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Abstract

In expectations-driven liquidity traps, a higher inflation target is associated with lower infla-

tion and consumption. As a result, introducing the possibility of expectations-driven liquidity

traps to an otherwise standard model lowers the optimal inflation target. Using a calibrated

New Keynesian model with an effective lower bound (ELB) constraint on nominal interest

rates, we find that even a very small probability of falling into an expectations-driven liquid-

ity trap lowers the optimal inflation target nontrivially. Our analysis provides a reason to be

cautious about the argument that central banks should raise their inflation targets in light

of a higher likelihood of hitting the ELB.
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1 Introduction

The recent experiences with the effective lower bound (ELB) constraint in advanced

economies have put the question of how central banks should manage the problems associated

with the ELB constraint on nominal interest rates at the forefront of the monetary policy

debate. One popular policy proposal to manage the consequences of the ELB constraint is

to increase the inflation target. With a higher inflation target, the nominal interest rate

would be higher on average. As a result, the probability that the policy rate is constrained

by the ELB would be lower. Also, a higher inflation target mitigates the declines in output

and inflation when the policy rate is constrained at the ELB by pushing down the expected

real rate facing households and firms. With the long-run neutral real rates expected to be

lower now and in the future compared with the past, some economists have suggested that

central banks may want to increase the inflation target from the current 2 percent in advanced

economies (Ball (2013); Blanchard, Dell’Ariccia, and Mauro (2010)).

In this paper, we examine an argument for being cautious about raising the inflation

target. The argument we examine is as follows. The policy rate may become constrained

by the ELB not only because of fundamental shocks, but also because of self-fulfilling expec-

tations (Benhabib, Schmitt-Grohe, and Uribe (2001) and Bullard (2010)). In economies in

which only fundamental shocks can push the policy rate to the ELB, the possibility of being

constrained by the ELB increases the optimal inflation target for the reasons stated earlier.

However, as first observed by Mertens and Ravn (2014), a higher inflation target is associated

with a lower output gap at the ELB if the policy rate is at the ELB because of self-fulfilling

expectations, instead of fundamental shocks. One implication of this observation is that the

optimal inflation target would decline if the possibility of falling into expectations-driven liq-

uidity traps (LTs) is introduced to the standard model with the ELB. Using a standard New

Keynesian model, we investigate the extent to which the possibility of expectations-driven

LTs lowers the optimal inflation target.

Our main finding is that even a very small probability of expectations-driven LTs nontriv-

ially lowers the optimal inflation target. Under various calibrations of our baseline model with

a two-state demand shock, a 0.1 percent (quarterly) probability of falling into expectations-

driven LTs typically lowers the optimal inflation target by more than 1 percentage point.

With a 0.5 percent probability of expectations-driven LTs, the optimal inflation target is

typically slightly negative. In an alternative model with an AR(1) demand shock, a 0.1 per-

cent and 0.5 percent probability of falling into expectations-driven LTs lowers the optimal

inflation target by 0.55 percentage point and 0.8 percentage point, respectively.

The reason for the very high sensitivity of the optimal inflation target to the probability

of expectations-driven LTs is somewhat technical. In the standard New Keynesian model,

the persistence of the expectations-driven LT and the persistence of the fundamental-driven

LT have to be sufficiently high and low, respectively, for the equilibrium to exist (Nakata and
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Schmidt (2019)). As a result, even a small probability of falling into an expectations-driven

LT implies an unconditional probability of being in an expectations-driven LT that is higher

than the unconditional probability of being in a fundamental-driven LT, making expectations-

driven LTs the primary concern for the central bank. When expectations-driven LTs are the

primary concern, the optimal inflation target is negative. Thus, even a small probability of

falling into an expectations-driven LT makes the optimal inflation target negative.

Our analysis is motivated by the observation that Japan’s prolonged ELB experience

may well be characterized as being primarily driven by self-fulfilling expectations rather

than fundamental shocks (see, among others, Aruoba, Cuba-Borda, and Schorfheide (2018);

Bullard (2010)).1 In Japan, both the output gap and inflation have been positive in the past

few years. However, before that, inflation rates and the output gap had been negative for

almost two decades. The combination of a slightly negative output gap and mild deflation

with the nominal interest rate at the ELB constraint is consistent with the expectations-driven

LT in the standard New Keynesian model. As we have learned over the past decade, what

happens in Japan—though it may initially seem a theoretical curiosity for other countries—

may happen in other countries years later. Thus, our analysis will be relevant for thinking

about the optimal inflation target not only in Japan, but also in other countries.2

Myriad factors that influence the optimal inflation target of an economy are absent in

our model.3 In this paper, our goal is not to come up with a sensible policy recommendation

about whether to change the inflation target of 2 percent currently adopted by many central

banks. Rather, our goal is to highlight a factor that has been neglected in the literature and

examine its quantitative relevance.

Our paper is related to a set of papers that analyze the implications of alternative inflation

targets in the interest rate feedback rule for the dynamics and welfare of economies with the

ELB constraint. Earlier research on this topic includes Reifschneider and Williams (2000)

and Coenen, Orphanides, and Wieland (2004) who use the FRB/US model—a large-scale

macroeconometric models of the U.S. economy—to analyze how the volatilities of output and

inflation are affected by the level of the inflation target.4 Our paper is most closely related to

recent papers that compute the optimal inflation target in DSGE models, such as Coibion,

Gorodnichenko, and Wieland (2012); Blanco (2018); Carreras, Coibion, Gorodnichenko, and

1Bullard (2010) makes this observation casually based on the historical constellation of the inflation rate
and the policy rate in Japan. Aruoba, Cuba-Borda, and Schorfheide (2018) provide formal econometric
evidence that Japan has been in expectations-driven LTs for most of the past two decades using a nonlinear
DSGE models that allows for a sunspot shock.

2Not all economists agree that an expectations-driven LT is a good characterization of the Japanese ELB
experience. See, for example, Nishizaki, Sekine, and Ueno (2014); Eichenbaum (2017).

3See, for example, Kiley, Mauskopf, and Wilcox (2007); Kryvtsov and Mendes (2015).
4See Williams (2009), Tulip (2014), and Kiley and Roberts (2017) for more recent examples of analyses

based on FRB/US model.
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Wieland (2016); and Andrade, Gaĺı, Le Bihan, and Matheron (2018).5,6 None of these papers

allows for expectations-driven LTs. Our focus is the implications of expectations-driven LTs

for the optimal inflation target.7

Our paper builds on Mertens and Ravn (2014), who analyze the effects of exogenous

fiscal shocks in a one-time temporary expectations-driven LT. While not their focus, they

note an interesting feature of the expectations-driven LT—an increase in the inflation target

lowers the output gap in an expectations-driven LT. Our work examines implications of this

observation for the optimal inflation target. To do so, we go beyond their framework in which

an expectations-driven LT is a one-time event and allow the expectations-driven LT to be

recurring, as in Aruoba, Cuba-Borda, and Schorfheide (2018), Nakata and Schmidt (2019),

and Tamanyu (2019).

Beyond Mertens and Ravn (2014), our paper is related to various papers analyzing

expectations-driven LTs. Some papers are focused on analyzing what policies may (or

may not) eliminate this LT (Alstadheim and Henderson (2006); Armenter (2017); Benhabib,

Schmitt-Grohe, and Uribe (2002); Schmidt (2016); Schmitt-Grohe and Uribe (2013); Sugo

and Ueda (2008); Nakata and Schmidt (2019); and Tamanyu (2019)). Other papers are fo-

cused on the dynamics in and out of this LT (Aruoba, Cuba-Borda, and Schorfheide (2018);

Bilbiie (2018); Cuba-Borda and Singh (2018); Hirose (2007); Hirose (Forthcoming); Schmitt-

Grohe and Uribe (2017)). The novelty of our paper is that we examine the implication of

expectations-driven LTs for the optimal inflation target.

The rest of the paper is organized as follows. Section 2 describes our baseline model and

its calibration. Section 3 describes the results from our baseline model. Section 4 presents

the results from a model with an AR(1) fundamental shock. Section 5 concludes.

2 Model

We use a nonlinear New Keynesian model with Rotemberg pricing. Because the model is

standard, we relegate the details of the model to Appendix A. The equilibrium conditions of

the model are given by

C−χct = βδtRtEtC
−χc
t+1 Π−1

t+1, (1)

wt = Nχn
t Cχct , (2)

5Some economists compute the average inflation rate that prevails when the interest rate policy is con-
ducted optimally and refer to that rate of inflation as the optimal rate of inflation. See, for example, Billi
(2011).

6See also Aruoba and Schorfheide (2015) who examine a counterfactual path of the U.S. economy if the
inflation target had been 4 percent, using the model of Aruoba, Cuba-Borda, and Schorfheide (2018).

7There is also one methodological difference between our paper and these papers. We work with a fully
nonlinear macroeconomic model, while these authors work with semi-loglinear models in which all the equi-
librium conditions are log-linearized except for the ELB constraint. The only exception is Blanco (2018).
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Yt
Cχct

[
ϕ

(
Πt

(Πtarg)α
− 1

)
Πt

(Πtarg)α
− (1− θ)− (1− τ)θwt

]
= βδtEt

Yt+1

Cχct+1

ϕ

(
Πt+1

(Πtarg)α
− 1

)
Πt+1

(Πtarg)α
,

(3)

Yt = Ct +
ϕ

2

[
Πt

(Πtarg)α
− 1

]2

Yt, (4)

Yt = Nt, (5)

Rt = max

[
RELB,

Πtarg

βδt

(
Πt

Πtarg

)φπ]
. (6)

Ct, Nt, Yt, wt, Πt, and Rt are consumption, labor supply, output, real wage, inflation, and

the policy rate, respectively. Equation 1 is the consumption Euler equation, equation 2 is

the intratemporal optimality condition of the household, and equation 3 is the optimality

condition of the intermediate good producing firms relating today’s inflation to real marginal

cost today and expected inflation tomorrow (forward-looking Phillips curve). Equation 4 is

the aggregate resource constraint capturing the resource cost of price adjustment, equation 5

is the aggregate production function, and equation 6 is the interest-rate feedback rule where

Πtarg is the central bank’s inflation target.

Note that the intercept of the interest-rate feedback rule is time-varying and depends on

δt. Under this policy rule, the effect the discount rate shock has on the economy through the

consumption Euler equation is fully offset by a corresponding movement in the policy rate,

as under optimal policy, unless the ELB constraint binds. This specification of the policy

rule is often used in the ELB literature (see, for example, Boneva, Braun, and Waki (2016);

Eggertsson (2011)).

We allow for a form of indexation in the specification of the price adjustment cost. Specif-

ically, the price adjustment cost is a quadratic function of Πt/(Π
targ)α. If the indexation

parameter, α, is 1, there is no steady state cost of a non-zero inflation target. The smaller

the indexation parameter is, the larger the steady state cost of a non-zero inflation target

becomes. Thus, holding all other parameter values fixed, an increase in α increases the

optimal inflation target. The key ingredient of our model—a higher inflation target lowers

consumption and inflation in the deflationary regime—does not depend on the value of α,

as shown in Appendix D. However, as we will discuss shortly in Section 2.1, one of our cal-

ibration principles is to make the optimal inflation target 2 percent in the model without

expectations-driven LTs; Thus, it is necessary to allow for some degree of price indexation to

achieve that goal.8

δt is an exogenous shock to the household’s discount rate and follows a two-state Markov

8It is common to not allow for any degree of price indexation in the literature computing the optimal
inflation target (see, for example, Coibion, Gorodnichenko, and Wieland (2012); Andrade, Gaĺı, Le Bihan,
and Matheron (2018)). In our fully nonlinear model, we find that the optimal inflation target is only slightly
positive under a wide range of parameter configurations unless we allow for some degree of price indexation.
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process. It takes two values, δN = 1 and δC > 1, where N and C stand for normal and

crisis states, respectively. The persistence of each state is given by

Prob(δt+1 = δN |δt = δN ) = pN , (7)

Prob(δt+1 = δC |δt = δC) = pC . (8)

As pointed out by Benhabib, Schmitt-Grohe, and Uribe (2002) and as illustrated in

Figure 1, the coexistence of the Euler equation—which implies a Fisher relation—and the

truncated Taylor rule means that there are two steady states: one in which the policy rate

is above zero and inflation is at the target (the target steady state), and one in which the

policy rate is zero and the gross rate of inflation is β (the deflationary steady state). With an

exogenous crisis shock, we have one equilibrium associated with each steady state: one that

fluctuates around the target steady state, and one that fluctuates around the deflationary

steady state.

Figure 1: Target and Deflationary Steady States

β Π
targ

1

 Π

R
Taylor Rule

Fisher Relation

Target Steady State

Deflationary Steady State

As in Mertens and Ravn (2014) and Aruoba, Cuba-Borda, and Schorfheide (2018), we

introduce a two-state Markov sunspot shock, st, that allows the economy to transition be-

tween the target regime and the deflationary regime—the regime of an expectations-driven

LT. st takes two values, T and D. When st = T , the economy is in the target regime. When

st = D, the economy is in the deflationary regime. The persistence of each regime is given

by

Prob(st = T |st = T ) = pT , (9)

Prob(st = D|st = D) = pD. (10)
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As discussed in Appendix B and analytically shown in Nakata and Schmidt (2019), there are

restrictions on these transition probabilities for the sunspot equilibrium to exist. In particular,

the persistence parameters for both target and deflationary regimes must be sufficiently high

for the sunspot equilibrium to exist. Throughout the paper, we restrict our attention to the

set of parameter values consistent with the existence of the sunspot equilibrium.

The value function associated with an equilibrium is given by the the expected discounted

sum of future utility flows to the household. We can recursively write the value function as

follows:

Vt = u(Ct, Nt) + βδtEtVt+1, (11)

where the per-period utility flow is given by

u(Ct, Nt) :=
[C1−χc

t

1− χc
− N1+χn

t

1 + χn

]
. (12)

The welfare of the economy is measured by the unconditional expected value.

A recursive sunspot equilibrium of this stylized economy is given by a set of value and

policy functions for {V (δ, s), C(δ, s), N(δ, s), Y (δ, s), w(δ, s), Π(δ, s), R(δ, s)} such that (i)

the equilibrium conditions described above are satisfied, (ii) the policy rate in the normal

state of the target regime is above the ELB, and (iii) the policy rate in the normal state of

the deflationary regime is at the ELB. That is, we require that

R(δ = δN , s = T ) =
Πtarg

βδt

(
Π(δ = δN , s = T )

Πtarg

)φπ
> 1, (13)

R(δ = δN , s = D) = 1, (14)

Πtarg

βδt

(
Π(δ = δN , s = D)

Πtarg

)φπ
< 1. (15)

Following Mertens and Ravn (2014) and Aruoba, Cuba-Borda, and Schorfheide (2018), we

focus on a recursive equilibrium in which the allocations today depend only on the realization

of the crisis shock and the sunspot shock. In the deflationary regime, the Taylor principle is

violated. As a result, there are infinitely many equilibria in the deflationary regime in which

allocations today depend on past allocations and sunspot shocks—that are unrelated to the

sunspot shock in this paper that dictates whether the economy is in the target or deflationary

regime. Our equilibrium definition rules out these equilibria.9

9See Hirose (2007) and Hirose (Forthcoming) for in-depth analyses on these equilibria.
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2.1 Calibration

We set χC , χN , and θ to 1, 1, and 11, respectively. These are in line with the standard

values in the literature. A production subsidy, τ , is set to 1/θ so as to eliminate the distortion

associated with monopolistic competition in the product market. With this value of τ , the

level of consumption and labor supply are efficient if the inflation target is 0 percent and

if there are no shocks. For the policy rule, the inflation response coefficient, φπ, is set to

2 and the ELB, RELB, is set to 1. While we solve our model under a number of different

values of the inflation target parameter to determine the optimal inflation target, we will

closely examine the dynamics of the model under 0 percent and 2 percent inflation targets

to understand the key forces of the model.

Conditional on the aforementioned parameters and the persistence parameters that will

be discussed shortly, the price adjustment cost parameter (ϕ), the degree of indexation (α),

and the size of the crisis shock (δC) are chosen so that (i) consumption falls about 7 percent

and inflation declines by about 2 percentage points in the crisis state of the target regime,

and (ii) the optimal inflation target is 2 percent in the absence of the sunspot shock. The

severity of a crisis is in line with those considered in Boneva, Braun, and Waki (2016) and

Hills and Nakata (2018).

Table 1: Baseline Parameter Values for the Stylized Model

Parameter Description Parameter Value

β Discount rate 1
1+0.0025

χc Inverse intertemporal elasticity of substitution for Ct 1
χn Inverse labor supply elasticity 1
θ Elasticity of substitution among intermediate goods 11
τ Production subsidy 1/θ
ϕ Price adjustment cost 1038
α Degree of indexation 0.893
400(Πtarg − 1) Inflation target in the Taylor rule [0, 2]
φπ Coefficient on inflation in the Taylor rule 2
RELB Effective lower bound 1
δC Size of the crisis shock 1.0165
pN Persistence of the normal state 0.995
pC Persistence of the crisis state 0.75
pT Persistence of the target regime 0.995
pD Persistence of the deflationary regime 0.975

The persistence of the normal state and the persistence of the crisis state are set to 0.995

and 0.75, respectively. The normal state persistence of 0.995 implies that the crisis shock

hits the economy, on average, once in 50 years. The crisis state persistence of 0.75 implies

that the crisis shocks lasts for one year on average. We will also consider other values of pC

and pN for sensitivity analyses.

As a baseline, we set the persistence of the deflationary regime to 0.975, which implies

an expected duration of the deflationary regime of 10 years. With this persistence, the
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decline of output in the normal state of the deflationary regime is about 1 percent.10 We will

also consider some alternative values for the deflationary regime persistence for a sensitivity

analysis. We use the target regime persistence of 0.995—which implies an expected duration

of the target regime of 50 years—as our baseline, but we compute the optimal inflation target

for a wide range of values to understand how the probability of moving from the target regime

to the deflationary regime affects the optimal inflation target.

In the model, there are four states (two states for the sunspot shock and two states for

the natural rate shock); thus, solving for the policy functions amounts to solving a system of

nonlinear equations. We used Matlab’s built-in nonlinear equation solver, fsolve, to solve

our model.

3 Results

We first discuss how the inflation target affects allocations and welfare in a version of the

model with a crisis shock only. Next, we discuss how the inflation target affects allocations

and welfare in a version of the model with a sunspot shock only. Finally, we discuss the

optimal inflation target in the model with both a crisis shock and a sunspot shock.

3.1 Optimal inflation target in the model with a crisis shock only

Figure 2 shows the dynamics of the economy in the model with a crisis shock only under

0 percent and 2 percent inflation targets. The economy is in the normal state from period 1

to period 5. The crisis shock hits the economy at period 6, and stays there until period 10.

The economy is back in the normal state thereafter.

When the inflation target is zero—the case shown by the solid black lines—inflation and

the output gap are close to the target and the policy rate is positive in the normal state.11

When the crisis shock hits the economy, the central bank lowers the policy rate, trying to

offset the adverse effects of the shock, but the ELB constraint prevents the central bank from

fully neutralizing the effects of the shock: Inflation and consumption decline and the policy

rate is at the ELB.

The dashed blue lines in Figure 2 show the dynamics of the economy when the inflation

target is 2 percent. In the normal state, a higher inflation target implies higher inflation

and a higher policy rate because the Taylor rule is operative. Higher inflation increases

the price adjustment cost and thus lowers consumption, though these effects are very small

in our baseline calibration.12 Higher normal state inflation leads to a lower expected real

10This level of the output gap during the expectations-driven LT is broadly in line with the average output
gap during the prolonged ELB episode in Japan.

11Inflation and the output gap are not exactly zero because of the anticipation effects of being constrained
by the ELB in the future. See Hills, Nakata, and Schmidt (2016) and Nakata and Schmidt (Forthcoming) for
detailed analyses on the anticipation effects associated with the ELB constraint.

12In models with a Calvo-pricing, a higher inflation lowers output by increasing higher price dispersion.
The output cost of higher inflation in Rotemberg and Calvo pricing models can be seen as capturing various
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Figure 2: Allocations under a crisis shock
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Figure 3: AD and AS Curves in the Crisis State and in the Deflationary Regime

-10 -5 0 5

Consumption (C)

-5

-4

-3

-2

-1

0

1

2

In
fl
a
ti
o
n

 (
Π

)

Crisis State

-3 -2.5 -2 -1.5 -1 -0.5

Consumption (C)

-5

-4

-3

-2

-1

0

In
fl
a

ti
o

n
 (
Π

)

Deflationary Regime

AS Curve (Π
targ

 = 0%)

AD Curve (Π
targ

 = 0%)

AS Curve (Π
targ

 = 2%)

AD Curve (Π
targ

 = 2%)

interest rate in the crisis state in which the policy rate is constrained at the ELB, mitigating

the declines in inflation and consumption in the crisis state: In the crisis state, inflation and

consumption are higher under the 2 percent inflation target than under the 0 percent inflation

target.

These favorable effects of a higher inflation target on crisis state inflation and consumption

can be fully understood by examining how an increase in the inflation target affects crisis state

AD and AS curves—the set of consumption-inflation pairs consistent with the consumption

Euler equation and the Phillips curve in the crisis state, respectively. A higher inflation target

means that inflation is higher in the normal state, because the Taylor rule operates in the

normal state. When there is a positive probability of returning to the normal state—holding

the crisis state inflation rate fixed—higher normal state inflation leads to higher inflation

costs associated with high inflation in reduced-form ways.
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Figure 4: Welfare and the Inflation Target
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Note: For each model, welfare is measured by the perpetual consumption transfer—expressed as a percentage
of consumption at the deterministic steady state of the target regime—we need to give to the household in
the version of the economy without the ELB so that it is as well-off as the household in the economy with the
ELB.

expectations and thus a lower expected real rate in the crisis state in which the ELB binds.

The consumption Euler equation requires that crisis state consumption increases when the

expected real rate declines. Thus, the AD curve shifts to the right. At the same time,

the Phillips curve requires that crisis state inflation increases with normal state inflation—

holding crisis state consumption fixed—because firms are forward-looking in their pricing

decision. Thus, the AS curve shifts up. Taken together, these shifts in the AD and AS curves

mean that, in equilibrium, an increase in the inflation target leads to higher inflation and

consumption in the crisis state.

All told, there is a simple trade-off in adjusting the inflation target in this model with a

crisis shock only. On the one hand, a higher inflation target is associated with inefficiently low

consumption in the normal state. On the other hand, a higher inflation target is associated

with better stabilization outcomes in the crisis state.13 Reflecting this trade-off, welfare is a

concave function of the inflation target, as shown in the left panel of Figure 4. As discussed

earlier, the degree of indexation is chosen so that welfare attains its maximum at 2 percent,

indicated by the vertical blue line.

3.2 Optimal inflation target in the model with a sunspot shock only

Figure 5 shows the dynamics of the model with a sunspot shock only. The economy is in

the target regime from period 1 to period 5. The sunspot shock hits the economy at period

6 and stays there until period 10 – that is, the economy is in the deflationary regime from

13In models with a continuous shock, there is an additional benefit of raising the inflation target, which is
that a higher inflation target lowers the probability of being constrained by the ELB.
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period 6 to 10. The economy is back in the target regime thereafter.

Figure 5: Allocations under a sunspot shock
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When the inflation target is zero—shown by the solid black lines—the policy rate is

positive, inflation is essentially zero, and consumption is slightly above the efficient level in

the target regime. When the economy moves to the deflationary regime, the policy rate hits

the ELB, inflation falls by 1 percentage point, and consumption declines by 1/2 percentage

point.

When the inflation target is 2 percent—shown by the dashed blue lines—the policy rate

is close to 3 percent, inflation is slightly below 2 percent, and consumption is slightly above

the efficient level in the target regime. When the economy moves to the deflationary regime,

the policy rate hits the ELB and inflation and consumption fall. Inflation is about negative

1.5 percent and consumption is about 3 percent below the efficient level under the 2 percent

inflation target. Inflation and consumption are nontrivially lower in the deflationary regime

under the 2 percent inflation target than under the 0 percent inflation target.

These adverse effects of a higher inflation target on the deflationary regime inflation and

consumption can be understood through AS and AD curves in the deflationary regime. As in

the model with a crisis shock only, a higher inflation target means higher inflation in the target

regime. When there is a positive probability of returning to the target regime—holding the

deflationary regime inflation rate fixed—higher target regime inflation means higher inflation

expectations, a lower expected real rate, and higher consumption in the deflationary regime.14

Thus, the AD curve shifts to the right. Similar to what we saw in the model with a crisis

shock only, the Phillips curve requires that higher target regime inflation leads to higher

deflationary regime inflation, holding the deflationary regime consumption fixed, causing the

AS curve to shift up. These shifts in the AD and AS curves mean that, in equilibrium, a

14If the deflationary regime is an absorbing regime, a change in the inflation target does not affect inflation
and output in the deflationary regime, as pointed out by Cuba-Borda and Singh (2018).
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higher inflation target leads to lower inflation and consumption in the deflationary regime.

Although the effects of a higher inflation target on the AD and AS curves in the defla-

tionary regime are the same as those in the crisis state we examined earlier, they have the

opposite equilibrium implications in the deflationary regime. In the crisis state, the AD curve

is steeper than the AS curve. However, in the deflationary regime, the AD curve is flatter

than the AS curve. Thus, a shift of the AD or AS curve in the same direction leads to the

opposite equilibrium effects in inflation and consumption.

All told, in the model with a sunspot shock only, a higher inflation target worsens the

allocations in both the target and deflationary regimes. Thus, welfare is higher when the

inflation target is lower, as shown in the middle panel of Figure 4.15

3.3 Model with both a crisis shock and a sunspot shock

Because a higher inflation target is associated with lower welfare in the model with a

sunspot shock, if we introduce the sunspot shock to the model with a crisis shock only, the

optimal inflation target declines. The solid line in the right panel of Figure 4 shows how

the welfare of the economy depends on the inflation target in the model with both a crisis

shock and a sunspot shock. The welfare is maximized at negative 0.6 percent, the lowest

value of the inflation target consistent with the existence of the sunspot equilibrium and 2.6

percentage points lower than that in the economy with a crisis shock only and essentially the

same as that in the economy with a sunspot shock only.

Figure 6: Optimal Inflation Target with Alternative Probabilities of Moving to the
Deflationary Regime

0.99 0.992 0.994 0.996 0.998 1

p
T
 (Persistence of Target Regime)

-0.5

0

0.5

1

1.5

2

O
p

ti
m

a
l 
In

fl
a

ti
o

n
 T

a
rg

e
t

15Sunspot equilibrium does not exist when the inflation target is sufficiently low, as discussed in Appendix
B. The lowest value of the inflation target in this panel is the lowest value of the inflation target consistent
with the existence of the sunspot equilibrium.

13



The extent to which the sunspot shock lowers the inflation target depends on how likely

it is for the economy to be in the deflationary regime. In Figure 6, we show how the optimal

inflation target varies with the probability of moving from the target regime to the defla-

tionary regime under our baseline calibration. According to the figure, the optimal inflation

declines as the persistence of the target regime declines—in other words, the probability of

moving from the target regime to the deflationary regime increases—for any given persistence

of the deflationary regime. With the target regime persistence of 0.998 and 0.999, the optimal

inflation target is 0.1 percent and negative 0.3 percent, respectively.

The effect of the sunspot shock on the optimal inflation target dominates that of the

crisis shock because the unconditional probability of being in the deflationary regime is much

higher than the unconditional probability of being in the crisis state, unless the transition

probability of moving from the target regime to the deflationary regime (pT ) is very small.

To see this point, Figure 7 shows the unconditional probabilities of being in the deflationary

regime for a range of pT (solid black line) with other transition probability parameters fixed at

their baseline values. Under our baseline value, pT = 0.995, the unconditional probability of

the deflationary regime is 16.6 percent, about 8 times as large as the unconditional probability

of the crisis state, which is 2 percent as shown by the dashed black line. Only when pT is

very close to 1 (higher than 0.9995, to be specific) is the unconditional probability of the

crisis state higher than the unconditional probability of the deflationary regime.

Figure 7: Unconditional Probability of Being in a Crisis State or Deflationary Regime
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The unconditional probability of the deflationary regime being much higher than the

unconditional probability of the crisis state is a necessary by-product of the equilibrium

existence conditions on the transition probabilities of the crisis shock and the sunspot shock.

For an equilibrium to exist in the model with a crisis shock, the persistence of the crisis

state has to be sufficiently low (Nakata and Schmidt (Forthcoming); Appendix B); for an
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equilibrium to exist in the model with a sunspot shock, the persistence of the deflationary

regime has to be sufficiently high (Nakata and Schmidt (2019); Appendix B). Thus, unless

the persistence of the target regime is very high—that is, it is very unlikely for an economy

to fall into expectation-driven LTs—or the persistence of the normal state is very low—that

is, it is very likely for an economy to be hit by a crisis shock—the unconditional probability

of the deflationary regime is higher than the unconditional probability of the crisis state.

3.4 Sensitivity analysis

We have just seen that the extent to which the possibility of falling into an expectations-

driven LT lowers the optimal inflation target depends on the likelihood of being in an

expectations-driven LT relative to the likelihood of being in a fundamental-driven LT. Thus,

the optimal inflation target is higher under alternative calibrations in which the unconditional

probability of being in an expectations-driven LT is lower than that in our baseline calibration

calibration or those in which the unconditional probability of being in a fundamental-driven

LT is higher than that in our baseline.

Figure 8: Optimal Inflation Target with Alternative Probabilities of Moving to the
Deflationary Regime

0.99 0.992 0.994 0.996 0.998 1

p
T

-0.5

0

0.5

1

1.5

2

O
p

ti
m

a
l 
In

fl
a

ti
o

n
 T

a
rg

e
t p

D
 = 0.95

p
D

 = 0.965

p
D

 = 0.975

0.99 0.992 0.994 0.996 0.998 1

p
T

-0.5

0

0.5

1

1.5

2

O
p

ti
m

a
l 
In

fl
a

ti
o

n
 T

a
rg

e
t p

C
 = 0.75

p
C

 = 0.80

p
C

 = 0.85

0.99 0.992 0.994 0.996 0.998 1

p
T

-0.5

0

0.5

1

1.5

2

O
p

ti
m

a
l 
In

fl
a

ti
o

n
 T

a
rg

e
t p

N
 = 0.99

p
N

 = 0.9925

p
N

 = 0.995

0.99 0.992 0.994 0.996 0.998 1

p
T

-0.5

0

0.5

1

1.5

2

O
p

ti
m

a
l 
In

fl
a

ti
o

n
 T

a
rg

e
t

Π
targ

 = 0.5%

Π
targ

 = 1%

Π
targ

 = 2%

In the top-right, top-left, and bottom-left panels of Figure 8, we show two alternative

calibrations of the model with lower deflationary regime persistence (pD), lower crisis shock

persistence (pC), and lower crisis shock frequency—equivalently, higher normal state persis-
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tence (pN )—respectively. In each panel, these alternative calibrations are displayed by the

dashed and dash-dotted lines. In the top-right and bottom-left panels, when we vary the cri-

sis shock persistence and frequency, the crisis shock size, price adjustment cost (ϕ), and the

degree of indexation (α) are adjusted to be consistent with the calibration principle outlined

earlier.

The top-left panel shows that the lower deflationary regime persistence, the higher the

optimal inflation target. The top-right and bottom-left panels show that the higher the crisis

persistence or the crisis frequency—both of which implies a higher unconditional probability

of being in the crisis state—the higher the optimal inflation target.

Finally, in the bottom-right panel of Figure 8, we show two alternative calibrations—

shown by the dashed and dash-dotted lines—in which the crisis shock size, ϕ, and α are

chosen so that the optimal inflation target is 0.5 percent and 1 percent in the model with the

crisis shock only, respectively. This exercise is motivated by the possibility that the ELB is

the only reason why the central bank aims for a positive inflation target and that the ELB

accounts for only a part of the stated inflation target by central banks.16 In these alternative

calibrations, because the optimal inflation target is lower to begin with, the possibility of

falling into the expectations-driven LT reduces the optimal inflation target by less than it

does in the baseline calibration.

4 Analysis from model with an AR(1) demand shock

In this section, we examine the implication of introducing the possibility of falling into

expectations-driven LTs on the optimal inflation target using a model with an AR(1) demand

shock and a two-state sunspot shock.

The structure of the model is identical to the model we have examined thus far. The only

difference is that the discount factor shock follows an AR(1) process:

δt − 1 = ρ(δt−1 − 1) + εt (16)

where εt is normally distributed with mean zero and standard deviation of σε,t.

We apply the same calibration principle used for the model with a two-state demand

shock to this model with an AR(1) demand shock. We first set χC , χN , and θ, and ϕ to

the same values described in Table 1. Conditional on these parameter values, we choose

α = 0.943, and σε = 0.285/100 so that the optimal inflation target is 2 percent in the absence

of the sunspot shock. Appendix E describes the numerical solution method used to solve this

model.

Figure 9 shows how the optimal inflation target varies with the probability of falling into

an expectations-driven LT in this model. Consistent with what we saw in Figure 6 for the

16One commonly cited reason for having a positive inflation target, besides the ELB, is an upward bias in
the measured rate of inflation. See, for example, Kiley, Mauskopf, and Wilcox (2007).
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Figure 9: Optimal Inflation Target with Alternative Probabilities of Moving to the
Deflationary Regime
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model with a two-state demand shock, a very small probability of falling into an expectations-

driven LT lowers the optimal inflation target nontrivially. The thin black vertical line denotes

our baseline value of the target regime persistence (pT = 0.995); under this calibration the

optimal inflation target is 1.2 percent, the lowest value of the inflation target consistent

with the equilibrium existence in this model.17 With the target regime persistence of 0.999,

denoted by the thin dashed black vertical line, the optimal inflation target is 1.45 percent.

Although these optimal inflation targets are higher than those in the model with a two-state

demand shock and a two-state sunspot shock, they are still nontirivially lower than the 2

percent inflation target that is optimal in the absence of the sunspot shock.

5 Conclusion

In this paper, we examine how the possibility of falling into expectations-driven LTs affects

the optimal inflation target. Using a calibrated New Keynesian model, we find that even a

very small probability of expectations-driven LTs nontrivially lowers the optimal inflation

target under a wide range of parameter values. Our paper highlights a factor that has

been neglected in the literature and the policy debate regarding the optimal inflation target.

Because myriad factors influence the judgment on whether central banks should increase their

inflation target in light of the ELB consideration, caution is of course warranted in drawing

any policy implications from our exercise.

One limitation of our analysis—shared by other papers on this topic—is that we are silent

17To search for the optimal inflation target, we solve the model with various inflation targets with 5 basis
points interval.
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about why an economy may fall into the expectations-driven LT or why it may escape from

it. In particular, we assume that the transition probabilities governing the sunspot shock are

exogenous to the conduct of monetary policy. According to a commonly told narrative of the

Japanese policy by seasoned observers (see, for example, Hayakawa (2016)), one rationale for

the aggressive monetary policy easing in Japan that started in 2013—including an official

adaptation of the 2 percent inflation target—is that the aggressive easing may help push the

Japanese economy out of the expectations-driven LT. While it is plausible that a change in

some aspects of the monetary policy can affect the likelihood of falling into an expectations-

driven LT, we followed the literature and excluded such a possibility in this paper. We leave

the investigation of such a possibility to future research.
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Technical Appendix for Online Publication

This technical appendix is organized as follows:

• Section A describes the details of the stylized model.

• Section B describes the conditions under which the equilibrium exists for the model
with a demand shock and/or sunspot shock.

• Section C presents some analytical results on the effect of a higher inflation target in a
semi-loglinear New Keynesian model.

• Section D discusses the effect of a higher inflation target in the nonlinear model with
alternative values of α.

A Details of the Stylized Model

This section describes a stylized DSGE model with a representative household, a final good
producer, a continuum of intermediate goods producers with unit measure, and government
policies.

A.1 Household

The representative household chooses its consumption level, amount of labor, and bond
holdings so as to maximize the expected discounted sum of utility in future periods. As is
common in the literature, the household enjoys consumption and dislikes labor. Assuming
that period utility is separable, the household problem can be defined by

max
Ct,Nt,Bt

E1

∞∑
t=1

βt−1
[ t−1∏
s=0

δs

][C1−χc
t

1− χc
− N1+χn

t

1 + χn

]
, (17)

subject to the budget constraint

PtCt +R−1
t Bt ≤WtNt +Bt−1 + PtΦt, (18)

or equivalently

Ct +
Bt
RtPt

≤ wtNt +
Bt−1

Pt
+ Φt, (19)

where Ct is consumption, Nt is the labor supply, Pt is the price of the consumption good, Wt

(wt) is the nominal (real) wage, Φt is the profit share (dividends) of the household from the
intermediate goods producers, Bt is a one-period risk free bond that pays one unit of money
at period t+1, and R−1

t is the price of the bond.

The discount rate at time t is given by βδt where δt is the discount factor shock altering
the weight of future utility at time t+ 1 relative to the period utility at time t. This increase
in δt is a preference imposed by the household to increase the relative valuation of future
utility flows, resulting in decreased consumption today (when considered in the absence of
changes in the nominal interest rate).
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A.2 Firms

There is a final good producer and a continuum of intermediate goods producers indexed
by i ∈ [0, 1]. The final good producer purchases the intermediate goods Yi,t at the intermedi-
ate price Pi,t and aggregates them using CES technology to produce and sell the final good
Yt to the household and government at price Pt. Its problem is then summarized as

max
Yi,t,i∈[0,1]

PtYt −
∫ 1

0
Pi,tYi,tdi, (20)

subject to the CES production function

Yt =
[ ∫ 1

0
Y

θ−1
θ

i,t di
] θ
θ−1

. (21)

Intermediate goods producers use labor to produce the imperfectly substitutable intermedi-
ate goods according to a linear production function (Yi,t = Ni,t) and then sell the product to
the final good producer. Each firm maximizes its expected discounted sum of future profits18

by setting the price of its own good. We can assume that each firm receives a production
subsidy τ so that the economy is fully efficient in the steady state.19 In our baseline, we set
τ = 1/θ. Price changes are subject to quadratic adjustment costs.

max
Pi,t

E1

∞∑
t=1

βt−1
[ t−1∏
s=0

δs

]
λt

[
Pi,tYi,t − (1− τ)WtNi,t − Pt

ϕ

2
[

Pi,t
Pi,t−1(Πtarg)α

− 1]
2
Yt

]
, (22)

such that

Yi,t =

[
Pi,t
Pt

]−θ
Yt.

20 (23)

λt is the Lagrange multiplier on the household’s budget constraint at time t and βt−1
[∏t−1

s=0 δs

]
λt

is the marginal value of an additional profit to the household. The positive time zero price
is the same across firms (i.e. Pi,0 = P0 > 0).

A.3 Monetary Policy

It is assumed that the central bank determines the short term nominal interest rate ac-
cording to a Taylor rule

Rt = max

[
1,

Πtarg

βδt

(
Πt

Πtarg

)φπ]
, (24)

18Each period, as it is written below, is in nominal terms. However, we want each period’s profits in real
terms so the profits in each period must be divided by that period’s price level Pt which we take care of further
along in the document.

19(θ− 1) = (1− τ)θ which implies zero profits in the zero inflation steady state. In a welfare analysis, this
would extract any inflation bias from the second-order approximated objective welfare function. τ therefore
represents the size of a steady state distortion (see Chapter 5 Appendix, Gaĺı (2008)).

20This expression is derived from the profit maximizing input demand schedule when solving for the final
good producer’s problem above. Plugging this expression back into the CES production function implies that

the final good producer will set the price of the final good Pt =
[ ∫ 1

0
P 1−θ
i,t di

] 1
1−θ

.
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where Πt = Pt
Pt−1

.

A.4 Market clearing conditions

The market clearing conditions for the final good, labor, and government bond are given
by

Yt = Ct +

∫ 1

0

ϕ

2

[ Pi,t
Pi,t−1(Πtarg)α

− 1
]2
Ytdi, (25)

Nt =

∫ 1

0
Ni,tdi, (26)

and
Bt = 0. (27)

A.5 Recursive equilibrium

Given P0 and a two-state Markov shock process establishing δt, an equilibrium consists
of allocations {Ct, Nt, Ni,t, Yt, Yi,t, Gt}∞t=1, prices {Wt, Pt, Pi,t}∞t=1, and a policy instrument
{Rt}∞t=1 such that (i) given the determined prices and policies, allocations solve the problem
of the household, (ii) Pi,t solves the problem of firm i, (iii) Rt follows a specified rule, and
(iv) all markets clear.

Combining all of the results from (i)-(iv), a symmetric equilibrium can be characterized
recursively by {Ct, Nt, Yt, wt,Πt, Rt}∞t=1 satisfying the following equilibrium conditions:

C−χct = βδtRtEtC
−χc
t+1 Π−1

t+1, (28)

wt = Nχn
t Cχct , (29)

Yt
Cχct

[
ϕ

(
Πt

(Πtarg)α
− 1

)
Πt

(Πtarg)α
− (1− θ)− θ(1− τ)wt

]
= βδtEt

Yt+1

Cχct+1

ϕ

(
Πt+1

(Πtarg)α
− 1

)
Πt+1

(Πtarg)α
,

(30)

Yt = Ct +
ϕ

2

[
Πt

(Πtarg)α
− 1

]2

Yt, (31)

Yt = Nt, (32)

Rt = max

[
1,

Πtarg

βδt

(
Πt

Πtarg

)φπ]
. (33)

Equation 28 is the consumption Euler equation, Equation 29 is the intratemporal optimality
condition of the household, Equation 30 is the optimal condition of the intermediate good
producing firms (forward-looking Phillips Curve) relating today’s inflation to real marginal
cost today and expected inflation tomorrow, Equation 31 is the aggregate resource constraint
capturing the resource cost of price adjustment, and Equation 32 is the aggregate production
function. Equation 33 is the interest-rate feedback rule.
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B On the existence and multiplicity of a sunspot equilibrium

The left panel of Figure 10 shows pairs of pN and pC that are consistent with the equilib-
rium existence in the model with a demand shock only, whereas the right panel shows pairs
of pT and pD that are consistent with the equilibrium existence in the model with a sunspot
shock only.

Figure 10: Transition probabilities and the equilibrium existence

Consistent with the analytical result based on a semi-loglinear New Keynesian model in
Nakata and Schmidt (Forthcoming), in the model with a demand shock only, the equilibrium
exists if and only if pN is sufficiently high and pC is sufficiently low. When pN is low, there
is a high probability of moving to the crisis state in the next period when the economy is
currently in the normal state. The anticipation effect of moving to the crisis state in the next
period causes the policy rate to decline. When pN is sufficiently low, the policy rate in the
normal state becomes negative, violating the conditions for the equilibrium existence. When
pC is high, there is a high probability of staying in the crisis state in the next period when the
economy is currently in the crisis state. When pC is too high, inflation and output consistent
with the private sector equilibrium conditions are positive, which implies a positive policy
rate and thus inconsistent with the equilibrium existence.21

In the model with a sunspot shock only, the equilibrium exists if and only if pT and pD
are both sufficiently high (see Nakata and Schmidt (2019) for a proof of this statement in a
semi-loglinear model). The reason for why pT needs to be high for the equilibrium to exist
in this model is the same as the reason for why pN needs to be high for the equilibrium
to exist in the model with a demand shock only. Why does pD have to be sufficiently high
for the equilibrium to exist? When pD is low, there is a low probability of staying in the
deflationary state in the next period when the economy is currently in the target state. When
pD is too low, inflation and output consistent with the private sector equilibrium conditions
are positive, which implies a positive policy rate and thus inconsistent with the equilibrium
existence.22

21A version of this equilibrium existence result with pN = 1 is well known in the literature. See, for
example, Eggertsson (2011) and Boneva, Braun, and Waki (2016).

22A version of this equilibrium existence result with pT = 1 is well known in the literature. See, for example,
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Figure 11: Transition probabilities and the sunspot equilibria multiplicity

Consistent with Boneva, Braun, and Waki (2016) and as shown by the red dots in Fig-
ure 11, there are two pairs of inflation and the output gap in the deflationary regime satisfying
the equilibrium conditions when pD is sufficiently small, but large enough so that an equi-
librium exists. To illustrate the multiplicity of the sunspot equilibrium, Figure 12 and 13
show the AD and AS curves in the deflationary regime when pD = 0.975 and pD = 0.95,
respectively. Focusing on the part of the AD curve consistent with the binding ELB con-
straint, there is only one intersection of the AS and AD curves when pD = 0.975, as shown by
Figure 12. When pD = 0.95, there are two intersection of the AS and AD curves, as shown by
Figure 13. One intersection features moderate declines in inflation and consumption, as well
as a moderate increase in output (output increases due to price-adjustment costs associated
with the mild decline in inflation). The other intersection features very large declines in
inflation and consumption, as well as a very large increase in output.

Figure 12: AD and AS Curves in the Deflationary Regime
—High pD—
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Mertens and Ravn (2014) and Boneva, Braun, and Waki (2016).
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Figure 13: AD and AS Curves in the Deflationary Regime
—Low pD—
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When there are more than one sunspot equilibrium, we focus on the equilibrium with
moderate declines in inflation and consumption in the deflationary regime for two reasons.
First, the allocation in this equilibrium changes continuously with a change in pD even at the
threshold value of pD above which there is one sunspot equilibrium and below which there are
two sunspot equilibrium. In contrast, the other sunspot equilibrium with very large declines
in inflation and consumption “suddenly” shows up when pD declines below the threshold.
Second, we would like our deflationary regime to look like the Japanese economy over the
past two decades, which features mild deflation.

B.1 Equilibrium existence and the inflation target

As noted in Section 3, the sunspot equilibrium ceases to exist when the inflation target is
sufficiently low. To see this result, Figure 14 shows the AS and AD curves when the inflation
target is 0 percent and -2 percent. According to the figure, the AD curve shifts to the left
and the AS curve shifts to the right when the inflation target declines. With the inflation
target of -2 percent, there is no intersection for the region of inflation rate consistent with
the binding ELB constraint.
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Figure 14: AD and AS Curves in the Deflationary Regime
—Low Πtarg—
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C Some analytical results from a semi-loglinear model

In this section, we will investigate the effect of raising the inflation target in a semi-
loglinear model that allows for analytical results.23

C.1 Model

yt = Et{yt+1} − σ [it − Et{π̂t+1} − (r∗ + π∗) + δt] , (34)

π̂t = κyt + βEt{π̂t+1}, (35)

π̂t = πt − π∗, (36)

it = max [0, (r∗ + π∗) + φππ̂t] . (37)

Here, equation (34) is the log-linearized consumption Euler Equation, equation (35) is the
forward looking Phillips curve, and equation (37) is the interest rate feedback rule with a zero
lower bound (ZLB) constraint. Notice that π̂t is the inflation gap—deviation of the inflation
rate (πt) from the inflation target (π∗). yt is the deviation of output from its deterministic
steady state level. Note that, in deriving these semi-loglinear equilibrium conditions, we
assume that the the price “indexation” parameter in the original fully nonlinear model is
unity so that the level of the inflation target does not affect the deterministic steady state
level of output.

As in the main body of the paper, we will first discuss the effect of an increase in the
inflation target parameter in the version of the model with a crisis shock only, and then move
on to the analysis in the version of the model with a sunspot shock only.

23See Bilbiie (2018) for a related analysis. He analytically shows that a temporary increase in inflation
in the target regime lowers inflation and output in a deflationary regime in a similar setup. We analytical
shows that a permanent increase in inflation in the target regime lowers inflation and output in a deflationary
regime.
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C.2 Model with a crisis shock only

As in the main text, we assume that the demand shock, δt, follows a two-state Markov
shock process. Prob(N |N) := pN is the probability of staying in the normal state in the next
period when the economy is in the normal state today. Prob(C|C) := pC is the probability
of staying in the crisis state in the next period when the economy is in the crisis state today.

The equilibrium conditions of the economy with a crisis shock only is given by

yN =pNyN + (1− pN )yC + σ [pNπN + (1− pN )πC − π∗]− σ [iN − (r∗ + π∗) + δN ] ,
(38)

πN − π∗ =κyN + β (pNπN + (1− pN )πC − π∗) , (39)

iN =r∗ + π∗ + φπ(πN − π∗), (40)

yC =pCyC + (1− pC)yN + σ [pCπC + (1− pC)πN − π∗]− σ [iC − (r∗ + π∗) + δC ] ,
(41)

πC − π∗ =κyC + β (pCπC + (1− pC)πN − π∗) , (42)

iC =max [0, r∗ + π∗ + φππC − π∗] . (43)

To analyze how an increase in the inflation target affects the crisis shock state in a
transparent way, we assume that the normal state is an absorbing state (i.e., pN = 1). Then,

yN =0, (44)

πN =π∗, (45)

iN =r∗ + π∗, (46)

yC =
σ(1− βpC)

(1− βpC)(1− pC)− κσpC
π∗ +

σ(r∗ − δC)(1− βpC)

(1− βpC)(1− pC)− κσpC
, (47)

πC =

[
κσ

(1− βpC)(1− pC)− κσpC
+ 1

]
π∗ +

κσ(r∗ − δC)

(1− βpC)(1− pC)− κσpC
, (48)

iC =0. (49)

As shown by Nakata and Schmidt (Forthcoming) and Nakata and Schmidt (2019), for the
equilibrium to exist, (1 − βpC)(1 − pC) − κσpC > 0. Thus, the coefficients in front of π∗ in
equations (47 and 48) are both positive, meaning that yC and πC increase with the inflation
target.

To understand the mechanism behind this result , it is useful to investigate the aggregate
demand curve—a set of pairs of inflation and output in the crisis state consistent with the
Euler equation—and the aggregate supply curve—a set of pairs of inflation and output in the
crisis state consistent with the Phillips curve. They are given by

πC =
1− pC
σpC

yC −
1− pC
pC

π∗ − r∗ − δC
pC

, (50)

πC =
κ

1− βpC
yC + π∗. (51)

According to equation (50), an increase in the inflation target shifts down the AD curve.
An increase in the inflation target parameter translates into an increase in the normal state
inflation. According to the Euler equation, to support the same level of output in the crisis
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Table 2: Calibrations for the Semi-Loglinear Model

Parameter Calibration Description

β 1/1.0025 Discount factor
σ 1 Elasticity of Intertemporal Substitution
κ 0.02 Slope of the Phillips Curve
φπ 2 Coefficient on inflation in Taylor Rule
r∗ 1% Annualized steady state nominal interest rate
δN 0 Demand shock in normal state
δC 1.6/100 Demand shock in crisis shock state

pT 1 Persistence of Target Regime
pD 0.975 Persistence of Deflationary Regime
pN 1 Persistence of Normal State
pC 0.75 Persistence of Crisis Shock State

π∗ {0%, 2%} Annualized steady state nominal interest rate

state, the expected real interest rate has to remain unchanged. Thus, if the normal state
inflation is higher, the crisis state inflation has to decline.

According to equation (51), an increase in the inflation target shifts up the AS curve.
An increase in the inflation target parameter translates into an increase in the normal state
inflation. According to the Phillips curve, the crisis state inflation positively depends on
the expected inflation in the next period, which also positively depends on the normal state
inflation. As a result, a higher normal state inflation leads to a higher crisis state inflation
for any given level of the crisis state output.

As shown by the left panel of Figure 15 which plots the effect of an increase in π∗ from
0 percent to 2 percent on the AS and AD curves, these shifts in the AS and AD curves
mean a higher inflation and output in the crisis state. Table 2 shows the calibration of the
semi-loglinear model used to generate the left panel of Figure 15.

Figure 15: AD and AS Curves in the Crisis State and in the Deflationary Regime
—Semi-Loglinear Model—
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C.3 Model with a sunspot shock only

We now examine the effect of an increase in the inflation target on the deflationary regime
output and inflation using the version of the semi-loglinear model with a sunspot shock only.
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Let Prob(T |T ) = pT be the probability of staying in the target regime in the next period
when the economy is in the target regime today and let Prob(D|D) = pD be the probability of
staying in the deflationary regime in the next period when the economy is in the deflationary
regime today.
The equilibrium conditions of the model with a sunspot shock only are given by

yT =pT yT + (1− pT )yD + σ [pTπT + (1− pT )πD − π∗]− σ [iT − (r∗ + π∗)] , (52)

πT − π∗ =κyT + β (pTπT + (1− pT )πD − π∗) , (53)

iT =r∗ + π∗ + φπ(πT − π∗), (54)

yD =pDyD + (1− pD)yT + σ [pDπD + (1− pD)πT − π∗]− σ [iD − (r∗ + π∗)] , (55)

πD − π∗ =κyD + β (pDπD + (1− pD)πT − π∗) , (56)

iD =0. (57)

To analyze how an increase in the inflation target affects the deflationary regime in a
transparent way, we assume that the target regime is an absorbing state (i.e., pT = 1). Then,

yT =0, (58)

πT =π∗, (59)

iT =r∗ + π∗, (60)

yD =
σ(1− βpD)

(1− βpD)(1− pD)− κσpC
π∗ +

σr∗(1− βpD)

(1− βpD)(1− pD)− κσpD
, (61)

πD =

[
κσ

(1− βpD)(1− pD)− κσpD
+ 1

]
π∗ +

κσr∗

(1− βpD)(1− pD)− κσpD
, (62)

iD =0. (63)

As shown by Nakata and Schmidt (2019), for the equilibrium to exist, (1− βpD)(1− pD)−
κσpD < 0. Thus, the coefficient in front of π∗ in equation (61) is negative, meaning that yD
increases with the inflation target. Provided that pD is sufficiently large, the coefficient in
front of π∗ in equation (62) is negative, and thus πD increases with the inflation target.

To understand the mechanism behind this result, it is useful to investigate the aggregate
demand curve and the aggregate supply curve in the deflationary regime:

πD =
1− pD
σpD

yD −
1− pD
pD

π∗ − r∗

pD
, (64)

πD =
κ

1− βpD
yD + π∗. (65)

As in the model with a crisis shock only, an increase in the inflation target shifts down the
AD curve and shifts up AS curves. Because the AS curve is steeper than the AD curve in the
model with a sunspot shock only, these shifts in the AS and AD curves mean lower inflation
and output in the crisis state, as shown by the right panel of Figure 15.

D Effects of a Higher Inflation Target with α = 0 and α = 1

While we set α to 0.893 in our baseline calibration, the key property of the model—a higher
inflation target leads to lower inflation and consumption in the deflationary regime—does not
hinge on the specific value of α. In this section, we examine the effect of a higher inflation
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target under α = 0 (no price indexation) and α = 1 (full price indexation). The assumption
of no price indexation is common in papers analyzing the effect of a non-zero trend inflation,
including those papers on the optimal inflation target (see, for example, Ascari (2004) and
Ascari, Castelnuovo, and Rossi (2011)). The assumption of full price indexation is widespread
in the literature estimating DSGE models and in papers using policy-oriented, medium-scale
DSGE models, as the full price indexation make the dynamics of the loglinear version of those
models invariant to the level of the inflation target (see, for example, Smets and Wouters
(2007)).

Figure 16: AD and AS Curves: α = 0
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Figures 16 and 17 shows the effect of a higher inflation target with α = 0 and α = 1,
respectively. When α = 0, the effect of a higher inflation target is negligible for the AD curve.
When α = 1, the AD curves in both the crisis state and the deflationary regime shift down
by a small amount, as in the case discussed in Section 3. For both α = 0 and α = 1, the AS
curves shift up in both the crisis state and the deflationary regime, as in the case discussed in
Section 3. Thus, a higher inflation target leads to lower inflation and consumption regardless
of the value of α.

Figure 17: AD and AS Curves: α = 1
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E Solution method for model with an AR(1) demand shock
and a two-state sunspot shock

To find the regime-specific policy functions for the models endogenous state variables, we
approximate true policy functions by degree 4 Chebychev polynomials. We solve for a set
of basis coefficients (Θ) that satisfy the equilibrium conditions at 101 grid points over δ and
the sunspot shock s. The discount rate shock is on the interval of [1− 4σδ, 1 + 4σδ]. We use
a global solution method similar to Judd (1992) and Aruoba, Cuba-Borda, and Schorfheide
(2018), where policy functions are approximated by a projection method (as opposed to a
time-iteration method). The minuimum set of state variables is given by St = {δt, st}.

The problem is to find a set of policy functions {C(S; Θ), N(S; Θ), Y (S; Θ), w(S; Θ),Π(S; Θ),
R(S; Θ)} by minimizing the sum of squared residuals that satisfy the following system of
functional equations:

C(St; Θ)−χc = βδtR(St; Θ)EtC(St+1; Θ)−χcΠ(St+1; Θ)−1, (66)

w(St; Θ) = N(St; Θ)χnC(St; Θ)χc , (67)

Y (St; Θ)

C(St; Θ)χc

[
ϕ

(
Π(St; Θ)

(Πtarg)α
− 1

)
Π(St; Θ)

(Πtarg)α
− (1− θ)− (1− τ)θw(St; Θ)

]
(68)

= βδtEt
Y (St+1; Θ)

C(St+1; Θ)χc
ϕ

(
Π(St+1; Θ)

(Πtarg)α
− 1

)
Π(St+1; Θ)

(Πtarg)α
,

Y (St; Θ) = C(St; Θ) +
ϕ

2

[
Π(St; Θ)

(Πtarg)α
− 1

]2

Y (St; Θ), (69)

Y (St; Θ) = N(St; Θ), (70)

R(St; Θ) = max

[
RELB,

Πtarg

βδt

(
Π(St; Θ)

Πtarg

)φπ]
. (71)

Substituting out N(S; Θ) and w(S; Θ), this system can be reduced to a system of four func-
tional equations. The problem then becomes finding a set of policy functions {C(S; Θ), Y (S; Θ),
Π(S; Θ), R(S; Θ)} by minimizing the sum of squared residuals that satisfy the following sys-
tem of functional equations:

C(St; Θ)−χc = βδtR(St; Θ)EtC(St+1; Θ)−χcΠ(St+1; Θ)−1, (72)

Y (St; Θ)

C(St; Θ)χc

[
ϕ

(
Π(St; Θ)

(Πtarg)α
− 1

)
Π(St; Θ)

(Πtarg)α
− (1− θ)− (1− τ)θY (St; Θ)χnC(St; Θ)χc

]
(73)

= βδtEt
Y (St+1; Θ)

C(St+1; Θ)χc
ϕ

(
Π(St+1; Θ)

(Πtarg)α
− 1

)
Π(St+1; Θ)

(Πtarg)α
,

Y (St; Θ) = C(St; Θ) +
ϕ

2

[
Π(St; Θ)

(Πtarg)α
− 1

]2

Y (St; Θ), (74)

R(St; Θ) = max

[
RELB,

Πtarg

βδt

(
Π(St; Θ)

Πtarg

)φπ]
. (75)

The max operator present in equation 75 introduces a kink in the policy functions for
sufficiently large realizations of δ. While Chebyshev polynomials can approximate smooth
functions well, there are potential problems for functions that do not have a continuous
derivative with low order approximations. To account for these nonlinearities, we follow the
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idea of Christiano and Fisher (2000), in which we decompose policy functions in the target
and deflationary regime into two parts using an indicator: one where the policy rate is allowed
to be less than zero and the other part in which the policy rate is assumed to be zero. Thus,
for any policy function of a given regime Xs:

Xs(S; Θ) = I{Rs(S;Θ)≥1}X
s
unc(S; Θ) + (1− I{Rs(S;Θ)≥1})X

s
ELB(S; Θ) (76)

The problem then becomes finding a pair of policy functions for a given regime {[Csunc(S; Θ),
CsELB(S; Θ)] , [Y s

unc(S; Θ), Y s
ELB(S; Θ)] , [Πs

unc(S; Θ),Πs
ELB(S; Θ)] , [Rsunc(S; Θ), RsELB(S; Θ)]}

that solves the system of functional equations above. This approach will yield more accurate
policy functions. Figure 18 displays the policy functions for consumption, inflation, and the
interest rate for two different inflation targets considered by the central bank.

Figure 18: Sample Policy Functions for Target and Deflationary Regimes
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The projection method begins by specifying a guess for Θ: Θ0. The initial parame-
terization of Θ0 corresponds to to a set of values the policy functions take on given the
discretized state space. For the target regime, this set of parameters corresponds to the set
of policy functions that solves the model when the ELB constraint is not present; for the
deflationary regime, this set of parameters corresponds to flat line functions at the deflation-
ary deterministic steady state. Then for the current value of Θk and a given grid point Si,
compute C(Si; Θk) = Csunc(Si; Θk) and Π(Si; Θk) = Πs

unc(Si; Θk), assuming that the ELB
does not bind, and obtain Y (Si; Θk) = Y s

unc(Si; Θk) and R(Si; Θk) = Rsunc(Si; Θk) from their
functional forms in equations 74 and 75, respectively. If R(Si; Θk) ≤ 1, then R(Si; Θk) =
RsELB(Si; Θk) and recompute C(Si; Θk) = CsELB(Si; Θk), Π(Si; Θk) = Πs

ELB(Si; Θk) and ob-
tain Y (Si; Θk) = Y s

ELB(Si; Θk) from equation 74. In calculating expectation terms in the
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Table 3: Solution Accuracy

Mean[log10(Rk,t)] 95th-percentile of [log10(Rk,t)]
k = 1 Euler Equation error −3.90 −3.31
k = 2 Phillips curve error −4.43 −3.52

Euler equation and Phillips curve, we use Gaussian quadrature and the value of these fu-
ture variables not on grid points are evaluated using Chebyshev interpolation. Finally, the
residuals each regime and each set of policy functions are calculated via the functional forms
above. Θ is updated to minimize the sum of squared residuals of the objective function. We
use Matlab’s least square minimization algorithm lsqnonlin to do this. Following Aruoba,
Cuba-Borda, and Schorfheide (2018), we include analytically derived derivatives of our ob-
jective function to increase the run-time of the solution method.

F Solution Accuracy for model with an AR(1) demand shock
and a two-state sunspot shock

In this section we report the accuracy of our numerical solution for the model with an
AR(1) demand shock and a two-state sunspot shock. Following Maliar and Maliar (2015),
we evaluate the the residuals for the consumption Euler equation and Phillips curve along
a simulated equilibrium path. The length of the path is 101,000, where the first 1,000
simulations are discarded.

The residuals for the consumption Euler equation and Phillips curve are given as follows:

R1,t =
∣∣∣1− Cχct βδtRtEtC

−χc
t+1 Π−1

t+1

∣∣∣ , (77)

R2,t =

∣∣∣∣( Πt

(Πtarg)α
− 1

)
Πt

(Πtarg)α
− (1− θ)− (1− τ)θwt

ϕ

−C
χc
t

Yt
βδtEt

Yt+1

Cχct+1

(
Πt+1

(Πtarg)α
− 1

)
Πt+1

(Πtarg)α

∣∣∣∣ . (78)

With our log-utility specification, R1,t measures the difference between the chosen con-
sumption today and today’s consumption consistent with the optimization behavior or the
household, as a percentage of the chosen consumption. R2,t is given by the difference between(

Πt
(Πtarg)

α − 1

)
Πt

(Πtarg)
α and the sum of the term involving today’s real wage and the term

involving expectations.

(
Πt

(Πtarg)
α − 1

)
Πt

(Πtarg)
α represents the deviation of inflation from its

target rate of inflation. Thus, the difference between this term and the sum of the terms
involving today’s real wages and expectations measures how much the chosen inflation rate
differs from the inflation rate consistent with optimization behavior. This degree of accuracy
similar to what is reported in Aruoba, Cuba-Borda, and Schorfheide (2018).
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