp = h(x)+hp(c

0
t , c

p
t ) with some

function h, which is common to every population and strictly monotone. (iv) is also satisfied by
requiring similar structure. Or, since ∂xgp is Lipschitz continuous in x, the absolute value of

the first term is bounded by δ
1−δ max((Lp)

m
p=1)

∑m
p=1 E|xp − xp′|2, where the Lp is the Lipschitz

constant for ∂xgp. Thus the condition (iv) is satisfied if δmax((Lp)
m
p=1) is sufficiently small.

The next result is the counterpart of Theorem 4.2.

Theorem 6.2. Under Assumptions (MFG-A,B,C1), there exists a unique strong solution (X,Y, Z0, Z) ∈
S2
(
F1; (Rn)m

)
× S2

(
F1; (Rn)m

)
× H2

(
F1; (Rn×d0)m

)
× H2

(
F1; (Rn×d)m

)
to the FBSDE (6.4).

Moreover, the same form of stability and L2 estimates given in Proposition 4.1 and Corollary 4.1
hold.

Proof. Under Assumption (MFG-C1), (6.4) can be written as

dXp
t =

{
−Λ

(
Y p
t − 1

m

m∑
p=1

E[Y p
t |F

0
t ]
)
+ lp

(
t,− 1

m

m∑
p=1

E[Y p
t |F

0
t ], c

0
t , c

p
t

)}
dt

+σp,0(t, c
0
t , c

p
t )dW

0
t + σp(t, c

0
t , c

p
t )dW

p,1
t ,

dY p
t = −∂xfp

(
t,Xp

t ,−
1

m

m∑
p=1

E[Y p
t |F

0
t ], c

0
t , c

p
t

)
dt+ Zp,0

t dW 0
t + Zp

t dW
p,1
t ,

with Xp
0 = ξp and

Y p
T =

δ

1− δ

1

m

m∑
p=1

E
[
∂xgp(X

p
T , c

0
T , c

p
T )|F

0
T

]
+ ∂xgp(X

p
T , c

0
T , c

p
T ) .
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For each p, let us define the functionals Bp, Fp and Gp for any yp, xp, c0, cp ∈ L2(F ;Rn) with
y := (yp)mp=1, x := (xp)mp=1 and c := (cp)mp=1 by

Bp(t, y, c
0, cp) := −Λ

(
yp − 1

m

m∑
p=1

E[yp|F0
t ]
)
+ lp

(
t,− 1

m

m∑
p=1

E[yp|F0
t ], c

0, cp
)

Fp(t, x
p, y, c0, cp) := −∂xf

(
t, xp,− 1

m

m∑
p=1

E[yp|F0
t ], c

0, cp
)
,

Gp(x, c
0, c) :=

δ

1− δ

1

m

m∑
p=1

E[∂xgp(xp, c0, cp)|F
0
T ] + ∂xgp(x

p, c0, cp) ,

and setB(t, y, c0, c) := (Bp(t, y, c
0, cp))mp=1, F (t, x, y, c0, c) := (Fp(t, x

p, y, c0, cp))mp=1 andG(x, c0, c) :=

(Gp(x, c
0, c))mp=1. With ∆y := y − y′ and ∆x := x− x′, we have from (MFG-C1)(iii),

E
[
〈B(t, y, c0, c)−B(t, y′, c0, c),∆y〉

]
:=

m∑
p=1

E
[
〈Bp(t, y, c

0, c)−Bp(t, y
′, c0, c),∆yp〉

]
≤ −

m∑
p=1

E[〈∆yp,Λ∆yp〉] + 1

m
E
[〈 m∑

p=1

E[∆yp|F0
t ],Λ

m∑
p=1

∆yp
〉]

−mγlE
[( 1

m

m∑
p=1

E[∆yp|F0
t ]
)2]

≤ −mγlE
[( 1

m

m∑
p=1

E[∆yp|F0
t ]
)2]

. (6.7)

There exists a orthogonal matrix P such that P⊤ΛP becomes diagonal. Then working on the
new basis ŷp = P⊤∆yp, 1 ≤ p ≤ m, the last inequality of (6.7) can be checked component
by component 1 ≤ i ≤ n by the fact (

∑m
p=1 ŷ

p
i )

2 ≤ m
∑m

p=1 |ŷ
p
i |2. Second, from (MFG-A)(iv),

(MFG-B) and Cauchy-Schwarz inequality,

E
[
〈F (t, x, y, c0, c)− F (t, x′, y′, c0, c),∆x〉

]
≤ −

(
γf − L2

ϖ

4γl

)
E[|∆x|2] +mγlE

[( 1

m

m∑
p=1

E[∆ypt |F
0
t ]
)2]

. (6.8)

Finally, from (MFG-A, C1)(iv), we immediately get

E
[
〈G(x, c0, c)−G(x′, c0, c),∆x〉

]
≥ γE[|∆x|2] .

Now we have established the monotone conditions corresponding to (4.3) for the current model.
We can now repeat the same procedures in the proof of Theorem 4.2 and Proposition 4.1.

Let us give the results for the securities of maturity T with exogenously specified payoff.

Assumption 6.4. (MFG-C2)
(i) For every 1 ≤ p ≤ m, the functions σp,0 and σp are independent of the argument ϖ.
(ii) Λp=Λ and np = 1/m for every p.
(iii) For any t ∈ [0, T ], any random variables xp, xp′, c0, cp ∈ L2(F ;Rn) and any sub-σ-field
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G ⊂ F , the functions (lp)
m
p=1 satisfy with some positive constant γl > 0,

m∑
p=1

E
[〈
lp
(
t,E[x|G], c0, c0

)
− lp

(
t,E[x′|G], c0, cp

)
, xp − xp′

〉]
≥ mγlE

[
E[x− x′|G]2

]
,

where x := 1
m

∑m
p=1 x

p and similarly for x′.

(iv) γ := γf − L2
ϖ

4γl is strictly positive. Moreover, δ = 0 and the terminal function gp is given by

gp(x, c
0) = gp(x, c

0) := −〈c0, x〉 (6.9)

for every 1 ≤ p ≤ m.

Theorem 6.3. Under Assumptions (MFG-A,B,C2), there exists a unique strong solution (X,Y, Z0, Z) ∈
S2
(
F1; (Rn)m

)
× S2

(
F1; (Rn)m

)
× H2

(
F1; (Rn×d0)m

)
× H2

(
F1; (Rn×d)m

)
to the FBSDE (6.4).

Moreover, the same form of the stability and L2 estimates given in Proposition 4.1 and Corol-
lary 4.1 holds.

Proof. Using the inequalities (6.7) and (6.8) with
∑m

p=1〈∆Xp
T ,∆Y p

T 〉 = 0, we can follow the
same arguments in the proof of Theorem 4.3.

6.4 Asymptotic market clearing for multi-population model

At the last part of this section, we investigate the asymptotic market clearing in the presence of
multiple populations. As in Section 5, we define (ϖt)t∈[0,T ] using the solution to the system of
the mean-field FBSDEs:

ϖt = ϖ(E[Yt|F
0
t ]) := −Ξ̂

m∑
p=1

Λ̂pE
[
Y p
t |F

0
t

]
where (Y p

t )
m
p=1 is the solution of (6.4). In order to test the accuracy of the above (ϖt)t∈[0,T ] as a

market clearing price, we solve the individual agent problem (6.1) with this ϖ as an input. The
corresponding individual problem (6.1) for the agent (p, i) is given by the unique strong solution
(Xp,i, Y p,i, Zp,i,0, Zp,i) of (6.2). The optimal strategy for the agent (p, i) is then given by

α̂p,i
mf(t) := −Λp

(
Y p,i
t − Ξ̂

m∑
q=1

Λ̂qE
[
Y q
t |F

0
t

])
, ∀t ∈ [0, T ] .

Theorem 6.4. If the conditions for Theorem 6.1, Theorem 6.2 or Theorem 6.3 are satisfied
then we have

lim
N→∞

E
∫ T

0

∣∣∣ 1
N

m∑
p=1

Np∑
i=1

α̂p,i
mf(t)

∣∣∣2dt = 0 ,

where N :=
∑m

p=1Np and the limit is taken while keeping (np := Np/N)1≤p≤m constant. More-

over if there exists some constant Γ such that supt∈[0,T ] E
[
|Yt|q

] 1
q ≤ Γ < ∞ for some q > 4, then
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there exists some constant C independent of N such that

E
∫ T

0

∣∣∣ 1
N

m∑
p=1

Np∑
i=1

α̂p,i
mf(t)

∣∣∣2dt ≤ CΓ2ϵN ,

where ϵN := N−2/max(n,4)
(
1 + log(N)1{n=4}

)
.

Proof. By the definition of α̂p,i
mf , we have

1

N

m∑
p=1

Np∑
i=1

α̂p,i
mf(t) = − 1

N

m∑
p=1

Np∑
i=1

Λp

(
Y p,i
t − Ξ̂

m∑
q=1

Λ̂qE[Y q
t |F

0
t ]
)

= −
m∑
p=1

Λ̂p

( 1

Np

Np∑
i=1

Y p,i
t − E[Y p

t |F
0
t ]
)
. (6.10)

On the other hand, we have for each 1 ≤ p ≤ m, 1 ≤ i ≤ Np,

dXp,i
t =

(
α̂p

(
Y p,i
t , ϖ(E[Yt|F

0
t ])

)
+ lp

(
t,ϖ(E[Yt|F

0
t ]), c

0
t , c

p,i
t

))
dt

+σp,0
(
t,ϖ(E[Yt|F

0
t ]), c

0
t , c

p,i
t

)
dW 0

t + σp
(
t,ϖ(E[Yt|F

0
t ]), c

0
t , c

p,i
t

)
dW p,i

t ,

dY p,i
t = −∂xfp

(
t,Xp,i

t , ϖ(E[Yt|F
0
t ]), c

0
t , c

p,i
t

)
dt+ Zp,i,0

t dW 0
t + Zp,i

t dW p,i
t ,

with Xp,i
0 = ξp,i,

Y p,i
T = −δϖ(E[YT |F

0
T ]) + ∂xgp(X

p,i
T , c0T , c

p,i
T ) .

By the unique strong solvability, Yamada-Watanabe theorem implies that there exists some
function Φp for each 1 ≤ p ≤ m such that for every 1 ≤ i ≤ Np,

(Y p,i
t )t∈[0,T ] = Φp

(
c0, (W 0

t )t∈[0,T ], (E[Y
q
t |F

0
t ]t∈[0,T ])1≤q≤m, ξp,i, (cp,it )t∈[0,T ], (W

p,i
t )t∈[0,T ]

)
.

Hence (Y p,i
t )t∈[0,T ],1≤i≤Np

are independently and identically distributed conditionally on F0
. In

particular, we have E[Y p,i
t |F0

t ] = E[Y p,1
t |F0

t ].

We now compare (Xp,1
t , Y p,1

t , Zp,1,0
t , Zp,1

t )t∈[0,T ] with (Xp
t , Y

p
t , Z

p,0
t , Zp

t )t∈[0,T ] by treatingϖ(E[Yt|F
0
t ])

as external inputs. Note that the terminal condition of the latter satisfies the relation (6.5).
Then the standard stability result of the Lipschitz FBSDEs implies (Y p,1

t )t∈[0,T ] = (Y p
t )t∈[0,T ] in

S2(Fp,1;Rn). As a result we have obtained E[Y p
t |F

0
t ] = E[Y p,1

t |F0
t ]. Using the expression (6.10),

we obtain

1

N

m∑
p=1

Np∑
i=1

α̂p,i
mf(t) = −

m∑
p=1

Λ̂p

( 1

Np

Np∑
i=1

Y p,i
t − E[Y p,1

t |F0
t ]
)
.

We can now repeat the last part of the proof for Theorem 5.1.
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7 Concluding Remarks and Further Extensions

In this work, we have studied endogenous formation of market clearing price using a stylized
model of a security exchange. We have derived a special type of FBSDE of McKean-Vlasov
type with common noise whose solution provides a good approximate of the equilibrium price.
In addition to the existence of strong unique solution to the FBSDE, we have proved that the
modeled price asymptotically clear the market in the large N -limit. We also gave the order of
convergence ϵN when the solution of the FBSDE possesses higher order of integrability. In the
following, let us list up of a further extension of our technique and some interesting topics for
future projects:

• Dependence on the conditional law of the state: For applications to energy and com-
modity markets, or economic models with producers and consumers, one may want to study
the cost functions (f, g) depending on the empirical distribution of the sate X of the agents

such as f
(
t,Xi

t ,
1
N

∑N
j=1 δXj

t
, ϖt, c

0
t , c

i
t

)
. Under the setup with conditional independence, the

cost function for the limit problem is naturally given by f
(
t,Xt,L(Xt|F

0
t ), ϖt, c

0
t , ct

)
. Even in

this case, the resultant FBSDE (4.1) is solvable, at least for small T , if (∂xf, ∂xg) are Lipschitz
continuous in the measure argument with respect to W2-distance. Under the stronger assump-
tion guaranteeing the monotone conditions (4.3), one can even achieve the existence of unique

solution in general T . As long as the source of common noise is solely from the filtration F0

generated by W 0, we can avoid subtleties regarding the admissibility (so-called H-hypothesis).
See Remark 2.10 in [8] as a useful summary for this issue.

• Explicit solution: If we chose f, g as quadratic functions and l, σ0, σ as affine functions, we
obtain a linear-quadratic mean field game with common noise. In this case, an explicit solution
may be available where the coefficients functions are given as the solutions to differential equa-
tions of Riccati type.

• Property of market price process: It seems interesting to study the properties of the
market clearing price theoretically and numerically. For example, if n = d0 the equivalent
martingale measure (EMM) can be uniquely determined. Based on the payoff distribution c0

and the cost functions of the agents (f, g), one may study how the market price process under
the EMM behaves, for example, the relation between the skew of its implied volatility and the
risk-averseness of the agents.
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