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Abstract

This paper reports the results of auction experiments to evaluate
auction designs when agents have superadditive values for heteroge-
neous objects. The �rst factor of the experimental design is auction
choice. We considered generalized Vickrey auctions, simultaneous as-
cending auctions, and clock-proxy auctions. The second factor is the
value structure of agents. In addition to a benchmark case of addi-
tive values, we considered superadditive value structures which feature
the exposure problem and the coordination problem. The third fac-
tor is subject characteristics. We ran experiments with professional
traders and university students. We found that clock-proxy auctions
outperformed generalized Vickrey auctions. Clock-proxy auctions out-
performed simultaneous ascending auctions with the exposure prob-
lem value structure, and did statistically equally well with the additive
and the coordination problem value structure. The result suggests a
trade-o¤ between e¢ ciency improvements and complexity in package
bidding. An ANOVA of outcomes showed that auction designs were
signi�cant, and the interaction terms were often signi�cant. We esti-
mated the e¤ect of auction design on e¢ ciency and revenue and found
that its magnitude depended on the valuation structure and subject
characteristics. The result suggests that a successful design requires
good understanding of the design environment parameters.
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1 Introduction

The goal of market design is to de�ne trading procedures which improve
e¢ ciency and other performance goals. Formally, the market design problem
in a given economic environment is

maximize f(x : t) subject to x 2 X

where x is a trading procedure, X is the design space of the possible trading
procedures, t is the type pro�le of agents, and f(x; t) is the performance
function. The task of the market design is the characterization of the solu-
tion x�(t).

A standard method in evaluating performance of trading procedures is
structural econometrics. In this approach, a researcher �rst derives an equi-
librium strategy of an agent which maps its type to an action in a game
induced by the trading procedure. From the observed data, the researcher
estimates the type of the agents. Then, a researcher evaluates the perfor-
mance of an alternative trading procedure from an application of the esti-
mated type. Some recent examples include a comparison between uniform
and discriminatory pricing rules in treasury auctions (Hortacsu (2002)) and
the choice of auction formats for timber auctions (Athey, Levin, and Seira
(2004)).

There are two issues in the application of this approach. First, this ap-
proach requires data about the behavior of the agents that are detailed
enough to allow a statistical identi�cation of their type. But in many mar-
kets, detailed data are proprietary and not usually available. Second, the
structural approach is based on an assumption that agents play a Bayes-
Nash equilibrium. But in a complex environment, it may not be realistic
to assume that an agent can correctly compute an equilibrium strategy and
outcomes. For example, in a package auction of 16 objects, there are 216�1
possible packages, and the evaluation of all bids and packages that maximize
the expected payo¤ can be computationally infeasible. Furthermore, in a
setting where there are multiple equilibria, it is not certain which equilibrium
a researcher should focus on.

In this paper, we consider an alternative experimental approach to eval-
uate performances of trading procedures. In this experimental approach,
a researcher starts with the experimental design where a researcher con-
trols the levels of factors which may a¤ect performance. Then, a researcher
randomly assigns these treatments to experimental units and then observes
agents�behavior and performance. An empirical strategy is �experimental-
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ist�: that is, a researcher estimates the causal e¤ect of underlying factors on
performance.

A practical justi�cation for the experimental approach may be found
in the use of polling in the policy-making process and clinical trials in the
drug development process. In the policy-making process, it is common for a
policy maker to conduct a poll and focus groups when they form a policy. In
the United States, the Food and Drug Administration requires clinical trials
to evaluate the safety and e¤ectiveness of a new drug before it is marketed.
In a similar way, an economic laboratory test can be an e¤ective way to
estimate the strategic response of agents and to check the robustness of
performance of a proposed economic and business design before its actual
implementation.

In this paper, we conduct laboratory experiments to study designs of
trading procedures in an environment where multiple heterogeneous and in-
divisible objects are going to be allocated among agents with superaddtive
values. Here, heterogeneous objects have di¤erent characteristics. Conse-
quently, agents can have di¤erent values for di¤erent objects. Furthermore,
with superadditive values, the value of a package of objects can be more
than the sum of the values of the objects in the package.

A motivation to study this problem is its practical signi�cance. As a
result of recent progress in information technology, the costs of communi-
cation and information processing have decreased over the past decades.
It is now possible to design and implement innovative and �exible trading
procedures. Early examples of package bidding include airport scheduling
and space stations (Banks, Ledyard, and Porter (1982)), transportation ser-
vices (Ledyard, Olson, Swanson, and Torma (2000)), and train scheduling
(Brewer and Plott (1996)). In London bus auctions studied in Cantillon and
Pesendorfer (2004), the London bus procurement authority allows package
bidding. In planned FCC Auctions No. 31 for upper 700 MHz bands, the
auction rules allow package bidding (FCC (2002)). Thus it is signi�cant to
understand the performance e¤ect of package bidding procedures.

Let us pause for a moment to understand the auctioneer�s maximization
problem. In this setting, a designer is primarily interested in the e¢ ciency
of an allocation. The revenue is an additional interest. There are two
constraints on the response of the agents. The �rst issue is incentive com-
patibility. Since the valuations are private, the agents may choose not to
reveal their true valuations, but rather tell careful lies. The second issue
is complexity. Real world agents have limited resources for communication
and cognition. Thus a mechanism needs to be simple and transparent.

Before going into the case of multiple heterogeneous objects, let us review
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the simplest case of an allocation of a single object. In this case, ascending
auctions are a reasonable candidate in a symmetric private value environ-
ment with risk-neutral agents. First, they satisfy incentive compatibility:
ascending auctions are truthful. Second, a truthful equilibrium in ascending
auctions is e¢ cient. Third, by a revenue equivalence theorem, the seller
expected revenue will be the same with other standard auction mechanisms.
Fourth, ascending auctions are simple to work with. Communication com-
plexity is low since the decision problem is solely to decide a bid or the drop
out price. Furthermore, cognitive complexity is also low since the price to
be paid is transparent. Indeed, in some experiments (Kagel, Harstad, and
Levin (1987)), the bids at the �rst price auctions were well above the equi-
librium predictions. In 80% of the second price auctions, prices exceeded the
dominant strategy price by more than one minimum increment. In contrast,
in 70% of the ascending auctions, the di¤erence between the actual and the
predicted price was less than one minimum increment.

But in the allocation of heterogeneous objects, theoretical analysis is dif-
�cult because incentive compatibility and complexity constraints are much
tighter and there are trade-o¤s between the two. When agents have super-
additive values, an ascending auction with or without package bidding can
su¤er from ine¢ ciencies due to strategic bidding (Milgrom (2004)). In ad-
dition, a mechanism is needed to discover not only a market price for each
object but also the prices for all the packages (Nisan and Segal (2004), for
example).

An issue about ascending auctions without package bidding is the expo-
sure problem. Consider an agent who is interested in a package. In order
to win the package, the agent needs to outbid other agents who are only
interested in the subsets. If package bidding is allowed, then the agent can
directly express valuations following the procedure. Otherwise, the agent
needs to compete for each object. The agent may be exposed to a loss if
the superadditive values are not realized. Given this risk, the agent might
bid lower, causing ine¢ ciencies. In other words, without package bidding,
package prices may not be discovered correctly.

Another issue about ascending auctions with package bidding is called
the coordination problem (or the threshold problem). Consider agents who
are interested only in smaller packages. If there is no package bidding pro-
cedure, then it is su¢ cient that these agents can express their valuations in
an auction for each object. But if a package bidding procedure is allowed,
there might be some other agents who use the procedure to bid for the whole
package. Here, agents interested in smaller packages have an incentive to bid
low in order to free-ride the bids by other bidders to decrease the payment.

4



Consequently, with package bidding, agents may fail to coordinate to beat
a package bid. That is, object prices may not be discovered correctly.

The other problem is communication complexity. With superadditive
values, the mechanism may need to determine a supporting price for each
package in order to �nd an e¢ cient allocation. For example, for an allocation
of N objects, 2N �1 prices need to be discovered. This requirement imposes
a heavy communication burden for agents.

As a result, the theoretical research has not yet identi�ed a mecha-
nism which can deal with these issues successfully, in spite of its remark-
able progress (Ausubel, Cramton, Milgrom (2004), Ausubel and Milgrom
(2002,2004), Kwasnica, Ledyard, Porter, and DeMartini (2002), Milgrom
(2000), Parkes (2004)).

This problem seems to call for an experimental approach. First, an equi-
librium analysis of these mechanisms is not well developed, and the mapping
from agents�types to an equilibrium performance of the mechanisms is not
known. Second, with the package bidding procedure, the strategic decision
problem of an agent is complex since it involves a large number of possible
packages. Thus, an auctioneer may need to be concerned about the impli-
cation of these complexities on the auction performance instead of simply
applying a standard equilibrium analysis.

In our experiment, we control three factors. These three factors are
auction design, value structure, and subject characteristics. We rewrite the
above problem to

maximize f(x : t1; t2) subject to x 2 X

where x is the auction design, t1 is the value pro�le of agents, and t2 is
the subject characteristics. We implement a factorial design rather than a
sequential design in order to account for possible nonlinear treatment e¤ects.

In this experiment, we consider three representative auction mechanisms:
generalized Vickrey auctions, simultaneous ascending auctions, and clock-
proxy auctions. The �rst mechanism is generalized Vickrey auctions, in
which each agent bids not only on objects but also on packages. Then the
auctioneer selects the value-maximizing allocation. Each agent then pays
the amount which is equal to the minimum amount required to win the
package. Notably, generalized Vickrey auctions are sealed-bid auctions.

Generalized Vickrey auctions satisfy incentive compatibility. First, they
are truthful: it is always for the agent�s bene�t to report the true valu-
ations. Furthermore, any e¢ cient mechanism where sincere bidding is a
dominant strategy and losers have zero payo¤s is payo¤-equivalent to gener-
alized Vickrey auctions. However, Generalized Vickrey auctions su¤er from
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complexity issues, since each agent is required to report the values for all
possible packages.

The second mechanism is simultaneous ascending auctions. Simulta-
neous ascending auctions have been used in U.S. spectrum auctions since
1994. Simultaneous ascending auctions proceed in rounds. At the begin-
ning of each round, the auctioneer sets the current standing price. Then,
each agent bids on objects. In simultaneous ascending auctions, there are
no package bidding procedures. At the end of the round, the auctioneer
chooses the new standing high bid. The auction ends when there are no
new bids on any auction. The agent with the standing high bid wins the
object. In contrast to generalized Vickrey auctions, simultaneous ascending
auctions ensure that the market clears for each object.

Simultaneous ascending auctions are cognitively simple since it does not
involve package bidding. Each agent needs to bid only on individual ob-
jects. The agents are always clear about whether a bid is winning, and also
about its price. Secondly, the simultaneous ascending auctions work well
when objects are substitutes, since straightforward bidding will lead to a
competitive equilibrium. However, simultaneous ascending auctions su¤er
from the exposure problem whenever values are superadditive.

The third mechanism is the clock-proxy auction (Ausubel, Cramton, and
Milgrom (2004)). Clock-proxy auctions are a two-stage mechanism consist-
ing of clock auctions and proxy auctions. In a �rst stage clock auction, the
auctioneer sets the price for each object. Each agent responds by choosing
to stay or to drop out. The auctioneer increases the price for any objects
having excess demand. An auction ends when the market clears for each
object. In the second stage of proxy auctions, each agent sends their values
to a proxy agent. Then proxy agents bid straightforwardly in hypothetical
ascending auctions. Straightforward bidding means bidding for the package
which is most pro�table at the current price. The auctioneer then chooses
the value-maximizing allocation based on submitted bids. An economic ra-
tional for clock-proxy auctions is that the clock stage will lead to a better
price discovery and the outcome of an ascending package auction is primarily
driven by the reported bids.

We consider the valuation structures of the agents as the second factor of
the experiment. We choose three di¤erent valuation structures to quantity
the advantages and disadvantages of these auction mechanisms.

First of all, let us de�ne the basic structure of objects and values. In our
experiment, there are 16 objects arranged in a rectangle. Five agents are
depicted in such a rectangle as in Figure 1. Each agent has a �base value�
for each object.
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Figure 1: A Geometric Representation of Objects and Agents

In the benchmark case, each agent has an additive value function. That
is, for each agent, the value of the package is simply the sum of the values
of the individual contained in the package.

The second case focuses on the exposure problem. In this case, each
agent has a high level of interest for those objects closest to their location.
For example, agent 1 has the strongest interest in objects 1, 2, 5, and 6.
Moreover, agent 1 has a higher interest in objects 1, 2, and 5 than in object
6. In this case, the e¢ cient allocation is that agent 3 is going to win the
objects 6, 7, 10, and 11, since these objects are closer to agent 3 than to any
other agent. But, agent 3 is going to face the exposure problem: without a
package bidding procedure, it might be di¢ cult for agent 3 to beat each of
the other agents, even though their interest in these objects is weaker. Thus
this second case is going to measure the impact of these exposure problems
on the performance of auction mechanisms.

In the third case, we consider the coordination problem, where the level
of interest is identical among objects close to an agent. Consequently, in an
e¢ cient allocation, agent 3 is not going to win any objects, and agents 1, 2,
4, and 5 will face the coordination problem.

Lastly, we examine the impact of subject characteristics. In standard
experiments, the subjects of the experiments are university students. There
have been concerns since these students are less knowledgeable and experi-
enced than actual participants in the market. That is, university students
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may not be representative of the targeted population. If true, it may bias
the estimate. To investigate this issue, we ran one session with professional
traders who make their living in stock trading and internet auctions.

Given the experimental data, we move to the next step of empirically in-
vestigating the optimization problem (2): The advantage of this experimen-
tal approach over the �social experiment�type of study is (1) a researcher has
control over the variation in the factors and (2) the assignment of the exper-
imental unit to treatment is random. In contrast, in a �social experiment�
study, a researcher needs to be concerned with selection bias due to endo-
geneity of assignment. But, in a controlled experiment, since a researcher
can exogenously assign a treatment level to an experimental unit, we can
directly compare the responses of the experimental units to di¤erent treat-
ments. On the other hand, since we do not adopt a structural approach, we
do not have much information about the functional form of f . Consequently,
the experimentalist approach focuses on establishing the causal relationship
between factors and performances.

We �rst discuss the pairwise comparison among treatment groups. First,
clock-proxy auctions did better than generalized Vickrey auctions with the
full sample. We �nd two reasons. The �rst issue is coordination of bids
among agents. In package auctions, the market clears not object-by-object,
but as a whole. Therefore, a bid needs to �nd �partner packages�with which
they cover all the objects to win. But in package auctions, the number of
possible packages is quite large. Given bid submission costs, each agent
submits only a limited number of bids. Thus, avoiding con�icts and forming
winning combinations are not trivial tasks for agents. In generalized Vickrey
auctions, since it is sealed-bid simultaneous, each agent does not have any
information about the behavior of other agents. On the other hand, in clock-
proxy auctions, agents can observe the bids by other agents in the �rst stage
of clock auctions. Thus this information can help the coordination among
agents. This problem is most severe in additive value cases where there are
no �focal bids�. The second issue is a low revenue equilibrium in generalized
Vickrey auctions, where agents can engage in a low revenue equilibrium
strategy by engaging in a demand reduction. In contrast, in clock-proxy
auctions, agents have an opportunity to bid for objects, which makes a low
revenue equilibrium harder to realize.

Second, clock-proxy auctions did signi�cantly better than simultaneous
ascending auctions with exposure problems, and rankings in case of additive
values and coordination problems were ambiguous. Simultaneous ascending
auctions yielded higher revenues than clock-proxy auctions. An explanation
for the �rst result is incentive problems pointed out in previous research.
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The second explanation is that exposure problems in simultaneous ascending
auctions sometimes lead agents to bid too aggressively, causing a loss ex post.
This �naive�bidding behavior contributed to a high revenue in simultaneous
ascending auctions.

Third, complexities of trading procedures a¤ect the performance. Large
scale package auctions are di¢ cult to understand, and they involve various
dimensions of complexities such as communication complexities and cog-
nitive complexities. We compare the performance of two cases: with and
without time limits. Removing time limits improved e¢ ciencies, but still the
outcome did not reach full e¢ ciency because of cognitive costs and package
coordination problems.

Fourth, subject characteristics a¤ect the performance of trading proce-
dures. We found that with professional traders, agents�payo¤s were signif-
icantly higher. The di¤erences were the biggest with generalized Vickrey
auctions. One reason is that professional traders frequently engage in �pack-
age demand reduction.� This is equivalent to demand reduction in multi-
unit auctions as discussed in Ausubel and Cramton (2000). In multi-unit
auctions, agents reduce bids for later units in order to reduce the market
clearing price. In auctions of heterogeneous objects with package bidding
procedures, reducing the bids for some packages can still a¤ect the market
clearing price. We found that professional traders engaged in demand re-
duction more often than students did. In these package demand reduction
equilibria, the allocation is close to e¢ cient, but the payment is very small.

After conducting pairwise comparison among a comparison group, we
generalize the model to include multiple factors. Also, we are interested in
a preliminary estimation of the performance functions. As a �rst step, we
conducted a 3-way ANOVA with the dependent variables of e¢ ciency and
revenue.

An ANOVA analysis showed that auction designs have signi�cant im-
pact on e¢ ciencies and seller revenue. The subject characteristics were
not signi�cant for the determination of e¢ ciencies, but were signi�cant for
the determination of the auctioneer revenue. This result is consistent with
the above hypothesis of strategic package demand reduction by professional
traders. Furthermore, we found that the interaction terms among factors
were often signi�cant. This result suggests that the magnitude change as a
result of change in trading procedures can depend on factors levels.

As a result of ANOVA, we �nd that the performance function f is non-
linear in parameters x; t1 and t2. As a preliminary step to estimating the
functional form of the performance function, we estimate the quadratic re-
sponse surfaces. From these parameters, we estimate the impact of auction
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designs on e¢ ciencies in each valuation structure after controlling the sub-
ject characteristics. We took the additive value environment and the gen-
eralized Vickrey auction as a benchmark. That is, in this formulation, the
performance of an auction mechanism in a given value structure is deter-
mined by (1) the baseline performance of generalized Vickrey auctions with
additive values, (2) a di¤erences in the auction mechanism in an additive
value environment, and (3) the interaction terms depending on the value
structures. In an additive value environment, we found that simultaneous
ascending auctions led to higher e¢ ciency improvements. But in the ex-
posure value environment, due to interaction terms, clock-proxy auctions
achieved higher e¢ ciency improvements. These results are consistent with
theoretical conjectures.

Let us brie�y summarize the contributions of this paper.
First, the clock-proxy auction has not been previously studied; this is

the �rst experimental evaluation of clock-proxy auctions. Furthermore, this
experiments adopts a large scale setting. Previous studies such as Ledyard,
Porter, and Rangel (1997) and Banks, Olson, Porter, Rassenti, and Smith
(2002) involved only a small number of objects or one dimensional super-
additivity. On the other hand, our setting introduces a two-dimensional
superadditivity, which will allow the evaluation of complexity issues.

Second, we provide experimental evidence of various theoretical hypothe-
ses concerning package auctions and simultaneous ascending auctions. We
found that generalized Vickrey auctions su¤ered from low revenue equilib-
ria, as suggested by Ausubel and Milgrom (2004). Additionally, we found
that exposure problems deterred the performance of simultaneous ascending
auctions, and coordination problems made the comparison between package
auctions and simultaneous ascending auctions inconclusive.

Third, it is one of the �rst studies which documents the e¤ect of com-
plexities on the performance of trading procedure. Because of these bid
submission costs and complexities, agents chose to focus on some limited
number of objects and packages rather than spreading their e¤orts among
many objects and packages. Furthermore, we found that removing the time
limit of the round - thus decreasing the cost of bid submission - increased
e¢ ciency and revenue, but not su¢ ciently to realize full e¢ ciency.

Fourth, this is one of the �rst studies that documents the e¤ect of sub-
ject characteristics on the outcome of the experiments. The result that
subject characteristics signi�cantly a¤ects the performance, especially re-
garding seller revenue, suggests that previously proposed estimates based
on university student experiments can be potentially biased.

The rest of the paper is organized as follows. Section 2 de�nes the
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economic environments and auction mechanisms used in this experiment.
Section 3 describes the experimental design. Section 4 explains our �nd-
ings for pairwise comparison among treatment groups. Section 5 considers
ANOVA and estimation of auction design. Section 6 concludes.

1.1 Previous Studies

Our research builds on previous experimental contributions.
Banks, Ledyard, and Porter (1989) compared object-wise double auc-

tions, administrative process, iterative VCG mechanisms and combinator-
ial ascending bid mechanisms (Adaptive User Selection Mechanisms). Our
results are consistent with their results: combinatorial mechanism can be
e¤ective in the presence of superadditivity.

Ledyard, Porter, and Rangel (1997) compared the performances of se-
quential ascending auctions, simultaneous ascending auctions, and the AUSM
mechanisms. There were unit demand restrictions, three objects, or restric-
tion to the number of packages the agents have interests in. When objects
were substitutes, package bidding did not have a signi�cant e¤ect on perfor-
mance. When there were exposure problems, AUSM led to a signi�cantly
higher e¢ ciency but the coordination problems did not have signi�cant im-
pacts. Our results on the comparison between clock-proxy auctions and
simultaneous ascending auctions are consistent with their results. A di¤er-
ence is that our setting is of much larger scale. Thus, complexity of package
bidding trading procedures has an impact on performance.

Recently, Morgan (2002) conducted experiments comparing the perfor-
mance of generalized Vickrey auctions and simultaneous ascending auctions
in the environment of three objects and 15 agents. Little di¤erence was
found among the performance of these mechanisms. A di¤erence between
our setting and his setting is the scale of the auctions: our setting involved 16
objects. Complexity due to a large number of objects explains the di¤erence
in results.

Banks, Olson, Porter, Rassenti, and Smith (2002) considered experi-
ments comparing the performance of simultaneous multi-round auctions,
with ascending auctions having package bidding. They found that ascend-
ing auctions with package bidding achieved higher e¢ ciencies with comple-
mentary value functions. Their results are consistent with our results. Our
experimental design introduces speci�c value structures and subject charac-
teristics.

Finally, let us emphasize the issues in our research which the previous
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research did not deal with. First, we consider a large-scale setting with a
two-dimensional formulation of superadditivity. Second, we consider fac-
tor design which speci�cally focuses on exposure problems and coordination
problems. Third, we examine the impact of complexity of trading proce-
dures. Finally, we conduct analysis of subject characteristics.

2 Economic Environments and AuctionMechanisms

In this section we formulate the economic environment and de�ne the auction
mechanisms.

2.1 Economic Environments

We consider a complete information private value environment.
We begin with the de�nition of objects and packages. Suppose there

are N 2 N++(heterogeneous) objects. A package is z = (z1; :::; zN )with
zn 2 f0; 1_gfor each n. Let Zbe the set of all packages.

There are L 2 N++agents. Let agent l�s value function be vl : Z ! R+.
Agent l0s payo¤ from acquiring a package z and paying bl(z)is vl(z) �

bl(z):
The value function of agent lis additive if for any z,

vl(z) =
X

zm:
P
zm=z

vl(zm)

where zm = (0; :::; 1; :::; 0)| {z }
m th element

. That is, the value of a package is equal to the

sum of the values of objects comprising the package. The value function of
agent lis superadditive if for any z,vl(z) �

P
zm:

P
zm=z

vl(zm)and there is
some zsuch that a strict inequality holds.

2.2 Auction Mechanisms

We now introduce auction mechanisms.

2.2.1 Generalized Vickrey Auctions

A generalized Vickrey auction (Vickrey (1961), Clarke (1971), and Groves
(1973)) consists of three procedures. First, agents l = 1; :::; L simultaneously
place bids. Package bidding is allowed. Let v0l : Z ! R+ be a bid by agent
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l. Given incentive constraints, v0lmay well be di¤erent from vl. Second,
the auctioneer chooses the value-maximizing allocation according to the re-
ported valuation. Let fz�l g = argmaxfzlg

P
l v
0
l(zl)subject to 0 �

P
l zl �

1; 0 � zl � 1,8l. Third, each agent pays the externality imposed upon other
agents. In order to compute the payment, the auctioneer �rst computes
the values other agents get when the agent is absent from the auction. Let
�l = max

P
m6=l v

0
m(zm)subject to 0 �

P
m6=l zm � 1; 0 � zm � 1,8m. Then,

using this amount al, the payment is de�ned by pl = �l �
P
m6=l v

0
m(z

�
m).

2.2.2 Simultaneous Ascending Auctions

The second auction mechanism is the simultaneous ascending auction, which
proceeds in rounds. At the beginning of each round, the auctioneer sets,
for each object, the provisional winner and the price p(zn); n = 1; :::; N .
For each object, any agent can submit a bid that is at least equal to the
provisional price plus the minimum price increment. Package bidding is not
allowed. At the end of the round, the auctioneer determines the provisional
winner and price of each object. The provisional winner is the agent with
the highest bid for that object. The auction ends at the round when no
auction has any new bids. During the auction, each agent is fully informed
of all bids and bidder identities.

In order to isolate the e¤ect of package bidding, our implementation of
simultaneous ascending auctions is simpler than the actual FCC auctions.
For example, we do not impose eligibility rules, activity rules, or bid with-
drawal; agents are not subject to any quantity cap; minimum bid increments
are �xed throughout the auction.

2.2.3 Clock-Proxy Auctions

The third mechanism is clock-proxy auctions proposed by Ausubel, Cram-
ton, and Milgrom (2004). The clock-proxy auction consists of two stages:
clock auctions followed by proxy auctions. The clock proxy auctions are
�demand-query�mechanisms, and they implement the Walrasian auction-
eer. First, at the beginning of each round, the auctioneer sets the price
p(zn); n = 1; :::; N . The prices are usually those from the previous round
plus some increments (for more details, see Ausubel, Cramton, and Milgrom
(2004)). Second, each agent decides whether to stay in or drop out from the
auction (i.e., demand query). Third, the whole auction closes when there
are no active auctions remaining. Bids at the clock auction will be used as
a package bid in a proxy auction.
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The proxy auctions are a version of ascending proxy auctions de�ned
in Ausubel and Milgrom (2002). First, each agent chooses and sends their
values to a proxy agent. Second, proxy agents participate in an ascending
auction by bidding straightforwardly. At each round of the ascending auc-
tion, provisionally winning bidders don�t do anything in this round.Third,
each provisionally losing bidder (proxy) computes the current surplus for
each package (valuation - standing highest bid) and chooses one package
with the highest surplus. If the surplus is higher than the bid increment,
he places a bid for this package: standing highest bid plus a bid increment.
If more than one proxy choose to bid for the same package, only one of
them will be awarded this bid. Fourth, at the end of each round, after all
agents have made their bids, the auctioneer selects the combination of non-
con�icting bids that maximizes their values and chooses the start values for
the next round. Fifth, the auction ends when there are no new bids from
proxy agents.

The �rst stage of clock auctions is similar to simultaneous ascending
auctions in that they allow only object-by-object bidding. However, clock
auctions are distinct in that the price increases are driven by the clock set
by the auctioneer. The decision problem of each agent is whether or not to
drop out. The second stage of the ascending proxy auction is similar to the
Vickrey auction in that it includes the package bidding procedure. However,
the ascending package auction is distinct in that each agent provides a value
pro�le to their proxy agent, and the proxy agent bids straightforwardly
according to the reported value pro�le.

2.3 Review of Theory and Hypothesis

In this subsection, we summarize the hypothesis to be experimentally tested.

2.3.1 Substitute Case

We �rst consider the case where objects are substitutes. Recall that objects
are substitutes if for each objectm, the demand for objectmis nondecreasing
in the price pj ; j 6= m. That is, the demand for each good is nondecreasing
in the prices of other goods. Equivalently, we can de�ne substitutes in terms
of isonotinicity of the rejected set in the set of available contracts. An exam-
ple is the case where the value functions are additive. When the packages
have superadditive values, this substitute relationship does not necessarily
hold since the demand for object mmay come from the package value that
includes object j. It is intuitive that an increase in the set of available con-
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tracts corresponds to price decreases. A key result in case of substitutes
(Gul and Stacchetti (1999) and Milgrom (2000), for example) is that a com-
petitive equilibrium exists in this case. An intuitive argument: Consider
prices and allocations obtained at the end of the process of straightforward
bidding according to the true value function. At the end when there are no
new bids, each bidder�s allocation maximizes the payo¤, given prices by the
straightforward bidding. That is, it su¢ ces for the mechanism to discover
the market clearing price for each object.

Since it is su¢ cient to discover the prices for each object, and prices for
the packages need not be discovered, it is conjectured that package bidding
procedures will have little impact. Indeed, when goods are substitutes, there
exists a dominant strategy equilibrium in ascending proxy auctions which
will lead to Vickrey payo¤s (Ausubel and Milgrom (2002)). An intuitive ar-
gument: With sincere bidding, if the payo¤ is less than Vickrey payo¤s, then
there is a blocking coalition adding that bidder because of bidder submodu-
larity. Thus the payo¤ is that of Vickrey payo¤s, thus a dominant strategy.
These observations can be summarized in the following hypothesis:

Hypothesis 1. When the objects are substitutes, there will be little per-
formance di¤erences among generalized Vickrey auctions, simultaneous as-
cending auctions, and clock-proxy auctions.

2.3.2 Superadditive Values: Exposure problem

But when objects are complements, the equivalence no longer holds. Com-
petitive equilibrium may fail to exist. The mechanism may need to discover
both object and package prices. Generalized Vickrey auctions are still truth-
ful. But an agent needs to report the value for all possible 2N � 1packages.
Ascending auctions will su¤er from two strategic incentive problems: expo-
sure problems and coordination problems. Recall that exposure problems
are de�ned as follows: when an agent has superadditive values, the value
of a package is higher than the values of the objects consisting a package.
If package bidding is not allowed, then the exposure problem can lead to
ine¢ ciencies. Thus, the hypothesis about exposure problems:

Hypothesis 2. When exposure problems are present, introducing package
bidding procedures will improve e¢ ciency.
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2.3.3 Coordination Problem

On the other hand, package bidding procedures will introduce a coordina-
tion problem among agents against a package bidder. Recall a coordination
problems applies to agents who are interested in individual objects but need
to beat a package bidder. If package bidding is allowed, then coordination
failure can lead to ine¢ ciencies. This leads to the following hypothesis:

Hypothesis 3. When there are coordination problems, introducing package
bidding procedures may not improve e¢ ciency.

3 The Experimental Design

In the previous section, we de�ned three auction mechanisms and reviewed
the main hypothesis of this paper. In this section, we de�ne the experimental
design and remaining two factors.

We begin with the formulation of objects and values used in the experi-
ment. There are 16 objects and 5 agents. Each agent has a value vl (zn)for
each of 16 objects. This value is �xed in all three treatments. (The values
of the packages are how these treatments will di¤er.) We show an example
of the object values by agent 1. The detailed values for other agents are in
Appendix B.

Figure 2: An Example of Base Values of an Agent
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3.1 The Valuation Structure

After auction design, valuation structure of agents is the second factor in
this experiment. Speci�cally, we will consider three cases: the additive value
case, the exposure problem case, and the coordination problem case. The
�rst case is where the value of the package is given by the sum of values
of the individual object composing the package. That is, for each package
B, vl(B) =

P
zn:the nth element of Bn is 1 vi(zn

_). Evidently, the additive value
function satis�es the substitute condition. The �gure below explains the
value-maximizing allocation.

Figure 3: E¢ cient Allocation for The Additive Value Case

In the following two cases, we will consider superadditive values. Before
going into the details, we �rst de�ne the functional form of value functions
common to these two cases. Speci�cally, the value of a package zfor agent
i, vi(z)is given by

vi(z) =
X

zk:kth element of z is 1

vi(zk)

+0:01
X

zl;m:l,mth element of z is 1 and l;m are in the area of special interest

�i(l)�i(m)vi(zl)vi(zm):

The �rst term adds up the values of the individual objects contained in
the package. The second term describes the superadditive values. These
parameters �ldenote intensities of superadditive values.
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In this paper, we consider a following distribution of �for each agent:Let
Ai = fk : �i(k) > 0gbe the set of objects that agent iis especially interested
in. We assume A1 = f1; 2; 5; 6g; A2 = f3; 4; 7; 8g; A3 = f6; 7; 10:11g;A4 =
f9; 10; 13; 14g;and A5 = f11; 12; 15; 16g. An economic interpretation is that
each agent is interested in the objects close to its location. The following
table explains the distribution of Ais�for agent 1-5. These distributions of
Ai are common in all treatments. The only di¤erence in two cases comes
from the di¤erent values of �. There are con�icts on objects 6, 7, 10, 11,
since there are two agents who have special interest in these objects. This
con�ict causes coordination problems or exposure problems depending on
the parameter values of �.

Figure 4: Areas of Interest

Let us compare this formulation with that of Banks. Olson, Porter, and
Rassenti (2002). Their formulation is

Vi(z) =
X

k2B(z)
vi(zk) + �i(

X
j

q)�ii +4i(
X
j2X

X
k2[A

�j(k))�i

with the parameter values of � 2 f78; 150; 175g; � 2 f1; 1; :65g; 4 2
f120; 229; 230g;and � 2 f1:65; 1:65:2:05g. Their interpretation is that the
second term refers to superadditivity coming from the scale economy (qis
the population) and the third term concerns superadditivity coming from
being adjacent to each other. First, they arrange the objects in a circle so
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that �j = 1if and only if objects are adjacent to each other. Furthermore,
the set of objects on which the agents have superadditivity is limited to the
�ve identical objects out of the 10 (the sets �and 	). Given their value of
�, the superadditivity comes mostly from geographically adjacent licenses.
This point is similar to ours, where superadditivity comes from the adja-
cency to the agent location. A �rst di¤erence is that their formulation of
superadditivity is based on the objects�topology forming a one dimensional
structure (circle), while our formulation has a richer two dimensional struc-
ture. Second, in their formulation, the set on which superadditiviy is de�ned
is common to all the agents, while in our case, di¤erent agents have di¤erent
areas of interest which vary by location. Two implications of this di¤erence
are that package coordination among agents is more important in our model,
and that our formulation allows a distinct formulation of exposure problems
and coordination problems.

3.1.1 The Exposure Problem

In the second case, we consider a parameterization which focuses on the
exposure problem. Speci�cally, we assume

�R1 (1) = �R1 (2) = �
R
1 (5) = 0:3; �

R
1 (6) = 0:1

�R2 (4) = �R2 (3) = �
R
2 (8) = 0:3; �

R
2 (7) = 0:1

�R3 (6) = �R3 (7) = �
R
3 (10) = �

R
3 (11) = 0:3;

�R4 (13) = �R4 (9) = �
R
4 (14) = 0:3; �

R
4 (10) = 0:1;

�R5 (16) = �R5 (12) = �
R
5 (15) = 0:3; �

R
5 (11) = 0:1:

That is, the weight of an object for an agent decreases as the distance

between the agent and the center of the object increases. In this setting,
we focus on the exposure problem of agent 3. In this setup, the e¢ cient
allocation is that agent 3 aggregates the objects f6; 7; 10; 11g, as shown in
Figure 5.
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Figure 5: E¢ cient Allocation for Exposure Values Case

But agent 3 faces the exposure problem of having to beat other agents in
auctions for objects 6, 7, 10, and 11. For each object, agent 3 is not the one
with the highest valuation. If agent 3 ends up winning only one object, then
agent 3 will face the risk of losing money.

Object 6 7 10 11
agent 1 400 400 500 400
agent 2 700 600 300 300
agent 3 300 500 600 600
agent 4 200 400 500 700
agent 5 200 300 700 500

Table 1: Exposure Problem

Furthermore, a competitive equilibrium does not exist here. To show
this, suppose there exists a competitive equilibrium price fplgl=1;:::;16. Now
consider agent 1. In an equilibrium, agent 1 wins objects 1, 2, and 5 but not
each of 1, 2, 5, 6. This implies that the competitive prices must be such that
agent 1 �nds it pro�table to buy objects 1, 2, and 5 while passing on object 6.
This implies the following inequalities: p1+p2+p5 � 2400; p1+p2+p5+p6 �
3591! p6 � 1191: Using a similar calculation, we obtain the following lower
bounds for the prices for the package f6; 7; 10; 11g: p6 + p7 + p10 + p11 �
1191 + 942 + 770 + 799 = 3632: But agent 3�s valuation for the package,
which is 3324, is less than the price. Thus competitive equilibrium prices do
not exist.
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3.1.2 The Coordination Problem

The next case focuses on the coordination problem, which tests the ability
of trading procedures to coordinate agents to achieve an e¢ cient allocation
against package bids. First, we consider the following weights:

�R1 (1) = �R1 (2) = �
R
1 (5) = �

R
1 (6) = 0:2

�R2 (4) = �R2 (3) = �
R
2 (8) = �

R
2 (7) = 0:2

�R3 (6) = �R3 (7) = �
R
3 (10) = �

R
3 (11) = 0:2

�R4 (13) = �R4 (9) = �
R
4 (14) = �

R
4 (10) = 0:2

�R5 (16) = �R5 (12) = �
R
5 (15) = �

R
5 (11) = 0:2:

A graphical representation of the weights for agent 1 is given in the following
table. In contrast to the previous ase, agents�weights for an area of interest
are equal independent of the distance from the headquarter.

Figure 6: Weights for Agents

This case exhibits a coordination problem for agent 3 as follows. E¢ cient
allocation would imply that agent 1 wins object 6, agent 2 wins 7, agent 4
wins 10, and agent 5 wins 11. In order to achieve the e¢ cient allocation,
agents 1, 2, 4, and 5 need to e¤ecitively coordinate their bids against agent
3 who has a superadditiv interest in the package 6,7,10, and 11.
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Figure 7: E¢ cient Allocation for Coordination Problems Case

Let us take a closer look at the valuations. Agent 3 has the valuation of
2588 for the package of 6, 7, 10, and 11. In the table below, we computed
the value of the package f6; 7; 10; 11g for agents 1, 2, 4, and 5. It becomes
evident that none of these agents can act alone and still beat agent 3.

Agent 1: 1800 Agent 2: 1900
Agent 4: 1500 Agent 5: 1700

Table 2: Coordination Problem.

3.2 Subject Characteristics

The last factor we consider is subject characteristics. In order to test the
e¤ect of subject characteristics on performance, we conducted experiments
with university students as well as �nancial or ecommerce industry profes-
sionals.

3.3 The Treatment Structure

In summary, this experiment has the following 18 possible treatment com-
binations, as seen in Table 2. They have �xed e¤ects since the same levels
were used for repeated experiments.
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Treatment No. Auction Factor Value Factor Subject Factor
1 VCG Additive Students
2 VCG Additive Traders
3 VCG Exposure Students
4 VCG Exposure Traders
5 VCG Coordination Students
6 VCG Coordination Traders
7 SAA Additive Students
8 SAA Additive Traders
9 SAA Exposure Students
10 SAA Exposure Traders
11 SAA Coordination Students
12 SAA Coordination Traders
13 Clock-Proxy Additive Students
14 Clock-Proxy Additive Traders
15 Clock-Proxy Exposure Students
16 Clock-Proxy Exposure Traders
17 Clock-Proxy Coordination Students
18 Clock-Proxy Coordination Traders

Table 3: Experimental Design

3.4 Experimental Procedures

In this section, we report the experimental procedures.
The subject pools of the experiment are students, students from other

schools, and professional traders in ecommerce and �nancial markets. The
subjects were recruited using email and postings at [recruiting web site
URL]. Professional traders are de�ned to be ones who make or made their
living through trading in securities markets or eBay markets. We asked sub-
jects to submit their resumes to verify these quali�cations. Copies of these
resumes are available upon request, provided that subjects consent.

We have implemented the auction algorithms on a server at [the auction
web site URL] and conducted experiments on computer networks at Cal-
tech and Stanford University. Prior to the experiments, we distributed the
instructions that are posted at the above website. We went through simple
examples and asked questions before experiments started. No deceptions
are involved in this experiment.

In this experiment, an experimental unit is an individual auction with
each agent having a speci�c value structure. We had multiple observation
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units for each cell. Speci�cally, we implemented the following experimental
unit structure. The order of experiment is randomized among treatments
to average out the e¤ect of drift and learning. Each subject is randomly
assigned a role of one of agents 1-5 at the beginning of the session. The
subjects then played three auctions, after which the agent assignments were
changed. For example, if a subject starts as agent 1 and plays these three
auctions, the subject would then play the role of agent 2, followed by agent
3, agent 4, and agent 5. Five subjects participated in a session. The length
of session varied from three to three and one-half hours. This experimental
unit design implies that we took repeated measurements to improve the
power to detect e¤ect of factors.

In total, we ran 100 auctions. The breakdown is 30 experiments each for
generalized Vickrey and simultaneous ascending auctions, and 40 for clock-
proxy auctions. We ran 30 clock-proxy auctions with the same round limit as
the generalized Vickrey auctions and the simultaneous ascending auctions.
The remaining 10 clock-proxy auctions were run without time limit. The
last are excluded from the pairwise comparison of mechanisms, because they
are intended only for comparison with the clock-proxy auctions that use a
time limit.

4 Pairwise Comparisons

Now that we have the data from the experiments, we analyze this data to
empirically study the market design problem (1). The empirical problem
is simpler than the standard �natural experiment�types of models in eco-
nomics (see Angrist and Krueger (1995) for a survey), since a researcher can
control the variation in the explanatory variables and the interaction among
selection and treatment.

We start with a pairwise comparison of performances among treatment
groups. Pairwise comparison is attractive because it entails fewer assump-
tions about the data generating process than would ANOVA or other linear
models have.

Since we have implemented balanced design, there are same number of
observations for each treatment. (The ratio of students/traders is constant
- conditional on values - and each auction design has the same number of
treatments for each value structure.) Thus we can compare the performance
of the mechanisms, conditional on the choice of designs. We �rst conduct a
standard t-test on the null hypothesis that performance is the same for the
two treatments. To test the robustness, we consider a di¤erence-in-di¤erence
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estimator (with pretest values equal to zero) with the other factors (values,
subject characteristics, a sequence in a session, and a session) �xed. This
estimator will remove biases associated with common learning e¤ects and
session-level heterogeneity which might be correlated with performance. We
then conduct a t-test to test the null hypothesis of zero di¤erence. Fur-
thermore, we consider a nonparametric Wilcoxon test to remove underlying
distributional assumptions.

4.1 Dependent Variables

We measure the performance of the mechanism in terms of its e¢ ciency and
revenue. The �rst metric is allocation e¢ ciency. Let z = (z1; :::; zL) be an
allocation. In this case, a relative e¢ ciency is de�ned in terms of the e¢ cient
allocation. Let z� be that e¢ cient allocation. Then

E¢ ciency (Relative) =
X
l

vl(zl)=
X
l

vl(z
�
l ):

Let bl(zl) be the payment by agent l for a package zl. In this case, the
auctioneer revenue is

Revenue =
X
l

bl(zl):

A relative revenue is de�ned to be

Revenue (Relative) =
X
l

bl(zl)=
X
l

vl(z
�
l ):

Given allocation {zig and payment {bi(zi)g, agent i�s payo¤ is ui(zi; bi) =
vi(zi)� bi(zi). Then, the aggregate payo¤ is de�ned by

Aggregate Payo¤=
X
l

ul(zl; bi):

A relative aggregate payo¤ is de�ned by

Aggregate Payo¤ (Relative) =
X
l

ul(zl; bi)=
X
l

vl(z
�
l ):

4.2 Vickrey Auctions Versus Clock-Proxy Auctions

We �rst present the results for the pairwise comparison between clock-proxy
auctions and generalized Vickrey auctions.
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4.2.1 The Full Sample

We �rst compare the performance taking the whole sample. Because of
balanced design, this comparison is valid.
Result 1. Clock-proxy auctions produced signi�cantly higher e¢ ciency lev-
els than generalized Vickrey auctions did.

Obs RE¢ ciency RRevenue RPro�t
Clock-Proxy 28 0.8564 0.4277 0.3372
Generalized Vickrey 30 0.7439 0.3772 0.2521
Di¤erence 0.113 0.051 0.082

Table 4: Summary Statistics of Clock-Proxy Auctions and Generalized Vickrey
Auctions: the Full Sample

Figure 8: Box Plots of E¢ ciencies and Revenues

These results imply that clock-proxy auctions outperformed generalized
Vickrey auctions in our experiments. In terms of relative e¢ ciency, the
null hypothesis is rejected at the 5% level. Clock-proxy auctions have a
higher seller relative revenue according to a nonparametric Wilcoxon test.
An implication of this result is that hypothesis 1 - performances are the
same with substitutes - does not hold for generalized Vickrey auctions and
clock-proxy auctions.
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E¢ ciency Revenue Pro�t
T Test with Unequal Variance 2.20 (0.0323) 1.01 (0.3183) 0.87 (0.3903)
T Test for a Di¤erence 2.44 (0.0177) 1.01 (0.3154) 0.88 (0.3837)
Wilcoxon for a Di¤erence 2.53 (0.0057) 1.95 (0.0254) 0.48 (0.3150)

Table 5: Statitical Tests of the Hypothesis of Equal Performances between
Clock-Proxy Auctions and Generalized Vickrey Auctions: the Full Sample

A reason for this e¢ ciency di¤erence is the package coordination prob-
lem. In package auctions, the market clears as a whole, not individually.
A bid needs �partner bids�to cover the whole allocation. For example, in
order for a bid {1,2,5,6} to win, it is necessary to have package bids which
cover exactly {3,4,7,8,9,10,11,12,13,14,15,16}: In an idealized world where
bid submission costs are all zero, agents could feasibly submit bids for all
possible packages, thus coordination would not be an issue. But in a realistic
situation where there are bid submission costs and agents submit bids only
for a subset of all possible packages, coordination becomes an issue. For ex-
ample, in generalized Vickrey auctions, which are sealed and simultaneous,
agents are in the dark about bids made by other agents. By contrast, in
clock-proxy auctions, agents can observe the �rst stage clock bids and use
that information to ease these coordination problems. This coordination is
hardest when there are no obvious packages to bid, that is, in a case without
superadditivity.

Another reason for revenue di¤erence is a low-revenue equilibrium in
generalized Vickrey auctions. In addition to a truth-telling equilibrium,
there are additional equilibria that imply low revenue for the auctioneer. As
we will see, although student subjects were unlikely to achieve a low revenue
equilibrium, professional traders often played a low revenue equilibrium. (Of
course, the number of auctions participated in by students and traders is
identical between two treatments.) One form of a bidding pattern is that each
agent bids exactly for the package that is a part of an e¢ cient allocation,
and does not bid at all for any other package. In this setting, removing an
agent does not cause externalities on other agents. Therefore, the payment
by each agent is equal to zero. This results in zero revenue for the auctioneer.
For example, in auction ADD-VCG-09, agents achieved an e¢ ciency level
of 8400 but the auctioneer revenue was 0. In this auction, agent 1 placed
only one bid, agent 2 placed only �ve bids, agent 3 placed only one bid,
agent 4 placed only four bids, and agent 5 placed only one bid. As a result,
the allocation with the second highest value is zero for every agent. An
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equilibrium of that extreme level was not observed in clock-proxy auctions
where there was a clock stage. In the �rst stage of clock-proxy auctions,
agents have an opportunity to bid for a single object, which can upset the
low-revenue equilibrium.

4.2.2 Additive Values

We then compare the performance in additive value cases. The null hypoth-
esis of equal relative e¢ ciency is rejected.

Result 2. In the additive value case, clock-proxy auctions achieved higher
e¢ ciencies. In both auctions, full e¢ ciency was not achieved.

Obs E¢ ciency Revenue Pro�t
Clock-Proxy 8 0.6789 0.4797 0.1992
Generalized Vickrey 10 0.5368 0.3713 0.1654
Di¤erence 0.142 0.108 0.034

Table 6: Summary Statisticsn of Clock-Proxy Auctions and Generalized Vickrey
Auctions: Additive Values

Even with additive values, clock-proxy auctions and generalized Vickrey
auctions did not achieve full e¢ ciency. In the experiments, agents with
bid submission costs engage in strategic bidding or do not enter a su¢ cient
number of bids to realize full e¢ ciency. For example, in ADD-VCG-02, user
4 submitted a bid for the whole package 1-16. Other agents, submitting only
several bids, could not form a coalition to upset this bid.
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Figure 9: Box Plots of E¢ ciencies and Revenues

E¢ ciency Revenue Pro�t
T Test (Unequal Variance) 2.01 (0.0619) 1.23 (0.2383) 0.28 (0.7838)
T Test for a Di¤erence 1.50 (0.1546) 1.09 (0.2934) 0.51 (0.6144)
Wilcoxon for a Di¤erence 1.74 (0.0409) 1.73 (0.0410) 0.84 (0.2021)

Table 7: Test Statistics of the Hypothesis of Equal Performances between
Clock-Proxy Auctions and Genearlized Vickrey Auctions: Additive Values

4.2.3 The Exposure Problem

Next we consider the exposure problem case. In this case, clock-proxy auc-
tions have higher e¢ ciency levels, but the di¤erences are not statistically
signi�cant.

Obs E¢ ciency Revenue Pro�t
Clock-Proxy 10 0.9828 0.4061 0.5767
Generalized Vickrey 10 0.8968 0.4566 0.4402
Di¤erence 0.086 -0.505 0.136

Table 8: Summary Statistics of Clock-Proxy Auctions and Genearlized Vickrey
Auctions: the Exposure Problem

Figure 10: E¢ ciencies and Revenues
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E¢ ciency Revenue Pro�t
T Tests 1.81 (0.1023) -0.75 (0.4682) 1.26 (0.4682)
T Tests for a Di¤erence 1.68 (0.1092) -0.64 (0.5298) 1.10 (0.2852)
Wilcoxon for a Di¤erence 1.29 (0.0992)

Table 9: Test Statistics of Clock-Proxy Auctions and Generalized Vickrey
Auctions: the Exposure Problem

Result 3. In the Exposure problems case, clock-proxy auctions achieved
higher e¢ ciency levels, but the di¤erence was not statistically signi�cant.

Thus, in an environment with exposure problems, clock-proxy auctions
achieved similar results in terms of e¢ ciency. A di¤erence from the additive
case is that with superadditive values, each agent tends to bid with packages
with higher values. This eased coordination among agents. Thus, both
auctions achieved a very high level of e¢ ciency, compared with other cases.

4.2.4 The Coordination Problem

Finally, we move to the case of coordination problems. The results are
similar to the coordination problem case.

Obs E¢ ciency Revenue Pro�t
Clock-Proxy 10 0.872 0.4079 0.4642
Generalized Vickrey 10 0.7981 0.3038 0.4943
Di¤erence 0.074 0.104 0.0301

Table 10: Summary Statistics of Clock-Proxy Auctions and Generalized Vickrey
Auctions: the Coordination Problem
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Figure 11: Box Plots of E¢ ciencies and Revenues

E¢ ciency Revenue Pro�t
T Tests 0.99 (0.3428) 1.03 (0.3184) -0.32 (0.7548)
T Tests for a Di¤erence 1.12 (0.2759) 1.50 (0.1498) -0.35 (0.7320)
Wilcoxon for a Di¤erence 1.19 (0.1151) 1.57 (0.0575)

Table 11: Hypothesis Testing of Equal Performances between Clock-Proxy
Auctions and Generalized Vickrey Auctions: the Coordination Problem

Result 4. In the coordination problems treatment, clock-proxy auctions
achieved higher e¢ ciency levels than generalized Vickrey auctions did, but
the di¤erences were not statistically signi�cant.

4.3 Clock-Proxy Auctions vs. Simultaneous Ascending Auc-
tions

The previous subsection compared clock-proxy auctions with generalized
Vickrey auctions. This subsection compares clock-proxy auctions with si-
multaneous ascending auctions.

4.3.1 The Full Sample

We start with a comparison between two auctions at the aggregate level.

Clock-Proxy auctions outperformed SAA in the Wilcoxson test, while the
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two other tests are inconclusive. On the other hand, auction revenues were
unambiguously higher for simultaneous ascending auctions.

Obs E¢ ciency Revenue Pro�t
Clock-Proxy 28 0.8564 0.4277 0.4287
SAA 30 0.8284 0.6725 0.1559
Di¤erence 0.028 -0.2447 0.173

Table 12: Summary Statistics for Clock-Proxy Auctions and Simultaneous
Ascending Auctions: the Full Sample

Figure 12: Box Plots of E¢ ciencys and Revenues

E¢ ciency Revenue Pro�t
T Tests 0.78 (0.4381) -7.12 (<.0001) 5.39 (<.0001)
T Tests for a Di¤erence 1.17 (0.2479) -4.89 (<.0001) 4.41 (<.0001)
Wilcoxon for a Di¤erence 2.21 (0.0133) -4.41 (<.0001) 4.41 (<.0001)

Table 13: Hypothesis Testing of the Equal Performances Between Clock-Proxy
Auctions and Simultaneous Ascending Auctions: the Full Sample

Result 5. In all treatments, clock-proxy auctions achieved higher e¢ ciency
levels than simultaneous ascending auctions did, but the di¤erences were
not statistically signi�cant. The simultaneous ascending auctions achieved
signi�cantly higher revenues.
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E¢ ciency comparison between clock-proxy auctions and simultaneous
ascending auctions depends on the setup. Indeed, clock-proxy auctions out-
performed in the case of exposure problems, but simultaneous ascending
auctions outperformed in the case of additive values and coordination prob-
lems. A di¤erence from Ledyard, Porter, and Rangel (1997) is that we
consider a large-scale 16-object setting in contrast to their 3-object setting.
The number of possible package combinations is far larger in our setting,
which makes complexity issues signi�cant. These complexities make agent
coordination harder in package auctions.

Simultaneous ascending auctions achieved a signi�cantly higher auction-
eer revenue. This result is consistent with previous results in Banks, Ol-
son, Porter, Rassenti, and Smith (2002). One explanation is overbidding in
exposure problem structure. Another observation is that in simultaneous
ascending auctions, the structure of competitions was clear to the agents
and led to more aggressive bidding behavior.

4.3.2 Additive Values

We begin with the case of additive value functions.

Obs E¢ ciency Revenue Pro�t
Clock-Proxy 8 0.6789 0.4797 0.1992
SAA 10 0.7624 0.6505 0.1119
Di¤erence -0.0835 -0.1708 0.087

Table 14: Summary Statistics of Clock-Proxy and Simultaneous Ascending
Auctions: Additive Values
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Figure 13: Box Plots

E¢ ciency Revenue Pro�t
T Tests -1.36 (0.2060) -2.99 (0.0114) 0.98 (0.3525)
T Tests for a Di¤erence -0.59 (0.5653) -2.09 (0.0545) 1.20 (0.2481)
Wilcoxon for a Di¤erence -1.73 (0.0410)

Table 15: Hypothesis Testing of Equal Performances between Clock-Proxy
Auctions and Simultaneous Ascending Auctions: Additive Values

Result 6. Simultaneous ascending auctions fared better than clock-proxy
auctions in the additive case, but the di¤erence was statistically insigni�cant.

Ledyard, Porter, and Rangel (1997) found that e¢ ciency of simultane-
ous ascending auctions with additive values is close to full e¢ ciency. The
di¤erence between our results and their results is due to the larger scale of
our auctions. Agents often chose to concentrate on a subset of the objects,
and this leads to a lower e¢ ciency.

4.3.3 The Exposure Problem

We now compare the performance in the case of exposure problems. Clock-
proxy auctions outperformed simultaneous ascending auctions: the null hy-
pothesis of equal level of relative e¢ ciency was rejected.

Obs E¢ ciency Revenue Pro�t
Clock-Proxy 10 0.9828 0.4061 0.5767
SAA 10 0.8925 0.6862 0.2063
Di¤erence 0.09 -0.2801 0.37

Table 16: Summary Statistics of Clock-Proxy Auctions and SImultaneous
Ascending Auctions: the Exposure Problem
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Figure 14: Box Plots of E¢ ciencies and Revenues

E¢ ciency Revenue Pro�t
T Tests 3.20 (0.0099) -5.37 (<.0001) 6.87 (<.0001)
T Tests for a Di¤erence 2.88 (0.0096) -3.04 (0.0067) 3.59 (0.0020)
Wilcoxon for a Di¤erence 3.68 (0.0001) -2.38 (0.0086) 3.99 (<.0001)

Table 17: Hypothesis Testing of Equal Performances between Clock-Proxy
Auctions and Simultaneous Ascending Auctions: the Exposure Problem

Result 7. Clock-proxy auctions did better than simultaneous ascending auc-
tions in the Exposure problems case.

This result is consistent with hypothesis 2 (concerning standard exposure
problems). It is harder to aggregate objects without package bidding, since
an agent would incur the possibility of loss. On the other hand, clock-proxy
auctions can aggregate packages through package bidding.

4.3.4 The Coordination Problem

Finally we consider coordination problem value structures. Clock-proxy
auctions did slightly better than simultaneous ascending auctions, but the
di¤erence is statistically insigni�cant.
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Obs E¢ ciency Revenue Pro�t
Clock-Proxy 10 0.872 0.4079 0.4642
SAA 10 0.8301 0.2729 0.1494
Di¤erence 0.042 -0.1494 0.315

Table 18: Summary Statistics of Clock-Proxy Auctions and Simultaneous
Ascending Auctions: the Coordination Problem

Figure 15: Box Plots.

E¢ ciency Revenue Pro�t
T Tests 0.92 (0.3675) -3.90 (0.0011) 4.04 (0.0009)
T Tests for a Di¤erence 0.87 (0.3954) -3.15 (0.0052) 2.57 (0.0151)
Wilcoxon for a Di¤erence 1.57 (0.00576) -3.19 (0.0007)

Table 19: Hypothesis Testing of Equal Performances between Clock-Proxy
Auctions and Simultaneous Ascending Auctions: the Coordination Problem

Result 8. In Coordination Problems, Clock-proxy auctions and simultaneous
ascending auctions did statistically equally well

The results are consistent with hypothesis 3 (which predicts that because
of coordination problems, package bidding procedures will not improve e¢ -
ciency that much).
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4.4 Subject Characteristics

We now compare the performance between professional traders and students
in regard to coordination. The table below shows that professional traders
achieved much higher payo¤s. Interestingly, e¢ ciencies were una¤ected.
This was due to the package demand reduction problem: professional traders
reduced demand for packages, thus reducing the market clearing price. This
demand reduction does not a¤ect e¢ ciencies in a single unit auction.

Obs E¢ ciency Revenue Pro�t
Traders 25 0.7445 0.3566 0.3879
Students 25 0.8006 0.5887 0.2118
Di¤erence -0.056 -0.2321 0.176

Table 20: Summary Staistics of Auctions with Professional Traders and Students

Figure 16: Box Plots.

E¢ ciency Revenue Pro�t
T tests -1.13 (0.2626) -3.86 (0.0003) 2.57 (0.0135)
T Tests for a Di¤erence -1.22 (0.2330) -4.61 (0.0001) 3.11 (0.0049)
Wilcoxon for a Di¤erence -0.80 (0.2112) -3.74 (<.0001) 3.21 (0.0013)

Table 21: Hypothesis Testing of Equal Performances between Professional Traders
and Students
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Result 9. Subject characteristics signi�cantly a¤ected seller revenues, but
not e¢ ciencies.

We now focus on the case of Vickrey auctions. Here, traders obtained
signi�cantly higher pro�ts. This result con�rms conjectures in Ausubel and
Milgrom (2004) that a low revenue equilibrium is a serious problem in gen-
eralized Vickrey auctions.

Obs E¢ ciency Revenue Pro�t
Traders 9 0.6188 0.1098 0.509
Students 9 0.7563 0.5548 0.2016
Di¤erence -0.056 -0.4449 0.307

Table 22: Summary Statistics of Auctions with Professional Traders and
Students: Generalized Vickrey Auctions

Figure 17: Box Plots.

E¢ ciency Revenue Pro�t
T test -1.30 (0.2109) -6.87 (<.0001) 2.42 (0.0281)
T Test for a Di¤erence -1.35 (0.2187) -8.82 (<.0001) 2.18 (0.0066)
Wilcoxon for a Di¤erence -1.82 (0.0341) -3.69 (.0001) 1.82(0.0341)

Table 23: Hypothesis Testing of Equal Performances between Professional Traders
and Students: Generalized Vickrey Auctions
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4.5 Time Limit

One of the hypotheses we advance in this paper is that complexity of package
bidding rules can cause package coordination problems. In order to test the
hypothesis, we compare the performance of clock-proxy auctions with two
treatments: with and without a time limit to input the bid.

This sub-experiment might also address whether removing the time limit
leads to full e¢ ciency. Speci�cally, in the exposure value treatment, the op-
timal allocation is that agent 3 wins a package {6,7,10,11}. But in order
for this allocation to take place, agents 1-4 need to submit supporting pack-
ages of {1,2,5}, {3,4,8}, etc., which are not �intuitive� to submit. On the
other hand, the second best allocation has agents 1-4 submitting packages of
{1,2,5,6}, {3,4,7,8}, and others, and these packages are �intuitive�given the
areas of in�uence. So we hypothesize that when there is no time limit to sub-
mit bids and the only problem is communication complexity, agents might
be able to coordinate on e¢ cient allocation, but when there are time limits,
agents might not be able to coordinate on e¢ cient allocation. Moreover, if
there are cognitive complexity and package coordination problems involved
(with or without a time limit), agents might not be able to coordinate on
e¢ cient allocation.

Figure 18: E¢ cient Allocation and A More �Intuitive�Allocation

Removing the time limit improved e¢ ciency and the auctioneer revenue,
but the e¤ects are not statistically signi�cant. Even removing the time limit
did not lead to full e¢ ciency. Only 2 out of 10 cases without time limit led
to full e¢ ciency. A preliminary conclusion:
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Result 10. Communication complexity and cognitive complexity a¤ect auc-
tion performance.

5 Characterizing the Properties of the Performance
Function

5.1 ANOVA Analysis

5.1.1 E¢ ciency

In the previous section, we have studied a pairwise comparison among treat-
ment groups. In this section, we will conduct analysis of variance to under-
stand interaction among multiple factors. Since an equilibrium analysis of
these package auctions is not yet fully developed, we will not conduct struc-
tural analysis. Instead, we will conduct an ANOVA analysis to test the
main e¤ect of these factors and the magnitude of interaction e¤ects. The
standard ANOVA statistical model is given by

RE¢ ciencyijk
= Auctioni +Valuej + Subjectk

+Auctioni �Valuej +Auctionj � Subjectk +Valuej � Subjectk
+Auctioni �Valuej � Subjectk + "ijk

In this model, the di¤erences in outcome are explained by (1) the main
e¤ect of auction design, value structure, and subject characteristics, and (2)
the interaction e¤ect between factors. Notably, the interaction term does
not imply multiplication among factors. First we estimate with dependent
variables to be e¢ ciencies. The estimation results are given below.

Relative E¢ ciency DF Sum of Squares Mean Square F Value Pr > F
Model 19 1.59206 0.1137 7.57 <.0001
Error 73 1.0969 0.015
Correlated Total 92 2.690

Table 24: ANOVA Full Tests for E¢ ciency

These results support the null hypothesis that auction design has signif-
icant impact on e¢ ciencies. Interestingly, for type I and III tests, subject
characteristics did not have a signi�cant e¤ect. This result is consistent
with a pairwise comparison in the previous section and the package demand
reduction hypothesis explained in previous subsections.
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Relative E¢ ciency DF Type I SS Mean Square F Value Pr > F
Value 2 1.9902 0.9951 26.12 <.0001
Mechanism 2 3.1873 0.4553 11.95 <.0001
Subject 1 0.0335 0.0335 0.88 0.3515
Value*Mechanism 4 0.4097 0.1024 2.69 0.0377
Value*Subject 1 0.1886 0.3484 9.14 0.0034
Mechanism*Subject 2 0.1436 0.0717 1.88 0.1593
Value*Mechanism*Subject 2 0.0256 0.0128 0.34 0.7155

Table 25: ANOVA E¤ect Tests for E¢ ciency

Relative E¢ ciency DF Type I SS Mean Square F Value Pr > F
Mechanism 7 1.0868 0.1552 10.53 <.0001
Value 2 1.0277 0.5139 34.86 <.0001
Subject 1 0.0142 0.0142 0.96 0.3295
Value*Mechanism 4 0.1634 0.0408 2.77 0.0334
Value*Subject 1 0.2012 0.2012 13.66 0.0004
Mechanism*Subject 2 0.0534 0.0267 1.81 0.1703
Value*Mechanism*Subject 2 0.0132 0.0066 0.45 0.6416

Table 26: Robustness Check: ANOVA E¤ect Tests for LR E¢ ciency

Another result is that interaction terms are often signi�cant. This im-
plies that the impact of auction design depends signi�cantly on the un-
derlying value structure (Value � Mechanism) and subject characteristics
(Mechanism � Subject). The �rst term represents that the performance
of package auction rules depends on the underlying value structure, as pre-
dicted in previous theoretical results. The second interaction term represents
that subject sophistication a¤ects the performance of the auctions, which is
interpreted as a measure of complexities. The result is robust to reformula-
tion of the model that takes the logarithm of relative e¢ ciency.

5.1.2 Seller Revenue

Then we conduct an ANOVA analysis of seller revenue.

We �nd that auction design has signi�cant impact on seller revenues.
Interestingly, the value structures are insigni�cant and subject characteris-
tics have a very high F Value. This result is consistent with the previous
pairwise comparison.
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Relative Revenue DF Sum of Squares Mean Square F Value Pr > F
Model 14 2.7984 0.1999 10.92 <.0001
Error 73 1.3367 0.0183

Correlated Total 92 4.1340

Table 27: Main Tests for Revenue

Relative E¢ ciency DF Type I SS Mean Square F Value Pr > F
Mechanism 7 1.5067 0.7533 41.14 <.0001
Value 2 0.0354 0.0177 0.97 0.3181
Mechanism *Value 2 0.1268 0.0317 1.73 0.1901
Subject 1 0.6932 0.6932 37.86 <.0001
Mechanism*Subject 4 0.3159 0.1579 8.80 0.0004
Value*Subject 1 0.1026 0.1026 5.72 0.0194
Mechanism*Value*Subject 2 0.0177 0.0088 0.50 0.6114

Table 28: E¤ect Tests for Revenue

5.2 Estimating the E¤ect of Alternative Auction Designs

We now move to the estimation of impact of auction design on performance,
speci�cally e¢ ciency and seller revenue.

5.2.1 E¢ ciency

We start our analysis with e¢ ciency. The previous results show that the
relationship between these factors and e¢ ciencies are nonlinear. Given the
previous ANOVA results, we estimate the following model of performance
functions f(x; t) to estimate the e¤ect of auction design with the baseline the
generalized Vickrey auctions with additive valuation structure. This model
is obtained from dropping StudentDummy and Student*Value*Mechanism
which were not signi�cant, and approximating the interaction term by us-
ing multiplied terms. We compare the result of estimation from the linear
models with that of nonlinear models. The estimation results are given
below.

This linear model shows that both simultaneous ascending auctions and
clock-proxy auctions have similar e¤ects, which contradicts the results from
pairwise comparisons.

The quadratic model shows that both simultaneous ascending auctions
and clock-proxy auctions provide signi�cant e¢ ciency improvements over
generalized Vickrey auctions. Moreover, the estimation result shows that
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Dependent Variables RE¢ ciency RE¢ ciency
Intercept 0.5819 (14.63) 0.5367 (2.43)
ExposureDummy 0.2444 (6.41) 0.3600 (6.02)
CoordinationDummy 0.1774 (4.90) 0.2613 (4.37)
SAADummy 0.0844 (2.40) 0.2332 (3.33)
CPDummy 0.0919 (2.56) 0.1541 (1.91)
SAADummy*ExposureDummy -.2248 (-2.56)
CPDummy*ExposureDummy -.0773 (0.39)
SAADummy*CoordinationDummy -.1948 (-2.30)
CPDummy*CoordinationDummy -.0722 (-0.81)
StudentDummy 0.0305 (0.83)
SAADummy*StudentDummy -.3328 (-4.35)
CPDummy*StudentDummy -.2345 (-2.93)

Table 29: Regression Results for E¢ ciency

comparisons of e¢ ciency improvement between simultaneous ascending auc-
tions and clock-proxy auctions depend on the underlying valuation structure.
In the additive value case, simultaneous ascending auctions provided 7%
e¢ ciency improvements. However, in the case of exposure problems, clock-
proxy auctions will have 7% better e¢ ciency over simultaneous ascending
auctions, due to interaction terms. In coordination problems, the level is
4%. These quantitative levels are consistent with the theory. Moreover,
these negative interaction terms are signi�cant only for simultaneous as-
cending auctions, not for clock-proxy auctions. The result suggests that an
e¢ ciency impact of auction design depends on underlying valuation struc-
ture.

5.2.2 Revenue

We now consider similar estimation for revenues.
Estimation results are consistent with the previous pairwise comparisons.

Subject characteristics - rather than value structures - play a signi�cant
role in the determination of revenue. In addition, simultaneous ascending
auctions have signi�cant positive impact on revenue.
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Dependent Variables RRevenue RRevenue
Intercept 0.2404 (5.44) 0.1098 (2.43)
ExposureDummy -.0661 (-1.56)
CoordinationDummy -.0001 (-0.00)
SAADummy 0.2952 (7.56) 0.5281 (8.26)
CPDummy 0.0357 (0.90) 0.2023 (2.96)
StudentDummy 0.2270 (5.59) 0.3824 (6.33)
SAADummy*StudentDummy -.3328 (-4.35)
CPDummy*StudentDummy -.2345 (-2.93)
ExposureDummy*StudentDummy -.03508 (-0.87)
CoordinationDummy*StudentDummy 0.0682 (1.44)

Table 30: Regression Results for Revenue

6 Conclusion

In this paper we have studied the design of auction mechanisms to allocate
heterogeneous objects using experimental comparison among Generalized
Vickrey auctions, simultaneous ascending auctions, and clock-proxy auc-
tions. We found that clock-proxy auctions are unambiguously more e¢ cient
than generalized Vickrey auctions; but its comparison with simultaneous
ascending auctions is ambiguous. We found that a large scale setting leads
to higher complexity, which in package auctions tends to frustrate agent-
coordinating behavior. There were multiple dimensions of complexity, such
as communication complexity and cognitive complexity. The results sug-
gest the importance of dealing with these complexities in the design of the
trading rules. Finally agent characteristics have a signi�cant impact on the
performance of the experiments. We found the experimental approach to
gain insight over the standard structural approach, the latter being limited
by lack of data and/or its rationality assumptions. Our further agenda along
this line of problems includes further examination of individual bidding be-
haviors in these package auctions. Our preliminary results and analysis
(Kazumori (2005)) �nd that agents boundedly rational bidding behavior
reinforces the arguments for asceding proxy auctions over Vickrey auctions.

References

[1] Angrist, Joshua and Alan Krueger (1999), Empirical Strategies in Labor
Economics, Handbook of Labor Economics.

44



[2] Athey, Susan and Guido Imbens (2003), Identi�cation and Inference in
Nonlinear Di¤erence-In-Di¤erence Models, Stanford.

[3] Athey, Susan, Jonathan Levin, and Enrique Seira (2004), Comparing
Open and Sealed Bid Auctions: Theory and Evidence from Timber
Auctions, Stanford.

[4] Ausubel, Lawrence, Peter Cramton, and Paul Milgrom (2004), The
Clock-Proxy Auction: A Practical Combinatorial Auction Design,
Maryland and Stanford.

[5] Ausubel, Lawrence and Paul Milgrom (2002), Ascending Auctions with
Package Bidding, B.E. Journal of Frontiers of Theoretical Economics.

[6] Ausubel, Lawrence, Peter Cramton, Preston McAfee, and John McMil-
lan (1997), Synergies in Wireless Telephony: Evidence from the Broad-
band PCS Auctions, Journal of Economics and Management Strategy.

[7] Banks, Je¤ery, John Ledyard, and David Porter (1989), Allocating Un-
certain and Unresponsive Resources: An Experimental Approach, Rand
Journal of Economics.

[8] Banks, Je¤ery, Mark Olson, David Porter, Stephen Rassenti, and Ver-
non Smith (2000), Theory, Experiment and the FCC Spectrum Auc-
tions, mimeo.

[9] Bajari, Patrick, and Jeremy Fox (2005), Should Governments Auc-
tion Nationwide Spectrum Licenses? Estimating Bidder Valuations.
Chicago.

[10] Bernheim, Douglas and Michael Whinston (1986), Menu Auctions, Re-
source Allocation, and Economic In�uence, Quarterly Journal of Eco-
nomics.

[11] Cantillon, Estelle.and Martin Pesendorfer (2003), Combinatorial Bid-
ding in Multi-Unit Auctions, HBS and LSE.

[12] Clarke, E.H. (1971), Multipart Pricing of Public Goods, Public Choice.

[13] FCC (2002), Auction of Licenses in the 747-762 and 777-792 MHz Bands
Scheduled for June 19, 2002; Further Modi�cation of Package Biddimg
Procedures and Other Procedures for Auction No. 31, DA 02-659

[14] Groves, Theodore (1973), Incentives in Teams, Econometrica.

45



[15] Gul, Faruk and Ennio Stacchetti (1999), Walrasian Equilibrium and
Gross Substitutes, Journal of Economic Theory.

[16] Hat�eld, John and Paul Milgrom (2004), Auctions, Matching, and the
Law of Aggregate Demand, Stanford.

[17] Hortacsu, Ali (2002), Mechanism Choice and Strategic Bidding in Di-
visible Good Auctions: An Empirical Analysis of the Turkish Treasury
Auction Market, Chicago.

[18] Kagel, John, Ronald Harstad, and Dan Levin (1987), Information Im-
pact and Allocation Rules in Auctions with A¢ liated Private Values:
A Laboratory Study, Econometrica.

[19] Kazumori, Eiichiro (2005), Auctions with Package Bidding: An Exper-
imental Study. II. Boundedly Rational Bidding Behavior and its Impli-
cations, Stanford.

[20] Kwasnica, Anthony, John Ledyard, David Porter, and Christine De-
Martini (2002), A New and Improved Design for Multi-Object Iterative
Auctions, Management Science.

[21] Kwerel, Evan and Alex Felker (1985), Using Auctions to Select FCC
objects, FCC.

[22] Ledyard, John, David Porter, and Antonio Rangel (1997), Experiments
Testing Multiobject Allocation Mechanisms, Journal of Economics,
Management, and Strategy.

[23] Milgrom, Paul (2000), Putting Auction Theory to Work: The Simulta-
neous Ascending Auctions, Journal of Political Economy.

[24] Milgrom, Paul (2004), Putting Auction Theory to Work, Cambridge
University Press.

[25] Montgomery, Douglas (1997), Design and Analysis of Experiments,
John Wiley and Sons.

[26] Morgan, John (2002), Combinatorial Auctions in the Information Age:
An Experimental Study, UCB.

[27] Meyer, Bruce (1995), Natural and Quasi-Natural Experiments in Eco-
nomics, Journal of Business and Economic Statistics.

46



[28] Nisan, Noam and Ilya Segal (2003), The Communication Requirements
of E¢ cient Allocations and Supporting Lindahl Prices, Stanford.

[29] Parkes, David (2004), Iterative Combinatorial Auctions, Harvard.

[30] Porter, David, Stephen Rassenti, Anil Roopnarine, and Verson Smith
(2004), Combinatorial Auction Design, Proceedings of National Acad-
emy of Sciences.

[31] Raktoe, B.L, A. Hedayat, and W.T. Federer (1981), Factorial Designs,
John Wiley and Sons.

[32] Roth, Alvin (2001), The Economist as Engineer: Game Theory, Exper-
imentation, and Computation, Econometrica.

[33] Vickrey, William (1961), Counterspeculation, Auctions, and Competi-
tive Sealed Tenders, Journal of Finance.

[34] Zhong, Jie, Gangshu Cai, and Peter Wurman (2003), Computing Price
Trajectories in Combinatorial Auctions with Proxy Bidding, North Car-
olina.

47



7 Appendix A: Object Values for Each Agent
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8 Appendix B: Instructions

8.1 The Goals of the Project

The goal of this project is to experimentally study the individual decision
behavior in a strategic environment with the purpose of applying the in-
sights to the design of allocation mechanisms to improve social e¢ ciency.
Speci�cally we study the allocation mechanisms of multiple, heterogeneous,
and indivisible objects when the value structure exhibits superadditivity.

Some motivations for this study are following: (1) the design of an allo-
cation mechanism when the objects are indivisible and when the preferences
involve superadditivity has been an interesting question in theory and prac-
tice (e.g. FCC spectrum auctions), (2) understanding of the actual behavior
of agents in a situation where the standard assumption of unbounded compu-
tation and communication complexity is nontrivial, is helpful to improving
the understanding of rationality assumptions in economics.

In order to achieve these goals, we run a series of experiments on auctions
to collect data on individual choices, e¢ ciency, and revenue.

8.2 The Procedure of the Experiments

We present a series of auctions where you decide the bids. We will record
the bidding data on the computer for future analysis.

Speci�cally, the proceedings of the session are as follows:
1. We explain the goal of this project, the structure of the decision problems,
and the speci�c de�nitions of the auction environments where these decisions
take place.
2. We then introduce the auction software and explain how to interact with
the software and how to express the decisions that you make. We will then
run some practice auctions.
3. We will distribute the materials, which will characterize the decision
problems. More speci�cally, the value sheet is what the decision problems
are based on.
4. We present a series of auctions and ask you to place bids on the objects.

8.3 The Decision Problems

Here we explain the decision problems you are going to solve.
1. Your goal is to maximize the payo¤ from the auctions. In each auction,
you decide the bids, and these bids decide the allocation and the payment
of the auction. You obtain values from the allocation. The payo¤ from
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the auction is the di¤erence between the values of the allocation and the
payment. For example, if you obtain object 3, the value of the object is
100, and the payment needed to obtain object 3 is 50, then the payo¤ is 50.
Given this structure, your objective is to choose bids which maximize the
payo¤s from the auctions.
2. Given the structure of this decision problem, we need to understand three
issues. The �rst issue is how the allocation relates to values, the second issue
is how to decide bids, and the third issue is how the bids lead to allocations
and payments. Then, we explain how to choose bids when we discuss the
auction program interface.

8.4 The Allocation and the Value

We �rst discuss the allocation and the value.
1. Let us explain the objects to be auctioned. In this auction, there are 16
objects arranged in a rectangle. Intuitively, these objects have an analogy
to the distribution of spectrum licenses in the United States. For example,
agent 1 might be located at Seattle, the object 1 is a license for the state
of Washington, agent 2 is located at Massachusetts, agent 3 is located at
Chicago, and so on.
2. An allocation for you means how many of these 16 objects you win.
Mathematically, the allocation is de�ned as a subset of these 16 objects. An
example is a collection of objects 1, 2, and 5, represented by {1,2,5},

Figure B1. Objects and Agents.
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3. You obtain economic values from an allocation. For example, in spectrum
auctions, a company obtains pro�ts from running a business using these
licenses. Each of you can have di¤erent values even for the same object. For
example, if a company is located in Seattle, it might attach a higher value
for the license in the state of Washington than a company located in Florida
since it will have a lower operating cost. These values are de�ned in the
value sheet, which will be distributed before the auction.

Package Value Price
1 800
2 600
3 200
4 500
5 500
6 400
7 400
8 100
9 700
10 500
11 400
12 200
13 200
14 200
15 200
16 600
1 2 1832
1 2 5 2962
1 2 5 6 3591
1 2 6 2400
1 5 1661
1 5 6 2217
1 6 1296
2 5 1370
2 5 6 1902
2 6 1072
5 6 960

4. Let us explain how to read this sample value sheet. The upper parts de�ne
the value of each object. For example, it says that the value of object 1 is
800. The second part of the value sheet de�nes the values of the packages.
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For example, the value of the package {1,2} is 1832.
5. Let us explain superadditivity of values. Superadditivity implies that
the value of a package is larger than the sum of the values of the objects
which comprise the package. For example, consider the package {1,2}. The
value of this package is 1832. But object 1 and 2 have values of 800 and 600.
This is an example of superadditivity, since the value of the package is larger
than the sum of the values of the individual objects. An economic reason for
superadditivity is that there are cost savings from acquiring geographically
adjacent objects. For example, suppose a company has licenses which are
geographically closely located. The company may be able to save on sales or
operating costs since it can share labor or equipment in two areas. But there
are limitations on superadditivity. That is, you have superadditive values
only for a subset of the objects. It is not that agent 1 has superadditive
values for every package. Agent 1 has values only for a package which is a
subset of {1,2,5,6}.

Figure B2. Area of Interest.

If agent 1 gets objects from the set {1,2,5,6} and objects outside of this
set, then the total value is the sum of the package contained within the set
{1,2,5,6} and the values of the objects outside this set. For example, if agent
1 gets the objects {1,2,5,9}, then its value is the sum of the package {1,2,5},
which is 2962, and the value of object 9, which is 700, so the total value is
2962+700=3662. An interpretation is that agent 1 has �an area of interest�
of objects close to its �headquarters.�
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8.5 Generalized Vickrey Auctions

The �rst mechanism we consider in this experiment is the generalized Vick-
rey auction.
1. Let us begin with a special case. It is a second price auction. In the
second price auction, each agent competes for a single object. In a second
price auction, an agent with the highest bid will win the object. The price
the winner pays is the second highest bid. Let us consider an example.
Suppose there are three agents, 1, 2, and 3. Suppose agent 1�s bid is 10,
agent 2�s bid is 9, and agent 3�s bid is 12.

Bids
Agent 1 10
Agent 2 9
Agent 3 12

The winner is agent 3 with the highest bid, and the price that agent 3 is
going to pay is the second highest bid of 10 by agent 1.
2. One way to understand the pricing rule in a second price auction, which
will generalize to the payment rule in the generalized Vickrey auction, is
that the price in the second price auction is determined by the externality
imposed upon other agents. The price that agent 3 is going to pay is the
externality imposed upon agents 1 and 2. If agent 3 is absent, then agent 1
is going to win the object with the bid of 10. But since agent 3 is present,
agent 1 is not going to win the object. In a sense, agent 1 loses 10 because
of agent 3. In other words, agent 3 imposes an externality of 10 on agent
1. According to this pricing rule, agent 3 is going to pay the price of 10.
Please note that agent 3 pays to the seller, and not to agent 1.
3. A generalized Vickrey auction can be best understood as a generalization
of second price auctions. In generalized Vickrey auctions, �rst, you submit
bids not only for each object, but also for packages. It is a sealed-bid, so
that you do not observe bidding behavior by others when you submit a bid.
Also you submit bids only once. The seller chooses the allocation which
maximizes the value for the seller expressed in the bids. The prices are
determined as the externality imposed upon the others.
4. Let us explain an example for 3 objects. Suppose agents 1, 2, and 3 bid
as follows.
The value-maximzing allocation: agent 1 wins object 1 and agent 2 wins
package f2; 3g. The total value is 25. The price paid by agent 2 is de�ned
as (the value of the allocation to other agents when agent 2 is absent from
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Agent 1 Agent 2 Agent 3
Object 1 5 1 3
Object 2 4 1 3
Object 3 3 3 1

Package {1,2} 9 12 6
Package {1,3} 8 14 4
Package {2,3} 7 20 4
Package {1,2,3} 12 21 7

the auction) - (the value of the allocation to other agents when agent 2 is
present in the auction). Let us compute the �rst term. Consider the auction
without agent 2. The value-maximizing allocation is agent 1 wins package
f1,2,3g: The total value for agents 1 and 3 in the current allocation is 5.
The price paid by agent 2 is 12-5=7. An alternative interpretation is that
an agent pays the minimum price which will be needed to win the package.
These two interpretations are equivalent, as is most clearly seen in the case
of a second price auction.

If there are ties among the bids, a tie will be broken randomly.

8.5.1 The Computer Program Interfaces of Generalized Vickrey
Auctions

In the previous subsection, we explained generalized Vickrey auctions. In
this experiment, we ask you to bid in the computer programs. We will
explain how it works here.
1. Please read the instructions before the actual auctions since these auction
mechanisms may look quite complicated for the �rst time. Also please let
us know any questions at any time.
2. Please log in to your computers and open Internet Explorer. Then go to
[the auction web site URL] and click Participate. Please type in user name
and password as explained in the material.
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Figure B3. The Login Screen.

3. Then please go to the Auction list screen.

Figure B4. A List of Auctions.

4. Choose auctions and obtain informations from the con�guration screen.
Information given at the con�guration screen include information on the
name of the auctions, the URL for the instruction for auction procedure,
the number of users, the number of items, the information on the valuation
of objects, and round timing.
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Figure B5. A Con�guration Screen.

5. Click Vickrey. It will lead to a bidding screen. You can enter package
bids by checking multiple objects and the price for the package. You can
bid on as many packages as you wish.The bids must be entered by the end
of the round time.
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Figure B6. A Bidding Screen.

6. Create bids. To create a bid, check the objects and input the bid in the
right space. Here is an example of a bid for a package f1; 2g with the price
of 200. You can create any package you wish.

Figure B7. A Bid.

7. To increase the number of bids, click the �more bids�box. A new screen
appears which will allow you to bid for more packages.
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Figure B8. More Bids.

8. After you made bids, please click omplete to �nalize your bids.

Figure B9. Waiting for an End of the Auction.

9. The result of the auction will be displayed at the result section. This
example shows that agent 1 won the allocation 1,2,3 with the price of 600.
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Figure B10. A Result.

8.6 Simultaneous Ascending Auctions

We next consider simultaneous ascending auctions.
1. Let us consider the simplest case: ascending auctions for a single object.
In this interpretation, each agent submits a bid in each round of bidding. A
bid must be higher than the highest bid submitted in the previous round.
The auction ends when no agent submits a bid for a round. The agent
with the highest bid wins at the price of the bid when the auction ended.
Suppose, in the �rst round, agent 1 bids 10 and agent 2 bids 15. At the
end of the �rst round, a provisional winner is agent 2 with a bid of 15. In
the second round, suppose agent 1 makes a counter bid of 20 and agent 2
keeps the bid of 15. Then at the end of the second round, agent 1 is the
provisional winner with the bid of 20. Suppose, in the third round, neither
agent 1 nor agent 2 make their bid. Then the auction closes. The winner is
agent 1 with the payment of 20.
2. Simultaneous ascending auctions run an ascending auction for each ob-
ject. The auction ends when there are no bids for any of the auctions in a
bidding round. That is, the market clears for each object. The (provisional)
winner and the minimum price of a round are determined object-wise. A
price can be di¤erent for each object. On the other hand, the auctions close
simultaneously. That is, an auction closes only when there are no new bids
for any auction.
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8.6.1 The Computer Program Interfaces of the Simultaneous As-
cending Auctions

1. Log in to the program as before.
2. Go to the auction list screen and click on �simultaneous ascending auc-
tion�.
3. It will direct you to a con�guration screen which displays information
about the auction name, the number of users and items, the round time
out, and the minimum increments.

Figure B11. A Con�guration Screen for SAA.

4. Click �bidding�. It will lead to a bidding screen. Here you can input your
bid for each object. There are time limits for each round and you need to
�nish bidding within the time limit. For example, the next screen shows the
situation when you inputted a bid of 100 for object 1.
5. Con�rm your bid at the bottom of the screen. It will ask you to wait
until a round is over.
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Table B12. A Bidding Screen.

6. When a round is over, it will lead to a new round. The next screen shows
that agent 3 is the provisional winner of object 1 at the price of 700.

Table B13. Round 2.

7. Input a new bid in this round in the same way as in round 1.
8. When the auction ends, the result is displayed under the �result� tab.
Under the �history�tab, the whole bidding history of the auction is available.
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Figure B14. An Auction Result.

Table B15. An Auction History.
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8.7 Clock-Proxy Auctions

The last mechanism we consider is clock-proxy auctions.
1. Clock-proxy auctions consist of two stages: clock auctions in the �rst
stage and proxy auctions in the second stage.
2. The �rst stage clock auction is similar to ascending auctions in that there
are no package bids. The di¤erence is that the price goes up automatically
at each round of the clock auction. In ascending auctions, the price goes
up as a result of bidding. That is, in clock auctions, the price is raised
automatically by the auctioneer, and the agents choose whether to drop out
or to stay in the auction. An example is a �ower auction in The Netherlands.
For example, consider an auction of a �ower with three agents. The price
starts from zero. The price goes up from zero to 10, 20, 30... Suppose agent
3 drops out at the price of 20. Then there are only two agents, agent 1 and
agent 2, in the auction. Then the auction ends when one of the remaining
two agents drops out. Suppose agent 2 drops out at the price of 30. Then
agent 1 is the winner with the price of 30.

3. After the clock auction, the auction moves to the second stage of the proxy
auction. In this proxy auction. each agent can submit, as in the generalized
Vickrey auction. a package bid. A di¤erence is that the allocation and the
price are determined by an ascending proxy auction.
4. In order to understand how an ascending proxy auction works, let us
explain how this auction works in the case of a single object. The proxy
bidding is similar to the one used in eBay. In these auctions, an agent tells
the maximum amount that the agent is willing to pay for the object. Then
the computer program, known as the proxy agent, bids on behalf of the
agent by increasing the price little by little. Essentially, in a proxy auction,
the agent provides a maximum amount that it is willing to pay, to the proxy
agents, and the proxy agents will try to win the object at the lowest price.
5. Let us extend our understanding to the heterogeneous objects case by
moving to ascending proxy auctions. A similarity with the single object case
is that each agent send the bids to the proxy agent. The only di¤erence is
that the agent can place bids on packages in addition to bids for a single
object, as in Vickrey auctions. The proxy agents try to win one package for
the agent, with the lowest price. Let us explain this point using a numerical
example. Suppose there are two objects A and B and that the bids must be
integers. Also suppose that the values that an agent gave to the proxy agent
are v(A) = 10; v(B) = 5; v(A;B) = 20 and the current prices of the objects
and package are b(A) = 4; b(B) = 3; b(A;B) = 15: The principle that the
proxy agent follows is to bid on the package with the minimum price needed
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to win the package so as to maximize the gain from winning the auction. Let
us consider what happens if an agent bid on A. The minimum price needed
to win A is 5. At this price of 5, the payo¤ is 10-5=5. Now consider B, in
which case, the gain is 5-4=1. For package A,B, the gain is 20-16=4. Since
the payo¤ is highest for bidding on A, the proxy agent will bid on A for the
agent.
6. Let us explain the relation between clock auctions and proxy auctions.
The outcome of the clock auctions does not determine the �nal allocation.
But, the bids at the clock auction will be used at the proxy auctions: the
proxy agent will consider bids at the clock auctions in addition to bids at
the proxy auctions.

8.7.1 The Computer Program Interfaces of the Clock-Proxy Auc-
tions.

1. Choose a CP auction. It will lead to a �con�g�screen.

Figure B16 .A Con�guration Screen for a Clock-Proxy Auction.

2. Click the clock tab. It will lead to the �rst stage of the clock auction.
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Figure B17. A First Stage of a Clock Auction.

Clicking the box below the price will imply staying in the auction. Other-
wise, it will imply dropping out of the auction.
3. After the �rst round is over, the price will go up, and it will lead to the
second stage.

Figure B18. The Second Stage of a Clock Auction.

4. Continue bidding. At the end, it will display the results of the clock
auction.
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Figure B19. A Result of a Clock Auction.

5. Move to the proxy auctions by clicking the tabs in the screen.

Figure B20. Inputting a Proxy Bid.

6. Place proxy bids and click complete.
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Figure B21. Proxy Bids.

7, At the end of the auction, the results will be displayed.

Figure B22. A Result of a Clock-Proxy Auction.
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9 Appendix C: Software Used to Conduct Auc-
tions

The auction experiments discussed in this paper were conducted using soft-
ware implemented by Eiichiro Kazumori and Yaakov Belch. This software
presents a comprehensive suite of package auction mechanism implementa-
tions, including the standard single unit auction.

Figure C1: The List of Implemented Auctions.

The software uses the algorithm of Zhong, Cai, and Wurman (2003) for
clock-proxy auctions.
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9.1 Con�guration of Simultaneous Ascending Auctions

1. Choose ascending auctions.

Figure C2: A Choice of Auctions.

2. Choose parameter values. Possible parameters include the name of the
auction, the URL of the webpage which displays the instruction of the auc-
tions so that participants can obtain about the procedure of the auctions,
the nunber of auction participants, the number of items to be sold in the
auction, the valuation structure, and the round time of the auction. The
values for the valuation structure can be uploaded from a csv �le before the
con�guration.

Figure C3: A Choice of Parameters.
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9.2 Con�guration of Generalized Vickrey and Clock-Proxy
Auctions.

1. Choose package auctions in a previous screen.
2. Set up parameters.

Figure C4: Parameters for Package Auctions.
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